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Abstract. We give some necessary and sufficient conditions which completely

characterize the strong and total Lagrange duality, respectively, for convex op-

timization problems in separated locally convex spaces. We also prove similar

statements for the problems obtained by perturbing the objective functions of

the primal problems by arbitrary linear functionals. In the particular case when

we deal with convex optimization problems having infinitely many convex in-

equalities as constraints, the conditions we work with turn into the so-called

Farkas-Minkowski and locally Farkas-Minkowski conditions for systems of convex

inequalities, recently used in the literature. Moreover, we show that our new
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1 Introduction

Consider a convex optimization problem

(P ) inf
x∈U,

g(x)∈−C

f(x),

where X and Y are separated locally convex vector spaces, U is a non-empty

closed convex subset of X, C is a non-empty closed convex cone in Y , f : X → R

is a proper convex lower semicontinuous function and g : X → Y • is a proper

C-convex function. Moreover, take g to be C-epi-closed, i.e. its C-epigraph

epiC(g) = {(x, y) ∈ X × Y : y ∈ g(x) + C} is a closed set. C-epi-closedness is an

extension of the lower semicontinuity for vector functions which is more general

than the ones usually used in optimization. The Lagrange dual problem to (P )

is

(D) sup
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)].

2



In order to have strong duality for (P ) and (D), i.e. the situation when their

optimal objective values coincide and the dual has an optimal solution, we gave

in [3] (see also [2]) a constraint qualification of closedness-type which is weaker

than the classical interior point conditions considered so far in the literature.

Moreover, we have completely characterized through equivalent conditions the

strong duality for the problems obtained by perturbing the objective function

of (P ) by arbitrary linear functionals and their Lagrange duals. The situation

when strong duality holds for all the problems obtained by linearly perturbing

the objective function of (P ) and their corresponding duals is called stable strong

duality.

Motivated by [11], we give in this paper a condition which completely charac-

terizes the strong Lagrange duality for all the optimization problems (P ) whose

objective functions satisfy a certain regularity condition (cf. [9, 11]). Similar

characterizations are given also for all the optimization problems (P ) for which

the existence of an optimal solution is assumed and whose objective functions

satisfy a weak condition (see [4, 5]). In this case the strong duality will be named

total duality. This notion has been called so in order to underline the fact that

both the primal and the dual problems have optimal solutions and their optimal

objective values coincide.

We also introduce a new condition that completely characterizes the stable

total Lagrange duality, namely the situation when there is strong duality for all

the problems obtained by linearly perturbing the objective function of (P ) for
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which an optimal solution exists and their Lagrange duals. Moreover, when the

condition that completely characterizes the strong Lagrange duality for (P ) is

fulfilled, we give optimality conditions for (P ) by using subdifferentials.

Particularizing the cone constraints in (P ) by considering the order induced

by the cone R
T
+, where T is an arbitrary index set, we rediscover and some-

times improve some results given in recent works dealing with characterizations

of systems of infinitely many convex inequalities (see [9, 10, 11]). The conditions

we consider become then the Farkas-Minkowski and locally Farkas-Minkowski

conditions used in the mentioned papers. In some situations the locally Farkas-

Minkowski condition turns out to be equivalent to the celebrated basic constraint

qualification (BCQ) introduced first in [13], treated also in [14, 17, 18, 21].

The paper is organized as follows. Section 2 is dedicated to the necessary pre-

liminaries in order to make the paper self-contained. In Section 3 we consider the

condition that completely characterizes the strong Lagrange duality for all the op-

timization problems (P ) whose objective functions satisfy a closedness condition,

mentioning, where is the case, which results from the literature are rediscovered

as special cases and improved. Section 4 is dedicated to similar characterizations

for optimization problems (P ) with the objective functions satisfying some weak

conditions and for which the existence of optimal solutions is guaranteed. Opti-

mality conditions for such problems are also given via subdifferentials. A short

conclusive section closes the paper.
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2 Preliminaries

Consider two separated locally convex vector spaces X and Y and their contin-

uous dual spaces X∗ and Y ∗, endowed with the weak∗ topologies w(X∗, X) and

w(Y ∗, Y ), respectively. Let the non-empty closed convex cone C ⊆ Y and its

dual cone C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ Y } be given, where we denote by

〈y∗, y〉 = y∗(y) the value at y of the continuous linear functional y∗. On Y we

consider the partial order induced by C, ”≤C”, defined by z ≤C y ⇔ y − z ∈ C,

z, y ∈ Y . To Y we attach a greatest element with respect to ”≤C” denoted

by ∞Y which does not belong to Y and let Y • = Y ∪ {∞Y }. Then for any

y ∈ Y • one has y ≤C ∞Y and we consider on Y • the following operations:

y + ∞Y = ∞Y + y = ∞Y and t∞Y = ∞Y for all y ∈ Y and all t ≥ 0. Denote

also the set of non-negative real numbers by R+ = [0, +∞) and the cardinality

of a set T by card(T ).

