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Abstract. We give a sufficient condition, weaker than the others known
so far, that guarantees that the sum of two maximal monotone operators on a
reflexive Banach space is maximal monotone. Then we give a weak constraint
qualification assuring the Brézis-Haraux-type approximation of the range of the
sum of the subdifferentials of two proper convex lower-semicontinuous functions
in non-reflexive Banach spaces, extending and correcting an earlier result due to
Riahi.
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tial, Brézis-Haraux-type approximation

1 Introduction

Finding a weaker sufficient condition under which the sum of two maximal mono-
tone operators on a reflexive Banach space is maximal monotone has been a
challenge for many mathematicians during the last four decades. From Brow-
der [6] and Rockafellar [19] in the 60’s to the very recent papers of Borwein [3],
Simons and Zălinescu [22] or Zălinescu [24], the conditions imposed on two max-
imal monotone operators in order to assure the maximal monotonicity of their
sum became weaker and weaker. We mention here also Simons’ book [20] where
many sufficient conditions for the mentioned problem are recalled, compared and
unified, as many of them turned out to be actually equivalent. This book and
the lecture notes [16] due to Phelps are excellent references for anyone interested
in maximal monotone operators.
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Within this paper we give a new constraint qualification, that guarantees the
maximal monotonicity of the sum of two maximal monotone operators, satisfied
also by some maximal monotone operators that violate the other sufficient con-
ditions known to us. This condition uses the so-called Fitzpatrick functions and
has been developed from the one introduced by two of the present authors in [4]
for Fenchel duality. The proof we give is inspired by the one due to Borwein [3],
whose condition is weakened. An example showing that our constraint qualifica-
tion is weaker than the other ones in the mentioned literature is provided.

Another result in maximal monotonicity improved within this paper is the
one due to Riahi (cf. [17]) concerning the Brézis-Haraux-type approximation (cf.
[20]) of the range of the sum of the subdifferentials of two lower-semicontinuous
functions defined on a non-reflexive Banach space by the sum of the ranges of the
two subdifferentials. We show by a counter-example that there was an error in his
statement and we give a constraint qualification, weaker than the one considered
there, under which the corrected assertion holds.

2 Preliminaries

The following notions and results are necessary in order to make the paper as
self-contained as possible. Although the main results in the paper are given in
(reflexive) Banach spaces, some of the preliminaries are valid also for more general
spaces, thus we begin by considering a non-trivial locally convex topological space
X and its continuous dual space X∗, endowed with the weak∗ topology w(X∗, X).
By 〈x∗, x〉 we denote the value of the linear continuous functional x∗ ∈ X∗ at x ∈
X. For a subset C of X we denote by int(C) and cl(C) its interior, respectively
its closure in the corresponding topology and we have the indicator function
δC : X → R = R ∪ {±∞}, defined by

δC(x) =

{
0, if x ∈ C,

+∞, otherwise.

We consider also the first projection, i.e. the function pr1 : X × Y → X, for Y

some non-trivial locally convex space, defined as follows: pr1(x, y) = x for any
(x, y) ∈ X × Y .

Having a function f : X → R, we denote its domain by dom(f) = {x ∈ X :
f(x) < +∞} and its epigraph by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r}. For
x ∈ X such that f(x) ∈ R we define the subdifferential of f at x by ∂f(x) =
{x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉}. We call f proper if f(x) > −∞ ∀x ∈ X

and dom(f) 6= ∅. The conjugate of the function f is f ∗ : X∗ → R introduced by

f ∗(y) = sup
{
〈y, x〉 − f(x) : x ∈ X

}
.

Between a function and its conjugate there is Young’s inequality

f ∗(y) + f(x) ≥ 〈y, x〉 ∀x ∈ X y ∈ X∗.
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Consider also the identity function on X defined as follows: idX : X → X,
idX(x) = x ∀x ∈ X. When f : X → R and g : Y → R, we define the function
f ×g : X ×Y → R×R through f ×g(x, y) = (f(x), g(y)), (x, y) ∈ X ×Y . When
f, g : X → R are proper functions, we have the infimal convolution of f and g

defined by

f�g : X → R, f�g(a) = inf{f(x) + g(a − x) : x ∈ X}.

