
The Rose-Gurewitz-Fox approach applied for

patents classification

Ioan Bogdan Hodrea ∗ Radu Ioan Boţ † Gert Wanka ‡

Abstract. We used the so-called deterministic annealing algorithm due to

Rose and Gurewitz by the classification of patent documents. A C++ program

based on this algorithm was run first on some artificially constructed data and

the results were good. Then we tested it on data sets obtained from some already

classified patents. The conclusion we reached is that this algorithm provides an

alternative classification to the one used in the US Patent Classification System.

Key Words. Unsupervised Classification, Deterministic Annealing, Data

Mining, Patent Classification

1 Introduction

Segmentation of large data sets into smaller homogeneous subsets that can be

easily managed, separately modelled and analyzed is a fundamental operation

in data mining. Clustering is a very popular approach used to implement this

∗Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany,

e-mail: hio@mathematik.tu-chemnitz.de
†Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany,

e-mail: radu.bot@mathematik.tu-chemnitz.de.
‡Corresponding author. Faculty of Mathematics, Chemnitz University of Technology, D-

09107 Chemnitz, Germany, e-mail: gert.wanka@mathematik.tu-chemnitz.de

1

operation, especially when we deal with data about whose internal structure little

or no prior information is available.

Consider a data set X = {x1, ..., xN} and a measure of distance or similarity d.

The goal of most clustering algorithms is to assign each data point to a cluster.

The arising partition reflects somehow the internal structure of the data and

identifies ”natural” classes and hierarchies contained within.

Let us consider Y = {y1, ..., yNC
} a set of codevectors (being the centers of the

clusters). By the center of a cluster we understand a vector which characterizes

the elements of the cluster relative to a certain distance measure. For instance

this could be the center of the mass or the point which minimizes the sum of the

distances to the elements of the cluster.

For an arbitrary vector xi in the above data set and a codevector yj, we denote

by d(xi, yj) the distortion measure between them. The global distortion is given

by the formula

D =
∑

i=1,...,N,
j=1,...,NC

p(xi, yj)d(xi, yj), (1)

where p(xi, yj) is the probability that the vector xi belongs to the cluster rep-

resented by the codevector yj. The goal of clustering is to minimize the global

distortion. Being a function of the codevectors yj and the associated probabilities

p(xi, yj), D is usually nonconvex and has several local minima. However a global

minimum is quite impossible to be determined in practice (cf. [7]).

During the last few decades many new and interesting books and papers have

enriched the literature on clustering. Among the ones that made themselves use-

ful to us, let us mention [3], [4], [11], [12], [14], [15]. Various algorithms have

been proposed within these works, their origins being recognizable in graph the-

ory, pattern recognition, communication theory, statistical mechanics and some

2

other fields. A common problem encountered in the papers presenting applica-

tions of these algorithms resides in the fact that different methods may return

more or less similar results when using the same inputs. These differences are

somehow expected because of the various ways these algorithms treat the clus-

tering problem. Although many of the algorithms used in clustering are capable

to lead to optimal solutions a major drawback comes from the fact that external

parameters influence the results.

Some algorithms (like K-mean and K-median) require the number of clusters

to be given in the beginning. Therefore, we do not use them for our tests.

Trying to avoid the above mentioned difficulties and being motivated by good

results and reviews (see for example [1]) in the literature, we have decided to

construct and use a program based on the algorithm introduced by Rose in [11]

to clusterize some classes of patents.

To obtain the global minima of the distortion, Rose et al. ([11], [12], [14]) used

some methods inspired from annealing processes in physical chemistry. What is

specific about this algorithm is its property to avoid getting trapped into local

minima. Also the fact that the number of created clusters is influenced by a

parameter modified inside the algorithm (and not given in the beginning) is an

important and useful property.

The present paper is organized as follows. The next section contains a brief

description of an algorithm based on the deterministic annealing. A complete

description of the method including some necessary proofs is available in [11],

[12], [14]. The third part presents the results we have obtained by running the

mentioned program on some artificial data sets we deliberately constructed. As

these results were promising, we have dedicated the fourth section to running the

program on some real data obtained from the US Patent Classification System.