Given a subset U of X, by cl(U) we denote its closure in the corresponding

topology, by bd(U) its boundary, while its indicator function δU : X → R =

R∪{±∞} and, respectively, support function σU : X∗ → R are defined as follows

δU(x) =















0, if x ∈ U,

+∞, otherwise,

and σU(x∗) = sup
x∈U

〈x∗, x〉.

Next we give some notions regarding functions.

For a function f : X → R we have
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· the domain: dom(f) = {x ∈ X : f(x) < +∞},

· the epigraph: epi(f) = {(x, r) ∈ X × R : f(x) ≤ r},

· the conjugate regarding the set U ⊆ X: f ∗
U : X∗ → R given by f ∗

U(x∗) =

sup{〈x∗, x〉 − f(x) : x ∈ U},

· f is proper : f(x) > −∞ ∀x ∈ X and dom(f) 6= ∅,

· the subdifferential of f at x, where f(x) ∈ R: ∂f(x) = {x∗ ∈ X∗ : f(u) −

f(x) ≥ 〈x∗, u − x〉 ∀u ∈ X} .

One can easily notice that δ∗U = σU . When U = X the conjugate regarding

the set U is the classical (Fenchel-Moreau) conjugate function of f denoted by f ∗.

Between a function and its conjugate regarding some set U ⊆ X Young-Fenchel’s

inequality holds

f ∗
U(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ U ∀x∗ ∈ X∗.

Given any proper function f : X → R, for some x ∈ dom(f) and x∗ ∈ X∗ one

has

x∗ ∈ ∂f(x) ⇔ f ∗(x∗) + f(x) = 〈x∗, x〉.

Given two proper functions f, g : X → R, we have the infimal convolution of f

and g defined by

f�g : X → R,
(

f�g
)

(a) = inf{f(x) + g(a − x) : x ∈ X},
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which is called exact at some a ∈ X when there is an x ∈ X such that
(

f�g
)

(a) =

f(x) + g(a − x).

There are notions given for functions with extended real values that can be

formulated also for functions having their ranges in infinite dimensional spaces.

For a function g : X → Y • one has

· the domain: dom(g) = {x ∈ X : g(x) ∈ Y },

· g is proper : dom(g) 6= ∅,

· g is C-convex : g(tx + (1− t)y) ≤C tg(x) + (1− t)g(y) ∀x, y ∈ X ∀t ∈ [0, 1],

· for λ ∈ C∗, (λg) : X → R, (λg)(x) = 〈λ, g(x)〉 for x ∈ dom(g) and

(λg)(x) = +∞ otherwise,

· the C-epigraph: epiC(g) = {(x, y) ∈ X × Y : y ∈ g(x) + C},

· g is C-epi-closed : epiC(g) is closed,

· g is star C-lower-semicontinuous at x ∈ X: (λg) is lower-semicontinuous

at x ∀λ ∈ C∗,

· for a subset W ⊆ Y : g−1(W ) = {x ∈ X : ∃z ∈ W s.t. g(x) = z}.

Remark 1. Besides the two generalizations of lower semicontinuity defined

above for functions taking values in infinite dimensional spaces in convex opti-
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mization there is widely used in the literature also the C-lower semicontinuity,

introduced in [20] and refined in [7]. It was shown (see [19], for instance) that

C-lower semicontinuity implies the star C-lower semicontinuity, which yields C-

epi-closedness, while the opposite assertions are valid only under additional hy-

potheses. There are functions which have one of these properties, but not the

stronger ones, see for instance the example in [20], where a C-epi-closed function

which is not C-lower semicontinuous is given. Unfortunately that function is not

C-convex. We give below a C-convex function which is C-epi-closed, but not

star C-lower semicontinuous. Although most of the research related to what we

present in this paper is performed by considering the stronger types of gener-

alized lower semicontinuous vector functions, we work here in the most general

framework.

Example 1. Consider the function

g : R → (R2)• = R
2 ∪ {∞}, g(x) =















( 1
x
, x), if x > 0,

∞, otherwise.

One can show that g is R
2
+-convex and R

2
+-epi-closed, but not star R

2
+-lower

semicontinuous. For instance, for λ = (0, 1)T ∈ (R2
+)∗ = R

2
+ one has

((0, 1)T g)(x) =















x, if x > 0,

+∞, otherwise,

which is not lower semicontinuous.
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The following statement was proven in [15] and then in [16] under the as-

sumption of continuity, respectively star C-lower semicontinuity for the function

involved. We extend it by considering the function g C-epi-closed.