Given a linear continuous mapping A : X → Y , we have its image-set Im(A) =
{Ax : x ∈ X} ⊆ Y and its adjoint A∗ : Y ∗ → X∗ given by 〈A∗y∗, x〉 = 〈y∗, Ax〉
for any (x, y∗) ∈ X × Y ∗. For the proper function f : X → R we define also
the marginal function of f through A as Af : Y → R, Af(y) = inf

{
f(x) : x ∈

X,Ax = y
}
, y ∈ Y . All along the present paper when an infimum or a supremum

is attained we write min, respectively max, instead of inf and sup.

Lemma 1. Let X and Y be non-trivial locally convex spaces, A : X →
Y a linear continuous mapping and f : Y → R a proper, convex and lower-
semicontinuous function such that f ◦ A is proper on X. Then one has

epi((f ◦ A)∗) = cl(epi(A∗f ∗)) = cl(A∗ × idR(epi(f ∗))), (1)

where the closure is considered in the product topology of (X∗, τ)×R, with τ any
locally convex topology on X∗ giving X as dual.

Proof. Use Theorem 2.7 in [9] and Theorem 2.4 in [4]. �

Definition 1. A set M ⊆ X is said to be closed regarding the subspace Z ⊆ X

if M ∩ Z = cl(M) ∩ Z.

Proposition 1. Let X, Y and U be non-trivial locally convex spaces, A :
X → Y a linear continuous mapping and f : Y → R a proper, convex and lower-
semicontinuous function such that f ◦ A is proper on X. Consider moreover the
linear mapping M : U → X∗. Let τ be any locally convex topology on X∗ giving
X as dual. The following statements are equivalent:

(a) A∗× idR(epi(f ∗)) is closed regarding the subspace Im(M)×R in the product
topology of (X∗, τ) × R,

(b) (f ◦ A)∗(Mu) = min
{
f ∗(y∗) : A∗y∗ = Mu

}
for all u ∈ U .

Proof. Because f is proper, convex and lower-semicontinuous, A linear and
continuous and f ◦A proper, it follows that (f ◦A)∗ is proper, convex and lower-
semicontinuous.

“(a) ⇒ (b)” Let u ∈ U . For any y∗ ∈ Y ∗ fulfilling A∗y∗ = Mu we have
because of Young’s inequality

f ∗(y∗) ≥ 〈y∗, Ax〉−f(Ax) = 〈A∗y∗, x〉−(f ◦A)(x) = 〈Mu, x〉−(f ◦A)(x) ∀x ∈ X,
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and when taking the supremum subject to x ∈ X in the right-hand side we get
f ∗(y∗) ≥ supx∈X{〈Mu, x〉 − (f ◦ A)(x)} = (f ◦ A)∗(Mu). This holds for any
y∗ ∈ Y ∗ satisfying A∗y∗ = Mu, so we conclude

inf
{
f ∗(y∗) : A∗y∗ = Mu

}
≥ (f ◦ A)∗(Mu). (2)

Let us prove now the reverse inequality. If (f ◦A)∗(Mu) = +∞ then (2) yields
f ∗(y∗) = +∞ = (f ◦ A)∗(Mu) for any y∗ ∈ Y ∗ such that A∗y∗ = Mu. Consider
further (f ◦ A)∗(Mu) ∈ R. It follows (Mu, (f ◦ A)∗(Mu)) ∈ epi((f ◦ A)∗) and it
is clear that it belongs also to Im(M) × R. By (1), (a) gives

(A∗ × idR(epi(f ∗))) ∩ (Im(M) × R) = cl(A∗ × idR(epi(f ∗))) ∩ (Im(M) × R)

= epi((f ◦ A)∗) ∩ (Im(M) × R),

so (Mu, (f ◦ A)∗(Mu)) belongs to the set in the left-hand side, too. This means
that there is some ȳ∗ ∈ Y ∗ such that A∗ȳ∗ = Mu and (ȳ∗, (f◦A)∗(Mu)) ∈ epi(f ∗).
The latter relation can be rewritten as f ∗(ȳ∗) ≤ (f ◦ A)∗(Mu) and we get

inf
{
f ∗(y∗) : A∗y∗ = Mu

}
≤ f ∗(ȳ∗) ≤ (f ◦ A)∗(Mu). (3)

Having (2) and (3) we are allowed to write

inf
{
f ∗(y∗) : A∗y∗ = Mu

}
= (f ◦ A)∗(Mu), (4)

and the relations above regarding ȳ∗ show that the infimum in (4) is attained at
ȳ∗, so (b) is true as u ∈ U has been taken arbitrarily.