3

A small conclusive section ends our paper.

2 Description of the method

Since its introduction due to Rose et al. in [14], deterministic annealing has

proven to be a powerful tool in data mining. Various authors have developed

different versions of the method, treating a large variety of problems, from speech

recognition and signal processing to unsupervised texture segmentation.

In the following we will treat the expected distortion in (1) in a probabilistic

way, as follows

D =
∑

i=1,...,N,
j=1,...,NC

p(xi, yj)d(xi, yj) =
∑

i=1,...,N

p(xi)
∑

j=1,...,NC

p(yj|xi)d(xi, yj), (2)

where we denote by p(xi, yj) the joint probability distribution and by p(yj|xi)

the association probability relating the vector xi and the codevector yj. For

j = 1, ..., NC we denote by p(yj) the probability distribution induced on the

codevectors using the following encoding rule p(yj) =
∑

i=1,...,N

p(xi)p(yj|xi).

The global distortion has to be minimized as a function of yj and p(xi, yj). In

order to find a solution to this optimization problem the objective function D is

regularized through a penalty term having the form of the Shannon entropy

H(X,Y) = −
∑

i=1,...,N

∑

j=1,...,NC

p(xi, yj) ln(p(xi, yj)).

The function we have to minimize now is

F = D − TH,

4

where D is given in (2) and T is a positive regularization parameter. When T is

very large the new problem turns into the entropy maximization, but as T tends

to zero the solution approaches the one of the initial problem, which is actually

our aim.

Thus, in order to find the minimal value of D, we have to minimize F with

respect to the codevectors yj ∈ Y and the associated probabilities p(yj|xi). We

start with a high value of T and the minimum is tracked while lowering T . It can

be proved that the central iteration which allows us to calculate the minimum

consists of the following two steps:

(i) fix the codevectors yj ∈ Y and calculate the associated probabilities p(yj|xi)

using the formula

p(yj|xi) =
p(yj)e

−
d(xi,yj)

T

∑
j=1,...,NC

p(yj)e
−

d(xi,yj)

T

(3)

(ii) fix the associated probabilities p(yj|xi) and calculate the codevectors yj ∈ Y

by solving
∑

i=1,...,N

p(yj|xi)
d

dyj

d(xi, yj) = 0 (4)

for each j = 1, ..., NC .

The complete procedure, including some proofs, is described in [11]. We

would like also to mention that as T tends to zero a hard clustering solution

is obtained, i.e. each vector xi is associated to a single codevector yj and the

associated probability p(yj|xi) tends to 1.

Like in physics, where the algorithm is rooted, let us further call the parame-

ter T temperature and consider the vectors as points of a certain system. As the

temperature is lowered, it has been proven (see [11]) that the system undergoes

5

a sequence of phase transitions, which consists of natural cluster splits, where

the clustering model grows in size (number of clusters). Concerning the cluster

splits, we have the following statement.

Theorem. (cf. [11]) For the squared error distortion measure, a cluster cen-

tered at codevector yj undergoes a splitting phase transition when the temperature

reaches the critical value T = 2λmax, where the λmax is the largest eigenvalue of

the covariance matrix Cx|yj
=

∑
i=1,...,N

p(xi|yj)(xi − yj)(xi − yj)
T .

A brief description of the algorithm we used to develop the program we ran

tests with follows. It has been introduced by Rose in [11], while some earlier

versions of it are available in [12], [14].

First we set a minimal temperature Tmin, a maximal number of clusters Kmax

and we consider as distance measure the squared error distortion measure. When

the temperature becomes Tmin (or lower) or the number of clusters reaches Kmax

(or more), the algorithm stops. The initializing step consists in taking the number

of clusters K = 1, i.e. all vectors to belong to the same cluster centered in

y1 =
∑

i=1,...,N

xip(xi), where p(xi) = 1
N

, i = 1, ..., N , and introducing p(y1) = 1.