Lemma 1. Let U ⊆ X a non-empty closed convex set and a proper, C-convex

and C-epi-closed function g : X → Y • such that U ∩ g−1(−C) 6= ∅. Then

epi(σU∩g−1(−C)) = cl(epi(σU) + ∪
λ∈C∗

epi((λg)∗)).

Proof. Consider the functions F,G : Y × X → R, defined by F (y, x) =

δ{0}×U (y, x) and, respectively, G(y, x) = δ{(y,x)∈Y ×X:g(x)−y∈−C}(y, x). Both these

functions are proper, convex and lower semicontinuous, thus applying Theorem

2.1 in [4] we get epi((F + G)∗) = cl(epi(F ∗) + epi(G∗)).

Simple calculations show that epi(F ∗) = Y ∗× epi(σU) and epi(G∗) = ∪λ∈C∗{(

−λ, p, r) : (p, r) ∈ epi((λg)∗)}, thus

epi((F + G)∗) = cl
(

Y ∗ ×
(

epi(σU) + ∪
λ∈C∗

{(p, r) : (p, r) ∈ epi((λg)∗)}
))

= Y ∗ × cl
(

epi(σU) + ∪
λ∈C∗

epi((λg)∗)
)

.

On the other hand it is not difficult to notice that for all (y, x) ∈ Y ×X there is

F (y, x)+G(y, x) = δ{0}×(U∩g−1(−C))(y, x). Then the epigraph of (F +G)∗ coincides

with Y ∗ × epi(σU∩g−1(−C)). Hence, we get

Y ∗ × epi(σU∩g−1(−C)) = Y ∗ × cl(epi(σU) + ∪
λ∈C∗

epi((λg)∗)),
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which yields epi(σU∩g−1(−C)) = cl(epi(σU) + ∪λ∈C∗ epi((λg)∗)). �

From the general case we get as special cases some results previously given

for semi-infinite systems of convex inequalities. This is the reason why we recall

some notations used in the literature on semi-infinite programming. Let T be a

possibly infinite index set and denote by R
T the space of all functions x : T → R,

endowed with the product topology and with the operations being the usual

pointwise ones. For simplicity, denote xt = x(t) ∀x ∈ R
T ∀t ∈ T . The dual space

of R
T is (RT )∗, the space of generalized finite sequences λ = (λt)t∈T such that

λt ∈ R ∀t ∈ T , and with finitely many λt different from zero. The positive cone

in R
T is R

T
+ = {x ∈ R

T : xt = x(t) ≥ 0 ∀t ∈ T}, and its dual is the positive cone

in (RT )∗, namely (RT
+)∗ = {λ = (λt)t∈T ∈ (RT )∗ : λt ≥ 0 ∀t ∈ T}.

For a convex optimization problem (P ) we denote by v(P ) its optimal objec-

tive value. Let us recall that by strong duality we understand the situation when

the optimal objective values of the primal and dual problem coincide and the

dual problem has an optimal solution. In the following we will write min (max)

instead of inf (sup) when the infimum (supremum) is attained.
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3 New characterizations for strong Lagrange du-

ality

Consider the separated locally convex vector spaces X and Y . Let U be a non-

empty closed convex subset of X, C a non-empty closed convex cone in Y and

g : X → Y • a proper C-convex C-epi-closed function. Denote A = {x ∈ U :

g(x) ∈ −C} and assume this set non-empty. By the assumptions we made it is

clear that A is a convex and closed set. For a proper convex lower semicontinuous

function f : X → R fulfilling A∩ dom(f) 6= ∅ consider the optimization problem

(P ) inf
x∈A

f(x).

The stable strong duality for this problem and its Lagrange dual is completely

characterized through the following condition

(C(f,A)) ∪
λ∈C∗

epi((f + (λg) + δU)∗) is closed.

Theorem 1. The set A and the proper convex lower semicontinuous function

f : X → R satisfy condition (C(f,A)) if and only if for any p ∈ X ∗ one has

inf
x∈U,

g(x)∈−C

[f(x) + 〈p, x〉] = max
λ∈C∗

inf
x∈U

[f(x) + (λg)(x) + 〈p, x〉].

This statement has been proven in [3] for g C-epi-closed, while in [16] it was
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given under the stronger assumption that g is star C-lower semicontinuous.

When taking the function f to be equal to 0 everywhere, the condition

(C(f,A)) becomes

(C(0,A)) ∪
λ∈C∗

epi(((λg) + δU)∗) is closed,

which was called dual CQ in [16]. In the cited paper this condition was introduced

as a weak constraint qualification which guarantees strong duality for the convex

optimization problem (P ) and its Lagrange dual (D). In [3] we gave a weaker

constraint qualification that ensured strong duality for this pair of problems.

