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Abstract. First, this paper surveys results on differential-algebraic dimension in closed
ordered differential fields due to Brihaye–Michaux–Rivière and in the differential field of
(logarithmic-exponential) transseries due to Aschenbrenner–Van den Dries–Van der Ho-
even. In particular, these results give topological characterizations of differential-algebraic
dimension in such structures. We also explain connections to the model-theoretic notion
of coanalyzability relative to the constants due to Eleftheriou–León Sánchez–Regnault for
closed ordered differential fields and to Aschenbrenner–Van den Dries–Van der Hoeven for
transseries.

Second, the paper announces new results concerning dimension in ordered valued differen-
tial fields that combine features of both examples, namely existentially closed pre-H-fields
with gap 0. Further, we extend differential-algebraic dimension to a dimension on sets
definable in pairs consisting of an existentially closed pre-H-field with gap 0 and a lift of its
differential residue field, which is a closed ordered differential field.

1. Introduction

1.1. Introduction. The study of differential fields from the perspective of model theory has
a rich history intertwined with differential algebra. Likewise, the model-theoretic study of
ordered fields, particularly as developed in o-minimality, has had influential applications in
number theory, complex geometry, and far beyond. This paper concerns ordered differential
fields, which are simply ordered fields equipped with a derivation in the sense of differential
algebra, and its goal is to examine differential-algebraic dimension in these fields. The
behaviour of this dimension depends on how the derivation interacts with the ordering, which
can be generic or satisfy some natural compatibility conditions reminiscent of differentiating
functions definable in some o-minimal structure on the real numbers. We first survey results
from [BMR09; ELR21; ADH17b] on differential-algebraic dimension in these distinct contexts.
Then we announce new results to be shown in [Pyn25] concerning certain ordered differential
fields combining aspects of both contexts.

The first result on the model theory of ordered differential fields is that this theory, in
which no compatibility between the derivation and the ordering is assumed, has a model
completion called the theory of closed ordered differential fields [Sin78], so called because
this theory axiomatizes the class of ordered differential fields that are existentially closed.
Informally, in a closed ordered differential field, any system of algebraic differential equations
that could have a solution in an ordered field, does have a solution. Thus the derivation
behaves generically with respect to the ordering, and is in particular discontinuous.

On the other hand, coming from o-minimality or asymptotic analysis, it makes sense to
consider fields of real-valued functions as ordered differential fields. A natural example for
model theorists is the set of germs at +∞ of unary functions R → R definable in a fixed
o-minimal expansion of the real closed field R. By the monotonicity theorem, this set of
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germs forms a field that is closed under differentiation, and is thus a Hardy field. In this case,
the derivation satisfies various compatibility properties with the ordering. For instance, it
is continuous and satisfies a version of l’Hôpital’s Rule at +∞; if f(x) → +∞ as x → +∞,
then f ′(x) > 0 for sufficiently large x; if f(x) → 0 as x → +∞, then similarly f ′(x) → 0. A
pre-H-field, introduced in [AD02], is an ordered differential satisfying axioms meant to capture
such behaviour in Hardy fields, and indeed the properties above can be abstractly formulated
as sentences in the language of ordered differential fields. The theory of pre-H-fields has a
model companion in the language of ordered valued differential fields [ADH17a], and models of
this model companion are called closed H-fields, since it axiomatizes the class of existentially
closed H-fields. This result has a long and difficult proof, and, together with the rest of the
book, won the 2017 Karp Prize from the Association for Symbolic Logic. A natural closed
H-field is the differential field of logarithmic-exponential transseries from [DMM97], which
indeed motivated the model companion result. More recently, the same authors showed that
maximal Hardy fields are closed H-fields. The proof of this result, spread across [ADH24b;
ADH24a; ADH24d], is long and involves analysis as well as further algebraic elaborations of
the machinery from [ADH17a]. We say a little more about transseries and Hardy fields in
Section 4.1.

Finally, we consider existentially closed pre-H-fields with gap 0. Pre-H-fields with gap 0
can arise from enlarging the valuation ring of a large closed H-field like a maximal Hardy
field (see [Pyn24a, Section 8] and [Pyn24b]). In [Pyn24a], we showed that this theory has
a model completion, which axiomatizes the class of existentially closed pre-H-fields with
gap 0. These pre-H-fields contain a closed ordered differential subfield that is bounded (in
the sense of the ordering), so they combine features of closed H-fields and closed ordered
differential fields. The rest of the paper announces without proof new results on dimensions
in existentially closed pre-H-fields with gap 0. After studying differential-algebraic dimension,
we extend it to a dimension dim2 on sets definable in the pair (K,k) consisting of K, an
existentially closed pre-H-field with gap 0, and k, a closed ordered differential subfield that
is tame in K. The idea for this dimension is adapted from a dimension for tame pairs of real
closed fields from [ÁD16].

In all three of these structures: closed ordered differential fields, closed H-fields, and
existentially closed pre-H-fields with gap 0, we compare dimension to order-topological
properties and a topological notion of dimension, as well the model-theoretic notion of
coanalyzability. The results are summarized below.

1.2. Overview of results. A key step of the investigation in each of the structures is to
establish that differential-algebraic dimension is a dimension function in the sense of [Dri89].
This is defined in Definition 2.2 and means roughly that the dimension is definable in fibres
in a way compatible with definable maps. Let dim refer to differential-algebraic dimension,
which we define in Section 2. In [BMR09], they show that dim is a dimension function in
closed ordered differential fields by proving a differential cell decomposition result based
on the cell decomposition for the underlying real closed field, and then showing that the
dimension coming from this differential cell decomposition coincides with dim. Since the
derivation is not compatible with the order topology, they refine the order topology in such a
way that:

Fact 1.1 ([BMR09]). If k is a closed ordered differential field and S ⊆ kn is nonempty and
definable in k, then the following are equivalent:
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(i) dim S = n;
(ii) S has nonempty interior in kn in the topology refining the order topology.

For a differential field K with derivation ∂, its constant field is CK := {a ∈ K : ∂(a) = 0}.
For a flavour of this refined topology, in a closed ordered differential field k, Ck is dense and
codense in k in the order topology, but becomes closed in the refined topology. This fact and
others about closed ordered differential fields are in Section 3.

