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Abstract. In this paper strong duality for nearly convex optimization prob-
lems is established. Three kind of conjugate dual problems are attached to the pri-
mal optimization problem: the Lagrange dual, the Fenchel dual and the Fenchel-
Lagrange dual problems. Our main results show that under suitable conditions,
the optimal objective values of these four problems coincide.
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1. Introduction

In paper Ref. 1 Wanka and Boţ considered three types of conjugate dual
problems for a constrained optimization problem (P ): the well-known Lagrange
and the Fenchel dual problems (denoted by (DL) and (DF ) respectively) and a
”combination” of the above two, called by the authors Fenchel-Lagrange dual
problem (denoted by (DFL)). It is relatively easy to show that in each case the
so-called ”weak duality” holds, namely the optimal objective value v(P ) of the
primal problem (P ) is always greater than or equal to each of the optimal ob-
jective values of the considered dual problems. Moreover, among the optimal
objective values of these three dual problems, v(DFL) is the smallest. An inter-
esting fact is that in general, an ordering between v(DL) and v(DF ) cannot be
established (for a counterexample see Ref. 1).

For both theoretical and practical reasons, one of the main issues in optimiza-
tion theory is to find conditions which guarantee the so called ”strong duality”,
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namely that the optimal objective values of the primal and the dual problems
coincide. Usually this can be achieved under convexity assumptions on the sets
and functions involved and some regularity conditions often called ”constraint
qualifications”. In paper Ref. 1 of Wanka and Boţ it was shown that under the
hypothesis of convexity and suitable constraint qualifications the strong duality
holds for each dual problem.

The aim of the present paper is to weaken the convexity and the regularity
assumptions considered in Ref. 1 in a way that the above mentioned strong
duality results still hold. To do this, we assume that the sets and functions
involved in problem (P ) and its three duals are nearly convex, a kind of generalized
convexity. This concept was first introduced for sets by Green and Gustin in Ref.
2 and some relevant properties have been studied for instance by Gherman and
Soltan (Ref. 3) and Muntean (Ref. 4). Then Aleman (Ref. 5) defined this
notion for functions (called by himself p-convexity). It has to be mentioned that
the nearly convexity for functions is essentially weaker than usual convexity, as
Example 3.1 (below) shows.

The paper is organized as follows. In Section 2 we define the primal optimiza-
tion problem and its three conjugate dual problems, and show the basic relations
between them. Section 3 contains our main results. After recalling the defini-
tions of nearly convexity for sets and functions, we first establish the equality
v(DF ) = v(DFL) and then the equality v(DF ) = v(P ). Combining these rela-
tions with a simple property given before, we obtain sufficient conditions for the
equality v(P ) = v(DL) = v(DF ) = v(DFL).

2. The constrained optimization problem and its conjugate duals

2.1. Problem formulation. Let X ⊆ Rn be a nonempty set and C ⊆ Rk

a nonempty closed convex cone with C∗ := {c∗ ∈ Rk : c∗T c ≥ 0,∀c ∈ C}
its dual cone. Consider the (partial) ordering ≤C induced by C in Rk, namely
for y, z ∈ Rk we have that y ≤C z, iff z − y ∈ C. Let f : Rn → R and
g = (g1, . . . , gk)

T : Rn → Rk. The optimization problem which we investigate in
this paper is the following

(P) infx∈G f(x),

where

G = {x ∈ X : g(x) ≤C 0}.

In the following we always suppose that the feasible set G is nonempty. As-
sume further that dom(f) = X, where dom(f) := {x ∈ Rn : f(x) < +∞}.

The problem (P ) is said to be the primal problem and its optimal objective
value is denoted by v(P ).
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Definition 2.1. An element x̄ ∈ G is said to be an optimal solution for (P )
if f(x̄) = v(P ).

The aim of this section is to construct different dual problems to (P ). For this
aim we will use an approach described in Ekeland and Temam (Ref. 6) which is
based on the theory of conjugate functions. To do this, let us first consider the
general optimization problem without constraints

(PG) infx∈Rn F (x),

with F a mapping from Rn into R.

Definition 2.2. The function F ∗ : Rn → R defined by

F ∗(p∗) = sup
x∈Rn

{p∗T x − F (x)}

is called the conjugate function of F .

Remark 2.1. By the assumptions we made for f we have

f ∗(p∗) = sup
x∈Rn

{p∗T x − f(x)} = sup
x∈X

{p∗T x − f(x)}.

The approach in Ref. 6 is based on the construction of a so-called perturbation
function Φ : Rn×Rm → R, with the property that Φ(x, 0) = F (x) for each x ∈ Rn.
Here, Rm is the space of the perturbation variables. For each p ∈ Rm we obtain
then a new optimization problem

(PG)p infx∈Rn Φ(x, p).

For p ∈ Rm the problem (PG)p is called the perturbed problem of (P ).
By Definition 2.2, the conjugate of Φ is the function Φ∗ : Rn × Rm → R,

Φ∗(x∗, p∗) = sup
x∈R

n

p∈R
m

{(x∗, p∗)T (x, p) − Φ(x, p)}

= sup
x∈R

n

p∈R
m

{x∗T x + p∗T p − Φ(x, p)}. (1)

Now we can define the following optimization problem (cf. Ref. 6)

(DG) supp∗∈Rm{−Φ∗(0, p∗)}.

The problem (DG) is called the dual problem of (PG) and its optimal objective
value is denoted by v(DG).
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This approach has an important property: between the primal and the dual
problem weak duality always holds. The following theorem proves this fact.