Remark 1. When g is continuous at some point of A, (C(0,A)) means actu-

ally that epi(σU)+∪λ∈C∗ epi((λg)∗) is closed, a condition known as (CCCQ) (see

[5, 8, 11, 15]).

In the following statement we completely characterize via (C(0,A)) the strong

duality for the problem of minimizing a linear continuous functional over A and

its Lagrange dual problem. It is a consequence of the previous theorem, when one

takes f(x) = 0 ∀x ∈ X. In the special case g : X → Y C-convex and continuous

we rediscover Theorem 3.2 in [5].

Corollary 1. A fulfills the condition (C(0,A)) if and only if for each p ∈ X ∗
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one has

inf
x∈A

〈p, x〉 = max
λ∈C∗

inf
x∈U

[〈p, x〉 + (λg)(x)].

Next we give a statement where the strong duality for a convex optimization

problem consisting in minimizing over the set A a proper convex lower semicontin-

uous function f : X → R which satisfies the feasibility condition A∩dom(f) 6= ∅

and fulfills the following condition (cf. [6, 9, 11])

(CC) epi(f ∗)+ epi(σA) is closed in the product topology of (X∗, w(X∗, X))×R,

and its Lagrange dual problem is completely characterized via (C(0,A)).

Remark 2. (see [4]) If one removes the assumption of lower semicontinuity

from f and takes it continuous at some point of A, then condition (CC) is auto-

matically satisfied.

Theorem 2. A fulfills the condition (C(0,A)) if and only if for each proper

convex lower semicontinuous function f : X → R which satisfies A∩dom(f) 6= ∅

and (CC) one has

inf
x∈A

f(x) = max
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)].
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Proof. The sufficiency follows from the previous corollary by taking f linear

and continuous. To prove the necessity take first a function f which fulfills the

hypotheses. Denote by (P ) the optimization problem of minimizing f over A

and by (D) its Lagrange dual problem.

If v(P ) = −∞ we are done, because of the weak duality for (P ) and (D).

Otherwise we have v(P ) ∈ R. Then it is obvious that (f + δA)∗(0) = −v(P ).

Further, we have (0,−v(P )) ∈ epi((f + δA)∗). Because of Theorem 2.1 in [4],

(CC) means actually epi((f + δA)∗) = epi(f ∗) + epi(σA). As Lemma 1 yields

epi(σA) = cl(epi(σU) + ∪
λ∈C∗

epi((λg)∗)) = cl( ∪
λ∈C∗

(epi(σU) + epi((λg)∗)))

and standard calculations show that epi(σU) + epi((λg)∗) ⊆ epi((λg)∗U) ∀λ ∈ C∗,

we have

epi(σA) ⊆ cl( ∪
λ∈C∗

epi((λg)∗U)) = ∪
λ∈C∗

epi((λg)∗U),

the latter equality following from (C(0,A)). Consequently,

epi((f + δA)∗) ⊆ epi(f ∗) + ∪
λ∈C∗

epi((λg)∗U) = epi(f ∗) + ∪
λ∈C∗

epi((δU + (λg))∗).

Since (0,−v(P )) ∈ epi((f + δA)∗), there is some λ ∈ C∗ such that (0,−v(P )) ∈

epi(f ∗) + epi((δU + (λ̄g))∗). This means that there is some p ∈ X∗ such that

f ∗(p) + (δU + (λ̄g))∗(−p) ≤ −v(P ), i.e.

v(P ) ≤ −f ∗(p) − (δU + (λ̄g))∗(−p).

Since −f ∗(p)−(δU +(λ̄g))∗(−p) ≤ −(f +(δU + λ̄g))∗(0) = infx∈U [f(x)+(λ̄g)(x)],

the term in the right-hand side is less than or equal to v(D), which, by weak
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duality, is less than or equal to v(P ). Consequently, the optimal objective value

of (D) is attained at λ̄ and the necessity is proven. �

Remark 3. One can notice that for some proper convex lower semicontinuous

function f : X → R the concomitant satisfaction of (CC) and (C(0,A)) guaran-

tees the fulfillment of (C(f,A)).

The Farkas-Minkowski property of a system of (infinitely many) convex or lin-

ear inequalities has been extensively treated in papers dealing with semi-infinite

programming problems, like [9, 11, 12], and we rediscover it for the set A as a

special case of (C(0,A)).

