Monotone *T*-convex *T*-differential fields

Nigel Pynn-Coates joint work with Elliot Kaplan

The Ohio State University

ASL Special Session on Tame Geometry and Applications to Analysis Joint Mathematics Meetings January 5, 2023

Hahn fields

• Let \boldsymbol{k} be a field and Γ be an ordered abelian group.

$$\pmb{k}(\!(t^{\Gamma})\!) \ := \ \big\{f = \sum_{\gamma} f_{\gamma} t^{\gamma} : \text{supp } f \text{ is well-ordered}\big\}$$

is a Hahn field.

Example (Formal Laurent series over \mathbb{R})

 $\mathbb{R}((t^{\mathbb{Z}}))$: take $\Gamma = \mathbb{Z}$ and $\mathbf{k} = \mathbb{R}$.

• $v: k((t^{\Gamma}))^{\times} \to \Gamma$ defined by $v(f) = \min \operatorname{supp} f$ is a valuation.

Differential Hahn fields I

Let k be a differential field and Γ be an ordered abelian group. The derivation ∂ of k can be extended to the Hahn field

$$\boldsymbol{k}(\!(t^{\Gamma})\!) \mathrel{\mathop:}= \big\{f = \sum_{\gamma} f_{\gamma} t^{\gamma} : \mathsf{supp} \ f \ \mathsf{is} \ \mathsf{well-ordered}\big\}$$

by

$$\partial ig(\sum_{\gamma} f_{\gamma} t^{\gamma}ig) \ \coloneqq \ \sum_{\gamma} (\partial f_{\gamma}) t^{\gamma}.$$

- ∂ is monotone: $v(\partial f) \ge vf$.
- Differential Hahn fields were studied by Scanlon.

Differential Hahn fields II

Let k be a differential field and Γ be an ordered abelian group. The derivation ∂ of k can be extended to k((t^Γ)) by

$$\partial \left(\sum_{\gamma} f_{\gamma} t^{\gamma}\right) \coloneqq \sum_{\gamma} \left(\partial f_{\gamma} + f_{\gamma} c(\gamma)\right) t^{\gamma},$$

where $c \colon \Gamma \to \mathbf{k}$ is an additive map.

- c satisfies $c(\gamma) = \partial(t^{\gamma})/t^{\gamma}$.
- ∂ is monotone: $v(\partial f) \ge vf$.

Example

n
$$\mathbb{R}((t^{\mathbb{Z}}))$$
, define $\partial = t \frac{d}{dt}$, so $c(\ell) = \ell$ for $\ell \in \mathbb{Z}$.

• Differential Hahn fields were studied by Scanlon and Hakobyan; more generally, they studied monotone valued differential fields.

• Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group.

Let k ⊨ T_{an} and Γ be a divisible ordered abelian group.
Order k((t^Γ)) by f > 0 if f_{vf} > 0.

- Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group.
- Order $k((t^{\Gamma}))$ by f > 0 if $f_{vf} > 0$.
- Expand $k((t^{\Gamma}))$ to a model of T_{an} by Taylor expansion.

- Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group.
- Order $k((t^{\Gamma}))$ by f > 0 if $f_{vf} > 0$.
- Expand $k((t^{\Gamma}))$ to a model of T_{an} by Taylor expansion.
- The subring $\mathcal{O} := \{f : vf \ge 0\} = \operatorname{conv}(k)$ is T_{an} -convex: every \emptyset -definable continuous $F : k((t^{\Gamma})) \to k((t^{\Gamma}))$ satisfies $F(\mathcal{O}) \subseteq \mathcal{O}$.

