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Abstract. We deal with duality for almost convex finite dimensional op-
timization problems by means of the classical perturbation approach. To this
aim some standard results from the convex analysis are extended to the case of
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regularity conditions we need for guaranteeing strong duality are proved to be
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1 Introduction

Dealing with duality for a given optimization problem is one of the main features
in mathematical programming and convex analysis both from theoretical and
practical point of view.

There is a well developed theory of duality for convex optimization problems
in finite dimensional spaces, as one can read for instance in [15]. Distinct dual
problems have been investigated by using the so-called perturbation approach
in [16]. This is based on the theory of conjugate functions and describes how a
dual problem can be assigned to a primal one ([5]).

Generalized convex functions are those non-convex functions which possess
at least one valuable property of convex functions. The growing interest in
them during the last decades comes with no surprise since they are often more
suitable than convex functions to describe practical problems originated from
economics, management science, engineering, etc. (see for instance [10] and
[12]). Therefore, the question concerning possible extensions of different opti-
mality conditions and duality results also for non-convex programming prob-
lems arises naturally. Giannessi and Rapcsák in [9] and Mastroeni and Rapcsák
in [13] have given statements on the solvability of generalized systems, which
is an important tool for proving duality results. Kanniappan has considered
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in [11] a Fenchel-type duality theorem for non-convex and non-differentiable
maximization problems, Beoni has considered in [1] the extension of the same
result in the context of fractional programming, while Penot and Volle ([14])
have studied Fenchel duality for quasiconvex problems. In [4] an extension of
Fenchel’s duality theorem to so-called nearly convex functions is given. Regard-
ing this generalized convexity concept, let us also mention our paper [2], where
we deal with duality for an optimization problem with a nearly convex objective
function subject to geometrical and inequality cone constraints also defined by
nearly convex functions.

In this paper we consider another generalized convexity concept, called al-
most convexity, which is due to Frenk and Kassay ([6]). Almost convex sets
are defined such that their closure is a convex set, and moreover, the relative
interior of their closure is contained in the set itself. This concept leads to the
so-called almost convex functions: those functions whose epigraphs are almost
convex sets. We show first how standard results from the convex analysis may
be extended to the case of almost convex sets and functions. Along with the
nearly convex functions, the class of almost convex functions is another gener-
alization of the class of convex functions which fulfills some of the important
properties of the latter. The two classes of almost and nearly convex func-
tions contain strictly the class of convex functions and do not coincide ([3]).
By means of some counterexamples we also emphasize some basic properties of
convex sets (functions) which do not hold for almost convex sets (functions).
Among these, we mention that the intersection of almost convex sets may not
be almost convex, and there are almost convex functions which are not quasi-
convex.

Considering a general almost convex optimization problem we construct
a dual to it by means of the classical perturbation approach and state some
sufficient regularity conditions which guarantee strong duality. The duality for
some classes of primal-dual problems is derived as a special case of the general
approach. In this way we extend some results from [2] and [3].

By their definition it follows immediately that almost convex functions
which are not convex fail to be lower semicontinuous. Thus the novelty of
our results may be found exclusively within optimization problems with ob-
jectives which are not lower semicontinuous and/or feasible sets which are not
closed.

The paper is organized as follows. Section 2 recalls the definitions of almost
convex sets and functions as well as presents some basic facts and properties for
them, necessary for the subsequent investigations. In Section 3 we deal with the
duality in the general framework of the perturbation approach, by introducing
to a primal optimization problem a conjugate dual problem. We are able to
verify a strong duality assertion by replacing the classical convexity assump-
tions with almost convexity ones and assuming a general regularity condition.
Finally, in Section 4 we get as a particular case strong duality results for the
Lagrange and the so-called Fenchel-Lagrange dual problem of an optimization
problem with an almost convex objective function and almost convex inequal-
ity cone constraints. The regularity condition we need here is a generalized
Slater condition. Under the use of a classical regularity condition, the Fenchel
duality in case of almost convex optimization problems is obtained as another
application of the general results. The presentation is accompanied by several
examples illustrating the theoretical considerations and results.
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2 Almost convex sets and functions: basic properties

2.1 Almost convex sets

Definition 2.1 (cf. [6]) A subset C ⊆ Rn is called almost convex, if cl(C) is a
convex set and ri(cl(C)) ⊆ C.

It is obvious that any convex set C ⊆ Rn is also almost convex, but the
converse is not true in general as the following example shows.

Example 2.1 (Almost convex set which is not convex.) Let C = ([0, 1]×[0, 1])\
{(0, y) : y ∈ (R \Q)} ⊆ R2. It is easy to check that C is almost convex but not
a convex set.

Some properties which are specific for convex sets in Rn hold also for almost
convex sets, as the following results show.