Remark 4. When T is a possibly infinite index set consider the family of

functions gt : X → R which are proper, convex and continuous at some point of

{x ∈ U : gt(x) ≤ 0 ∀t ∈ T}. Take C = R
T
+, denote by ∞RT the element attached

to R
T as the greatest with respect to the order induced by the positive cone, and

let (RT )• = R
T ∪ {∞RT }. Consider the function

g : X → (RT )•, g(x) =















(gt(x))t∈T , if x ∈ ∩
t∈T

dom(gt),

∞RT , otherwise.

Note that, unlike [11], we do not ask the functions gt, t ∈ T , to be also lower

semicontinuous, which would imply, by Proposition 1.8 in [20], that g is R
T
+-lower

semicontinuous. Actually in this setting we note that g need not be even R
T
+-epi-
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closed. Given these, the condition (C(0,A)) becomes equivalent to saying that

epi(σU) + cone(∪t∈T epi(g∗
t )) is closed, which is actually the condition Farkas-

Minkowski (FM) in [11]. For each λ ∈ (RT
+)∗ one has, by Theorem 2.8.7(iii)

in [22] and Proposition 2.2 in [4], epi((λg) + δU)∗ = epi(σU) +
∑

t∈T λt epi(g∗
t ).

Further,

∪
λ∈(RT

+
)∗
epi((δU + (λg))∗) = epi(σU) +

({

∑

t∈T ′

λt epi(g∗
t ) : T ′ ⊆ T, card(T ′)<+∞,

λt > 0 ∀t ∈ T ′

}

∪ {0} × R+

)

= cone
(

( ∪
t∈T

epi(g∗
t ) ∪ {(0, 1)}) + epi(σU)

)

= cone
(

∪
t∈T

epi(g∗
t )

)

+ epi(σU),

since {0} × R+ ⊆ epi(σU).

Remark 5. Under the hypotheses in Remark 4, from Theorem 2 and Corollary

1 we obtain as special cases and improve the results in Theorem 4.1 in [11] and

Theorems 5 and 7 in [9].

4 Characterizations for total Lagrange duality

In this section we deal with another instance of strong duality for an optimization

problem and its Lagrange dual, namely the situation when an optimal solution of

the primal problem is assumed to be known. We call this situation total duality.

For any proper convex lower semicontinuous function f : X → R and the set A
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we introduce the following condition at x ∈ A ∩ dom(f)

(GBCQ(f,A)) ∂(f + δA)(x) = ∪
λ∈C∗,

(λg)(x)=0

∂(f + δU + (λg))(x).

We say that f and A satisfy the condition (GBCQ(f,A)) when (GBCQ(f,A))

is valid for all x ∈ A ∩ dom(f).

With this condition we completely characterize the stable total duality for

(P ) and its Lagrange dual problem (D).

Theorem 3. Let the proper convex lower semicontinuous function f : X →

R. A and f fulfill the condition (GBCQ(f,A)) at x̄ ∈ A ∩ dom(f) if and only

if for each p ∈ X∗ for which the infimum over A of the function f + 〈p, ·〉 is

attained at x̄ one has

f(x̄) + 〈p, x̄〉 = min
x∈A

[f(x) + 〈p, x〉] = max
λ∈C∗

inf
x∈U

[f(x) + 〈p, x〉 + (λg)(x)]. (1)

Proof. Let x̄ ∈ A ∩ dom(f). For any p ∈ X∗ denote by (Pp) the problem of

minimizing f + 〈p, ·〉 over A. We have that x̄ is an optimal solution of (Pp) if and

only if 0 ∈ ∂(f + 〈p, ·〉+ δA)(x̄), which is further equivalent to −p ∈ ∂(f + δA)(x̄).

“⇒” Let p ∈ X∗ such that x̄ solves (Pp). Thus −p ∈ ∂(f + δA)(x̄). Because

the condition (GBCQ(f,A)) is satisfied at x̄, there is some λ̄ ∈ C∗ such that

(λ̄g)(x̄) = 0 and −p ∈ ∂(f + δU + (λ̄g))(x̄). The latter means 0 ∈ ∂(f + 〈p, ·〉 +
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δU + (λ̄g))(x̄), which leads to

f(x̄) + 〈p, x̄〉 = f(x̄) + 〈p, x̄〉 + (λ̄g)(x̄) = inf
x∈U

[f(x) + (λ̄g)(x) + 〈p, x〉].

Because the inequality

inf
x∈A

[f(x) + 〈p, x〉] ≥ sup
λ∈C∗

inf
x∈U

[f(x) + 〈p, x〉 + (λg)(x)]

is always fulfilled, we get (1).

“⇐” Let p ∈ X∗ such that p ∈ ∪ λ∈C∗,
(λg)(x̄)=0

∂(f + δU + (λg))(x̄). This means

that there is a λ̄ ∈ C∗ such that (λ̄g)(x̄) = 0 fulfilling p ∈ ∂(f + δU + (λ̄g))(x̄).

