Model theory of differential-henselian pre-H-fields

Nigel Pynn-Coates

The Ohio State University

Fields Institute Model Theory Seminar April 8, 2022

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in \mathbb{T} :

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

Example

• Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential.

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential. E.g.,
 - ► Maximal Hardy field (Aschenbrenner-van den Dries-van der Hoeven, Boshernitzan).
 - ► Hyperseries (Bagayoko-van der Hoeven-Kaplan, Bagayoko).
 - Surreals (Berarducci–Mantova, Aschenbrenner–van den Dries–van der Hoeven).

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential. E.g.,
 - ► Maximal Hardy field (Aschenbrenner-van den Dries-van der Hoeven, Boshernitzan).
 - ► Hyperseries (Bagayoko-van der Hoeven-Kaplan, Bagayoko).
 - Surreals (Berarducci–Mantova, Aschenbrenner–van den Dries–van der Hoeven).
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential. E.g.,
 - ► Maximal Hardy field (Aschenbrenner-van den Dries-van der Hoeven, Boshernitzan).
 - ► Hyperseries (Bagayoko-van der Hoeven-Kaplan, Bagayoko).
 - Surreals (Berarducci–Mantova, Aschenbrenner–van den Dries–van der Hoeven).
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$
- Let $K^* = (K, \mathcal{O}^*)$. Then $\operatorname{res}(K^*) \models \operatorname{Th}(\mathbb{T})$.

- Let ${\mathbb T}$ be the differential field of logarithmic-exponential transseries.
 - Example series in T:

$$7e^{e^{x}+e^{x/2}+e^{x/4}+\dots}-3e^{x^{2}}+5x^{\sqrt{2}}-(\log x)^{\pi}+42+x^{-1}+x^{-2}+\dots+e^{-x}$$

Example

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential. E.g.,
 - ► Maximal Hardy field (Aschenbrenner-van den Dries-van der Hoeven, Boshernitzan).
 - ► Hyperseries (Bagayoko-van der Hoeven-Kaplan, Bagayoko).
 - Surreals (Berarducci–Mantova, Aschenbrenner–van den Dries–van der Hoeven).
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$
- Let $K^* = (K, \mathcal{O}^*)$. Then $\operatorname{res}(K^*) \models \operatorname{Th}(\mathbb{T})$.

Question: What is the model theory of K^* ?

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential.
- Enlarge \mathcal{O} to $\mathcal{O}^* := \{f : |f| \leq e^x \text{ or } |f| \leq e^{e^x} \text{ or } \dots\}.$
- Let $K^* = (K, \mathcal{O}^*)$. Then $\operatorname{res}(K^*) \models \operatorname{Th}(\mathbb{T})$.

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential.
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$
- Let $K^* = (K, \mathcal{O}^*)$. Then $\operatorname{res}(K^*) \models \operatorname{Th}(\mathbb{T})$.
- K^* is a pre-*H*-field but not an *H*-field.
- *K*^{*} is Liouville closed.
- K^* is differential-henselian rather than newtonian.
- K^* has gap 0, in particular is not ω -free.

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential.
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$
- Let $K^* = (K, \mathcal{O}^*)$. Then $\operatorname{res}(K^*) \models \operatorname{Th}(\mathbb{T})$.
- K^* is a pre-*H*-field but not an *H*-field.
- *K*^{*} is Liouville closed.
- K^* is differential-henselian rather than newtonian.
- K^* has gap 0, in particular is not ω -free.
- Thus K^* satisfies some different conditions than \mathbb{T} .

Example

- Let $K \models \mathsf{Th}(\mathbb{T})$ be transexponential.
- Enlarge \mathcal{O} to $\mathcal{O}^* \coloneqq \{f : |f| \leqslant e^x \text{ or } |f| \leqslant e^{e^x} \text{ or } \dots\}.$
- Let $K^* = (K, \mathcal{O}^*)$. Then $\operatorname{res}(K^*) \models \operatorname{Th}(\mathbb{T})$.
- K^* is a pre-*H*-field but not an *H*-field.
- *K*^{*} is Liouville closed.
- K^* is differential-henselian rather than newtonian.
- K^* has gap 0, in particular is not ω -free.