“(b) ⇒ (a)” From (1) one gets epi((f ◦ A)∗) ⊇ A∗ × idR(epi(f ∗)), followed by

epi((f ◦ A)∗) ∩ (Im(M) × R) ⊇ (A∗ × idR(epi(f ∗))) ∩ (Im(M) × R).

For any pair (x∗, r) ∈ epi((f ◦ A)∗) ∩ (Im(M) × R) there is some u ∈ U such
that x∗ = Mu and we have (f ◦ A)∗(x∗) = (f ◦ A)∗(Mu) ≤ r. The hypothesis
(b) grants the existence of an ȳ∗ ∈ Y ∗ satisfying both A∗ȳ∗ = Mu = x∗ and
f ∗(ȳ∗) = (f ◦ A)∗(Mu) ≤ r, i.e. (ȳ∗, r) ∈ epi(f ∗). Thus (x∗, r) = (A∗ȳ∗, r) ∈
A∗×idR(epi(f ∗)), and as it is in Im(M)×R, too, and this pair has been arbitrarily
chosen it follows

epi((f ◦ A)∗) ∩ (Im(M) × R) ⊆ (A∗ × idR(epi(f ∗))) ∩ (Im(M) × R).

As the opposite inclusion also holds, we get

epi((f ◦ A)∗) ∩ (Im(M) × R) = (A∗ × idR(epi(f ∗))) ∩ (Im(M) × R),

which yields (a) by (1) and Definition 1. �

Corollary 1. ([4]) Let X be a non-trivial locally convex space and f, g :
X → R proper, convex and lower-semicontinuous functions whose domains have
at least a point in common. Let τ be any locally convex topology on X∗ giving X

as dual. Then
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(i) epi(f ∗)+ epi(g∗) is closed in the product topology of (X∗, τ)×R if and only
if for all x∗ ∈ X∗ one has

(f + g)∗(x∗) = min{f ∗(x∗ − y∗) + g∗(y∗) : y∗ ∈ X∗}.

(ii) If epi(f ∗)+epi(g∗) is closed in the product topology of (X∗, τ)×R, then for
all x ∈ dom(f) ∩ dom(g) one has ∂(f + g)(x) = ∂f(x) + ∂g(x).

Proof. Proposition 1 yields (i), while for (ii) we refer to Theorem 3.2 in [4]
(see also [11]). �

The second part of this section in devoted to monotone operators and some
of their properties. Consider further X a Banach space equipped with the norm
‖ · ‖, while the norm on X∗ is ‖ · ‖∗.

Definition 2. ([19]) A multifunction T : X → 2X∗

is called monotone
operator provided that for any x, y ∈ X one has

〈y∗ − x∗, y − x〉 ≥ 0 whenever x∗ ∈ T (x) and y∗ ∈ T (y).

Definition 3. ([19]) For any monotone operator T : X → 2X∗

we have

· its effective domain D(T ) = {x ∈ X : T (x) 6= ∅},

· its range R(T ) = ∪{T (x) : x ∈ X},

· its graph G(T ) = {(x, x∗) : x ∈ X, x∗ ∈ T (x)}.

Definition 4. ([19]) A monotone operator T : X → 2X∗

is called maximal
when its graph is not properly included in the graph of any other monotone op-
erator on the same space.

The subdifferential of a proper convex lower-semicontinuous function on X is
a typical example of a maximal monotone operator (cf. [18]). As we shall see in
Section 4, it belongs to many other classes of operators, too. We introduce also
the duality map J : X → 2X∗

defined as follows:

J(x) = ∂
1

2
‖x‖2 =

{
x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = 〈x∗, x〉

}
∀x ∈ X,

because it gives the following criterion for the maximal monotonicity of a mono-
tone operator T : X → 2X∗

.

Proposition 2. ([3], [20]) A monotone operator T on a reflexive Banach space
X is maximal if and only if the mapping T (x+·)+J(·) is surjective for all x ∈ X.
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As underlined by many authors (cf. [3], [12], [15], [20], [22], [24]), there
are strong connections between the maximal monotone operators and convex
analysis. They are best noticeable by the Fitzpatrick function attached to the
monotone operators (cf. [8]). Rediscovered after some years, it proved to be
crucial in treating the problem of maximal monotonicity of the sum of maximal
monotone operators within the latest papers on the subject ([3], [22], [24]). To a
monotone operator T : X → 2X∗

Fitzpatrick attached the function

ϕT : X × X∗ → R, ϕT (x, x∗) = sup
{
〈y∗, x〉 + 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ T (y)

}
.