The latter means actually 0 ∈ ∂(f − 〈p, ·〉 + δU + (λ̄g))(x̄), i.e. f(x) − 〈p, x〉 +

δU(x) + (λ̄g)(x) ≥ f(x̄) − 〈p, x̄〉 + δU(x̄) + (λ̄g)(x̄) ∀x ∈ X. Remember that

δU(x̄) = (λ̄g)(x̄) = 0. As δA(x) ≥ δU(x)+ (λ̄g)(x) ∀x ∈ X, we get f(x)−〈p, x〉+

δA(x) ≥ f(x̄) − 〈p, x̄〉 + δA(x̄) ∀x ∈ X. This means actually p ∈ ∂(f + δA)(x̄).

Thus the inclusion ‘⊇” in the expression of (GBCQ(f,A)) at x̄ is valid.

Take now p ∈ ∂(f + δA)(x̄). By the considerations from the beginning of the

proof this means that x̄ is an optimal solution to (P−p). By (1) there is some

λ̄ ∈ C∗ such that f(x̄)− 〈p, x̄〉 = infx∈U [f(x)− 〈p, x〉+ (λ̄g)(x)]. As the infimum

in the right-hand side is less than or equal to f(x̄)−〈p, x̄〉+ (λ̄g)(x̄), we get that

(λ̄g)(x̄) ≥ 0. Because x̄ ∈ A and λ̄ ∈ C∗ we have (λ̄g)(x̄) ≤ 0, thus (λ̄g)(x̄) = 0.

We have

f(x̄) − 〈p, x̄〉 + (λ̄g)(x̄) = inf
x∈U

[f(x) + (λ̄g)(x) − 〈p, x〉],

which leads to 0 ∈ ∂(f + (λ̄g) + δU −〈p, ·〉)(x̄), i.e. p ∈ ∂(f + δU + (λ̄g))(x̄). This
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yields p ∈ ∪ λ∈C∗,
(λg)(x̄)=0

∂(f + δU + (λg))(x̄), i.e. the inclusion “⊆” in the expres-

sion of (GBCQ(f,A)) is fulfilled at x̄, too. Therefore (GBCQ(f,A)) holds at x̄.�

The following statement follows naturally.

Theorem 4. Let the proper convex lower semicontinuous function f : X →

R. A and f fulfill the condition (GBCQ(f,A)) if and only if for each p ∈ X ∗

for which the infimum over A of the function f + 〈p, ·〉 is attained one has

min
x∈A

[f(x) + 〈p, x〉] = max
λ∈C∗

inf
x∈U

[f(x) + 〈p, x〉 + (λg)(x)].

When f(x) = 0 ∀x ∈ X, (GBCQ(f,A)) turns into a condition which gener-

alizes the classical basic constraint qualification at x ∈ A

(GBCQ(0,A)) ∪
λ∈C∗,

(λg)(x)=0

∂(δU + (λg))(x) = ∂δA(x).

If the set A satisfies the condition (GBCQ(0,A)) for all x ∈ A we say that

it fulfills the condition (GBCQ(0,A)).

A direct consequence of Theorem 3 is the next result, where the condition

(GBCQ(0,A)) at some x̄ ∈ A completely characterizes the total Lagrange du-

ality for optimization problems consisting in minimizing linear functionals that

attain their minimum over A at x̄.
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Corollary 2. A fulfills the condition (GBCQ(0,A)) at x̄ ∈ A if and only if

for each p ∈ X∗ such that 〈p, ·〉 attains its minimum over A at x̄ one has

〈p, x̄〉 = min
x∈A

〈p, x〉 = max
λ∈C∗

inf
x∈U

[〈p, x〉 + (λg)(x)].

The next theorem completely characterizes via (GBCQ(0,A)) at some x̄ ∈ A

the strong duality for convex optimization problems consisting in minimizing over

the set A of proper convex lower semicontinuous functions f : X → R which at-

tain their minima over A at x̄ and fulfill the following condition (see [4])

(FRC) f ∗
�δ∗A is a lower semicontinuous function and it is exact at 0,

and their Lagrange dual problems.

Remark 6. The condition (FRC) is weaker than (CC) and in [4] there is an

example that shows that it is possible to have the first of them fulfilled and the

second violated. Consequently, if one removes the assumption of lower semicon-

tinuity from f and takes it continuous at some point of A, then condition (FRC)

is automatically satisfied.

