Model theory of differential-henselian pre-H-fields

Nigel Pynn-Coates

The Ohio State University

AMS Spring Central Virtual Sectional Meeting Special Session on Model Theory and its Applications March 27, 2022

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in \mathbb{T} :

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^2}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

Example

• Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential.

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential. E.g.,
 - ► Maximal Hardy field (Aschenbrenner-van den Dries-van der Hoeven, Boshernitzan).
 - ► Hyperseries (Bagayoko-van der Hoeven-Kaplan, Bagayoko).
 - Surreals (Berarducci–Mantova, Aschenbrenner–van den Dries–van der Hoeven).

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential. E.g.,
 - ► Maximal Hardy field (Aschenbrenner-van den Dries-van der Hoeven, Boshernitzan).
 - ► Hyperseries (Bagayoko-van der Hoeven-Kaplan, Bagayoko).
 - Surreals (Berarducci–Mantova, Aschenbrenner–van den Dries–van der Hoeven).
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential. E.g.,
 - ► Maximal Hardy field (Aschenbrenner-van den Dries-van der Hoeven, Boshernitzan).
 - ► Hyperseries (Bagayoko-van der Hoeven-Kaplan, Bagayoko).
 - Surreals (Berarducci–Mantova, Aschenbrenner–van den Dries–van der Hoeven).
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$
- $\operatorname{res}(K, \mathcal{O}^*) \models \operatorname{Th}(\mathbb{T}).$

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential. E.g.,
 - ► Maximal Hardy field (Aschenbrenner-van den Dries-van der Hoeven, Boshernitzan).
 - ► Hyperseries (Bagayoko-van der Hoeven-Kaplan, Bagayoko).
 - Surreals (Berarducci–Mantova, Aschenbrenner–van den Dries–van der Hoeven).
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$
- $\operatorname{res}(K, \mathcal{O}^*) \models \operatorname{Th}(\mathbb{T}).$
- Question: What is the model theory of (K, \mathcal{O}^*) ?

Pre-H-fields

- A pre-H-field is an ordered valued differential field K such that:
 - **1** \mathcal{O} is convex with respect to \leq ;
 - 2 for all $f \in K$, $f > \mathcal{O} \implies f' > 0$;

Pre-H-fields

- A pre-H-field is an ordered valued differential field K such that:
 - **1** \mathcal{O} is convex with respect to \leq ;
 - 2 for all $f \in K$, $f > \mathcal{O} \implies f' > 0$;
- Examples: Hardy fields, transseries.

Pre-H-fields

- A pre-H-field is an ordered valued differential field K such that:
 - **1** \mathcal{O} is convex with respect to \leq ;
 - 2 for all $f \in K$, $f > \mathcal{O} \implies f' > 0$;
 - $\textbf{ or all } f,g \in K^{\times}, \ f \preccurlyeq g \prec 1 \implies \frac{f}{g} \frac{f'}{g'} \prec 1.$
- Examples: Hardy fields, transseries.
- Question: What are the completions of the theory of pre-H-fields?

Differential-henselianity

Let K be a pre-H-field.

• K is differential-henselian if:

$$1 0 0 0;$$

2 every $P \in \mathcal{O}{Y}$ with deg $\overline{P} = 1$ has a zero in \mathcal{O} .

Differential-henselianity

Let K be a pre-H-field.

• K is differential-henselian if:

0 0 0;

2 every $P \in \mathcal{O}{Y}$ with deg $\overline{P} = 1$ has a zero in \mathcal{O} .

• K is d-Hensel-Liouville closed if

- K is differential-henselian;
- K is real closed;
- **3** *K* is **closed under exponential integration**: for every $a \in K$, there exists $f \in K^{\times}$ such that f'/f = a.

Ax-Kochen/Ershov theorem for pre-H-fields

• A pre-H-field K is d-Hensel-Liouville closed if

- K is differential-henselian;
- Ø K is real closed;
- *K* is closed under exponential integration.

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff k_1 \equiv k_2.$$

Ax-Kochen/Ershov theorem for pre-H-fields

• A pre-H-field K is d-Hensel-Liouville closed if

- K is differential-henselian;
- Ø K is real closed;
- *K* is closed under exponential integration.

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff k_1 \equiv k_2.$$

• Applies to (K, \mathcal{O}^*) as above.

Ax-Kochen/Ershov theorem for pre-H-fields

• A pre-H-field K is d-Hensel-Liouville closed if

- K is differential-henselian;
- Ø K is real closed;
- 6 K is closed under exponential integration.

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff \mathbf{k}_1 \equiv \mathbf{k}_2.$$

- Applies to (K, \mathcal{O}^*) as above.
- Closure under exponential integration is a necessary assumption.

- Work with two-sorted structures $(K, \mathbf{k}; \pi)$, where:
 - **()** *K* is a d-Hensel-Liouville closed pre-*H*-field in $\{+, -, \cdot, 0, 1, \leq, \prec, \partial\}$;
 - 2 k is an expansion of the ordered differential residue field of K;
 - 3 $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \leq y \neq 0$ and 0 otherwise.