The initial temperature T is chosen such that T > 2λmax, where λmax is the

largest eigenvalue of the covariance matrix Cx|y1 . Let us suppose that we have

already created K clusters. For calculating the codevectors yj, j = 1, ..., K, we

use the formulas (3)− (4), which lead us to

yj =

∑
i=1,...,N

xip(xi)p(yj|xi)

p(yj)
, j = 1, ..., K,

6

where

p(yj|xi) =
p(yj)e

−
(yj−xi)

2

T

∑
j=1,...,K

p(yj)e
−

(yj−xi)
2

T

, i = 1, ..., N, j = 1, ..., K

and

p(yj) =
∑

i=1,...,N

p(xi)p(yj|xi), j = 1, ..., K.

Therefore we generate a convergent sequence of vectors until the distance between

two consecutive terms is less than or equal to a given error (this means that the

distance between the ”old” codevector yj and the ”new” codevector yj must be

less than or equal to the given error for each j = 1, ..., K). When the new code-

vectors are obtained we check the temperature. If the temperature of the system

is smaller than or equal to Tmin the algorithm stops. Otherwise we perform a

cooling step, T being replaced by αT , where α ∈ (0, 1). If K < Kmax, for each

cluster i = 1, ..., K we calculate its associated temperature (i.e. the double of the

largest eigenvalue of the covariance matrix Cx|yi
) and we compare it to T . If the

temperature of one cluster j ∈ {1, ..., K} surpasses the one of the system, a new

center yK+1 is introduced and K grows by 1. The new value of the probability

p(yj) will be half from the value p(yj) and the same value is assigned to the

probability p(yK+1). For the resulting centers we generate again the convergent

sequences described above and we repeat the procedure until either T ≤ Tmin or

K ≥ Kmax.

Further we give the pseudo-code of the algorithm described above.

N = number of documents, W = number of words,

7

X = {x1, ..., xN}, xk = (x1
k, ..., x

W
k), k = 1, ..., N

(1) Stop Conditions: number of codevectors Kmax, minimum temperature Tmin.

(2) Initialize: ε > 0 small enough, α(0 < α < 1), K = 1, y1 = 1
N

∑
k=1,...,N

xk,

p(y1) = 1, T > 2λmax(Cx|y1) and p(xk) = 1
N

,∀k = 1, ..., N .

(3) For all i = 1, ..., K calculate

p(yi|xk) =
p(yi)e

−((xk−yi)
2/T)

∑
j=1,...,K

p(yj)e−((xk−yj)2/T)
, k = 1, ..., N,

p(yi) =
1

N

∑

k=1,...,N

p(yi|xk)

and

y′
i =

1

N

∑
k=1,...,N

xkp(yi|xk)

p(yi)
.

(4) Convergence test:

If there exist j ∈ {1, ..., K} such that d(yj, y
′
j) > ε, the convergence test is

not satisfied. Let yi := y′
i, ∀i ∈ {1, ..., K} and go to (3).

Otherwise yi := y′
i, ∀i ∈ {1, ..., K}.

(5) If T ≤ Tmin STOP.

(6) Cooling Step: T ← αT , (α < 1).

(7) If K ≥ Kmax STOP.

If K < Kmax, check the temperature of the clusters. If critical T is reached

8

for cluster j, j ∈ {1, ..., K}, add a new codevector yK+1 = yj +δ, p(yK+1) =

p(yj)/2, p(yj)← p(yj)/2 and increment K.

(8) Go to (3).

As a remark, let us mention that in order to calculate the covariance ma-

trix Cx|yj
we need to calculate the probabilities p(xi|yj). Since inside the algo-

rithm we calculate the probabilities p(yj|xi), the above mentioned probabilities

are straightforward to calculate using Bayes formula

p(xi|yj)p(yj) = p(yj|xi)p(xi),

for each i = 1, ..., N and j = 1, ..., K.

To determine the largest eigenvalue of the covariance matrix associated to a

center y we have used the so-called Power Method Algorithm ([18]). When a

cluster is split its center remains as center of one of the new clusters, while the

center of the other is taken initially on the principal axis of the old cluster, i.e.

on the direction given by the eigenvector associated with the mentioned largest

eigenvalue. The distance between the old and the new center has to be equal

to 1. The tests have shown that the results obtained by this choice of the new

center are considerably better than for any other option.