In the case of closed H-fields, showing that dim is a dimension function involves first
connecting it to the order topology. Then as explained further in Section 4:

Fact 1.2 ([ADH17b]). If K is a closed H-field and S ⊆ Kn is nonempty and definable in K:
(i) dim S = n ⇐⇒ S has nonempty interior in Kn.
(ii) The following are equivalent:

(a) dim S = 0;
(b) S is discrete in Kn;
(c) S is coanalyzable relative to C.

The definition of the model-theoretic notion of coanalyzability in the last part of the fact
above is technical, but can be viewed here as an analogue of the fact that the solutions of
a linear differential equation form a finite-dimensional vector space over the constant field.
That is, in a closed H-field, the solution set of a possibly nonlinear algebraic differential
equation is still controlled by the constant field.

Combining the two parts when n = 1 implies that closed H-fields are d-minimal (we do not
include definable completeness in the definition of d-minimal), and its proof relies on local
o-minimality from [ADH17a, Proposition 16.6.8]. In [Fuj23; FKK22], it is shown that locally
o-minimal structures have a nice dimension theory, provided they are definably complete: For
example, a nonempty definable set has dimension 0 if and only if it is discrete. However, the
locally o-minimal structures considered in this paper are not definably complete, since the
convex hull of the constant field is definable and bounded but has no supremum. Therefore,
different approaches are needed to establish the same result in ordered differential fields. Also
note that no structure in this paper is weakly o-minimal, since the constant field is definable
but not convex.

Showing that dim is a dimension function in existentially closed pre-H-fields with gap 0 is
similar to the case of closed H-fields. Then as explained further in Section 5.2:

Theorem 1.3. If K is an existentially closed pre-H-field with gap 0 and S ⊆ Kn is nonempty
and definable in K:

(i) dim S = n ⇐⇒ S has nonempty interior in Kn.
(ii) dim S = 0 ⇐⇒ S is discrete in Kn.

Again, the case n = 1 means that existentially closed pre-H-fields with gap 0 are d-minimal,
and some proofs go through local o-minimality. Here we lose the equivalence of having
dimension 0 with coanalyzability relative to the constant field. This is essentially because in
a closed ordered differential field, not every algebraic differential equation is coanalyzable
relative to the constant field [ELR21], and an existentially closed pre-H-field with gap 0
contains a closed ordered differential subfield. We regain a modified form of this equivalence
by extending dim to a dimension function dim2 that better captures behaviour in such pairs.
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Theorem 1.4. Let K be an existentially closed pre-H-field with gap 0 equipped with a lift k
of its closed ordered differential residue field. If S ⊆ Kn is nonempty and definable in (K,k),
then the following are equivalent:

(i) dim2 S = 0;
(ii) S is discrete in Kn;
(iii) S is coanalyzable relative to k.

In this case, we cannot show that having dimension n is equivalent to having empty interior
in Kn, but can prove it in case n = 1, which shows d-minimality for such pairs (K,k). The
results for pairs are explained in Section 5.3.

1.3. Notation and conventions. Let m and n range over N = {0, 1, 2, . . . }. We use
standard model-theoretic terminology and notation. The logic here is always single-sorted.
“Definable” means “definable with parameters”; when confusion may arise, we specify the
ambient structure. Fix pairwise distinct variables x1, x2, . . . , y1, y2, . . . , and z, and let
x = (x1, . . . , xm) and y = (y1, . . . , yn). Capital X1, . . . , Xm, Y, Y1, . . . , Yn, and Z refer to
differential indeterminates (in the sense explained in Section 2).

2. Preliminaries on differential fields and differential-algebraic dimension

A differential field is a field K of characteristic 0 equipped with a derivation ∂ : K → K,
which satisfies for a, b ∈ K:

(D1) ∂(a + b) = ∂(a) + ∂(b);
(D2) ∂(ab) = a∂(b) + b∂(a).

Let K be a differential field. Attached to K is an important subfield C := {a ∈ K : ∂(a) = 0},
called the constant field of K; to indicate the dependence on K, we write CK . For
a ∈ K, we often write a′ for ∂(a) if the derivation is clear from context, and similarly a(n)

for ∂
n(a). We let K{Y } be the ring of differential polynomials over K in the differential

indeterminate Y . That is, K{Y } is the polynomial ring K[Y, Y ′, Y ′′, . . . ] over K in infinitely
many distinct indeterminates Y, Y ′, Y ′′, . . . with the evaluation map a 7→ P (a) given by
substituting a, a′, a′′, . . . for Y, Y ′, Y ′′, . . . in P , where a ∈ K. If L is a differential field
extension of K and a ∈ L, then K⟨a⟩ denotes the differential subfield of L generated by a
over K. Using differential polynomials instead of polynomials, one defines “differentially
algebraic”, “differentially transcendental”, and “differential transcendence degree” in a similar
fashion as the more familiar “algebraic”, “transcendental”, and “transcendence degree”. See
for example [ADH17a, Section 4], which uses the same notation as here. For a differential
field extension L of K, let tr.deg∂(L|K) denote the differential transcendence degree of L
over K. In particular, tr.deg∂(L|K) = 0 if and only if every a ∈ L is differentially algebraic
over K.

Let L∂ := {+, −, ·, 0, 1, ∂} be the language of differential rings and let K be an expansion of
a differential field in some language expanding L∂. The fastest way to define the differential-
algebraic dimension of definable sets in K uses elementary extensions, although this is not
necessary. For nonempty S ⊆ Kn definable in K, the differential-algebraic dimension of
S is

dim S := max{tr.deg∂(K⟨s⟩|K) : s ∈ S∗},

where K∗ ≽ K is |K|+-saturated and S∗ ⊆ (K∗)n is defined by the same formula as S. Of
course, one must check that this is independent of the choice of |K|+-saturated K∗ ≽ K



REMARKS ON DIMENSION IN ORDERED DIFFERENTIAL FIELDS 5

and remains the same when passing to elementary extensions; for such details, see [ADH17b,
Section 1] or [ÁD16, Section 2]. Differential-algebraic dimension has an alternate definition
intrinsic to K, which makes no reference to elementary extensions; see [Dri89, Section 2] or
[ADH17b, Section 1].