Thus K^* satisfies some different conditions than \mathbb{T} .

Theorem (PC)

 $Th(K^*, res(K^*); \pi)$ is model complete.

• A pre-H-field is an ordered valued differential field K such that:

O is convex with respect to ≤;
for all f ∈ K, f > O ⇒ f' > 0;
for all f, g ∈ K[×], f ≼ g ≺ 1 ⇒ ^f/_g - ^{f'}/_{g'} ≺ 1.

- Ø is convex with respect to ≤;
 for all f ∈ K, f > Ø ⇒ f' > 0;
 for all f,g ∈ K[×], f ≼ g ≺ 1 ⇒ f/g f/g' ≺ 1.
- A pre-*H*-field *K* is an *H*-field if $\mathcal{O} = C + o$.

- **○** *O* is convex with respect to ≤; **○** for all $f \in K$, $f > O \implies f' > 0$; **○** for all $f, g \in K^{\times}$, $f \preccurlyeq g \prec 1 \implies \frac{f}{g} - \frac{f'}{g'} \prec 1$.
- A pre-*H*-field *K* is an *H*-field if $\mathcal{O} = C + o$.
- Examples: Hardy fields, transseries.

- **○** *O* is convex with respect to ≤; **○** for all $f \in K$, $f > O \implies f' > 0$; **○** for all $f, g \in K^{\times}$, $f \preccurlyeq g \prec 1 \implies \frac{f}{g} - \frac{f'}{g'} \prec 1$.
- A pre-*H*-field *K* is an *H*-field if $\mathcal{O} = C + \mathcal{O}$.
- Examples: Hardy fields, transseries.
- Question: What are the complete theories extending the theory of pre-*H*-fields?

- **1** \mathcal{O} is convex with respect to \leqslant ;
- ② for all f ∈ K, f > O ⇒ f' > 0;
 ③ for all f, g ∈ K[×], f ≼ g ≺ 1 ⇒ ^f/_σ ^{f'}/_{σ'} ≺ 1.
- A pre-*H*-field *K* is an *H*-field if $\mathcal{O} = C + \mathcal{O}$.
- Examples: Hardy fields, transseries.
- Question: What are the complete theories extending the theory of pre-*H*-fields?
- Question: What are the model complete theories extending the theory of pre-*H*-fields?

Existentially closed pre-H-fields

Fact (ADH): Every pre-H-field extends to an H-field.

Existentially closed pre-H-fields

Fact (ADH): Every pre-*H*-field extends to an *H*-field.

Theorem (Aschenbrenner-van den Dries-van der Hoeven)

The theory T^{nl} of newtonian, ω-free, Liouville closed H-fields is the model companion of the theory of pre-H-fields.

2 $T_{\text{small}}^{\text{nl}} = T^{\text{nl}} + \text{"small derivation" axiomatizes the theory of <math>\mathbb{T}$.

Existentially closed pre-H-fields

Fact (ADH): Every pre-H-field extends to an H-field.

Theorem (Aschenbrenner-van den Dries-van der Hoeven)

- The theory T^{nl} of newtonian, ω-free, Liouville closed H-fields is the model companion of the theory of pre-H-fields.
- $T_{\text{small}}^{\text{nl}} = T^{\text{nl}} + \text{"small derivation" axiomatizes the theory of } \mathbb{T}.$

Not every pre-*H*-field with small derivation can be extended to an *H*-field with small derivation, so $T_{\text{small}}^{\text{nl}}$ is not the model companion of the theory of pre-*H*-fields with small derivation.

Differential-henselianity

Let K be a pre-H-field.