We have implemented a C++ program based on this algorithm. Several tests

have been run on this programm using artificial, as well as real data. The inputs of

the program consisted in a documents-words matrix, whose rows play the role of

the vectors mentioned above, since any document may be represented as a vector

of words. As output, each document is assigned to a unique cluster represented

by its center.

9

3 Tests with artificial data

The needs to process larger and larger quantities of data have increased dramat-

ically during the last decades. In the last few years the data sets used in the

applications presented in the literature on data mining began to weight hundreds

of Megabytes and even Gigabytes. This requires the algorithms used in the data

mining to be able to deal with such huge amounts of information. As many

algorithms introduced earlier provided good results when tested on small-sized

data sets and irrelevant ones for larger quantities of information, we have built

first some carefully constructed data sets in order to test the algorithm on huge

amounts of data. A first purpose of these tests consisted in obtaining thousands

of clusters, while in the literature their maximal number scarcely overcomes a

couple of hundreds. Another followed scope is to check the liability of the algo-

rithm when the dimension of the involved vectors surpasses several thousands, as

the real data used in our tests contains smaller-dimensioned vectors.

In order to be able to verify the results we built the data set as separable as

possible. Therefore we choose a dimension W and the number of clusters NC .

Each cluster will be constructed as follows. First we randomly generate a vector

y = (y1, ..., yW) of dimension W meant to be the centroid of a certain cluster.

Assume that we want this cluster to contain m vectors and let X = {x1, ..., xm}

be their set. Each vector xi = (x1
i , ..., x

W
i), i = 1, ...,m, is obtained as follows.

The value of xj
i , j = 1, ...,W , is obtained by the method described in [5]. This

method is based on subtracting of 6 out of the sum of 12 randomly generated real

numbers between 0 and 1. These m vectors are grouped by assigning to a ball

of radius 6 centered in the origin. We translate these vectors around y by using

the formula xj
i := yj + β · xj

i , i = 1, ...,m, j = 1, ...,W , where β is a real number

10

greater than or equal to 1. The role of this β is to variate the radius of different

clusters. We perform the same operation for all of the clusters. It is easy to

remark that each cluster we have generated approximates a Gauss distribution

(cf. [5]). The pseudo-code of the algorithm described above follows.

(1) Initialize: m.

(2) Generate the center y

for j = 1, ...,W

yj = rand(0, 100);

(3) Generate the vectors

β = rand(1, 20);

for i = 1, ...,m

(a) Generate the vector

for j = 1, ...,W

xj
i = 0;

for l = 1, ..., 12

xj
i = xj

i + rand(0, 1);

xj
i = xj

i − 6;

(b) Translate the vector

for j = 1, ...,W

xj
i = yj + β · xj

i ;

Each vector becomes a row in the test-matrix, the position of this row being

uniquely determined between 1 and the total number of vectors taking into ac-

11

count that the vectors corresponding to a cluster should not all be on consecutive

positions.

Our purpose is to verify if the program returns as clusters’ centroids the ones

we have randomly generated or, if it is not the case, how far from the latter ones

are they placed.

We have generated tests for NC = 50, 100, 500, 1000, 1500, 3000 clusters with

m taking values around 25, but not less than 20 and W = 1000, 2000, 3000, 4000,

5000. For each pair (NC ,W) we ran the program described in section 2 several

times, imposing NC as maximal number of resulting clusters. Excluding several

misclassifications of some ”documents”, the results turned out to be as expected

in most of the cases.

The table bellow presents some results obtained from this experiment.

number of clusters 100 500 800 1000 1500 3000

minimal distance 4.22014 3.96729 4.76241 4.76532 4.36249 4.83134

average distance 8.598 8.30497 8.38439 8.30497 8.52534 8.31281

maximal distance 14.4589 15.1138 15.3579 14.2356 14.7822 14.4965

Table 1

Each column of Table 1 represents a test and the number of obtained clusters

is written in the first row. It is important to know that the number of clusters

generated by the program was equal with the number of clusters we want to

obtain. We also mention that the tests were created using the same program, the

only difference between them being the number of clusters we have generated,

while the dimension of the vectors was W = 1000. For each cluster the distance

between the initially generated centroid of the cluster and the centroid generated

12

by the program is calculated. On the second row the minimal value of these

distances is written, while on the last row we write the maximal value. Further

we have calculated the sum of these distances and divide it by the number of

clusters. The value we have obtained is written on the third row of the table.