It is obvious from the definitions that for any nonempty definable S ⊆ Kn, we have
0 ⩽ dim S ⩽ n. We set dim ∅ := −∞. Here are some other desirable properties of differential-
algebraic dimension, which are not hard to check using the definition above and some basic
differential algebra (use for example [ADH17a, Lemma 4.2.1] for dim K = 1).

Lemma 2.1. Let S1 ⊆ Km and S2 ⊆ Kn be definable. Then
(i) dim Kn = n;
(ii) if S1 is finite and nonempty, then dim S1 = 0;
(iii) if m = n and S1 ⊆ S2, then dim S1 ⩽ dim S2;
(iv) if m = n, then dim(S1 ∪ S2) = max{dim S1, dim S2};
(v) dim(S1 × S2) = dim S1 + dim S2.

It is also important for logical purposes that dimension be invariant under permutation of
coordinates, which indeed holds for differential-algebraic dimension. For these properties,
see for example [ADH17b, Lemmas 1.2, 1.3] and also the analogous [ÁD16, Lemmas 2.1, 2.4,
Corollary 2.5] for a very general context in which these properties hold.

Definition 2.2. We say dim is a dimension function (in K) if for all definable f : S → Kn

with S ⊆ Km,
(1) dim S ⩾ dim f(S) (in particular, dim S = dim f(S) for injective f);
(2) Bi := {b ∈ Kn : dim f−1(b) = i} is definable and dim f−1(Bi) = i + dim Bi for

i = 0, . . . , m.

In fact, [Dri89] shows how the first part follows from the second part and the properties
in Lemma 2.1. This definition makes sense more generally, of course, although in general
the properties of Lemma 2.1 (and invariance under permutation of coordinates) should be
included in the definition of “dimension function”.

If dim is a dimension function, then it is determined by the collection of definable S ⊆ K
with dim S = 0. Thus characterizing the sets of dimension 0 is of particular interest. A
paradigmatic example of a set with differential-algebraic dimension zero is C. More generally,
a subset S of K is thin if S ⊆ {a ∈ K : P (a) = 0} for some nonzero P ∈ K{Y }. Note that
the thin subsets of K form an ideal, and for nonempty definable S ⊆ K, dim S = 0 if and
only if S is thin. As remarked above, K is not thin. More generally, dim S < n if and only if
S ⊆ {a ∈ Kn : P (a) = 0} for some nonzero P ∈ K{Y1, . . . , Yn}.

From this “bottom up perspective”, the paper [ÁD16] studies dimension functions given
by collections of formulas that define pregeometries. Essentially, identifying which definable
sets have dimension 0 allows them to build a dimension from that collection. Although
[ÁD16] does not explicitly consider the case of differential fields, the relevant collection here
comprises formulas of the form P (y, z) = 0 ∧ P (y, Z) ̸= 0 with parameter variables y, where
P ∈ Z{Y1, . . . , Yn, Z}. The expression P (y, Z) ̸= 0 abbreviates a formula in the language of
rings with free variables y expressing that P (y, Z) is a nonzero differential polynomial in Z.
The pregeometry in K associated to this collection takes A ⊆ K to the set of elements of
K that are differentially algebraic over Q⟨A⟩. This framework makes some of their results
available here for free even for differential-algebraic dimension, but we only really need to
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exploit it when we introduce a new dimension function in Section 5.3. There is also overlap
between [ÁD16] and [For11], but we use the former.

3. Closed ordered differential fields

The first theory of ordered differential fields we consider is just that—the theory in the
language L∂,⩽ = L∂ ∪{⩽} of ordered differential rings expressing that any model is an ordered
field (in the sense that addition and multiplication are compatible with the ordering in the
usual way) equipped with a derivation. Note that no interaction is assumed between the
derivation and the ordering. Singer studied this theory and showed:

Fact 3.1 ([Sin78]). The theory of ordered differential fields has a model completion, the theory
of closed ordered differential fields; this theory is complete and admits quantifier elimination.

Since the theory of ordered differential fields has a ∀∃-axiomatization, the closed ordered
differential fields are exactly the ordered differential fields that are existentially closed. Hence
the derivation exhibits every behaviour possible that is consistent with the ordering. This
is also apparent in the following axiomatization due to Singer, where k[T0, . . . , Tn] denotes
the ring of polynomials (not differential polynomials) over k in the n + 1 indeterminates
T0, . . . , Tn. An ordered differential field k is a closed ordered differential field if

(1) k is a real closed field;
(2) given P, Q1, . . . , Qm ∈ k[T0, . . . , Tn] with P /∈ k[T0, . . . , Tn−1], whenever there exists

(a0, . . . , an) ∈ kn+1 such that
• P (a0, . . . , an) = 0,
• Qi(a0, . . . , an) > 0 for i = 1, . . . , m, and
• ∂P

∂Tn
(a0, . . . , an) ̸= 0,

then there exists b ∈ k such that
• P (b, b′, . . . , b(n)) = 0 and
• Qi(b, b′, . . . , b(n)) > 0 for i = 1, . . . , m.

In the rest of this section, let k be a closed ordered differential field; since k is real closed,
for definability purposes it does not matter whether we consider k as an L∂-structure or as
an L∂,⩽-structure. For examples of the generic behaviour mentioned above, it follows easily
from the given axiomatization that the constant field Ck of k is dense and codense in k (with
respect to the order topology). In particular, ∂ is discontinuous and closed ordered differential
fields are not locally o-minimal. More generally, Singer’s closed ordered differential fields fit
into the framework of o-minimal fields equipped with a generic derivation in [FK21].

In [BMR09, Theorem 4.9], Brihaye, Michaux, and Rivière prove a cell decomposition
theorem for closed ordered differential fields, based on the o-minimal cell decomposition for
the underlying real closed field. Since the derivation behaves generically with respect to the
ordering, the idea is to exploit o-minimal cell decomposition in higher arities and then restrict
to the jet space (i.e., the family of subsets {(a, a′, a′′, . . . , a(n)) : a ∈ k} ⊆ kn+1 as n varies).
For example,

Ck = {a ∈ k : a′ = 0} = π1
(
{(a, b) ∈ k2 : b = 0} ∩ {(a, b) ∈ k2 : b = a′}

)
is a cell in the closed ordered differential k since {(a, b) ∈ k2 : b = 0} is a cell in the real
closed field k, where π1 : k2 → k is projection onto the first coordinate. As in an o-minimal
structure, this cell decomposition yields a notion of dimension, which they show in [BMR09,
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Corollary 5.27] coincides with differential-algebraic dimension; we thus continue to denote
dimension in this context simply by dim.