For any monotone operator T it is quite clear that ϕT is a convex lower - semi-
continuous function as an affine supremum. An important result regarding the
Fitzpatrick function and its conjugates in reflexive Banach spaces follows.

Proposition 3. ([22]) Let T be a maximal monotone operator on a reflexive
Banach space X. Then for any pair (x, x∗) ∈ X × X∗ we have

ϕ∗
T (x∗, x) ≥ ϕT (x, x∗) ≥ 〈x∗, x〉.

Moreover, ϕ∗
T (x∗, x) = ϕT (x, x∗) = 〈x∗, x〉 if and only if (x, x∗) ∈ G(T ).

3 Maximal monotonicity for the sum of two ma-

ximal monotone operators

In this section X is a reflexive Banach space, S : X → 2X∗

and T : X → 2X∗

are
two maximal monotone operators such that pr1(dom(ϕS)) ∩ pr1(dom(ϕT )) 6= ∅.
It is known (cf. [19]) that the sum of two monotone operators is monotone,
while the maximal monotonicity of the sum of two maximal monotone operators
can fail (see [20] for examples). Many various conditions were imposed on two
maximal monotone operators in order to assure that their sum is also maximal
monotone. Some of them arose from convex analysis and optimization and we
give another one in what follows. First let us recall some of the conditions taken
into consideration so far

(i) ([19]) D(S) ∩ int(D(T )) 6= ∅,

(ii) ([19]) there exists an x ∈ cl(D(S)) ∩ cl(D(T )) where T is locally bounded,

(iii) ([15]) ∪
λ≥0

λ
[
co(D(S)) − co(D(T ))

]
= X,

(iv) ([3]) 0 ∈ core
[
co(D(S)) − co(D(T ))

]
,

(v) ([2], [24], [25]) ∪
λ>0

λ
[
D(S) − D(T )

]
is a closed linear subspace of X,
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(vi) ([13]) 0 ∈ ri(D(S) − D(T )),

(vii) ([7]) 0 ∈ ri(co(D(S)) − co(D(T ))),

(viii) ([22]) ∪
λ>0

λ
[
pr1(dom(ϕS)) − pr1(dom(ϕT ))

]
is a closed linear subspace of

X.

Here co denotes the convex hull, ri the relative interior and core the core.
As these notions are known and they are not used anywhere in our paper we do
not define them here, referring the interested reader to [25], for instance. Let
us mention that in [24] and [25] there are more sufficient conditions that assure
the maximal monotonicity of S + T , but we mentioned here only one as they are
equivalent to (viii) or stronger than it. Each of the eight regularity conditions
given above implies that S + T is a maximal monotone operator, as well as some
others, like the ones given in [20] or [23], for instance. It is also known that
(i) is equivalent to (ii) (cf. [19]), each of them implies (iii) and (iv), which are
equivalent. Then, (v) − (vii) are also equivalent, being valid whenever one of
(i) − (iv) holds. The remaining condition (viii) is implied by any of (i) − (vii).
For the results concerning the comparisons between them we refer to the papers
where the conditions are taken from.

We prove, using an idea due to Borwein [3], that S + T is maximal monotone
provided that the following constraint qualification is fulfilled,

(CQ) {(x∗ + y∗, x, y, r) : ϕ∗
S(x∗, x) + ϕ∗

T (y∗, y) ≤ r} is closed regarding the
subspace X∗ × ∆X × R,

where ∆X = {(x, x) : x ∈ X}. Later we prove that (CQ) is weaker than the
conditions (i) − (viii) mentioned above.

Theorem 1. If (CQ) is fulfilled then S +T is a maximal monotone operator.

Proof. Fix first some z ∈ X and z∗ ∈ X∗. We prove that there is always
an x̄ ∈ X such that z∗ ∈ (S + T )(x̄ + z) + J(x̄). Consider the functions f ,
g : X × X∗ → R, defined by

f(x, x∗) = inf
y∗∈X∗

{ϕS(x + z, x∗ + z∗ − y∗) + ϕT (x + z, y∗)} − 〈x∗ + z∗, z〉

and g(x, x∗) = 1
2
‖x‖2 + 1

2
‖x∗‖2

∗ − 〈z∗, x〉, (x, x∗) ∈ X × X∗.

