Monotone *T*-convex *T*-differential fields

Nigel Pynn-Coates joint work with Elliot Kaplan

The Ohio State University

Special Session on Model Theory ASL North American Annual Meeting March 25, 2023

Introduction: fields with analytic structure

- \mathbb{R}_{an} is o-minimal (van den Dries, Gabrielov)
- \mathbb{Q}_p with restricted analytic functions (Denef-van den Dries)
- Further work: Schoutens, van den Dries–Haskell–Macpherson, subsets of Cluckers–Lipshitz–Z. Robinson, van den Dries–Macintyre–Marker, Haskell–Cubides Kovacsics...

Introduction: fields with analytic structure

- \mathbb{R}_{an} is o-minimal (van den Dries, Gabrielov)
- \mathbb{Q}_p with restricted analytic functions (Denef-van den Dries)
- Further work: Schoutens, van den Dries-Haskell-Macpherson, subsets of Cluckers-Lipshitz-Z. Robinson, van den Dries-Macintyre-Marker, Haskell-Cubides Kovacsics...

One general framework:

• *T*-convex valued fields: nonstandard model of o-minimal theory *T* considered with the natural valuation ring given by the convex hull of a smaller model (van den Dries-Lewenberg)

Introduction: differential fields with analytic structure

- What about when the fields have natural derivations?
- \mathbb{T}_{an} is a nonstandard model of the theory of \mathbb{R}_{an} (van den Dries–Macintyre–Marker).
- Derivation should be *compatible* with the analytic structure: *T*-derivation (Fornasiero–Kaplan).

Introduction: differential fields with analytic structure

- What about when the fields have natural derivations?
- \mathbb{T}_{an} is a nonstandard model of the theory of \mathbb{R}_{an} (van den Dries–Macintyre–Marker).
- Derivation should be *compatible* with the analytic structure: *T*-derivation (Fornasiero–Kaplan).

Today:

• Monotone *T*-convex *T*-differential fields.

Antecedents:

- H_T -fields (E. Kaplan).
- Immediate extensions of T-convex T-differential fields (E. Kaplan).
- Related: analytic valued difference fields (Rideau, Scanlon).

Hahn fields

• Let \boldsymbol{k} be a field and Γ be an ordered abelian group.

$$\pmb{k}(\!(t^{\Gamma})\!) \ := \ \big\{f = \sum_{\gamma} f_{\gamma} t^{\gamma} : \operatorname{supp} f \text{ is well-ordered}\big\}$$

is a Hahn field.

Example (Formal Laurent series over \mathbb{R})

 $\mathbb{R}((t^{\mathbb{Z}}))$: take $\Gamma = \mathbb{Z}$ and $\mathbf{k} = \mathbb{R}$.

• $v: k((t^{\Gamma}))^{\times} \to \Gamma$ defined by $v(f) = \min \operatorname{supp} f$ is a valuation.

Differential Hahn fields I

Let k be a differential field and Γ be an ordered abelian group. The derivation ∂ of k can be extended to the Hahn field

$$\boldsymbol{k}(\!(t^{\Gamma})\!) \mathrel{\mathop:}= \left\{f = \sum_{\gamma} f_{\gamma} t^{\gamma} : \operatorname{supp} f \text{ is well-ordered}\right\}$$

by

$$\partial ig(\sum_{\gamma} f_{\gamma} t^{\gamma}ig) \ \coloneqq \ \sum_{\gamma} (\partial f_{\gamma}) t^{\gamma}.$$

- ∂ is monotone: $v(\partial f) \ge vf$.
- Differential Hahn fields were studied by Scanlon.

Differential Hahn fields II

Let k be a differential field and Γ be an ordered abelian group. The derivation ∂ of k can be extended to k((t^Γ)) by

$$\partial \left(\sum_{\gamma} f_{\gamma} t^{\gamma}\right) := \sum_{\gamma} \left(\partial f_{\gamma} + f_{\gamma} c(\gamma)\right) t^{\gamma},$$

where $c \colon \Gamma \to \mathbf{k}$ is an additive map.

- c satisfies $c(\gamma) = \partial(t^{\gamma})/t^{\gamma}$.
- ∂ is monotone: $v(\partial f) \ge vf$.