Fact 3.2 ([BMR09, Theorem 5.19]). The dimension dim is a dimension function.

Coming to topological issues, since the derivation is not compatible with the order topology,
it should therefore not be surprising that the differential-algebraic dimension does not agree
with the topological dimension (in the sense made precise in Fact 3.3). For example, the
subset A := {a ∈ k : a′ > 0} is dense and codense in k but has dim A = 1. In particular,
dim A = 1 for A ⊆ k does not imply that A has nonempty interior in k. Nevertheless, Brihaye,
Michaux, and Rivière are able to give a topological characterization of dimension, but using
a refined topology. The idea of this topology is similar to the idea for cell decomposition, in
that it involves intersecting open sets (in the order topology) in higher arities with the jet
space. For example, in the refined topology,

A = {a ∈ k : a′ > 0} = π1
(
{(a, b) ∈ k2 : b > 0} ∩ {(a, b) ∈ k2 : b = a′}

)
is open since {(a, b) ∈ k2 : b > 0} is open in k2 in the order topology (more precisely, the
corresponding product topology on k2), but A is dense and codense in the order topology.
Similarly, Ck is closed in the refined topology.

Fact 3.3 ([BMR09, Theorem 5.29]). If S ⊆ kn is nonempty and definable, then dim S is the
largest m ⩽ n such that some projection onto m of its coordinates has interior in km in the
refined topology.

Finally, we come to the issue of coanalyzability relative to Ck in k, and its connection
to dimension. Here is the easiest definition of the relevant notion of coanalyzability of a
definable set in k (for an exposition of this notion, see [ADH17b, Section 6]). For φ(x, y) and
a as in Definition 3.4, the notation φ(a,k) means {b ∈ kn : k |= φ(a, b)} and similarly in
other instances.

Definition 3.4. Let φ(x, y) be an L∂-formula. Let a ∈ km, and Th(k, a) denote the L∂(a)-
theory of k expanded by constants for a. Then φ(a,k) is coanalyzable relative to Ck if
whenever k1 ≼ k2 |= Th(k, a) with Ck1 = Ck2 , we have φ(a,k1) = φ(a,k2).

It is an easy consequence of dim being a dimension function and dim Ck = 0 that if A ⊆ kn

is coanalyzable relative to Ck, then dim A = 0 (see [ÁD16, Corollary 2.8] for a general
statement of this kind). However, Eleftheriou, León-Sanchez, and Regnault show that the
converse fails.

Fact 3.5 ([ELR21, Corollary 4.3]). There exists a definable S ⊆ k such that dim S = 0 but
S is not coanalyzable relative to Ck.

In fact, using results of Rosenlicht from [Ros74], they give the explicit examples z′ = z3 −z2

and z′(z − 1) = z, formulas which define subsets of k that are not coanalyzable relative to
Ck but clearly have differential-algebraic dimension 0.

4. Transseries and maximal Hardy fields

4.1. Introduction. The previous section dealt with closed ordered differential fields, in
which the derivation interacts generically with respect to the order topology. Now we turn
to ordered differential fields in which the derivation behaves nicely with respect to the
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order topology; in particular, it is continuous. We make this precise through the notion of
pre-H-field in the next subsection, and just describe some motivation now. The elementary
class of pre-H-fields is motivated by transseries and Hardy fields, and was introduced in
[AD02] towards axiomatizing these structures, which have a rich mathematical history both
inside and outside of logic.

Transseries were introduced independently by Dahn and Göring, motivated by Tarski’s
decidability problem for the real exponential field [DG87], and by Écalle in his solution
of Dulac’s problem, connected to Hilbert’s 16th problem [Éca90; Éca92]. There are many
fields of transseries, but the specific structure T considered here, the differential field of
logarithmic-exponential transseries, was constructed in [DMM97] (it was denoted in that
paper by R((t))LE). This differential field has an intricate construction, but roughly it is built
from real power series in x using exponentials and logarithms, allowing suitable infinite sums;
some elements can be thought of as asymptotic expansions of solutions to real differential and
functional equations (x is thought of as going to +∞). Indeed, every unary function definable
in the o-minimal field Ran,exp can be asymptotically expanded at +∞ as a series in T, which
was used in the proofs in [DMM97] that the real Gamma and Riemann zeta functions are
not definable in Ran,exp. Of a more analytic flavour, Hardy fields are fields of germs at +∞
of functions f : R → R that are closed under differentiation. For a fixed o-minimal expansion
of the real field, the germs at +∞ of the definable unary functions form a Hardy field.

These algebraic and analytic counterparts are closely related, and indeed there are various
embeddings between some of these fields, of which one was already mentioned above (in one
direction the embedding is seen as asymptotic expansion and in the other as summation).
Their model theory too is closely related. For more details on the program of Aschenbrenner,
Van den Dries, and Van der Hoeven on transseries and Hardy fields, see the survey paper
[ADH18], which also concerns a third structure, the surreal numbers. The introduction to the
book [ADH17a] is another good introduction to transseries and their model theory, as well as
an earlier survey paper [ADH13]. Note that several conjectures from [ADH18] concerning
Hardy fields have been established in [ADH24a; ADH24b; ADH24c; ADH24d]. In particular,
maximal Hardy fields have the same elementary theory as T as differential fields.

4.2. Pre-H-fields. Based on the behaviour of differentiation in Hardy fields and transseries,
we model nice interaction between the ordering and the derivation in ordered differential
fields through the notion of pre-H-field defined below. First we need some notation for valued
fields. Let K be an ordered differential field and O be a valuation ring of K, meaning that
O is a subring of K such that a ∈ O or a−1 ∈ O for every a ∈ K×; if necessary, we indicate
the dependence on K by OK . With O× = {a ∈ K× : a, a−1 ∈ O}, the ring O has a unique
maximal ideal O := O \ O×. We introduce the following binary relations, for a, b ∈ K:

a ≼ b ⇔ a ∈ Ob, a ≍ b ⇔ a ≼ b and b ≼ a,

a ≺ b ⇔ a ∈ Ob and b ̸= 0, a ∼ b ⇔ a − b ≺ b.