- K is differential-henselian if:
 - **1** it has small derivation: $\partial \mathcal{O} \subseteq \mathcal{O}$;
 - 2 every $P \in \mathcal{O}{Y}$ with deg $\overline{P} = 1$ has a zero in \mathcal{O} .

Differential-henselianity

Let K be a pre-H-field.

- *K* is **differential-henselian** if:
 - **1** it has small derivation: $\partial \mathcal{O} \subseteq \mathcal{O}$;
 - 2 every $P \in \mathcal{O}{Y}$ with deg $\overline{P} = 1$ has a zero in \mathcal{O} .
- If K is differential-henselian, then K has gap 0: for all $f \in K^{\times}$, if $f \prec 1$, then $f' \prec 1$ and $f'/f \succ 1$.

Differential-henselianity

Let K be a pre-H-field.

- *K* is **differential-henselian** if:
 - **1** it has small derivation: $\partial \mathcal{O} \subseteq \mathcal{O}$;
 - 2 every $P \in \mathcal{O}{Y}$ with deg $\overline{P} = 1$ has a zero in \mathcal{O} .
- If K is differential-henselian, then K has gap 0: for all $f \in K^{\times}$, if $f \prec 1$, then $f' \prec 1$ and $f'/f \succ 1$.
- K is d-Hensel-Liouville closed if it is:
 - differential-henselian;
 - 2 real closed;
 - **3** closed under exponential integration: for every $a \in K$, there exists $f \in K^{\times}$ such that f'/f = a

$$f \in \mathsf{K}^{ imes}$$
 such that $f'/f = a$.

Recall that the theory of **closed ordered differential fields** is the model completion of the theory of ordered differential fields (Singer).

Recall that the theory of **closed ordered differential fields** is the model completion of the theory of ordered differential fields (Singer).

Theorem (PC)

The theory of d-Hensel-Liouville closed pre-H-fields with closed ordered differential residue field:

- **(***is the model completion of the theory of pre-H-fields with gap* 0*;*
- *Q* has quantifier elimination, so is complete and decidable.

From quantifier elimination, we get:

Corollary

The theory of d-Hensel-Liouville closed pre-H-fields with closed ordered differential residue field:

- is distal, and hence has NIP;
- is locally o-minimal.

From quantifier elimination, we get:

Corollary

The theory of d-Hensel-Liouville closed pre-H-fields with closed ordered differential residue field:

- is distal, and hence has NIP;
- is locally o-minimal.

Theorem and corollary do not apply to K^* as above, since res (K^*) is not a closed ordered differential field.

A pre-H-field K is **d-Hensel-Liouville closed** if it is:

- differential-henselian;
- 2 real closed;
- Iclosed under exponential integration.

A pre-H-field K is **d-Hensel-Liouville closed** if it is:

- differential-henselian;
- 2 real closed;
- Iclosed under exponential integration.

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff k_1 \equiv k_2.$$

A pre-H-field K is **d-Hensel-Liouville closed** if it is:

- differential-henselian;
- 2 real closed;
- Iclosed under exponential integration.

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff \mathbf{k}_1 \equiv \mathbf{k}_2.$$

Applies to K^* as above.

Earlier AKE results

Scanlon (2000) and Hakobyan (2018) proved AKE theorems for valued differential fields that are **monotone**: $f' \leq f$ for all f.

Earlier AKE results

Scanlon (2000) and Hakobyan (2018) proved AKE theorems for valued differential fields that are **monotone**: $f' \preccurlyeq f$ for all f.

Proposition (Hakobyan, 2018)

There exist valued differential fields K_1 and K_2 such that

- **(**) K_1 and K_2 are monotone and differential-henselian;
- **2** $\mathbf{k}_1 \cong \mathbf{k}_2$ (as differential fields) and $\Gamma_1 \cong \Gamma_2$ (as ordered groups);

Earlier AKE results

Scanlon (2000) and Hakobyan (2018) proved AKE theorems for valued differential fields that are **monotone**: $f' \preccurlyeq f$ for all f.