An interesting remark that arises from these tests concerns the centroids of

the clusters. As we can see in the table, the mean values we obtain vary very

little. Of course, as W takes larger values, the values of the distances increase,

but the observation above remain valid.

4 Tests with real data

Encouraged by the promising results obtained on artificially constructed data

we ran the same program on some real data sets. From the firma IP Century

AG we have received some files containing information about several US Patents

classes, namely US331, US338, US703, US706. The initial files contained text

data where each line consisted of a word, a patent in which it appeared and the

number of occurences of the word in the patent. We present further the way we

dealt with the class US706. Similar steps were performed for all the other classes.

First we created a dictionary containing all the words that appeared in the

patents included in the class, 33118 in this case. The list of the patents was

extracted, too, containing 2255 pieces. Considering the dictionary as a 33118-

dimensional vector, we projected each patent on it, i.e. the resulting vectors

contain 0 on the positions representing words that do not appear in the docu-

ment and the number of times the word appears in the patent otherwise. Thus

we obtain a 2255 × 33118-dimensional matrix with non-negative integer entries.

Further we removed the columns corresponding to the words contained in the

13

SMART stoplist available at [19], which were also erased from the dictionary.

The well-known Porter stemmer ([20]) was used to further reduce the dimen-

sions of the dictionary. Words having the same root remained represented by

it in the new dictionary. The columns corresponding to the merged words in

the matrix were summed together. As an example, after applying the Porter

stemmer the following words ”absorb”, ”absorbed”, ”absorber”, ”absorbing” and

”absorbs” remained represented in the transformed dictionary only by the first

one. In this way the dimension of the dictionary was reduced to 20934 words.

Let us call the resulting documents-words matrix DW . There are many ways to

build documents-words matrices (cf. [2]), some of them being in our attention

for future research.

Our intention was to verify the ”quality” of the obtained clusters, i.e. whether

each of them corresponds to a single subclass of the considered class or not.

Because the structure of the classes is more complicated than our needs, we have

merged the higher order subclasses into the first order subclass they are derived

from. In the class US706 they were 93 subclasses of multiple orders, but only 10

subclasses of the first order, which remained actually to work with.

In order to construct a documents-subclasses matrix we have assigned the

entry (i, j), situated at the intersection of the row i and column j with the value

1 if document i has been a priori classified in the first order subclass j and/or

in one of its subclasses and 0 otherwise. Let us call the resulting documents-

subclasses matrix DC.

In order to avoid overusing the memory resources of the computer, we have

run the program on some partial data truncated from the above obtained matri-

ces DW and DC. For several tests we have considered only the documents in 3

or 4 subclasses. The columns of DW corresponding to the words not contained

14

in the documents in the chosen subclasses were removed, as well as the rows cor-

responding to the documents not included. A similar treatment applies for the

matrix DC. The same rows as above are eliminated and the only columns remain-

ing correspond to the chosen subclasses. The same steps were performed for the

other three classes, too. Let us mention that in the tests for the classes US331,

US338, US703, which contain 60, 46, and respectively 6 first order subclasses we

have used more than 4, sometimes even 11 subclasses.

We ran the program on the transformed documents-words matrix until the

number of clusters we obtain was equal to the number of the columns of the new

documents-subclasses matrix. We expected that each cluster should correspond

to a single subclass. However, the results did not meet our expectations, the

tables below sustaining this conclusion.

Each table corresponds to a test. The tables 2(a) and 2(b) show some results

concerning the class US706, the tables 3(a) and 3(b) are for the class US703, 4(a)

and 4(b) refer to US338 and the tables 5(a) and 5(b) regard the class US331.