The relation ≍ is an equivalence relation on K, the relation ∼ is an equivalence relation on
K×, and they satisfy: if a ∼ b, then a ≍ b. The residue field of (K, O) is res(K, O) := O/O.
Note that Q ⊆ O, so the characteristic of res(K, O) is 0.

We call (K, O) a pre-H-field if
(PH1) O is convex (with respect to ⩽);
(PH2) for all a ∈ K, if a > O, then a′ > 0;
(PH3) for all a, b ∈ K× with a ≼ 1 and b ≺ 1, we have a′ ≺ b′/b.
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Condition (PH1) holds if and only if O is convex, in which case ⩽ induces an ordering on
res(K, O) making it an ordered field.

In the definition of pre-H-field, O may be any valuation ring of K, but (PH2) forces C ⊆ O.
For this paper, the reader can safely assume that O is the convex hull of C in K, i.e., the set
{a ∈ K : c1 ⩽ a ⩽ c2 for some c1, c2 ∈ C}. In this case, O is existentially definable without
parameters in K as an ordered differential field, but it is nevertheless important to include O
in some way as a primitive for model completeness and quantifier elimination results. We
thus usually write K instead of (K, O) and say, for example, “K is a pre-H-field”. Equipped
with the convex hull of Q as a valuation ring, T is a pre-H-field and every Hardy field is a
pre-H-field.

4.3. Dimension in closed H-fields.

Fact 4.1 ([ADH17a, Corollaries 16.2.5, 16.6.3, Proposition 16.6.8]). The theory of pre-H-fields
has a model companion, the theory of closed H-fields; this theory has two completions and it
is locally o-minimal.

The proof of this landmark result from [ADH17a], which won the 2017 Karp Prize from the
Association for Symbolic Logic, requires most of the long book. Moreover, the theory of closed
H-fields, denoted in [ADH17a] by T nl, has an effective axiomatization. Since it is rather
technical and plays no role in this summary, we omit it, but the two technical conditions in
the axiomatization were shown in [ADH22] to be equivalent modulo the others to the more
natural Differential Intermediate Value Property. Every closed H-field is in particular a real
closed field. Note that since the theory of pre-H-fields has a ∀∃-axiomatization, a pre-H-field
is existentially closed if and only if it is a closed H-field.

In the remainder of this subsection, K is a closed H-field and dim continues to refer to
differential-algebraic dimension, now on definable subsets of Kn; for definability purposes,
it does not matter whether we consider K as an L∂-structure, an L∂,⩽-structure, or an
L∂,⩽ ∪ {≼}-structure, since the ordering and valuation ring are existentially L∂-definable
without parameters. One of the two completions of T nl completely axiomatizes the theory of
T and maximal Hardy fields. In particular, the results from [ADH17b] summarized below
apply to K = T or K a maximal Hardy field.

In contrast with closed ordered differential fields, differential-algebraic dimension behaves
well with respect to the order topology in closed H-fields. In this section, we always construe
K as equipped with its order topology (equivalently, its valuation topology) and Kn as
equipped with the corresponding product topology.

Fact 4.2 ([ADH17b, Corollary 3.1]). If S ⊆ Kn is definable, then

dim S = n ⇐⇒ S has nonempty interior in Kn.

This yields the following topological characterization of dim, which in particular shows that
the differential-algebraic dimension of a set definable in the real closed field K is the same as
its semialgebraic dimension (if you like, coming from the o-minimal cell decomposition for
real closed fields).

Fact 4.3 ([ADH17b, Corollary 3.2]). If S ⊆ Kn is nonempty and definable, then dim S is
the largest m ⩽ n such that some projection onto m of its coordinates has interior in Km.

The proof of Fact 4.2 is combined with a criterion from [Dri89] to obtain:
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Fact 4.4 ([ADH17b, Corollary 3.3]). The dimension dim is a dimension function.
Additionally, there is a more precise topological characterization of dimension 0 sets.

Fact 4.5 ([ADH17b, Proposition 4.1]). If S ⊆ Kn is nonempty and definable, then
dim S = 0 ⇐⇒ S is discrete in Kn.

The key step in the proof of Fact 4.5 is establishing it for n = 1 in [ADH17a, Corol-
lary 16.6.11], which relies on the local o-minimality of K shown in [ADH17a, Proposi-
tion 16.6.8] and also shows that K is d-minimal (although K is not definably complete). In
turn, this relies on the quantifier elimination result [ADH17a, Theorem 16.0.1], which refines
the model companion result stated above. The language for quantifier elimination is the
language L∂,⩽,≼ := L∂,⩽ ∪ {≼} of ordered valued differential rings expanded by two binary
predicates concerning certain second order differential equations.

Here is another characterization of having dimension 0, showing that three notions of
“smallness”, namely differential-algebraic, topological, and model-theoretic coanalyzability,
coincide. Coanalyzability here means the same thing as in Definition 3.4, but to be clear:
Definition 4.6. Let φ(x, y) be an L∂-formula. Let a ∈ Km and Th(K, a) denote the L∂(a)-
theory of K expanded by constants for a. Then φ(a, K) is coanalyzable relative to C if
whenever K1 ≼ K2 |= Th(K, a) with CK1 = CK2 , we have φ(a, K1) = φ(a, K2).
Fact 4.7 ([ADH17b, Proposition 6.2]). If S ⊆ Kn is nonempty and definable, then

dim S = 0 ⇐⇒ S is coanalyzable relative to C.

Again, the key case is when n = 1 and S is the zero set of a differential polynomial.
Establishing coanalyzability relative to C for such S is essentially [ADH17a, Theorem 16.0.3].