Let us calculate the conjugates of f and g. For any (w∗, w) ∈ X∗×X we have
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f ∗(w∗, w) = sup
x∈X,

x∗∈X∗

{
〈w∗, x〉 + 〈x∗, w〉 − inf

y∗∈X∗

{ϕS(x + z, x∗ + z∗ − y∗) + ϕT (x +

z, y∗)}+ 〈x∗ + z∗, z〉
}

= sup
x∈X,

x∗,y∗∈X∗

{〈w∗, x〉+ 〈x∗, w〉+ 〈x∗ + z∗, z〉 − ϕS(x + z, x∗ +

z∗ − y∗) − ϕT (x + z, y∗)} = sup
u∈X,

u∗,y∗∈X∗

{〈w∗, u − z〉 + 〈u∗ + y∗ − z∗, w〉 + 〈u∗ +

y∗, z〉 −ϕS(u, u∗)−ϕT (u, y∗)} = sup
u∈X,

u∗,y∗∈X∗

{〈w∗, u〉+ 〈u∗ + y∗, w + z〉 −ϕS(u, u∗)−

ϕT (u, y∗)} − 〈w∗, z〉 − 〈z∗, w〉.

Considering the functions F : X × X × X∗ × X∗ → R, F (a, b, a∗, b∗) =
ϕS(a, a∗) + ϕT (b, b∗), A : X × X∗ × X∗ → X × X × X∗ × X∗, A(a, a∗, b∗) =
(a, a, a∗, b∗) and M : X∗ ×X → X∗ ×X ×X,M(a∗, a) = (a∗, a, a), we have that

f ∗(w∗, w) = (F ◦ A)∗(M(w∗, w + z)) − 〈w∗, z〉 − 〈z∗, w〉 ∀(w∗, w) ∈ X∗ × X.

Because F ∗ : X∗ × X∗ × X × X → R, F ∗(a∗, b∗, a, b) = ϕ∗
S(a∗, a) + ϕ∗

T (b∗, b) and
A∗ : X∗ × X∗ × X × X → X∗ × X × X, A∗(a∗, b∗, a, b) = (a∗ + b∗, a, b), one has

A∗ × idR(epi(F ∗)) = {(a∗ + b∗, a, b, r) : ϕ∗
S(a∗, a) + ϕ∗

T (b∗, b) ≤ r}.

Knowing that Im(M) × R = X∗ × ∆X × R, the constraint qualification (CQ)
is nothing else than the fact A∗ × idR(epi(F ∗)) is closed regarding the subspace
Im(M) × R. So, by Proposition 1, we have that for any (w∗, w) ∈ X∗ × X

(F ◦A)∗(M(w∗, w+z)) = min{F ∗(a∗, b∗, a, b) : (a∗+b∗, a, b) = (w∗, w+z, w+z)}.

Back to f ∗, one gets immediately that for any (w∗, w) ∈ X∗ × X

f ∗(w∗, w) = min
a∗+b∗=w∗

{
ϕ∗

S(a∗, w + z) + ϕ∗
T (b∗, w + z)

}
− 〈w∗, z〉 − 〈z∗, w〉.

Regarding g∗, the conjugate of g, for any (w∗, w) ∈ X∗ × X one has

g∗(w∗, w) = sup
x∈X,

x∗∈X∗

{
〈w∗, x〉 + 〈x∗, w〉 −

1

2
‖x‖2 −

1

2
‖x∗‖2

∗ + 〈z∗, x〉
}

= sup
x∈X

{
〈w∗ + z∗, x〉 −

1

2
‖x‖2

}
+ sup

x∗∈X∗

{
〈x∗, w〉 −

1

2
‖x∗‖2

∗

}

=
1

2
‖w∗ + z∗‖2

∗ +
1

2
‖w‖2.

For any (x, x∗) ∈ X × X∗ and y∗ ∈ X∗, by Proposition 3, we have

ϕS(x + z, x∗ + z∗ − y∗) + ϕT (x + z, y∗) − 〈x∗ + z∗, z〉 + g(x, x∗) ≥
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〈x∗ + z∗ − y∗, x + z〉 + 〈y∗, x + z〉 − 〈x∗ + z∗, z〉+

1

2
‖x‖2 +

1

2
‖x∗‖2

∗ − 〈z∗, x〉 =
1

2
‖x‖2 +

1

2
‖x∗‖2

∗ + 〈x∗, x〉 ≥ 0.