Theorem 5. A fulfills the condition (GBCQ(0,A)) at x̄ ∈ A if and only
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if for each proper convex lower semicontinuous function f : X → R that fulfills

A ∩ dom(f) 6= ∅ and attains its minimum over A at x̄ and satisfies (FRC) one

has

f(x̄) = inf
x∈A

f(x) = max
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)].

Proof. As the sufficiency follows obviously from the preceding theorem by

taking f linear, we prove here only the necessity. Take some f as requested in

the hypothesis. We have

f(x̄) = inf
x∈A

f(x) = −(f + δA)∗(0)

and (FRC) guarantees (cf. [4]) that there is some p ∈ X∗ such that (f+δA)∗(0) =

f ∗(p) + σA(−p). Further we get

0 = f(x̄) + f ∗(p) + σA(−p) + δA(x̄) ≥ 〈p, x̄〉 + 〈−p, x̄〉 = 0,

therefore there are equalities in Young-Fenchel’s inequality for both pairs f

and f ∗, and δA and σA, respectively, i.e. p ∈ ∂f(x̄) and −p ∈ ∂δA(x̄). By

(GBCQ(0,A)) at x̄ there is a λ̄ ∈ C∗ such that (λ̄g)(x̄) = 0 and −p ∈ ∂(δU +

(λ̄g))(x̄). Consequently, (δU + (λ̄g))(x̄) + (δU + (λ̄g))∗(−p) = 〈−p, x̄〉 and this

yields f(x̄) + f ∗(p) + (δU + (λ̄g))∗(−p) = 0. Further,

f(x̄) = −f ∗(p) − (δU + (λ̄g))∗(−p) ≤ −(f + δU + (λ̄g))∗(0)

= inf
x∈U

[f(x) + (λ̄g)(x)] ≤ inf
x∈A

f(x) = f(x̄),
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and the proof is completed. �

Remark 7. Using Remark 4.2 in [5], one can prove that Theorem 5 can be

proven in a more general context, namely by considering that the functions f

satisfy instead of (FRC) the condition f ∗
�δ∗A is lower semicontinuous at 0 and

it is exact at 0.

Such statements are valid also for the condition (GBCQ(0,A)) as follows.

Theorem 6. The following statements are equivalent:

(i) A fulfills the condition (GBCQ(0,A)),

(ii) for each p ∈ X∗ that attains its minimum over A one has

min
x∈A

〈p, x〉 = max
λ∈C∗

inf
x∈U

[〈p, x〉 + (λg)(x)],

(iii) for each proper convex lower semicontinuous function f : X → R that

fulfills A∩dom(f) 6= ∅ and attains its minimum over A and satisfies (FRC)

one has

min
x∈A

f(x) = max
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)].

Remark 8. When g is continuous at some point of A, the condition (GBCQ(0,
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A)) turns at each x ∈ A into

∂δU(x) + ∪
λ∈C∗,

(λg)(x)=0

∂(λg)(x) = ∂δA(x).

Remark 9. Let T be a possibly infinite index set and let g be as in Remark

4. In this setting the condition (GBCQ(0,A)) at x becomes the so-called locally

Farkas-Minkowski condition at x (cf. [9, 10])

(LFM) ∂δU(x) + cone
(

∪
t∈T (x)

∂gt(x)
)

= ∂δA(x),

where T (x) = {t ∈ T : gt(x) = 0}, which is known also under the name (BCQ)

at x (cf. [9]). In this case (GBCQ(0,A)) becomes exactly the condition (LFM)

in [11]. By Theorem 2.8.7(iii) in [22] (GBCQ(0,A)) turns into

∂δA(x) = ∂δU(x) + ∪
λ∈(RT

+
)∗,

λ=(λt)t∈T ,
P

t∈T

λtgt(x)=0

∂(
∑

t∈T

λtgt)(x).

Further,

∪
λ∈(RT

+
)∗,

λ=(λt)t∈T ,
P

t∈T

λtgt(x)=0

∂(
∑

t∈T

λtgt)(x) =
{

∑

t∈T ′

λt∂gt(x) : T ′ ⊆ T, card(T ′) < +∞, λt > 0,

gt(x) = 0 ∀t ∈ T ′
}

∪ {0} = cone
(

∪
t∈T (x)

∂gt(x)
)

,

and adding the set in the right-hand side to ∂δU(x), what we obtain is actually

∂δU(x)+cone(∪t∈T (x) ∂gt(x)). If T is a finite index set and U = X, (GBCQ(0,A))

is actually the condition (BCQ) considered in [21]. Moreover, if T contains only
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one element, i.e. g : X → R, when C = R+ (GBCQ(0,A)) is actually the condi-

tion (5) in [21], while when U = X and x ∈ bd(A), (GBCQ(0,A)) at x becomes

the condition (BCQ) at x in [14]. Considering A ∈ R
m×n, b ∈ R

m, the convex

functions cj : R
n → R, j = 1, . . . , r, and A = {x ∈ R

n : Ax = b, cj(x) ≤ 0, j =

1, ..., r}, (GBCQ(0,A)) becomes exactly the condition (BCQ) in its original for-

mulation due to Hiriart-Urruty and Lemaréchal [13]. For comparisons between

other constraint qualifications and different particular instances of (BCQ) we

refer to [14, 17, 18, 21].