5. Existentially closed pre-H-fields with gap 0

5.1. Introduction. In the previous section, we explained how differential-algebraic dimension
behaves in the model companion of the theory of pre-H-fields, a theory motivated by transseries
and Hardy fields. Now we consider instead the theory of pre-H-fields with gap 0, where a
pre-H-field (K, O) has gap 0 if every a ∈ K× with a ≺ 1 satisfies a ≺ a′ ≺ 1. This theory
is harder to motivate than before, but consider the situation of a closed H-field K and an
elementary submodel L that is bounded inside K in the sense that there is a ∈ K with a > L.
This pair (K, L) gives rise to a transserial tame pair in the sense of [Pyn24b]. This may
look like model-theoretic abstraction, but there are indeed such pairs. For instance, T can
be elementarily embedded into any maximal Hardy field by [AD23, Corollary 7.10]. Given
such a pair, K together with the convex hull O of L inside K form a pre-H-field (K, O) with
gap 0. The idea is that L is some kind of exponentially bounded part, while O is a purely
transexponential scale in K; in this case, O will be much larger than the convex hull of C in
K. For more precision, see [Pyn24b].

Forgetting these pairs for now, the theory of pre-H-fields with gap 0 has a model completion
in the language L∂,⩽,≼ of ordered valued differential rings; we denote the theory of the model
completion of pre-H-fields with gap 0 by T dhl. This model completion has some parallels
with the model companion of the theory of pre-H-fields, but many differences. For example,
the derivation of a pre-H-field (K, O) with gap 0 induces a derivation on its residue field
res(K, O) by [ADH17a, Lemma 4.4.2], and if (K, O) |= T dhl, then res(K, O) is a closed
ordered differential field. In contrast, the residue field of a closed H-field is a pure real closed
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field. Note that if (K, O) |= T dhl, then O is the convex hull of C in K; again this justifies
writing K instead of (K, O).1 The theory T dhl also has an effective axiomatization, but the
details of these axioms may not be illuminating, so we refer to [Pyn24a] (T dhl was there
denoted by T dhl

codf). As before, a pre-H-field with gap 0 is existentially closed if and only if it
models T dhl. If K |= T dhl, then K is a real closed field. Now we summarize what we need
about T dhl.

Fact 5.1 ([Pyn24a, Theorem 7.9]). The theory of pre-H-fields with gap 0 has a model
completion, T dhl; this theory is complete, admits quantifier elimination, and is locally o-
minimal.

As in the previous section, it follows from quantifier elimination that the differential-
algebraic dimension has good properties in models of T dhl. In particular, it is a dimension
function. Additionally, it behaves well topologically, where K |= T dhl is equipped with its
order topology, which coincides with its valuation topology, and Kn is equipped with the
corresponding product topology. In particular, for nonempty S ⊆ Kn definable in K, we
have dim S = n if and only if S has nonempty interior (cf. Fact 4.2) and dim S = 0 if and
only if S is discrete (cf. Fact 4.5). Full statements are in the next subsection.

5.2. Dimension in existentially closed pre-H-fields with gap 0. Let K |= T dhl. Quanti-
fier elimination yields the same topological characterization of differential-algebraic dimension
in models of T dhl as for T nl (cf. Fact 4.2). As before, definability in this subsection always
means in K as a differential field, since the ordering and valuation ring are existentially
definable in L∂ without parameters.

Lemma 5.2. If S ⊆ Kn is definable, then
dim S = n ⇐⇒ S has nonempty interior in Kn.

It follows that the differential-algebraic dimension of a set definable in the real closed field
K is the same as its semialgebraic dimension. More generally (cf. Fact 4.3):

Corollary 5.3. If S ⊆ Kn is nonempty and definable, then dim S is the largest m ⩽ n such
that some projection onto m of its coordinates has interior in Km.

Using the criterion [Dri89, Proposition 2.15], or more precisely its differential analogue on
[Dri89, p. 203], and the proof of Lemma 5.2, we obtain (cf. Fact 4.4):

Corollary 5.4. The dimension dim is a dimension function.

Using local o-minimality for the first time together with Lemma 5.2 yields the following
analogue of [ADH17a, Corollary 16.6.11], which in particular shows that K is d-minimal
(although K is not definably complete).

Corollary 5.5. Let S ⊆ K be definable. Then S is the disjoint union of an open definable
set and a discrete definable set. Moreover, S is discrete if and only if S is thin.

In particular, the previous corollary states that discreteness is equivalent to having
differential-algebraic dimension 0 for subsets of K. That holds moreover for subsets of
Kn, for which the key step is the case n = 1 above. The proof is similar to that of Fact 4.5.

1By passing to the model companion, we have left the realm of the pairs of the previous paragraph.
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Proposition 5.6. If S ⊆ Kn is definable and nonempty, then
dim S = 0 ⇐⇒ S is discrete.

The analogue of [ADH17b, Corollary 4.2] follows in the same way. Thus:
Corollary 5.7. Every discrete definable subset of Kn is closed in Kn.

5.3. Dimension in the pair. Let K |= T dhl. By [ADH17a, Proposition 7.1.3], we can
equip K with a lift k of its differential residue field res(K). That is, k ⊆ O and k maps
isomorphically as a differential field onto res(K) under the residue map O → res(K); note
that the restriction k → res(K) is automatically an isomorphism of ordered differential fields.
It follows from basic properties of the valuation and derivation that C = Ck

∼= Cres(K). Since
k is a closed ordered differential field, generic behaviour of the derivation is present in the pair
(K,k), but only on the bounded discrete set k. As summarized in the previous subsection,
differential-algebraic dimension behaves well in K, but it does not behave well in (K,k). For
example, since the closed discrete subset k of K is a nontrivial differential subfield of K, we
have dimk = 1 (see [ADH17a, Lemmas 4.2.1, 4.2.2]). Hence, Proposition 5.6 fails for dim in
(K,k) (i.e., with “definable in (K,k)” replacing “definable in K”). In particular, this also
shows:
Corollary 5.8. No lift of res(K) is definable in K.

To find a dimension function on definable sets in (K,k) compatible with the order topology,
we adapt a dimension for pairs of real closed fields from [ÁD16] to this setting of pairs of real
closed differential fields. The dimension dim2 we define in the next subsection extends dim
in the sense that dim S = dim2 S for S ⊆ Kn definable in K, but it also gives dim2 k = 0,
thereby rectifying the defect above.