Taking in the left-hand side the infimum subject to all y∗ ∈ X∗, we get
f(x, x∗) + g(x, x∗) ≥ 0. Thus inf(x,x∗)∈X×X∗{f(x, x∗) + g(x, x∗)} ≥ 0.

Because of the convexity of f and g and as the latter is continuous Fenchel’s
duality theorem (cf. [25]) guarantees the existence of some pair (x̄∗, x̄) ∈ X∗×X

such that

inf
(x,x∗)∈X×X∗

{f(x, x∗) + g(x, x∗)} = max
(x∗,x)∈X∗×X

{−f ∗(x∗, x) − g∗(−x∗,−x)}

= −f ∗(x̄∗, x̄) − g∗(−x̄∗,−x̄).

Using the result above, one gets f ∗(x̄∗, x̄) + g∗(−x̄∗,−x̄) ≤ 0. So there are some
ā∗ and b̄∗ in X∗ such that ā∗ + b̄∗ = x̄∗ and

ϕ∗
S(ā∗, x̄ + z) + ϕ∗

T (b̄∗, x̄ + z)− 〈x̄∗, z〉 − 〈z∗, x̄〉+
1

2
‖ − x̄∗ + z∗‖2

∗ +
1

2
‖ − x̄‖2 ≤ 0.

Taking into account that ā∗ + b̄∗ = x̄∗, after some minor calculations we get

0 ≥
(
ϕ∗

S(ā∗, x̄ + z) − 〈ā∗, x̄ + z〉
)

+
(
ϕ∗

T (b̄∗, x̄ + z) − 〈b̄∗, x̄ + z〉
)

+
(
〈x̄∗ − z∗, x̄〉 +

1

2
‖x̄∗ − z∗‖2

∗ +
1

2
‖x̄‖2

)
≥ 0,

where the last inequality comes from Proposition 3. Thus the inequalities above
must hold as equalities, so

ϕ∗
S(ā∗, x̄ + z) = 〈ā∗, x̄ + z〉, ϕ∗

T (b̄∗, x̄ + z) = 〈b̄∗, x̄ + z〉,

and

〈ā∗ + b̄∗ − z∗, x̄〉 +
1

2
‖ā∗ + b̄∗ − z∗‖2

∗ +
1

2
‖x̄‖2 = 0.

These three equalities are equivalent, using Proposition 3, to ā∗ ∈ S(x̄ + z),
b̄∗ ∈ T (x̄+ z) and, respectively, z∗− ā∗− b̄∗ ∈ ∂ 1

2
‖ · ‖2(x̄) = J(x̄). Summing these

three relations one gets

z∗ − ā∗ − b̄∗ + ā∗ + b̄∗ ∈ (S + T )(x̄ + z) + J(x̄).

As z and z∗ have been arbitrarily chosen, Proposition 2 yields the conclusion. �

Remark 1. We prove that the constraint qualification (CQ) is weaker than
some generalized interior-point regularity conditions given in the literature in
order to assure the maximality of the sum of two maximal monotone operators.
We have recalled in the beginning of the section eight of the regularity conditions
given for this purpose and the weakest of them is (viii) (see Lemma 5.3 in [22]).
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Consider the functions s, t : X × X∗ × X∗ → R, defined by s(x, x∗, y∗) =
ϕS(x, x∗) and t(x, x∗, y∗) = ϕT (x, y∗), respectively. As

∪
λ>0

λ
[
pr1(dom(ϕS)) − pr1(dom(ϕT ))

]
× X∗ × X∗ = ∪

λ>0
λ
[
dom(s) − dom(t)

]
,

assuming (viii) fulfilled, it follows that ∪
λ>0

λ
[
dom(s)− dom(t)

]
is a closed linear

subspace in X ×X∗×X∗. By Theorem 2.6 in [1] (see also [25]) it follows that for
any (x∗, x, y) ∈ X∗×X ×X, (s+ t)∗(x∗, x, y) = inf{s∗(x∗

1, x1, y1)+ t∗(x∗
2, x2, y2) :

x∗
1 + x∗

2 = x∗, x1 + x2 = x, y1 + y2 = y}.
On the other hand, by Corollary 1 (i), this last relation is true if and only

if epi(s∗) + epi(t∗) is closed in X∗ × X × X × R. As epi(s∗) = {(x∗, x, 0, r) :
ϕ∗

S(x∗, x) ≤ r} and epi(t∗) = {(y∗, 0, y, r) : ϕ∗
T (y∗, y) ≤ r}, we have, in conclu-

sion, that if (viii) is fulfilled, then {(x∗ + y∗, x, y, r) : ϕ∗
S(x∗, x) + ϕ∗

T (y∗, y) ≤ r}
is a closed set. Thus it is clear that (viii) implies (CQ).