Proposition (Hakobyan, 2018)

There exist valued differential fields K_1 and K_2 such that

- **(**) K_1 and K_2 are monotone and differential-henselian;
- **2** $\mathbf{k}_1 \cong \mathbf{k}_2$ (as differential fields) and $\Gamma_1 \cong \Gamma_2$ (as ordered groups);
- $I K_1 \not\equiv K_2.$

Any AKE theorem for valued differential fields with small derivation requires extra assumptions or structure.

A pre-H-field K is **d-Hensel-Liouville closed** if it is:

- differential-henselian;
- I real closed;
- I closed under exponential integration.

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff k_1 \equiv k_2.$$

Exponential integration is necessary

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff k_1 \equiv k_2.$$

Exponential integration is necessary

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff k_1 \equiv k_2.$$

Theorem (PC)

There exist pre-H-fields K_1 and K_2 such that:

- **(**) K_1 and K_2 are differential-henselian and real closed;
- **2** $\mathbf{k}_1 \cong \mathbf{k}_2$ (as ordered differential fields);

$$(\Gamma_1,\psi_1) \equiv (\Gamma_2,\psi_2);$$

•
$$(K_1^{\times})^{\dagger} \neq K_1$$
 and $(K_2^{\times})^{\dagger} = K_2$ (in particular, $K_1 \not\equiv K_2$).

Exponential integration is necessary

Theorem (PC)

Let K_1 and K_2 be d-Hensel-Liouville closed pre-H-fields with ordered differential residue fields k_1 and k_2 . Then

$$K_1 \equiv K_2 \iff \mathbf{k}_1 \equiv \mathbf{k}_2.$$

Theorem (PC)

For any ordered differential field **k** that is real closed, closed under exponential integration, and linearly surjective, there exist pre-H-fields $K_1 \subseteq K_2$ such that:

- **(**) K_1 and K_2 are differential-henselian and real closed;
- **2** $\mathbf{k}_1 = \mathbf{k}_2 \cong \mathbf{k}$ (as ordered differential fields);
- $(\Gamma_1,\psi_1) \preccurlyeq (\Gamma_2,\psi_2);$
- $(K_1^{\times})^{\dagger} \neq K_1 \text{ and } (K_2^{\times})^{\dagger} = K_2.$

Two-sorted results

To study structures like K^* , work with two-sorted structures $(K, \mathbf{k}; \pi)$ s.t.:

- K is a d-Hensel-Liouville closed pre-H-field.
- **2** k is an expansion of the ordered differential residue field of K;
- **3** $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \preccurlyeq y \neq 0$ and 0 o.w.

Two-sorted results

To study structures like K^* , work with two-sorted structures $(K, \mathbf{k}; \pi)$ s.t.:

- K is a d-Hensel-Liouville closed pre-H-field.
- **2** \boldsymbol{k} is an expansion of the ordered differential residue field of K;
- **3** $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \preccurlyeq y \neq 0$ and 0 o.w.

Theorem (PC)

If $Th(\mathbf{k})$ is model complete, then so is $Th(K, \mathbf{k}; \pi)$.

2 If $Th(\mathbf{k})$ has quantifier elimination, then so does $Th(K, \mathbf{k}; \pi)$.

Two-sorted results

To study structures like K^* , work with two-sorted structures $(K, \mathbf{k}; \pi)$ s.t.:

- K is a d-Hensel-Liouville closed pre-H-field.
- **2** \boldsymbol{k} is an expansion of the ordered differential residue field of K;
- **3** $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \preccurlyeq y \neq 0$ and 0 o.w.

Theorem (PC)

If $Th(\mathbf{k})$ is model complete, then so is $Th(K, \mathbf{k}; \pi)$.