Theorem 2.1. (see Ekeland and Temam (Ref. 6)). The relation

−∞ ≤ v(DG) ≤ v(PG) ≤ +∞ (2)

always holds.

Our next aim is to show how we can apply this approach to the constrained
optimization problem (P ). Therefore let be F : Rn → R the function given by

F (x) =

{

f(x), if x ∈ G,
+∞, otherwise.

The primal problem (P ) is then equivalent to

(PG) infx∈Rn F (x),

and since the perturbation function Φ : Rn×Rm → R satisfies Φ(x, 0) = F (x)
for each x ∈ Rn we obtain that

Φ(x, 0) = f(x), ∀x ∈ G (3)

and

Φ(x, 0) = +∞, ∀x ∈ Rn \ G. (4)

In the following we will study for special choices of the perturbation function
some dual problems of (P ).

2.2. The Lagrange dual problem. For the beginning, let the function
ΦL : Rn × Rk → R be defined by

ΦL(x, q) =

{

f(x), if x ∈ X, g(x) ≤C q,
+∞, otherwise,

with q ∈ Rk the perturbation variable. It is obvious that the relations (3) and
(4) are fulfilled. For the conjugate of ΦL we have

Φ∗
L(x∗, q∗) = sup

x∈R
n

q∈R
k

{x∗T x + q∗T q − ΦL(x, q)}

= sup
x∈X,q∈R

k

g(x)≤Cq

{x∗T x + q∗T q − f(x)}.
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In order to calculate this expression we introduce the variable s instead of q by
s = q − g(x) ∈ C. This implies

Φ∗
L(x∗, q∗) = sup

x∈X,s∈C

{x∗T x + q∗T [s + g(x)] − f(x)}

= sup
x∈X

{x∗T x + q∗T g(x) − f(x)} + sup
s∈C

q∗T s

=

{

sup
x∈X

{x∗T x + q∗T g(x) − f(x)}, if q∗ ∈ −C∗,

+∞, otherwise.

As we have seen, the dual of (P ) obtained by the perturbation function ΦL is

(DL) supq∗∈Rk{−ΦL(0, q∗)},

and since

sup
q∗∈−C∗

{− sup
x∈X

[q∗T g(x) − f(x)]} = sup
q∗∈−C∗

{ inf
x∈X

[−q∗T g(x) + f(x)]},

the dual has the following form

(DL) sup
q∗∈C∗

inf
x∈X

[f(x) + q∗T g(x)]. (5)

The problem (DL) is actually the well-known Lagrange dual problem. Its optimal
objective value is denoted by v(DL) and Theorem 2.1 implies

v(DL) ≤ v(P ). (6)

We are now interested to obtain dual problems for (P ) different from the clas-
sical Lagrange problem.

2.3. The Fenchel dual problem. Let us consider the perturbation function
ΦF : Rn × Rn → R given by

ΦF (x, p) =

{

f(x + p), if x ∈ G,
+∞, otherwise,

with the perturbation variable p ∈ Rn. The relations (3) and (4) are also fulfilled
and it holds

Φ∗
F (x∗, p∗) = sup

x∈R
n

p∈R
n

{x∗T x + p∗T p − ΦF (x, p)}

= sup
x∈X,p∈R

n

g(x)≤C0

{x∗T x + p∗T p − f(x + p)}.
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For the new variable r = x + p ∈ Rn, we have

Φ∗
F (x∗, p∗) = sup

x∈X,r∈R
n

g(x)≤C0

{x∗T x + p∗T (r − x) − f(r)}

= sup
r∈Rn

{p∗T r − f(r)} + sup
x∈X

g(x)≤C0

{(x∗ − p∗)T x}

= f ∗(p∗) − inf
x∈X

g(x)≤C0

{(p∗ − x∗)T x} = f ∗(p∗) − inf
x∈G

{(p∗ − x∗)T x}.

Now the dual of (P )

(DF ) supp∗∈Rn{−Φ∗
F (0, p∗)}

can be written in the form

(DF ) sup
p∗∈Rn

{−f ∗(p∗) + inf
x∈X

g(x)≤C0

p∗T x}. (7)

Let us call (DF ) the Fenchel dual problem and denote its optimal objective value
by v(DF ). The weak duality

v(DF ) ≤ v(P ) (8)

is also fulfilled by Theorem 2.1.

2.4. The Fenchel-Lagrange dual problem. Another dual problem, dif-
ferent from (DL) and (DF ), can be obtained considering the perturbation func-
tion as a combination of the functions ΦL and ΦF . Let this be defined by
ΦFL : Rn × Rn × Rk → R,

ΦFL(x, p, q) =

{

f(x + p), if x ∈ X, g(x) ≤C q,
+∞, otherwise,

with the perturbation variables p ∈ Rn and q ∈ Rk. ΦFL satisfies the relations
(3) and (4) and its conjugate is

Φ∗
FL(x∗, p∗, q∗) = sup

x∈R
n

p∈R
n,q∈R

k

{x∗T x + p∗T p + q∗T q − ΦFL(x, p, q)}

= sup
x∈X,g(x)≤Cq

p∈R
n,q∈R

k

{x∗T x + p∗T p + q∗T q − f(x + p)}.

Like in the previous subsections we introduce the new variables r = x + p ∈ Rn

and s = q − g(x) ∈ C. Then we have

Φ∗
FL(x∗, p∗, q∗) = sup

r∈R
n,s∈C

x∈X

{x∗T x + p∗T (r − x) + q∗T [s + g(x)] − f(r)}

= sup
r∈Rn

{p∗T r − f(r)} + sup
s∈C

q∗T s + sup
x∈X

{(x∗ − p∗)T x + q∗T g(x)}.
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Computing the first two suprema we get again

sup
r∈Rn

{p∗T r − f(r)} = f ∗(p∗)

and

sup
s∈C

q∗T s =

{

0, if q∗ ∈ −C∗,
+∞, otherwise.