Example

n
$$\mathbb{R}((t^{\mathbb{Z}}))$$
, define $\partial = t \frac{d}{dt}$, so $c(\ell) = \ell$ for $\ell \in \mathbb{Z}$.

• Differential Hahn fields were studied by Scanlon and Hakobyan; more generally, they studied monotone valued differential fields.

T_{an} -convex Hahn fields

- Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group: $\mathbf{k}((t^{\Gamma}))$.
- Set $\mathcal{O} := \{f : vf \ge 0\} = \{\sum_{\gamma \ge 0} f_{\gamma} t^{\gamma}\}$ and $\mathcal{O} := \{f : vf > 0\} = \{\sum_{\gamma \ge 0} f_{\gamma} t^{\gamma}\}.$
- Order $k((t^{\Gamma}))$ by f > 0 if $f_{vf} > 0$.
- \mathcal{O} is the convex hull of **k** with $\mathcal{O} = \mathbf{k} + o$.

T_{an} -convex Hahn fields

- Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group: $\mathbf{k}((t^{\Gamma}))$.
- Set $\mathcal{O} := \{f : vf \ge 0\} = \{\sum_{\gamma \ge 0} f_{\gamma} t^{\gamma}\}$ and $\mathcal{O} := \{f : vf > 0\} = \{\sum_{\gamma \ge 0} f_{\gamma} t^{\gamma}\}.$

• Order
$$k((t^{\Gamma}))$$
 by $f > 0$ if $f_{vf} > 0$.

- \mathcal{O} is the convex hull of **k** with $\mathcal{O} = \mathbf{k} + o$.
- Expand $k((t^{\Gamma}))$ to a model of T_{an} by Taylor expansion.
- O is T_{an}-convex: every Ø-definable continuous F: k((t^Γ)) → k((t^Γ)) satisfies F(O) ⊆ O.

T_{an} -differential Hahn fields

- Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group.
- Order $k((t^{\Gamma}))$ by f > 0 if $f_{vf} > 0$.
- Expand $k((t^{\Gamma}))$ to a model of T_{an} by Taylor expansion.

T_{an} -differential Hahn fields

- Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group.
- Order $k((t^{\Gamma}))$ by f > 0 if $f_{vf} > 0$.
- Expand $k((t^{\Gamma}))$ to a model of T_{an} by Taylor expansion.
- Let k be equipped with a T_{an}-derivation ∂: every Ø-definable
 C¹-function F: U → k satisfies ∂F(u) = ∇F(u) · ∂u for u ∈ U ⊆ kⁿ open (Fornasiero-Kaplan).

T_{an} -differential Hahn fields

- Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group.
- Order $k((t^{\Gamma}))$ by f > 0 if $f_{vf} > 0$.
- Expand $k((t^{\Gamma}))$ to a model of T_{an} by Taylor expansion.
- Let k be equipped with a T_{an}-derivation ∂: every Ø-definable
 C¹-function F: U → k satisfies ∂F(u) = ∇F(u) · ∂u for u ∈ U ⊆ kⁿ open (Fornasiero-Kaplan).
- Extend ∂ to $\boldsymbol{k}((t^{\Gamma}))$ as before, for an additive $c \colon \Gamma \to \boldsymbol{k}$:

$$\partial \left(\sum_{\gamma} f_{\gamma} t^{\gamma}\right) \coloneqq \sum_{\gamma} \left(\partial f_{\gamma} + f_{\gamma} c(\gamma)\right) t^{\gamma},$$

• Then ∂ is a T_{an} -derivation on $k((t^{\Gamma}))$.

Monotone T_{an} -convex T_{an} -differential fields

Putting these together, $k((t^{\Gamma}))$ is a T_{an} -convex T_{an} -differential field that is **monotone**: $v(\partial f) \ge vf$.

Monotone T_{an} -convex T_{an} -differential fields

Putting these together, $k((t^{\Gamma}))$ is a T_{an} -convex T_{an} -differential field that is **monotone**: $v(\partial f) \ge vf$.

Equip $K \models T_{an}$ with a T_{an} -convex subring $\mathcal{O} \subseteq K$ and a T_{an} -derivation ∂ .

• \mathcal{O} induces a valuation $v \colon K^{\times} \to \Gamma$.

•
$$\boldsymbol{k} = \mathcal{O}/\mathcal{O}$$
, where $\mathcal{O} = \{f : vf > 0\}$.