Remark 10. When T is a possibly infinite index set and g = (gt)t∈T such

that each gt, t ∈ T , is continuous at some point of A and C = (RT
+)∗, Theorem 6

yields, via Remark 9, a result similar to Theorem 5.1 in [11], improving it because

the functions gt, t ∈ T , are no more required to be lower semicontinuous as there

and also in the sense that (ii) in the mentioned statement can be generalized by

taking f not continuous at some point of A ∩ dom(f) like in the original paper,

but only fulfilling the condition (FRC) or the weaker condition mentioned in Re-

mark 7. Moreover, if T contains only one element, and when C = R+, Theorem

6 generalizes Proposition 2.5 in [21].

Remark 11. By Theorems 1 and 3 one can easily notice that (C(f,A)) im-

plies (GBCQ(f,A)), so we also have that (C(0,A)) guarantees the fulfillment of

(GBCQ(0,A)). This generalizes Corollary 2 in [9]. See Example 4.1 in [11] for a
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situation when (GBCQ(0,A)) is valid, while (C(0,A)) fails.

Remark 12. As one could notice in the proofs of Theorem 2 and Theorem 5,

their hypotheses (and also the ones of Theorem 6) ensure also that

inf
x∈U

[f(x) + (λg)(x)] = max
β∈X∗

{−f ∗(β) − (λg)∗U(−β)},

thus the optimal value of the Lagrange dual problem (D) is equal in each case to

the optimal value of the Fenchel-Lagrange dual to (P ) (cf. [3, 5])

(D̄) sup
λ∈C∗,
β∈X∗

{−f ∗(β) − (λg)∗U(−β)}.

In [3] we completely characterized via a regularity condition the stable strong

duality for the problems (P ) and (D̄).

We conclude this section by giving optimality conditions for the problem (P ).

Theorem 7. If A fulfills the condition (C(0,A)) and f : X → R is a proper

convex lower semicontinuous function which satisfies (CC), x̄ ∈ A∩dom(f) is an

optimal solution to (P ) if and only if there is some λ̄ ∈ C∗ such that (λ̄g)(x̄) = 0

and 0 ∈ ∂f(x̄) + ∂(δU + (λ̄g))(x̄).
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Proof. Since (C(0,A)) holds, by Remark 11 one has

∂δA(x) = ∪
λ∈C∗,

(λg)(x)=0

∂(δU + (λg))(x) ∀x ∈ A.

We know that x̄ ∈ A ∩ dom(f) is an optimal solution to (P ) if and only if

0 ∈ ∂(f+δA)(x̄). Because of (CC), by Theorem 3.2 in [4] this is further equivalent

to 0 ∈ ∂f(x̄) + ∂δA(x̄), i.e.

0 ∈ ∂f(x̄) + ∪
λ∈C∗,

(λg)(x̄)=0

∂(δU + (λg))(x̄),

thus the equivalence in the conclusion follows. �

Remark 13. The theorem remains valid if we weaken the hypotheses by taking

A to fulfill only (GBCQ(0,A)), not (C(0,A)).

Remark 14. Note that when (C(0,A)) holds, (CC) is equivalent to saying that

epi(f ∗)+∪λ∈C∗ epi((λg)+δU)∗ is closed. For the special case when g is continuous,

by Theorem 7 one obtains the results in Theorem 4.2 in [6] and Theorem 5.5 in

[8]. If moreover f is continuous, by Theorem 7 we obtain Corollary 3.2 in [15].

5 Conclusions

We completely characterize the strong and stable strong Lagrange duality for

a convex optimization problem through equivalent conditions. Then we intro-

duce necessary and sufficient conditions which characterize the strong and stable
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strong Lagrange duality for the case when a solution of the primal problem is

assumed to exist, situations called by us total, respectively stable total Lagrange

duality. The conditions we use extend the so-called Farkas-Minkowski and lo-

cally Farkas-Minkowski conditions given so far for convex optimization problems

having infinitely many convex inequalities as constraints. Different results in the

literature are also rediscovered as special cases and some of them are improved

in their original context.

References

[1] Aı̈t Mansour, M., Metrane, A., Théra, M. (2006): Lower semicontinuous
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