In this case the dual problem

(DFL) supp∗∈R
n

q∗∈R
k

{−Φ∗
FL(0, p∗, q∗)}

is

(DFL) sup p∗∈R
n

q∗∈−C∗

{−f ∗(p∗) − sup
x∈X

[−p∗T x + q∗T g(x)]}

or, equivalently,

(DFL) sup
p∗∈R

n

q∗∈C∗

{−f ∗(p∗) + inf
x∈X

[p∗T x + q∗T g(x)]}. (9)

We call (DFL) the Fenchel-Lagrange dual problem and denote its optimal objec-
tive value by v(DFL). By Theorem 2.1 the weak duality v(DFL) ≤ v(P ) is also
true.

In the following we are going to give some relations existing between the opti-
mal objective values of different dual problems we introduced above. For the sake
of better understanding of the backgrounds of our duality approach we consider
to recall the proofs of the following two propositions as being necessary. The first
one refers to the problems (DL) and (DFL).

Proposition 2.1. (see Wanka and Boţ (Ref. 1)). The inequality v(DL) ≥
v(DFL) holds.

Proof. Let q∗ ∈ C∗ and p∗ ∈ Rn be fixed. By the definition of the conjugate
function we have for each x ∈ X

f ∗(p∗) ≥ p∗T x − f(x)

or, equivalently,

f(x) ≥ p∗T x − f ∗(p∗).

By adding q∗T g(x) to both sides we obtain for each x ∈ X

f(x) + q∗T g(x) ≥ −f ∗(p∗) + p∗T x + q∗T g(x).
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This means that for each q∗ ∈ C∗ and p∗ ∈ Rn it holds

inf
x∈X

[f(x) + q∗T g(x)] ≥ −f ∗(p∗) + inf
x∈X

[p∗T x + q∗T g(x)]. (10)

We can calculate now the supremum over p∗ ∈ Rn and q∗ ∈ C∗ and this implies

sup
q∗∈C∗

inf
x∈X

[f(x) + q∗T g(x)] ≥ sup
p∗∈R

n

q∗∈C∗

{−f ∗(p∗) + inf
x∈X

[p∗T x + q∗T g(x)]}.

The last inequality is in fact v(DL) ≥ v(DFL) and thus the proof is complete. �

The inequality in Proposition 2.1 can be strict in some situations (for an
example see Ref. 1).

The next result states an inequality between the optimal objective values of
the problems (DF ) and (DFL).

Proposition 2.2. (see Wanka and Boţ (Ref. 1)). The inequality v(DF ) ≥
v(DFL) holds.

Proof. Let p∗ ∈ Rn be fixed. Then for each q∗ ∈ C∗ we have

inf
x∈X

[p∗T x + q∗T g(x)] ≤ inf
x∈X

g(x)≤C0

[p∗T x + q∗T g(x)] ≤ inf
x∈X

g(x)≤C0

p∗T x.

Then for every p∗ ∈ Rn

sup
q∗∈C∗

inf
x∈X

[p∗T x + q∗T g(x)] ≤ inf
x∈X

g(x)≤C0

p∗T x. (11)

By adding −f ∗(p∗) to both sides one obtains

−f ∗(p∗) + sup
q∗∈C∗

inf
x∈X

[p∗T x + q∗T g(x)] ≤ −f ∗(p∗) + inf
x∈X

g(x)≤C0

p∗T x.

This last inequality implies

sup
p∗∈R

n

q∗∈C∗

{−f ∗(p∗) + inf
x∈X

[p∗T x + q∗T g(x)]} ≤ sup
p∗∈Rn

{−f ∗(p∗) + inf
x∈X

g(x)≤C0

p∗T x}

or, equivalently, v(DFL) ≤ v(DF ). �

The inequality in Proposition 2.2 can also be strict in some situations (for an
example see Ref. 1).
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3. Strong duality for nearly convex programming problems

The aim of this section is to establish strong duality results for a class of
generalized convex programming problems. In the first subsection we recall the
concepts and some basic properties of nearly convex sets and nearly convex func-
tions introduced by Green and Gustin (Ref. 2) and Aleman (Ref. 5), respectively.
Then, in the second and third subsections we state and prove our results con-
cerning duality for nearly convex optimization problems.

3.1. Nearly convex sets and functions. To start let us recall the follow-
ing definition.

Definition 3.1. A subset S ⊆ Rm is called nearly convex if there exists a
constant 0 < α < 1 such that for each x, y ∈ S follows that αx + (1 − α)y ∈ S.

Obviously, each convex set is nearly convex, but the contrary is not true since
for instance the set Q ⊂ R of all rational numbers is nearly convex (with α = 1/2)
but not a convex set. It is interesting to remark that the set R\Q of all irrational
numbers is not a nearly convex set (see Frenk and Kassay (Ref. 7) or Breckner
and Kassay (Ref. 8)).

Let f : Rn → R and g : Rn → Rk be given functions, and let D, E be
nonempty subsets of Rn such that D ⊆ dom(f). We denote the epigraph of f
on D by epi(f ; D), i. e. the set {(x, r) ∈ D × R : f(x) ≤ r}. Furthermore, if
C ⊆ Rk is a nonempty convex cone, the epigraph of g on E with respect to the
cone C will be the set

epiC(g; E) := {(x, v) ∈ E × Rk : g(x) ≤C v},

where ≤C denotes the partial ordering relation induced by C (see Section 2).
Now one can define the following concepts.

