Differential-algebraic dimension in transserial tame pairs

Nigel Pynn-Coates

University of Vienna

Mini-workshop: Recent developments in the model theory of fields 21 May 2025

Closed H-fields

Definition

A differential field K is a **closed** *H*-**field** if $K \equiv \mathbb{T}$, where \mathbb{T} is the differential field of logarithmic-exponential transseries.

Example

- I (Aschenbrenner-van den Dries-van der Hoeven)
- Onway's surreal numbers No (Berarducci–Mantova, ADH)
- hyperseries \mathbb{H} (Bagayoko-van der Hoeven-Kaplan, Ba.)
- Each maximal Hardy field (ADH)

Basic properties

Remark

Every closed H-field K satisfies:

- K is real closed, hence an ordered field;
- Solution K is a valued field with convex valuation ring $\mathcal{O} = \operatorname{conv}_{K}(C) = \{a \in K : |a| \leq c \text{ for some } c \in C^{>0}\}, \text{ where } C = \{c \in K : \partial c = 0\};$
- ◎ *C* is tame in *K*, i.e., $\mathcal{O} = C + \sigma$, where $\sigma = \{a \in K : |a| < C^{>0}\}$
 - i.e., for every $f \in \mathcal{O}$, there is $c \in C$ with $f c \in o$;

0 0 0.

Example

In a Hardy field H:

$$0 = \{f \in H : \lim_{x \to +\infty} f(x) = 0\}$$

Pairs of closed H-fields

 $\mathbb{T},$ No, $\mathbb{H},$ and maximal Hardy fields are closed H-fields. Moreover:

Theorem

- **1** $\mathbb{H} \succcurlyeq \mathbb{T}$ (BaHK, Ba.).
- **2** No $\succ \mathbb{T}$ (BeM, ADH).
- So Each maximal Hardy field $H \succcurlyeq \mathbb{T}$ (ADH, AD).

Question: What is the model theory of (K, \mathbb{T}) , for $K \in \{\mathbb{H}, No, maximal Hardy fields\}$?

Tame pairs of closed *H*-fields

Definition

A transserial tame pair is a pair (K, L) of differential fields such that:

- K and L are closed H-fields;
- **2** $L \subsetneq K$ is a proper differential subfield;
- 3 *L* is tame in *K*, i.e., $\dot{\mathcal{O}} = L + \dot{o}$, where $\dot{\mathcal{O}} := \operatorname{conv}_{\mathcal{K}}(L)$ and $\dot{o} := \{a \in \mathcal{K} : |a| < L^{>0}\}.$

Tame pairs of closed *H*-fields

Definition

A transserial tame pair is a pair (K, L) of differential fields such that:

- K and L are closed H-fields;
- **2** $L \subsetneq K$ is a proper differential subfield;
- L is tame in K, i.e., $\dot{\mathcal{O}} = L + \dot{o}$, where $\dot{\mathcal{O}} := \operatorname{conv}_{K}(L)$ and $\dot{o} := \{a \in K : |a| < L^{>0}\}.$

Example

For $K \in \{\mathbb{H}, \mathbf{No}, \text{maximal Hardy fields}\}$, \mathbb{T} can be extended to $\mathbb{T}^* \subseteq \dot{\mathcal{O}} = \operatorname{conv}_{K}(\mathbb{T})$ so that (K, \mathbb{T}^*) is a transserial tame pair.

Differential-algebraic dimension

Definition

Let $S \subseteq K^n$ be nonempty and definable in an expansion of a differential field K. Let $K^* \succcurlyeq K$ be $|K|^+$ -saturated and define

 $\dim S = \max\{\operatorname{tr.deg}_{\partial}(K\langle s \rangle | K) : s \in S^*\}.$

Differential-algebraic dimension

Definition

Let $S \subseteq K^n$ be nonempty and definable in an expansion of a differential field K. Let $K^* \succcurlyeq K$ be $|K|^+$ -saturated and define

$$\dim S = \max\{\operatorname{tr.deg}_{\partial}(K\langle s \rangle | K) : s \in S^*\}.$$

For S as above,

$$\dim S < n \iff S \subseteq \{a \in K^n : P(a) = 0\}$$
 for some $P \in K\{Y\}^{
eq 0}.$

Differential-algebraic dimension in closed H-fields

Definition

Let $S \subseteq K^n$ be nonempty and definable in an expansion of a differential field K. Let $K^* \succcurlyeq K$ be $|K|^+$ -saturated and define

 $\dim S = \max\{\operatorname{tr.deg}_{\partial}(K\langle s \rangle | K) : s \in S^*\}.$

Theorem (Aschenbrenner–van den Dries–van der Hoeven) If $S \subseteq K^n$ is nonempty and definable in the closed H-field K, then:

- dim $S = 0 \iff S$ is discrete in K^n ;
- ② dim $S < n \iff S$ has empty interior in K^n .