Model-theoretically, we expand K by a unary relation U interpreted as k and axiomatize
the theory T dhl

lift by adding to T dhl axioms expressing that k is a subfield of O and for every
a ≍ 1 in K, there exists b ∈ k such that a ∼ b. Set L := L∂,⩽,≼ and Llift := L ∪ {U}. Then as
an Llift-structure, (K,k) |= T dhl

lift . In this language, T dhl
lift does not have quantifier elimination,

but we give instead in Theorem 5.10 a reduction to certain special formulas. In [Pyn24b,
Section 5.3], we give a general quantifier elimination statement that applies to such structures
in Llift expanded by a “standard part” map π : O → k satisfying π(a) = b for a and b as
above. Omitting π from the language used here simplifies the terms of the language, but
at the cost of requiring considerable care in the proof of Theorem 5.10 and forgoing full
quantifier elimination.
Definition 5.9. An Llift-formula is special if it is of the form ∃x ∈ U φ(x, y), where φ(x, y)
is a quantifier-free L-formula.

In the definition above and later, x ∈ U abbreviates ∧m
i=1 xi ∈ U and ∃x ∈ U φ(x, y)

abbreviates ∃x(x ∈ U ∧ φ(x, y)).
Theorem 5.10. Every Llift-formula is T dhl

lift -equivalent to a boolean combination of special
formulas.

As shown earlier, we have closed discrete subsets of K definable in (K,k) that are not
thin, i.e., have differential-algebraic dimension 1 (like k itself). We thus broaden the notion
of thinness to incorporate k, thereby singling out the sets which will have dimension 0 as
measured by the corresponding dimension.
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Definition 5.11. We call S ⊆ K lean if S is contained in a finite union of sets of the form
{a ∈ K : P (u, a) = 0 for some u ∈ km with P (u, Z) ̸= 0},

where P ∈ K{X1, . . . , Xm, Z}.
Regarding terminology, “lean” here has a different meaning and was defined independently

of its other usage in this volume.
Note that every thin set is lean, but so is k, which is not thin. On the other hand, we show

in Lemma 5.15 that K is not lean, which is more subtle than showing it is not thin. The
lean subsets of K thus form an ideal properly containing the ideal of thin sets. Additionally,
they give rise to a pregeometry in (K,k) in which the closure of A ⊆ K is the set of elements
of K that are differentially algebraic over k⟨A⟩. The collection of formulas defining this
pregeometry comprises those of the form ∃x ∈ U (P (x, y, z) = 0 ∧ P (x, y, Z) ̸= 0) with
parameter variables y, where P ∈ Z{X1, . . . , Xm, Y1, . . . , Yn, Z}. As in [ÁD16], this yields a
dimension notion: For nonempty S ⊆ Kn definable in (K,k), set

dim2 S := max{tr.deg∂(Kk∗⟨s⟩|Kk∗) : s ∈ S∗},

where (K∗,k∗) ≽ (K,k) is |K|+-saturated, S∗ ⊆ (K∗)n is defined by the same formula as S,
and Kk∗ denotes the subfield of K∗ generated by K and k∗ (which is a differential subfield
of K∗). As explained in [ÁD16, Section 2], dim2 S does not depend on the choice of the
|K|+-saturated (K∗,k∗) ≽ (K,k) and remains the same in an elementary extension. We set
dim2 ∅ := −∞. In [ÁD16], dim2 denotes a dimension function in a pair of real closed fields,
and we use the same notation for the relevant dimension in our expansions of such pairs. Our
definition of lean sets and the corresponding definition of dim2 singles out the sets S ⊆ K
with dim2 S = 0, by [ÁD16, Lemma 2.2]:
Lemma 5.12. If S ⊆ K is definable in (K,k) and nonempty, then dim2 S = 0 if and only if
S is lean.

In particular, if S ⊆ K is definable in K with dim S = 0, then dim2 S = 0.
As in Lemma 2.1, various natural basic properties of dim2 follow from this definition by

[ÁD16, Lemmas 2.1, 2.4].
Lemma 5.13. Let S1 ⊆ Km and S2 ⊆ Kn be definable in (K,k). Then

(i) if S1 is finite and nonempty, then dim2 S1 = 0;
(ii) if m = n and S1 ⊆ S2, then dim2 S1 ⩽ dim2 S2;
(iii) if m = n, then dim2(S1 ∪ S2) = max{dim2 S1, dim2 S2};
(iv) dim2(S1 × S2) = dim2 S1 + dim2 S2.

As well, dim2 is invariant under permutation of coordinates. Note that the statement
dim2 Kn = n comes later in Corollary 5.16, since its proof is nontrivial. After that, we show
that dim2 is a dimension function in the sense of Definition 2.2. Towards these results, we
adapt [ADH17a, Lemmas 16.6.9 and 16.6.10] to establish a technical result enabling us also
to prove local o-minimality of T dhl

lift . Along the way, we get the following consequence:
Corollary 5.14. If (E, OE) is a nontrivially valued pre-H-field with gap 0 and kE is a lift
of its differential residue field, then E is differentially transcendental over kE.

Some years ago, James Freitag asked whether an existentially closed pre-H-field with gap 0
could be differentially algebraic over a lift of its differential residue field, which the above
corollary answers negatively in a general way. Using the same technical result:
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Proposition 5.15. The set K is not lean in (K,k).

If K were lean in (K,k), then every definable subset S ⊆ K would have dim2 S = 0.
Proposition 5.15 thus shows that dim2 is a nontrivial notion of dimension. By Lemma 5.13:

Corollary 5.16. For all n, we have dim2 Kn = n.

Next, we use the technical result alluded to above to establish local o-minimality of T dhl
lift ,

which underlies the connection between dimension and the order topology.

Proposition 5.17. The theory T dhl
lift is locally o-minimal.

In a somewhat similar way to [ADH17a, Lemma 4.4.10], we can show:

Lemma 5.18. Let S ⊆ Kn be definable in (K,k). If

S ⊆
r⋃

i=1
{a ∈ Kn : ∃x ∈ Um (Pi(x, a) = 0 ∧ Pi(x, Y1, . . . , Yn) ̸= 0)},

for some r ∈ N and Pi ∈ K{X1, . . . , Xm, Y1, . . . , Yn}, i = 1, . . . , r, then S has empty interior
in Kn.