Definition 3.2. The function f is said to be nearly convex on D if epi(f ; D)
is a nearly convex set. Moreover, the vector-valued function g is said to be nearly
convex on E with respect to the cone C if epiC(g; E) is a nearly convex set.

Observe that by the above definition the function f is nearly convex on D if
and only if there exists 0 < α < 1 such that for every x, y ∈ D we have

αx + (1 − α)y ∈ D

and

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y).
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Similarly, g is nearly convex on E with respect to the cone C if and only if there
exists 0 < γ < 1 such that for every x, y ∈ E we have

γx + (1 − γ)y ∈ E

and

g(γx + (1 − γ)y) ≤C γg(x) + (1 − γ)g(y).

It is obvious that in case D or/and E are convex sets and f or/and g are
convex functions in the usual sense on D and E, respectively, then they are also
nearly convex. In case D or/and E are nearly convex sets but not convex, we
can easily define nearly convex functions on them which obviously are not convex
functions. But an interesting fact is that it is possible to give an example for
nearly convex, but not convex function defined on a convex set. This is related
to the functional equation of Cauchy.

Example 3.1. Let F : R → R be any discontinuous solution of the Cauchy
functional equation, i. e. F satisfies

F (x + y) = F (x) + F (y), ∀x, y ∈ R.

(Such a solution exists, see Ref. 9.)
It is easy to deduce that

F

(

x + y

2

)

=
F (x) + F (y)

2
, ∀x, y ∈ R.

Therefore F is nearly convex on R with constant 1/2. However, F is not convex
(even more: there is no interval in R on which F is convex) due to the lack of
continuity.

Next we recall some basic properties of nearly convex sets which we need for
our results.

Lemma 3.1. (see Aleman (Ref. 5)). The following properties hold
(i) The closure cl(S) and the relative interior ri(S) of every nearly convex set

S is convex (ri(S) may be empty);
(ii) For every nearly convex set S the set

ΩS := {t ∈ [0, 1] : ∀x, y ∈ S ⇒ tx + (1 − t)y ∈ S}

is dense within the interval [0, 1];
(iii) For every nearly convex set S, every x ∈ cl(S) and y ∈ ri(S) we have

that tx + (1 − t)y ∈ ri(S) for each 0 ≤ t < 1.
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3.2. The equivalence of the dual problems (DF ) and (DFL). In this
subsection we will prove that in case of a nearly convex programming problem
the optimal objective values of the Fenchel dual problem (DF ) and the Fenchel-
Langrange dual problem (DFL) are equal, provided some regularity conditions
hold. To do this we need some auxiliary results which we list below.

Lemma 3.2. (Frenk and Kassay (Ref. 7), Theorem 3.1). If M ⊆ Rm is a
nonempty convex set and if 0 /∈ M , then the sets M and {0} can be properly
separated. Moreover, the normal vector y∗ 6= 0 of the separating hyperplane
belongs to aff(M) (the affine hull of M).

Lemma 3.3. (Frenk and Kassay (Ref. 7), Theorem 3.2). Let M ⊆ Rm be a
nonempty set and K ⊆ Rm a nonempty convex cone such that ri(M + K) 6= ∅.
Then it follows that ri(M + K) = ri(M + ri(K)).

Lemma 3.4. (Frenk and Kassay (Ref. 10)). Let M ⊆ Rm and K ⊆ Rm a
nonempty convex cone. If for some v0 ∈ aff(M) the relation

M ⊆ v0 + aff(K), (12)

holds, then we have

ri(cl(M + K)) = M + ri(K).

Observe that for an arbitrary set M ⊆ Rm with 0 ∈ aff(M) it follows that
aff(M) = lin(M), where lin(M) denotes the linear hull of the set M . For
K ⊆ Rm a nonempty convex cone, since 0 ∈ cl(K) ⊆ aff(K), we always have
that aff(K) = lin(K). Therefore in relation (12) we can write either aff(K)
or lin(K), not making any difference.

Observe that in case int(K) 6= ∅ follows aff(K) = lin(K) = Rm, hence
condition (12) in Lemma 3.4 is automatically satisfied.

As in the first section let X ⊆ Rn be a nonempty set, C ⊆ Rk a nonempty
closed convex cone with C∗ its dual cone, and let f : Rn → R with dom(f) = X
and g = (g1, . . . , gk)

T : Rn → Rk be given functions. In order to prove the equal-
ity v(DF ) = v(DFL) we need the following lemma.

Lemma 3.5. Suppose that the vector-valued function g is nearly convex on
X with respect to the closed convex cone C. Furthermore, suppose that there
exists an element y0 ∈ aff(g(X)) such that

g(X) ⊆ y0 + aff(C) (13)

and the (Slater type) regularity condition
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0 ∈ g(X) + ri(C) (14)

holds.
Let p∗ ∈ Rn and β ∈ R be given elements. If the system







p∗T x − β < 0
g(x) ∈ −ri(C)
x ∈ X

has no solution, then there exists q∗ ∈ C∗ such that

p∗T x − β + q∗T g(x) ≥ 0, ∀x ∈ X. (15)

Proof. Define the vector-valued function F : Rn → R×Rk given by F (x) :=
(p∗T x − β, g(x)) and let K be the closed convex cone [0, +∞) × C. It is easy to
check that F is a nearly convex function on the set X with respect to the cone K.
We show that condition (12) with M := F (X) is implied by (13). Indeed, for the
element y0 ∈ aff(g(X)) there exist, by the definition of affine hull, λ1, ..., λm ∈ R

with
∑m

j=1 λj = 1 and x1, ..., xm ∈ X such that y0 =
∑m

j=1 λjg(xj). Then it

follows that the pair (r0, y0) belongs to aff(F (X)), where r0 := p∗T (
∑m

j=1 λjxj)−
β. Moreover, since aff(K) = R × aff(C), (12) is satisfied with v0 := (r0, y0)
and M := F (X). Therefore, by Lemma 3.4 we have

ri(cl(F (X) + K)) = F (X) + ri(K).