Remark 2. The maximal monotonicity of S + T is valid also when imposing
the constraint qualification

(C̃Q) {(x∗ + y∗, x, y, r) : ϕ∗
S(x∗, x) + ϕ∗

T (y∗, y) ≤ r} is closed.

In the following we show that (CQ) and (C̃Q) are indeed weaker than (viii).

Example 1. Let X = R. Then X∗ = R. Consider the operators S, T : R → 2R

defined by

S(x) =





{0}, if x > 0,
(−∞, 0], if x = 0,
∅, otherwise,

and T (x) =

{
R, if x = 0,
∅, otherwise,

∀x ∈ R.

One notices easily that, considering the functions f, g : R → R, f = δ[0,+∞) and
g = δ{0}, which are proper, convex and lower-semicontinuous, we have S = ∂f

and T = ∂g.
As ∂f + ∂g = ∂g, it follows that S + T is maximal monotone, being the

subdifferential of a proper, convex and lower-semicontinuous function.
Let us calculate the conjugates of ϕS and ϕT to see if (CQ) is fulfilled. We

have for all x, x∗ ∈ R

ϕS(x, x∗) =

{
0, if x ≥ 0, x∗ ≤ 0,
+∞, otherwise,

and ϕT (x, x∗) =

{
0, if x = 0,
+∞, otherwise,

so

ϕ∗
S(x∗, x) =

{
0, if x∗ ≤ 0, x ≥ 0,
+∞, otherwise,

and ϕ∗
T (x∗, x) =

{
0, if x = 0,
+∞, otherwise.
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The set involved in (CQ) is in this case R × [0, +∞) × {0} × [0, +∞), which is

closed, i.e. (C̃Q) is valid. Thus it is closed regarding the subspace R × ∆R × R,
too, i.e. (CQ) is satisfied in this case.

We show now that ∪λ>0λ
[
pr1(dom(ϕS))−pr1(dom(ϕT ))

]
is not a closed sub-

space of X. We have pr1(dom(ϕS)) = [0, +∞) and pr1(dom(ϕT )) = {0}, so

∪λ>0λ
[
pr1(dom(ϕS)) − pr1(dom(ϕT ))

]
= [0, +∞),

which is not a subspace, thus (viii) fails in this case. Therefore, even if (viii)

implies (CQ) and (C̃Q), the reverse implication does not always hold, i.e. our
conditions are indeed weaker than (viii), the most general known so far to us in
the literature.

Let us notice that, since f and g are polyhedral functions, the equality
∂f + ∂g = ∂(f + g) = ∂g is automatically fulfilled. Nevertheless, our constraint
qualification covers also this case, unlike the other generalized interior-point con-
ditions in the literature.

4 Brézis - Haraux - type approximation of the

range of the sum of two subdifferentials

In this section X is a non-reflexive Banach space. In the following we rectify a
partially false statement due to Riahi [17] concerning the so-called Brézis-Haraux-
type approximation of the range of the sum of the subdifferentials of two proper
convex lower-semicontinuous functions by the subdifferential of their sum. More-
over, we prove that the correct result is valid under a weaker condition than
the one considered in the original paper. Let us mention that Pennanen [14]
has obtained some related results, but in reflexive spaces, while for more on the
Brézis-Haraux approximation of the sum of two monotone operators we refer to
[20].

Some new notions and results are necessary before giving the main statement
in this part of the paper. We introduce and use the so-called monotone operators
of dense type, of type 3∗, also known as star monotone and of the type (BH), and
operators of the type (NI). We stress once again that we work in non-reflexive
Banach spaces.

Before this we need to introduce τ1 as being the weakest topology on X∗∗

which renders continuous the following real functions

X∗∗ → R : x∗∗ 7→ 〈x∗∗, x∗〉 ∀x∗ ∈ X∗,

X∗∗ → R : x∗∗ 7→ ‖x∗∗‖.
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The topology τ considered in X∗∗ × X∗ will be the product topology of τ1 and
the strong (norm) topology of X∗ (cf. [10]).