The columns of the tables represent the considered subclasses, while each row

represents a cluster. For example, the element situated on row 3 and column 2

in Table 2(a) represents the number of documents from cluster III which belong

to the subclass US706/011.

For each choice of subclasses we have run the program for different values of

the parameters, the only constant remaining the number of clusters which had

to coincide to the number of subclasses. More than 5 test were performed each

time, but sometimes we made even 20. To avoid an unnecessary overloading of

the paper we have selected only the results of one test each time.

15

cluster/class US706 001 011 062 902

I 8 8 2 22

II 3 - 1 1

III - 2 2 2

IV 1 3 2 4

Table 2(a) (61 patents, 7320 words)

cluster/class US706 001 011 062 902

I 8 8 2 21

II 3 - 1 2

III - 2 - -

IV 1 3 4 6

Table 2′(a) (61 patents, 7320 words)

cluster/class US706 010 011 900

I 9 9 8

II - 3 -

III 5 3 4

Table 2(b) (41 patents, 5329 words)

16

cluster/class US703 001 002 003

I 14 19 10

II 2 9 2

III - - 1

Table 3(a) (57 patents, 6901 words)

cluster/class US703 0061 013 023

I 28 22 22

II 3 9 7

III 5 6 7

Table 3(b) (109 patents, 9266 words)

cluster/class US338 002 007 049 202 221 279

I 3 - - - - -

II 45 7 4 16 6 7

III 1 - - 1 - -

IV - - - 1 - -

V 2 1 - 1 - -

VI 9 - 1 1 - 1

Table 4(a) (107 patents, 4154 words)

17

cluster/class US338 050 051 053 202 210 223 277 283 295 296 333

I - - - - - - - 1 1 - 1

II - - 1 1 3 - 1 2 - - -

III - - - - - - 1 - - - -

IV 2 - - - 1 - 1 1 1 1 -

V - - 1 1 3 - - - - - -

VI - - - - - - - - - 1 -

VII 1 4 2 17 12 4 1 6 2 4 4

VIII - - - - - - 1 - 1 - 1

IX 1 1 2 1 2 1 1 - 1 - 1

X 1 1 - - 3 2 - - - - -

XI 1 - 1 - - - - 1 - - -

Table 4(b) (106 patents, 4144 words)

cluster/class US331 002 010 030 045 068

I 20 40 2 10 13

II 17 20 5 4 12

III - 2 - - -

IV 2 10 1 1 4

V 1 - - - -

Table 5(a) (164 patents, 4407 words)

18

cluster/class US331 003 008 014 034 046 065 094.1 143 172 185

I 6 6 9 9 5 7 - 4 8 3

II 1 - 1 - 1 - 1 - - 1

III - - 1 1 1 - - - 1 -

IV - - - 1 - 2 - - - -

V - 3 1 3 1 3 - 3 1 2

VI 1 3 8 6 7 6 5 3 - 2

VII - 3 2 3 2 6 - - 2 2

VIII 8 13 25 25 22 20 12 14 16 19

IX 3 4 4 7 10 4 5 3 3 2

X 4 2 1 1 5 6 - 1 - -

Table 5(b) (386 patents, 6308 words)

As we can see in the above tables there is no complete coverage of a subclass

by a single cluster that contains no documents from the other subclasses. An

interesting example is provided by the Table 4(a). The cluster I contains exactly

3 documents, all belonging to the subclass US338/002. In the same time in

the cluster II there are 45 documents previously classified in the same subclass,

US338/002. The other documents from this subclass can be found in the clusters

III, V and V I, the last one containing not so few, 9. On the other hand, all

the documents in the subclass US338/221 were classified by the program in the

cluster II, which contains documents from all the subclasses. Let us remark

also that this cluster II contains actually the majority of the documents in each

subclass.

Due to this unpleasant situation, it is clear that we have to seek for other

19

ways of equating the clusters and the subclasses. A first idea that came in our

minds was to assign to any cluster the subclass which had the largest number of

documents contained in it. The subclass US338/002 in Table 4(a), for instance,

is assigned to 5 clusters out of 6, therefore this first association is not appropriate

to our purposes. If we assign to each subclass the cluster where it has more

documents than in all the others, the Table 5(a) acts as a counter-example,

as 4 subclasses are associated to the first cluster. Hence the simplest ideas of

finding an equivalence between the clusters and the subclasses proved to lead to

inconsistent results.