Obviously, by our hypothesis, (0, 0) /∈ F (X) + ri(K). Since F is nearly
convex on X with respect to K one can easily verify that the set F (X) + K (the
”epirange” of F ) is a nearly convex set. Therefore, by Lemma 3.1 (i), cl(F (X) +
K) is a convex set, which implies that ri(cl(F (X)+K)) is a nonempty convex set
(see for instance Rockafellar (Ref. 11)). Hence, by Lemma 3.2 the sets {(0, 0)}
and ri(cl(F (X)+K)) can be properly separated. The convexity of cl(F (X)+K)
implies aff(ri(cl(F (X) + K))) = aff(cl(F (X) + K)) = aff(F (X) + K) (see
for instance Ref. 11, Theorem 6.2), therefore, also by Lemma 3.2, the normal
vector (λ∗

0, q
∗
0) 6= (0, 0) of the separating hyperplane belongs to aff(F (X) + K).

This means that λ∗
0 ∈ R, q∗0 ∈ aff(g(X) + C) and again by the convexity of

cl(F (X) + K) follows that the same hyperplane separates the sets {(0, 0)} and
cl(F (X) + K). This means that

λ∗
0(p

∗T x − β + r) + q∗T0 (g(x) + c) ≥ 0, ∀x ∈ X, r ≥ 0, c ∈ C. (16)

A standard technique shows that λ∗
0 ≥ 0 and q∗0 ∈ C∗. In particular, for r := 0

and c := 0 (C is a closed convex cone, hence 0 ∈ C) in (16) we obtain

λ∗
0(p

∗T x − β) + q∗T0 g(x) ≥ 0, ∀x ∈ X. (17)
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Now we show that λ∗
0 6= 0. Supposing the contrary, (16) implies

q∗T0 (g(x) + c) ≥ 0, ∀x ∈ X, c ∈ C. (18)

We show that in our hypothesis

g(X) + ri(C) = ri(g(X) + C). (19)

Indeed, again by (13), Lemma 3.4 implies

ri(cl(g(X) + C)) = g(X) + ri(C). (20)

Since ri(ri(S)) = ri(S) for any set S ⊆ Rm, taking the ri operator in both sides
we obtain

ri(cl(g(X) + C)) = ri(g(X) + ri(C)). (21)

Next we prove that ri(g(X)+C) 6= ∅. Since obviously g(X)+ri(C) 6= ∅, relations
(20) and (21) imply that ri(g(X) + ri(C)) 6= ∅. By the obvious inclusion g(X) +
ri(C) ⊆ g(X) + C, taking into account that aff(g(X) + ri(C)) = aff(g(X)) +
aff(ri(C)) = aff(g(X)) + aff(C) = aff(g(X) + C) (observe that the relation
aff(ri(C)) = aff(C) holds since C is a convex cone and therefore, ri(C) 6= ∅),
we obtain ri(g(X)+ri(C)) ⊆ ri(g(X)+C), hence ri(g(X)+C) is also nonempty.
Applying now Lemma 3.3 it follows that ri(g(X) + ri(C)) = ri(g(X) + C) and
this, together with (21) and (20), implies (19).

In virtue of (19), the regularity condition (14) means that

0 ∈ ri(g(X) + C). (22)

Consequently, there exists an ε > 0 such that for each y ∈ aff(g(X) + C) with
‖y‖ ≤ ε it follows that

y ∈ g(X) + C. (23)

Let v∗ := − ε
‖q∗

0
‖
q∗0 (observe that q∗0 6= 0, and therefore v∗ 6= 0, otherwise we obtain

a contradiction with (λ∗
0, q

∗
0) 6= (0, 0), due to the fact that we are supposing that

λ∗
0 = 0). By (18) one obtains

v∗T (g(x) + c) ≤ 0, ∀x ∈ X, c ∈ C. (24)

Relation (22) implies in particular that 0 ∈ g(X)+C, hence aff(g(X)+C) =
lin(g(X) + C). Then obviously v∗ ∈ aff(g(X) + C) and since ‖v∗‖ = ε, by (23)
we obtain that v∗ ∈ g(X) + C. Thus there exist x̄ ∈ X and c̄ ∈ C such that
v∗ = g(x̄)+c̄ which together with (24) implies v∗ = 0, a contradiction. This shows
that λ∗

0 6= 0 and dividing relation (17) with λ∗
0 we obtain (15) with q∗ := (1/λ∗

0)q
∗
0.

This completes the proof. �
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Now we are ready to prove the equality between the optimal objective values
of problems (DF ) and (DFL).

Theorem 3.1. Suppose that g : Rn → Rk is a nearly convex function on the
set X ⊆ Rn with respect to the closed convex cone C ⊆ Rk. If the constraint
qualifications (13) and (14) hold, then v(DF ) = v(DFL).

Proof. For p∗ ∈ Rn fixed we first prove that

sup
q∗∈C∗

inf
x∈X

[p∗T x + q∗T g(x)] = inf
x∈G

p∗T x. (25)

Let β := inf
x∈G

p∗T x. Since G 6= ∅, β ∈ [−∞, +∞).