We have not been able to establish the converse, which would yield the equivalence of dim2
with topological dimension in the sense of Lemma 5.2 and Corollary 5.3. However, we are
able to establish it in case n = 1, which is an analogue of [ADH17a, Corollary 16.6.11]. Its
proof requires considerably more care, and relies heavily on local o-minimality and its proof.

Proposition 5.19. Let S ⊆ K be definable in (K,k). Then S is the disjoint union of an
open definable set and a discrete definable set. Moreover, S is discrete if and only if S is lean.

Recall from Definition 2.2 that dim2 is a dimension function (in (K,k)) if for all
f : S → Kn definable in (K,k) with S ⊆ Km,

(1) dim2 S ⩾ dim2 f(S) (in particular, dim2 S = dim2 f(S) for injective f);
(2) Bi := {b ∈ Kn : dim2 f−1(b) = i} is definable in (K,k) and for i = 0, . . . , m,

dim2 f−1(Bi) = i + dim2 Bi.
Now using [ÁD16, Proposition 2.7], we obtain from Proposition 5.19:

Corollary 5.20. The dimension dim2 is a dimension function.

Next we extend the last part of Proposition 5.19 to subsets of Kn, following Fact 4.5.

Theorem 5.21. Let S ⊆ Kn be definable in (K,k) and nonempty. Then
dim2 S = 0 ⇐⇒ S is discrete.

The proof of [ADH17b, Corollary 4.2] also goes through unchanged, which has the following
consequence worth recording:

Corollary 5.22. Every discrete subset of Kn definable in (K,k) is closed in Kn.

Finally, we observe that dim2 agrees with dim on sets definable in K, for which the
key step is that S ⊆ K definable in K is thin if and only if it lean, by Corollary 5.5 and
Proposition 5.19.

Corollary 5.23. Let S ⊆ Kn be definable in K. Then dim S = dim2 S.
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5.4. Coanalyzability. In this final section, we explain how the dimensions considered here
are connected to the model-theoretic notion of coanalyzability. In the previous sections,
coanalyzability is relative to the constant field. Here we will consider that notion as well
as coanalyzability in (K,k) relative to k, and contrast the two. The contrast is connected
to and indeed suggested by the difference between [Pyn24a, Theorem 4.12] and [ADH17a,
Theorem 16.0.3]. Let K |= T dhl. As before, we equip K with a lift k ⊆ O of its differential
residue field. Here are the two relevant notions of coanalyzability of a definable set in (K,k):
Definition 5.24. Let φ(x, y) be an Llift-formula. Let a ∈ Km, and Th(K,k, a) denote the
Llift(a)-theory of (K,k) expanded by constants for a. Then φ(a, K) is

(1) coanalyzable relative to C if whenever (L,kL) ≼ (L∗,kL∗) |= Th(K,k, a) with
CL = CL∗ , we have φ(a, L) = φ(a, L∗);

(2) coanalyzable relative to k if whenever (L,kL) ≼ (L∗,kL∗) |= Th(K,k, a) with
kL = kL∗ , we have φ(a, L) = φ(a, L∗).

It follows from [Pyn24b, Theorem 4.3] and [ADH17a, Proposition 7.1.3] that for an L-
formula φ(x, y) and a ∈ Km, φ(a, K) is coanalyzable relative to C in (K,k) if and only if
φ(a, K) is coanalyzable relative to C in K (i.e., whenever L ≼ L∗ |= Th(K, a) with CL = CL∗ ,
we have φ(a, L) = φ(a, L∗)). Also, since C = Ck ⊆ k, if S ⊆ Kn is coanalyzable relative to
C, then S is coanalyzable relative to k.

In a closed H-field, Fact 4.7 shows that coanalyzability relative to C is equivalent to having
differential-algebraic dimension 0. In contrast, this fails here, essentially due to Fact 3.5.
Lemma 5.25. There exists S ⊆ K definable in K such that dim S = 0 but S is not
coanalyzable relative to C.

Although having differential-algebraic dimension 0 does not imply being coanalyzable
relative to C, the converse remains true in K, as an easy consequence of dim2 being a
dimension function.
Lemma 5.26. If S ⊆ Kn is definable in K and coanalyzable relative to C, then dim S = 0.

Additionally, the proof of Lemma 5.25 shows that k itself is not coanalyzable relative to C
in (K,k). On the other hand, k is obviously coanalyzable relative to k in (K,k), so the two
variants of coanalyzability are indeed different. Since dimk = 1, it also shows that having
differential-algebraic dimension 0 does not coincide with coanalyzability relative to k in the
pair (K,k). This contrasts with Fact 4.7 for closed H-fields, since in a closed H-field the
constant field is a lift of the residue field. This defect is rectified by dim2, where of course
dim2 k = 0. Towards that, we first use [Pyn24a, Theorem 4.12] to show:
Lemma 5.27. Every lean subset of K is coanalyzable relative to k.

As a side note, Lemma 5.25 explains why the right analogue of [ADH17a, Theorem 16.0.3]
for pre-H-fields with gap 0, namely [ADH17a, Theorem 4.12] used above, involves the
differential residue field rather than the constant field. Indeed, the direct analogue of
[ADH17a, Theorem 16.0.3] (without changing C to k in the statement) fails.
Corollary 5.28. There exist K ≼ K∗ |= T dhl such that K∗ is a proper differentially algebraic
pre-H-field extension of K with C = CK∗.

On the other hand, we regain the equivalence of coanalyzability and dimension 0 as soon
as we pass to the appropriate notion of dimension in this situation, namely dim2.
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Theorem 5.29. Let S ⊆ Kn be definable in (K,k) and nonempty. Then
dim2 S = 0 ⇐⇒ S is coanalyzable relative to k.

Hence, the three notions of smallness, i.e., having dim2 S = 0, being discrete, and being
coanalyzable relative to k, all agree for nonempty sets S ⊆ Kn definable in (K,k). This result
should remain true for transserial tame pairs from [Pyn24b] (although the proofs require
more care). Maybe dim2 can be combined in some way with dim, which was well-studied in
the context of closed H-fields in [ADH17b], to give a finer understanding of the sets definable
in such transserial tame pairs.
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