Thinking of more complex methods of associating clusters to subclasses we

tried to improve the ones already mentioned, but instead of considering the largest

number of documents, the used criterion regarded percentages, as explained in the

following. Unlike the previous two tries, these methods require the construction

of some new tables. For the first method the tables contain as entry at the

position (i, j) the percentage of documents from the subclass j classified in the

i-th cluster. To each cluster i we assign the subclass j for which the percentage at

(i, j) is the largest from the row where it lies. Even if the results improve, there

are still some tests, like the one represented in Table 5(a), where no equivalence

is determined. The tables for the last proposed method contain as entry at (i, j)

the percentage of documents from the i-th cluster preclassified in the subclass j.

We assign to the subclass j the i-th cluster when the percentage is the largest on

the column. Also in this case the results are not much better than before. The

test summarized in Table 2(a) can be taken as a counter-example.

More complicated methods to determine equivalences between clusters and

subclasses may be found, but their heuristicity is too high to risk adopting a

clear verdict.

20

Therefore we conclude that the results delivered by our program may be inter-

preted as an alternative classification, whose viability is stressed by the following

observation.

Consider a cluster and calculate the sum of the distances between its center

and each document contained in it. Dividing this sum by the number of doc-

uments in the cluster, we obtain a so-called mean radius of the cluster. Then

considering the subclasses we calculate their mean radia, too. As center of a sub-

class seen as a cluster we consider the mean center of all the contained documents.

For each test we have noticed that the sum of the mean radia of the clusters ob-

tained by the program is smaller than the one of the subclasses, as may be seen

in Table 6. For instance, for the test represented in Table 5(a) the mean value of

the mean radia of the subclasses seen as clusters is 137.92, while the same calcu-

lation concerning the clusters obtained using the algorithm give as result 117.41,

which is considerably smaller, i.e. the classification we obtain concentrates data

better. Some other significant results that sustain our affirmation are available

in the table bellow. Only once, as may be seen in the last row of the table we

have obtained almost identical results, but for the same initial data, varying a bit

the parameters of the program, we have obtained a more compact classification,

(which is available in the column before the last), whose mean values of the mean

radia is indeed smaller than the one obtained for the given subclasses. Therefore

we can say that the clusters obtained with the program are more compact than

the existing ones (i.e. the subclasses) and we believe that it must deserve much

more attention from the ones interested in patent classification.

21

tests Table 5(a) Table 4(b) Table 3(b) Table 2’(a) Table 2(a)

mean value for 137.92 126.58 1146.59 470.671 470.671

the subclasses

mean value for 117.41 83.0961 599.386 456.009 469.303

the clusters

Table 6

5 Conclusions

Encouraged by the good results reported in the literature ([1]) we applied the

Rose-Gurewitz-Fox algorithm in Patent Classification. We have written a pro-

gram based on this algorithm in C++ which ran on 1.60 GHz Intel(R) Pentium

4 CPU machine with 1 GB RAM. In order to test our program’s functionality we

have constructed some artificial data sets and the obtained results proved to be

good. The next step was to create data sets using the US Patent Classification

System. But the results that arose after running the program on these latter

data were not satisfactory in the sense that one could not discover an one-to-one

mapping between the found clusters and the existing subclasses of the US Patent

Classification System.

We believe that one of the reasons for this disagreement comes from the

way patents were classified. The US Patent Classification System has been built

manually during several decades not avoiding a touch of subjectivity. The existing

classification has been made according to some criteria which cannot be entirely

taking into consideration by information retrieval methods. Working with words

does not always assure a complete coverage of the concepts behind them.

22

Though, the results delivered by the program after being run on the data sets

obtained from the US Patent Classification System may be interpreted as new

classification of the patents, alternative to the existing one. It is worth mention-

ing that this new alternative classification is more compact than the other. As

an open challenge remains to understand what this new classification means for

the patent databases in the real world.