If β = −∞, then by (11) it follows that

sup
q∗∈C∗

inf
x∈X

[p∗T x + q∗T g(x)] = −∞ = inf
x∈G

p∗T x.

Suppose now that −∞ < β < +∞. It is easy to check that the system







p∗T x − β < 0
g(x) ∈ −C
x ∈ X

has no solutions. Therefore the system







p∗T x − β < 0
g(x) ∈ −ri(C)
x ∈ X

has no solutions too. By Lemma 3.5 there exists an element q∗ ∈ C∗ satisfying

p∗T x − β + q∗T g(x) ≥ 0, ∀x ∈ X. (26)

The latter relation implies

sup
q∗∈C∗

inf
x∈X

[p∗T x + q∗T g(x)] ≥ β,

which together with (11) leads to (25).
To finish our proof we have for p∗ ∈ Rn to add in both sides of (25) −f ∗(p∗).

Then we obtain

−f ∗(p∗) + sup
q∗∈C∗

inf
x∈X

[p∗T x + q∗T g(x)] = −f ∗(p∗) + inf
x∈X

g(x)≤C0

p∗T x.

Now taking the supremum in both sides over p∗ ∈ Rn we obtain the equality
v(DF ) = v(DFL). This completes the proof. �
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3.3. Strong duality for the Fenchel dual problem (DF ). In this sub-
section we will prove that the optimal objective values of the primal problem (P )
and the Fenchel dual problem (DF ) are equal for nearly convex programming
problems under some suitable conditions. For this purpose, as in the previous
subsection, we need some auxiliary results.

Lemma 3.6. Let S ⊆ Rm be a nearly convex set. Then the relative interior
ri(S) of the set S is nonempty if and only if

ri(cl(S)) ⊆ S. (27)

Proof. First suppose that (27) holds. Since the affine hull aff(S) of S is a
closed set we have that aff(S) = aff(cl(S)). Moreover, since by Lemma 3.1 (i)
cl(S) is a convex set, then ri(cl(S)) is a nonempty convex set (see for instance
Ref. 11). Therefore,

aff(cl(S)) = aff(ri(cl(S)))

(see also relation (5) in (Ref. 7)), hence

aff(S) = aff(ri(cl(S))).

This allows us to take the ri operation in both sides of (27) and we obtain that
ri(ri(cl(S))) ⊆ ri(S). Since ri(ri(M)) = ri(M) for each set M ⊆ Rm the latter
leads to ∅ 6= ri(cl(S)) ⊆ ri(S). Thus ri(S) 6= ∅. For the reverse implication let
x ∈ ri(cl(S)) be an arbitrary element. Then by definition there exists ε > 0 such
that, denoting by B the closed unit ball of Rm, we have

(x + εB) ∩ aff(cl(S)) ⊆ cl(S). (28)

Choose an arbitrary element x′ ∈ ri(S) and let 0 < t < 1 be such that

t

1 − t
‖x − x′‖ < ε.

Then for the element

z :=
1

1 − t
x +

−t

1 − t
x′

we clearly have that z ∈ aff(cl(S)) on one hand and

‖z − x‖ = ‖
−t

1 − t
x′ +

t

1 − t
x‖ =

t

1 − t
‖x − x′‖ < ε,

on the other hand. Thus, by (28) follows that z ∈ cl(S). Since x′ ∈ ri(S) by
Lemma 3.1 (iii) one has

x = tx′ + (1 − t)z ∈ ri(S) ⊆ S,
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and the proof is complete. �

Remark 3.1. As it can be seen, we have proved in fact that for S ⊆ Rm a
nearly convex set ri(S) 6= ∅ if and only if ri(cl(S)) ⊆ ri(S). Since the reverse
inclusion holds obviously we obtain the following property: for a nearly convex
set S ⊆ Rm ri(S) 6= ∅ if and only if ri(S) = ri(cl(S)).

Now consider again the set X, the closed convex cone C and the functions
f : Rn → R with dom(f) = X and g = (g1, . . . , gk)

T : Rn → Rk. As in the previ-
ous (sub)sections, let G be the feasible set for the primal problem (P ). Then we
have the following lemma.

Lemma 3.7. Suppose that the functions f and g are nearly convex on the
set X and a := infx∈G f(x) > −∞. If

(i) ri(epi(f)) 6= ∅
and

(ii) ri(G) 6= ∅,
then

ri(cl(epi(f))) ∩ [ri(cl(G)) × (−∞, a)] = ∅. (29)

Proof. Assume by contradiction that there exists (x, µ) ∈ ri(cl(epi(f)))
∩[ri(cl(G)) ×(−∞, a)]. By our assumptions and Lemma 3.6 we obtain that
(x, µ) ∈ epi(f), x ∈ G and µ < a. This means that x ∈ G and f(x) ≤ µ < a,
which contradicts the definition of a. �

Now we are ready to prove the strong duality result concerning problem (DF ).

Theorem 3.2. Suppose that the functions f and g are nearly convex on the
set X and the constraint qualifications (13) and (14) hold. Assume further that
(i) and (ii) in Lemma 3.7 are satisfied. Then v(P ) = v(DF ).

Moreover, if a := infx∈G f(x) > −∞, then the dual problem (DF ) has an
optimal solution.