- Let $\mathbf{k} \models T_{an}$ and Γ be a divisible ordered abelian group.
- Order $k((t^{\Gamma}))$ by f > 0 if $f_{vf} > 0$.
- Expand $k((t^{\Gamma}))$ to a model of T_{an} by Taylor expansion.
- The subring $\mathcal{O} := \{f : vf \ge 0\} = \operatorname{conv}(\mathbf{k})$ is T_{an} -convex: every \emptyset -definable continuous $F : \mathbf{k}((t^{\Gamma})) \to \mathbf{k}((t^{\Gamma}))$ satisfies $F(\mathcal{O}) \subseteq \mathcal{O}$.
- Assume that \mathbf{k} is equipped with a \mathcal{T}_{an} -derivation ∂ : every \emptyset -definable \mathcal{C}^1 -function $F: U \to \mathbf{k}$ satisfies $\partial F(u) = \nabla F(u) \cdot \partial u$ for $u \in U$. Then ∂ extended to $\mathbf{k}((t^{\Gamma}))$ is a \mathcal{T}_{an} -derivation.

Monotone T_{an} -convex T_{an} -differential fields

Equip $K \models T_{an}$ with a T_{an} -convex subring $\mathcal{O} \subseteq K$ and a T_{an} -derivation ∂ .

- \mathcal{O} induces a valuation $v \colon K^{\times} \to \Gamma$.
- $\mathbf{k} = \mathcal{O}/\mathcal{O}$, where $\mathcal{O} = \{f : vf > 0\}$.
- Suppose that ∂ is monotone: $v(\partial f) \ge vf$.

Monotone T_{an} -convex T_{an} -differential fields

Equip $K \models T_{an}$ with a T_{an} -convex subring $\mathcal{O} \subseteq K$ and a T_{an} -derivation ∂ .

- \mathcal{O} induces a valuation $v \colon \mathcal{K}^{\times} \to \Gamma$.
- $\mathbf{k} = \mathcal{O}/\mathcal{O}$, where $\mathcal{O} = \{f : vf > 0\}$.
- Suppose that ∂ is monotone: $v(\partial f) \ge vf$.

Theorem (Kaplan–PC)

If K is T_{an}^{∂} -henselian, then K is elementarily equivalent to $\mathbf{k}((t^{\Gamma}))$, for an additive $c: \Gamma \to \mathbf{k}$ associated to K.

Monotone T_{an} -convex T_{an} -differential fields

Equip $K \models T_{an}$ with a T_{an} -convex subring $\mathcal{O} \subseteq K$ and a T_{an} -derivation ∂ .

- \mathcal{O} induces a valuation $v \colon K^{\times} \to \Gamma$.
- $\mathbf{k} = \mathcal{O}/\mathcal{O}$, where $\mathcal{O} = \{f : vf > 0\}$.
- Suppose that ∂ is monotone: $v(\partial f) \ge vf$.

Theorem (Kaplan–PC)

If K is T_{an}^{∂} -henselian, then K is elementarily equivalent to $\mathbf{k}((t^{\Gamma}))$, for an additive $c: \Gamma \to \mathbf{k}$ associated to K.

• T_{an}^{∂} -henselianity is an analogue of henselianity of a valued field.

An Ax–Kochen/Ershov theorem

More generally:

- Suppose that T is o-minimal and power bounded.
- Equip $K \models T$ with a *T*-convex subring and a *T*-derivation.
- Associate to K a Λ -linear $c \colon \Gamma \to \mathbf{k}$, where Λ is the field of exponents.

Define K^* likewise.

An Ax-Kochen/Ershov theorem

More generally:

- Suppose that T is o-minimal and power bounded.
- Equip $K \models T$ with a *T*-convex subring and a *T*-derivation.
- Associate to K a Λ -linear $c \colon \Gamma \to \mathbf{k}$, where Λ is the field of exponents.

Define K^* likewise.

Theorem (Kaplan-PC)

If K and K^* are T^{∂} -henselian, then

$$K \equiv K^* \iff (\mathbf{k}, \Gamma; \mathbf{c}) \equiv (\mathbf{k}^*, \Gamma^*; \mathbf{c}^*).$$

Thank you!