2 If $Th(\mathbf{k})$ has quantifier elimination, then so does $Th(K, \mathbf{k}; \pi)$.

Applies to K^* as above.

More precise quantifier reduction

Work with two-sorted structures ($K, \mathbf{k}; \pi$), where:

- K is a d-Hensel-Liouville closed pre-H-field.
- **2** k is an expansion of the ordered differential residue field of K;
- **3** $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \preccurlyeq y \neq 0$ and 0 o.w.

More precise quantifier reduction

Work with two-sorted structures ($K, \mathbf{k}; \pi$), where:

- K is a d-Hensel-Liouville closed pre-H-field.
- **2** \boldsymbol{k} is an expansion of the ordered differential residue field of K;
- **3** $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \preccurlyeq y \neq 0$ and 0 o.w.

Let x be an m-tuple of K-variables and y be a tuple of k-variables.

Theorem (PC)

Every formula $\phi(x, y)$ is equivalent to a disjunction of formulas of the form $\theta(x) \wedge \psi(x, y)$, where $\theta(x)$ is a quantifier-free K-formula and $\psi(x, y)$ is special.

More precise quantifier reduction

Work with two-sorted structures ($K, \mathbf{k}; \pi$), where:

- K is a d-Hensel-Liouville closed pre-H-field.
- **2** \boldsymbol{k} is an expansion of the ordered differential residue field of K;
- **3** $\pi: K^2 \to \mathbf{k}$ is defined by $\pi(x, y) = \operatorname{res}(xy^{-1})$ if $x \preccurlyeq y \neq 0$ and 0 o.w.

Let x be an m-tuple of K-variables and y be a tuple of k-variables.

Theorem (PC)

Every formula $\phi(x, y)$ is equivalent to a disjunction of formulas of the form $\theta(x) \wedge \psi(x, y)$, where $\theta(x)$ is a quantifier-free K-formula and $\psi(x, y)$ is special.

 $\psi(x, y)$ is **special** if $\psi(x, y)$ is

$$\psi_{\mathsf{r}}(\pi(P_1(x), Q_1(x)), \ldots, \pi(P_k(x), Q_k(x)), y),$$

for some **k**-formula $\psi_r(v_1, \ldots, v_k, y)$ and some $P_1, Q_1, \ldots, P_k, Q_k$ in $\mathbb{Z}\{X_1, \ldots, X_m\}$.

Corollaries of quantifier reduction

Theorem (PC)

Every formula $\phi(x, y)$ is equivalent to a disjunction of formulas of the form $\theta(x) \wedge \psi(x, y)$, where $\theta(x)$ is a quantifier-free K-formula and $\psi(x, y)$ is special.

Corollary

() Every subset of \mathbf{k}^n definable in $(K, \mathbf{k}; \pi)$ is definable in \mathbf{k} .

2 If \mathbf{k} has NIP, then $(K, \mathbf{k}; \pi)$ has NIP.

Corollaries of quantifier reduction

Theorem (PC)

Every formula $\phi(x, y)$ is equivalent to a disjunction of formulas of the form $\theta(x) \wedge \psi(x, y)$, where $\theta(x)$ is a quantifier-free K-formula and $\psi(x, y)$ is special.

Corollary

() Every subset of \mathbf{k}^n definable in $(K, \mathbf{k}; \pi)$ is definable in \mathbf{k} .

2 If **k** has NIP, then $(K, \mathbf{k}; \pi)$ has NIP.

Applies to K^* as above.

Future work

• Dimension in d-Hensel-Liouville closed pre-H-fields.

Future work

- Dimension in d-Hensel-Liouville closed pre-H-fields.
- Imaginaries in d-Hensel-Liouville closed pre-*H*-fields.
 - Rideau eliminated imaginaries in existentially closed monotone valued differential fields in the geometric language of Haskell–Hrushovski–Macpherson expanded by a derivation.

Thank you!