Proof. If a = −∞, then (8) (weak duality) implies that v(DF ) = −∞.
Hence, assume that a > −∞. By Lemma 3.7 we have that

ri(cl(epi(f))) ∩ [ri(cl(G)) × (−∞, a)] = ∅. (30)

Denoting A := cl(epi(f)) and B := cl(G) × (−∞, a], by our hypothesis and
Lemma 3.1 (i) these sets are convex and, by (30),

ri(A) ∩ ri(B) = ∅.
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By the well-known separation theorem in finite dimensional spaces (see for in-
stance Ref. 11, Theorem 11.3) the sets A and B can be properly separated, that
is, there exists a vector (p∗, µ∗) ∈ Rn × R \ {(0, 0)} and b ∈ R such that

p∗T x + µ∗µ ≤ b ≤ p∗T y + µ∗r, ∀(x, µ) ∈ A, (y, r) ∈ B (31)

and

inf{p∗T x + µ∗µ : (x, µ) ∈ A} < sup{p∗T y + µ∗r : (y, r) ∈ B}. (32)

It is easy to see that µ∗ ≤ 0. Let us show that µ∗ 6= 0. For this, suppose by
contradiction that µ∗ = 0. By (31) we have that b ≤ p∗T y for each y ∈ cl(G).
On the other hand, since G ⊆ X we have that p∗T x ≤ b for each x ∈ G (also by
(31)) and consequently p∗T x ≤ b for each x ∈ cl(G). Therefore,

p∗T x = b, ∀x ∈ cl(G). (33)

Now by the inequality (32) one can choose an element (x̄, µ̄) ∈ cl(epi(f)) such
that p∗T x̄ < b. Thus there exists (x1, µ1) ∈ epi(f) such that p∗T x1 < b or, in
other words, there exists an element x1 ∈ X for which p∗T x1 < b.

By our assumption (14) follows that there exists x2 ∈ X with g(x2) ∈ −ri(C).
This means that x2 ∈ G and therefore p∗T x2 = b on one hand and there exists
ε > 0 such that

(g(x2) + εB) ∩ aff(−C) ⊆ −C, (34)

on the other hand. Choose a number 0 < t̄ < 1 such that

t′‖g(x1) − g(x2)‖ < ε, ∀ 0 < t′ < t̄.

By our assumption (13) we have for every t′ ∈ R that

t′(g(x1) − g(x2)) ∈ lin(C)

which together with g(x2) ∈ −ri(C) ⊆ lin(C) leads to

g(x2) + t′(g(x1) − g(x2)) ∈ lin(C) = lin(−C) = aff(−C), ∀t′ ∈ R.

The latter implies in virtue of (34) that

g(x2) + t′(g(x1) − g(x2)) ∈ −C, ∀ 0 < t′ < t̄. (35)

By Lemma 3.1 (ii) follows that the set ΩepiC(g) consisting of all t ∈ [0, 1] such
that for each x, y ∈ X we have

tx + (1 − t)y ∈ X
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and

g(tx + (1 − t)y) ≤C tg(x) + (1 − t)g(y)

is dense in [0, 1]. Therefore one can choose a number t̃ ∈ ΩepiC(g) such that
0 < t̃ < t̄. Then we have by (35) that

g(t̃x1 + (1 − t̃)x2) ∈ −C + t̃g(x1) + (1 − t̃)g(x2) =

−C + g(x2) + t̃(g(x1) − g(x2)) ⊆ −C + (−C) ⊆ −C.

The latter relation shows that the element t̃x1 + (1− t̃)x2 ∈ G, hence by (33) we
obtain

p∗T (t̃x1 + (1 − t̃)x2) = b. (36)

On the other hand, p∗T x1 < b and p∗T x2 = b imply

p∗T (t̃x1 + (1 − t̃)x2) = t̃p∗T x1 + (1 − t̃)p∗T x2 < b,

which contradicts (36). This contradiction shows that µ∗ 6= 0 and therefore
µ∗ < 0.

Now dividing relation (31) by −µ∗ one obtains

p∗T0 x − µ ≤ b0 ≤ p∗T0 y − r, ∀(x, µ) ∈ A, (y, r) ∈ B, (37)

where p∗0 := 1
−µ∗

p∗ and b0 := 1
−µ∗

b. Since for every x ∈ X the pair (x, f(x)) ∈

epi(f) we obtain by (37) that

p∗T0 x − f(x) ≤ b0, ∀x ∈ X,

and taking the supremum of the left hand side over all x ∈ X we get

f ∗(p∗0) ≤ b0. (38)

Similarly, since for every x ∈ G the pair (x, a) ∈ cl(G) × (−∞, a], also by (37)
we obtain

b0 ≤ p∗T0 x − a, ∀x ∈ G,

therefore,

a + b0 ≤ inf
x∈G

p∗T0 x. (39)

Combining relations (38) and (39) it follows

a ≤ −f ∗(p∗0) + inf
x∈G

p∗T0 x
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or, in other words,

inf
x∈G

f(x) ≤ −f ∗(p∗0) + inf
x∈G

p∗T0 x ≤ sup
p∗∈Rn

[−f ∗(p∗) + inf
x∈G

p∗T x] = v(DF ). (40)

Hence we have shown that v(P ) ≤ v(DF ) and since the reverse inequality holds
by (8) (weak duality), it means that in (40) we must have equality. This shows
that the strong Fenchel duality holds on one hand, and p∗

0 is a solution of problem
(DF ), on the other hand. This completes the proof. �

Now combining Theorems 3.1 and 3.2 with Proposition 2.1 we obtain the fol-
lowing result which states that under suitable conditions the optimal objective
values of the primal problem and its three dual problems defined in Section 2 are
equal, or, in other words, strong duality between these problems holds.

Theorem 3.3. Suppose that the assumptions of Theorem 3.2 hold. Then

v(P ) = v(DL) = v(DF ) = v(DFL).

Moreover, if a := infx∈G f(x) > −∞ then all dual problems (DL), (DF ) and
(DFL) have optimal solutions.