Dimension for transserial tame pairs

In a transserial tame pair (K, L), dim L = 1 but L is discrete in K.

Dimension for transserial tame pairs

In a transserial tame pair (K, L), dim L = 1 but L is discrete in K.

Definition

Let $S \subseteq K^n$ be nonempty and definable in the transserial tame pair (K, L). Let $(K^*, L^*) \succcurlyeq (K, L)$ be $|K|^+$ -saturated and define

 $\dim_2 S = \max\{\operatorname{tr.deg}_{\partial}(KL^*\langle s \rangle | KL^*) : s \in S^*\}.$

Dimension for transserial tame pairs

In a transserial tame pair (K, L), dim L = 1 but L is discrete in K.

Definition

Let $S \subseteq K^n$ be nonempty and definable in the transserial tame pair (K, L). Let $(K^*, L^*) \succcurlyeq (K, L)$ be $|K|^+$ -saturated and define

 $\dim_2 S = \max\{\operatorname{tr.deg}_{\partial}(KL^*\langle s \rangle | KL^*) : s \in S^*\}.$

Note: $\dim_2 L = 0$.

For S as above, the following are equivalent:

- dim₂ S < n.
- $S \subseteq \bigcup_{i=1}^{k} \{b \in K^n : \exists a \in L^m \ (P_i(a, b) = 0 \land P_i(a, Y) \neq 0)\}$, for some $P_i \in K\{X, Y\}$.

Main theorem

Definition

Let $S \subseteq K^n$ be nonempty and definable in the transserial tame pair (K, L). Let $(K^*, L^*) \succ (K, L)$ be $|K|^+$ -saturated and define

```
\dim_2 S = \max\{\operatorname{tr.deg}_{\partial}(KL^*\langle s \rangle | KL^*) : s \in S^*\}.
```

Theorem (PC)

If $S \subseteq K^n$ is nonempty and definable in the transserial tame pair (K, L), then

 $\dim_2 S = 0 \iff S \text{ is discrete in } K^n.$

Main theorem

Definition

Let $S \subseteq K^n$ be nonempty and definable in the transserial tame pair (K, L). Let $(K^*, L^*) \succ (K, L)$ be $|K|^+$ -saturated and define

```
\dim_2 S = \max\{\operatorname{tr.deg}_{\partial}(KL^*\langle s \rangle | KL^*) : s \in S^*\}.
```

Theorem (PC)

If $S \subseteq K^n$ is nonempty and definable in the transserial tame pair (K, L), then

$$\dim_2 S = 0 \iff S \text{ is discrete in } K^n.$$

Key steps:

• case *n* = 1

- local o-minimality for transserial tame pairs and uniformity in its proof
- eliminating quantifiers from K

Main theorem

Definition

Let $S \subseteq K^n$ be nonempty and definable in the transserial tame pair (K, L). Let $(K^*, L^*) \succ (K, L)$ be $|K|^+$ -saturated and define

```
\dim_2 S = \max\{\operatorname{tr.deg}_{\partial}(KL^*\langle s \rangle | KL^*) : s \in S^*\}.
```

Theorem (PC)

If $S \subseteq K^n$ is nonempty and definable in the transserial tame pair (K, L), then

$$\dim_2 S = 0 \iff S \text{ is discrete in } K^n.$$

Key steps:

• case *n* = 1

- local o-minimality for transserial tame pairs and uniformity in its proof
- eliminating quantifiers from K

Question: dim₂ $S < n \iff S$ has empty interior in K^n ?

Nigel Pynn-Coates (Vienna)

Thank you!

This material is based upon work supported by NSF DMS-2154086. This research was funded in whole or in part by the Austrian Science Fund (FWF) 10.55776/ESP450.