Acknowledgments. The first author’s work has been supported by the Fed-

eral Ministry for Economy and Technology (Germany) through the PRO INNO

program. We would like to thank Dr. Ulf Bauerschäfer from the firm IP Century

AG (www.ipcentury.com) for providing us the patent documents data and for

fruitful discussions, comments and cooperation in the project.

We are grateful to the anonymous reviewers for their valuable remarks and

suggestions that improved the quality of the paper.

References

[1] Bakker, B., Hesks, T. (1999): Model clustering by deterministic anneal-

ing. Proceedings of the European Symposium on Artificial Neural Networks,

Bruges, April 1999, pp. 87–92.

[2] Berry, M.W., Browne, M. (1999): Understanding search engines. SIAM,

Philapdelphia.

[3] Duda, R.O., Hart, P.E. (eds.) (1973): Pattern classification and scene anal-

ysis. Wiley, New York.

23

[4] Jain, A.K., Dubes, R.C. (eds.) (1988): Algorithms for clustering data. Pre-

tience Hall, Englewood Cliffs.

[5] Gan, K.K., Kagan, H.P., Kass, R.D. (2001): Simple demonstration of the

central limit theorem using mass measurements. American Journal of Physics

69(9), pp. 1014–1019.

[6] Gelin-Huet, C., Rose, K., Rao, A. (1999): The deterministic annealing ap-

proach for discriminative continuous HMM design. Proceedings of the Sixth

European Conference on Speech Communication and Technology, Budapest,

pp. 2717–2720.

[7] Gray, R.M., Karnin, E.D. (1982): Multiple local minima in vector quantizers.

IEEE Transactions on Information Theory, IT-28, pp. 256–261.

[8] Gu, L., Nayak, J., Rose, K. (2000): Discriminative training of tied-mixture

HMM by deterministic annealing. Proceedings of the Sixth International

Conference on Spoken Language Processing, Beijing, pp. 183–186.

[9] Huang, Z. (1997): A Fast Clustering Algorithm to Cluster Very Large Cate-

gorical Data Sets in Data Mining. Proceedings of the SIGMOD Workshop on

Research Issues on Data Mining and Knowledge Discovery, Tucson, Arizona,

May 1997, pp. 146–151.

[10] Rissanen, J. (ed.) (1989): Stochastic complexity in statistical inquiry. World

Scientific, Singapore.

[11] Rose, K., (1998): Deterministic annealing for clustering, compression, clas-

sification regression and related optimization problems. Proceedings of the

IEEE 86(11), pp. 2210–2239.

24

[12] Rose, K., Gurewitz, E., Fox, C.G. (1990): A deterministic annealing ap-

proach to clustering. Physical Review Letters 65(8), pp. 945–948.

[13] Rose, K., Gurewitz, E., Fox, C.G. (1993): Constrained clustering as an

optimization method. IEEE Transactions on Pattern Analysis and Machine

Intelligence 15, pp. 785–794.

[14] Rose, K., Gurewitz, E., Fox, C.G. (1990): Statistical mechanics and phase

transitions in clustering. Pattern Recognition Letters 11(9), pp. 589–594.

[15] Rose, K., Gurewitz, E., Fox, C.G. (1992): Vector quantization by determinis-

tic annealing. IEEE Transactions on Information Theory 38, pp. 1249–1257.

[16] Rose, K., Miller, D. (1992): Constrained clustering for data assignment prob-

lems with examples of module placement. Proceedins of the IEEE Interna-

tional Symposium on Circuits and Systems, pp. 1937–1940.

[17] Shafer, J., Agrawal, R., Methe, M. (1996): SPRINT: A Scalable Paral-

lel Classifier for Data Minig. Proceedings of the 22-nd VLDB Conference,

Bombay, Morgan Kaufmann Publishers Inc., pp. 544–555.

[18] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) (2000):

Templates for the Solution of Eigenvalue Problems: A Practical Guide. SIAM

Publishers, Philadelphia.

[19] ftp://ftp.cs.cornell.edu/pub/smart/english.stop

[20] http://www.tartarus.org/∼martin/PorterStemmer

25