- Work with two-sorted structures $(K, \mathbf{k}; \pi)$, where:
 - $I \quad K \text{ is a d-Hensel-Liouville closed pre-} H \text{-field in } \{+, -, \cdot, 0, 1, \leqslant, \preccurlyeq, \partial\};$
 - 2 k is an expansion of the ordered differential residue field of K;
 - 3 $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \leq y \neq 0$ and 0 otherwise.

Theorem (PC)

- If $Th(\mathbf{k})$ is model complete, then so is $Th(K, \mathbf{k}; \pi)$.
- **2** If $Th(\mathbf{k})$ has quantifier elimination, then so does $Th(K, \mathbf{k}; \pi)$.

- Work with two-sorted structures $(K, \mathbf{k}; \pi)$, where:
 - **()** *K* is a d-Hensel-Liouville closed pre-*H*-field in $\{+, -, \cdot, 0, 1, \leq d, d\}$;
 - 2 k is an expansion of the ordered differential residue field of K;
 - 3 $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \leq y \neq 0$ and 0 otherwise.

Theorem (PC)

- **1** If $Th(\mathbf{k})$ is model complete, then so is $Th(K, \mathbf{k}; \pi)$.
- **2** If $Th(\mathbf{k})$ has quantifier elimination, then so does $Th(K, \mathbf{k}; \pi)$.
 - Even better, we eliminate quantifiers from the pre-H-field sort.

Corollary

- **1** The structure \mathbf{k} is stably embedded in $(K, \mathbf{k}; \pi)$.
- **2** If \boldsymbol{k} has NIP, then $(K, \boldsymbol{k}; \pi)$ has NIP.

- Work with two-sorted structures ($K, \mathbf{k}; \pi$), where:
 - **()** *K* is a d-Hensel-Liouville closed pre-*H*-field in $\{+, -, \cdot, 0, 1, \leq, \preccurlyeq, \partial\}$;
 - 2 k is an expansion of the ordered differential residue field of K;
 - 3 $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \leq y \neq 0$ and 0 otherwise.

Theorem (PC)

- If $Th(\mathbf{k})$ is model complete, then so is $Th(K, \mathbf{k}; \pi)$.
- **2** If $Th(\mathbf{k})$ has quantifier elimination, then so does $Th(K, \mathbf{k}; \pi)$.
 - Even better, we eliminate quantifiers from the pre-H-field sort.

Corollary

- **1** The structure \mathbf{k} is stably embedded in $(K, \mathbf{k}; \pi)$.
- 2 If \boldsymbol{k} has NIP, then $(K, \boldsymbol{k}; \pi)$ has NIP.

• Applies to (K, \mathcal{O}^*) as above.

Quantifier reduction

- We work with two-sorted structures ($K, \mathbf{k}; \pi$), where:
 - **(**) *K* is a d-Hensel-Liouville closed pre-*H*-field in $\{+, -, \cdot, 0, 1, \leq, \prec, \partial\}$;
 - 2 k is an expansion of the ordered differential residue field of K;

3 $\pi: \mathcal{K}^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \preccurlyeq y \neq 0$ and 0 o.w.

Let x be an m-tuple of K-variables and y be a tuple of k-variables.
We call a formula ψ(x, y) special if ψ(x, y) is

$$\psi_{\mathsf{r}}\big(\pi(P_1(x),Q_1(x)),\ldots,\pi(P_k(x),Q_k(x)),y\big),$$

for some **k**-formula $\psi_r(v_1, \ldots, v_k, y)$ and some $P_1, Q_1, \ldots, P_k, Q_k$ in $\mathbb{Z}\{X_1, \ldots, X_m\}$.

Quantifier reduction

- We work with two-sorted structures ($K, \mathbf{k}; \pi$), where:
 - **(**) *K* is a d-Hensel-Liouville closed pre-*H*-field in $\{+, -, \cdot, 0, 1, \leq, \prec, \partial\}$;
 - 2 k is an expansion of the ordered differential residue field of K;

3 $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \leq y \neq 0$ and 0 o.w.

Let x be an m-tuple of K-variables and y be a tuple of k-variables.
We call a formula ψ(x, y) special if ψ(x, y) is

$$\psi_{\mathsf{r}}\big(\pi(P_1(x),Q_1(x)),\ldots,\pi(P_k(x),Q_k(x)),y\big),$$

for some **k**-formula $\psi_r(v_1, \ldots, v_k, y)$ and some $P_1, Q_1, \ldots, P_k, Q_k$ in $\mathbb{Z}\{X_1, \ldots, X_m\}$.

Theorem (PC)

Every formula $\phi(x, y)$ is equivalent to a disjunction of formulas of the form $\theta(x) \wedge \psi(x, y)$, where $\theta(x)$ is a quantifier-free K-formula and $\psi(x, y)$ is special.

Thank you!