Definition 5. ([10]) A monotone operator T : Y ⇒ Y ∗ is called of dense type
provided that the closure operator T : Y ∗∗ ⇒ Y ∗ defined as follows

G(T ) = {(x∗∗, x∗) ∈ Y ∗∗ × Y ∗ : ∃(xi, x
∗
i )i ∈ G(T ) with (x̂i, x

∗
i )

τ
→ (x∗∗, x∗)}

is maximal monotone. Here x̂i denotes the canonical image of xi in X∗∗.

By Lemme 2.1 in [10], for a monotone operator T : Y ⇒ Y ∗ of dense type,
one has (x∗∗, x∗) ∈ G(T ) if and only if 〈x∗∗ − ŷ, x∗ − y∗〉 ≥ 0 ∀(y, y∗) ∈ G(T ).

Definition 6. ([7], [14], [17]) A monotone operator T : X → 2X∗

is called
3∗-monotone if for all x∗ ∈ R(T ) and x ∈ D(T ) there is some β(x∗, x) ∈ R such
that infy∗∈T (y)〈x

∗ − y∗, x − y〉 ≥ β(x∗, x).

Definition 7. ([20], [21]) An operator T : X → 2X∗

is called of type (NI) if
for all (x∗∗, x∗) ∈ X∗∗ × X∗ one has infy∗∈T (y)〈ŷ − x∗∗, y∗ − x∗〉 ≤ 0.

The following statement rectifies and weakens Corollary 2 in [17].

Theorem 2. Let f and g be two proper convex lower-semicontinuous func-
tions on the Banach space X with extended real values, such that dom(f) ∩
dom(g) 6= ∅. Assume the satisfaction of the condition

(C) epi(f ∗) + epi(g∗) is closed in the product topology of (X∗, w(X∗, X)) × R.

Then one has

(i) cl(R(∂f) + R(∂g)) = cl(R(∂(f + g))),

(ii) int(R(∂(f + g))) ⊆ int(R(∂f) + R(∂g)) ⊆ int(D(∂(f ∗�g∗))).

Proof. Corollary 1(ii) states that (C) suffices in order to assure that ∂(f +
g) = ∂f + ∂g on dom(f) ∩ dom(g). According to Theorem B in [18] (see also
[14], [17]) ∂f and ∂g are 3∗-monotone operators. Theorem 1 in [17] yields

cl(R(∂f + ∂g)) = cl(R(∂f) + R(∂g)),

which delivers (i) by Corollary 1(ii) because (C) is valid and

int(R(∂f + ∂g)) ⊆ int(R(∂f) + R(∂g)) ⊆ int(R(∂f + ∂g)). (5)

By Théoréme 3.1 in [10] one has

R(∂f + ∂g) = D(∂(f ∗
�g∗)),
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so, applying again Corollary 1(ii), (5) turns into (ii). �

A similar result has been obtained by Riahi in Corollary 2 in [17]. There he
stated that under the constraint qualification

(CR) ∪
λ>0

λ(dom(f) − dom(g)) is a closed linear subspace of X,

one gets cl(R(∂f)+R(∂g)) = cl(R(∂(f +g))) and int(R(∂f)+R(∂g)) = int(D(∂
(f ∗�g∗))).

We prove that the latter is not always true under (CR). For a proper, convex
and lower-semicontinuous function g : X → R Riahi’s relation would become
int(R(∂g)) = int(D(∂g∗)), which is equivalent, by Théoréme 3.1 in [10], to

int(R(∂g)) = int(R(∂g)). (6)

From the same theorem we have that ∂g is a monotone operator of dense type
and it is also known that it is maximal monotone, too. According to Simons [21]
∂g is also of type (NI) so, by Lemme 2.1 in [10] and by Theorem 20 in [21],
int(R(∂g)) is convex. Thus (6) yields int(R(∂g)) convex. Unfortunately this is
not always true, as Example 2.21 in [16], originally given by Fitzpatrick, shows.
Take X = c0, which is a Banach space with the usual supremum norm, and
g(x) = ‖x‖ + ‖x − (1, 0, 0, ...)‖, a proper, convex and continuous function on c0.
Skipping the calculatory details, it follows that int(R(∂g)) is not convex, unlike
int R(∂g). Thus (6) is false and the same happens to Riahi’s allegation.

Remark 3. As proven in Proposition 3.1 in [5] (see also [4]), (CR) implies
(C), but the converse is not true, as shown by Example 3.1 in the same paper.
Therefore our Theorem 2 improves, by weakening the regularity condition, and
corrects Corollary 2 in [17].
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