Proof. By Theorems 3.1 and 3.2 we obtain that v(DFL) = v(DF ) = v(P ).
Moreover, by (6) and Proposition 2.1, v(P ) ≥ v(DL) ≥ v(DFL). This means that
v(P ) = v(DL) and the first part of the proof is complete.

If a := infx∈G f(x) > −∞ then by Theorem 3.2 follows that (DF ) has an
optimal solution p∗0 ∈ Rn. By repeating the first part of the proof of Theo-
rem 3.1 we obtain for this vector p∗

0 that there exists q∗0 ∈ C∗ satisfying (26).
It is easy to see now that the pair (p∗

0, q
∗
0) is an optimal solution of (DFL) and,

furthermore, q∗0 is an optimal solution of (DL). Therefore, the proof is complete.�

Remark 3.2. A careful analysis of the proof shows that our assumption in
Theorem 3.2 (and consequently, in Theorem 3.3) concerning nearly convexity of
functions f and g does not require that they have the same (nearly convexity)
constant (see Definitions 3.1 and 3.2). In particular for X ⊆ Rn a convex set,
the situation when the dense sets Ωepi(f) ⊂ [0, 1] and ΩepiC(g) ⊂ [0, 1] are disjoint
may occur.

We shall consider a nearly convex optimization problem for which the strong
duality (Theorem 3.3) holds as follows.

Let Q ⊂ R be the set of all rational numbers and X := {(x1, x2) ∈ R2 : x1 >
0, x2 > 0} ∪ {(x1, 0) ∈ R2 : x1 ≥ 0, x1 ∈ Q} ∪ {(0, x2) ∈ R2 : x2 ≥ 0, x2 ∈ Q}.
This set is clearly nearly convex with constant 1/2. Let F : R2 → R be an
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arbitrary convex function (with finite values) and define f : R2 → R as f(x) :=
F (x) for x ∈ X and f(x) := ∞ otherwise. Then clearly f is a nearly convex
function on R2 (with constant 1/2). Also, ri(epi(f)) = int(epi(f)) 6= ∅ since for
instance the vector (1, 1, f(1, 1) + 1) belongs to it. Therefore, condition (i) of
Lemma 3.7 is satisfied.

Let g : R2 → R given by g(x1, x2) := x1 + x2 − 1. Then g is an affine
function (and therefore a convex function) and for G = {x ∈ X : g(x) ≤ 0} we
have ri(G) = int(G) 6= ∅ (take for instance the element (1/4, 1/4) ∈ int(G)).
Hence, condition (ii) of Lemma 3.7 is also satisfied. It is also immediate that the
regularity conditions (13) and (14) are satisfied for C := [0,∞). Furthermore,
a := infx∈G f(x) = infx∈G F (x) < ∞ since F being convex on R2 is continuous
on cl(G).

Now consider the following optimization problem

inf{f(x) : x ∈ R2, g(x) ≤ 0},

which is a nearly convex (but not convex) optimization problem on R2. Since
this problem is equivalent to

inf
x∈G

f(x)

where

G = {x ∈ X : g(x) ≤ 0}

and, as we have seen, the latter satisfies all conditions of Theorem 3.3, this the-
orem can be applied and we obtain the strong duality result.

4. Conclusions

Finally, let us recall the most important new and original results of this paper
and suggest some possible future research on this subject.

For the optimization problem (P ) (cf. Section 2.1) we have introduced three
different dual problems based on a conjugacy and perturbation approach, the clas-
sical Lagrange dual (DL), the Fenchel dual (DF ) and a new dual called Fenchel-
Lagrange dual problem (DFL).

The last-mentioned has been introduced for the first time by two of the authors
in the paper Ref. 1. The former duality results in Ref. 1 have been established
under classical convexity and regularity conditions. But within the present paper
we could exceed those bounds supposing so-called nearly convexity assumptions
and a new type of constraint qualification (cf. (13) and (14)).

Thus we are able to point out in Theorem 3.1 that the optimal objective
function values v(DF ) and v(DFL) of the Fenchel and the Fenchel-Lagrange dual
problems, respectively, coincide if the function g defining the set of constraints

20



is nearly convex and the constraint qualifications (13) and (14) are fulfilled. The
proof is essentially based on Lemma 3.5 which states a solvability condition for
an inequality system including a nearly convex function. Independently of its
consequence for the duality, this assertion is interesting for itself as a new result
for the characterization of a solution of a general inequality system.

In Theorem 3.2 we proved under nearly convexity conditions for the objective
function f and the constraint function g, the constraint qualifications (13), (14)
and two further natural assumptions (cf. (i) and (ii) of Lemma 3.7) that there
is strong duality between the original primal problem (P ) and the Fenchel dual
problem (DF ) indicating the coincidence of the optimal values of both problems
v(P ) = v(DF ).

Afterwards we have verified that under the hypotheses of Theorem 3.2 the
optimal objective values of the primal problem and of the three dual problems
are equal v(P ) = v(DL) = v(DF ) = v(DFL). Furthermore, when this value is
finite the three dual problems have solutions.

With these considerations we have shown a way how strong duality results
can be generalized to a kind of nonconvex programming problems with nearly
convex functions. As we have seen this requires also a new kind of constraint
qualification.

We think that in the future these basic investigations will make possible to
treat also more general nonconvex mathematical programming problems, e.g.
such ones with composed nearly convex functions as objective and constraint
functions, respectively. Another direction of such kind of future research could
be the duality for multiobjective programming problems with nearly convex func-
tions. We could also imagine that some types of fractional programming problems
where the occurring convex (concave) functions would be replaced by nearly con-
vex (concave) functions represent an interesting area of thinking about duality.
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