• Suppose that ∂ is monotone.

Monotone T_{an} -convex T_{an} -differential fields

Putting these together, $k((t^{\Gamma}))$ is a T_{an} -convex T_{an} -differential field that is **monotone**: $v(\partial f) \ge vf$.

Equip $K \models T_{an}$ with a T_{an} -convex subring $\mathcal{O} \subseteq K$ and a T_{an} -derivation ∂ .

• \mathcal{O} induces a valuation $v \colon K^{\times} \to \Gamma$.

•
$$\boldsymbol{k} = \mathcal{O}/\mathcal{O}$$
, where $\mathcal{O} = \{f : vf > 0\}$.

• Suppose that ∂ is monotone.

Theorem (Kaplan–PC)

If K is T_{an}^{∂} -henselian, then K is elementarily equivalent to $\mathbf{k}((t^{\Gamma}))$, for some additive $c: \Gamma \to \mathbf{k}$ associated to K.

• T_{an}^{∂} -henselianity is an analogue of henselianity of a valued field.

An Ax-Kochen/Ershov theorem

More generally:

- Suppose that T is o-minimal, complete, model complete, and power bounded with field of exponents Λ.
- Equip K ⊨ T with a T-convex subring and a T-derivation that is monotone.
- Associate to K a Λ -linear $c \colon \Gamma \to \mathbf{k}$.

Define K^* likewise.

Theorem (Kaplan–PC)

If K and K^{*} are T^{∂} -henselian, then

$$K \equiv K^* \iff (\mathbf{k}, \Gamma; \mathbf{c}) \equiv (\mathbf{k}^*, \Gamma^*; \mathbf{c}^*).$$

Monotonicity and power boundedness

Lemma

If K is a monotone T-convex T-differential field and **k** has nontrivial derivation (in particular, if K is T^{∂} -henselian), then T is power bounded.

Monotonicity and power boundedness

Lemma

If K is a monotone T-convex T-differential field and **k** has nontrivial derivation (in particular, if K is T^{∂} -henselian), then T is power bounded.

Related:

Theorem (Kuhlmann–Kuhlmann–Shelah)

If T is exponential and $K \models T$ is equipped with a T-convex subring, then K has no spherically complete immediate T-convex extension.

In contrast, Kaplan proves that such T-convex T-differential extensions exist when T is power bounded.

Further results

Theorem (Kaplan–PC)

The theory of monotone T-convex T-differential fields has a model completion, which is distal.

Further results

Theorem (Kaplan–PC)

The theory of monotone T-convex T-differential fields has a model completion, which is distal.

Working in a three-sorted setting $\mathcal{K} = (\mathcal{K}, \mathbf{k}, \Gamma; \pi, \nu, c)$ sharpens the AKE theorem (relative completeness) and yields relative model completeness.

Theorem (Kaplan–PC)

Expanding \mathcal{K} by an angular component map yields elimination of quantifiers from K.

Corollary

Any subset of $\mathbf{k}^m \times \Gamma^n$ definable in \mathcal{K} is definable in $(\mathbf{k}, \Gamma; c)$.

T^{∂} -henselianity

Let *K* be a *T*-convex *T*-differential field with $\partial o \subseteq o$ and let:

- $F: K^{1+r} \to K$ be a definable function;
- A(Y) = a₀Y + a₁Y' + · · · + a_rY^(r) be a linear differential polynomial over K of order r.

T^{∂} -henselianity

Let *K* be a *T*-convex *T*-differential field with $\partial o \subseteq o$ and let:

- $F: K^{1+r} \to K$ be a definable function;
- A(Y) = a₀Y + a₁Y' + · · · + a_rY^(r) be a linear differential polynomial over K of order r.

Definition

- K is T^{∂} -henselian if:
 - **()** Every linear differential equation over **k** has a solution in **k**;
 - Whenever:

(i) A linearly approximates F on $B(a, vg) = \{b : v(b-a) > vg\}$, and (ii) $vF(a, a', \dots, a^{(r)}) > vA(gY)$, there is $b \in B(a, vg)$ such that $F(b, b', \dots, b^{(r)}) = 0$ and $vA((b-a)Y) \ge vF(a, a', \dots, a^{(r)})$.

Thank you!

This material is based upon work supported by NSF DMS-2103240 and DMS-2154086.