Lemma 2.1 For any almost convex set C ⊆ Rn it follows that

ri(cl(C)) = ri(C). (1)

Proof: If C is empty, then (1) is trivial. Otherwise cl(C) is nonempty and
convex, and so ri(cl(C)) 6= ∅. This implies by Lemma 1.12, relations (1.19)
and (1.24) in [8] that aff(ri(cl(C))) = aff(cl(C)) = aff(C), which yields by
almost convexity of C that ri(cl(C)) ⊆ ri(C). Since the reverse inclusion is
trivial, we obtain (1).

Notice that by the previous lemma, any nonempty almost convex set in Rn

has a nonempty relative interior.

Lemma 2.2 Let C ⊆ Rn be any almost convex set. Then

αcl(C) + (1− α)ri(C) ⊆ ri(C), ∀ 0 ≤ α < 1. (2)

Proof: Since cl(C) is a convex set, by a well-known result (see for instance
Rockafellar [15]) αcl(C)+(1−α)ri(cl(C)) ⊆ ri(cl(C)), ∀ 0 ≤ α < 1, and this,
together with (1) proves the statement.

The proof of the next lemma is obvious taking into account the well-known
properties of the operators cl and ri.

Lemma 2.3 Suppose that C ⊆ Rn and D ⊆ Rm are almost convex sets. Then
C ×D is also almost convex in Rn × Rm.

Lemma 2.4 Suppose that C ⊆ Rn is an almost convex set and let T : Rn → Rm

be a linear operator. Then
(i) The set T (C) is almost convex;
(ii) ri(T (C)) = T (ri(C)).

Proof: (i). Since T is linear we have T (C) ⊆ T (cl(C)) ⊆ cl(T (C)) from
which we obtain that cl(T (C)) = cl(T (cl(C))). This proves that cl(T (C)) is a
convex set. Taking the relative interior of both sides, then using the well-known
relations ri(cl(A)) = ri(A) and ri(T (B)) = T (ri(B)) for any convex sets A and
B (see for instance [15]), and the fact that C is an almost convex set, we get
the following relations

ri(cl(T (C))) = ri(cl(T (cl(C)))) = ri(T (cl(C))) = T (ri(cl(C))) ⊆ T (C), (3)
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which shows that T (C) is an almost convex set.
(ii). By part (i), (3) and Lemma 2.1, we have that

ri(T (C)) = ri(cl(T (C))) = T (ri(cl(C))) = T (ri(C))

as claimed.

An immediate consequence of Lemma 2.3 and Lemma 2.4 using the linear
operator T : Rn×Rn → Rn, T (x, y) = αx+βy is given by the observation that

ri(αC1 + βC2) = αri(C1) + βri(C2), (4)

for any α, β ∈ R and Ci ⊆ Rn, i = 1, 2 almost convex sets.
The results above reveal that almost convex sets are in some sense ”not

so far” from convex sets. However, there are basic properties of convex sets
like ”the intersection of any family of convex sets is also convex” which almost
convex sets fail to possess. The next example shows even more: the intersection
of a linear subspace with an almost convex set may not be almost convex.

Example 2.2 (The intersection of almost convex sets is not almost convex in
general.) Take the set C as in Example 2.1 and let D = {(0, y) : y ∈ R} ⊆ R2.
Then both sets are almost convex (D is even convex, as being a linear subspace),
C∩D = {(0, y) : y ∈ [0, 1]∩Q)} has cl(C∩D) convex, but ri(cl(C∩D)) * C∩D.
This shows that C ∩D is not an almost convex set.

A careful examination of the example above shows that the relative interiors
of the two sets (nonempty for each of them) have no common point. As shown
by the next result (which can be seen as an extension of Theorem 6.5 of [15]),
the ”intersection property” holds for an arbitrary family of almost convex sets
too, provided their relative interior have a common point.

Theorem 2.1 Let Ci ⊆ Rn (i ∈ I) be almost convex sets satisfying
∩i∈Iri(Ci) 6= ∅. Then

(i) cl(∩i∈ICi) = ∩i∈Icl(Ci);
(ii) ∩i∈ICi is almost convex;
If the set I is finite, then also
(iii) ri(∩i∈ICi) = ∩i∈Iri(Ci);

Proof: (i). Let x ∈ ∩i∈Iri(Ci) and take an arbitrary y ∈ ∩i∈Icl(Ci). Then
by Lemma 2.2

(1− α)x + αy ∈ ∩i∈Iri(Ci), ∀ 0 ≤ α < 1,

thus, by letting α → 1 we obtain y ∈ cl(∩i∈Iri(Ci)). It follows that

∩i∈Icl(Ci) ⊆ cl(∩i∈Iri(Ci)) ⊆ cl(∩i∈ICi) ⊆ ∩i∈Icl(Ci), (5)

hence, (i) holds.
(ii). By part (i) cl(∩i∈ICi) = ∩i∈Icl(Ci), which shows that the set cl(∩i∈ICi)

is convex. On the other hand, by (5) we obtain that cl(∩i∈Iri(Ci)) = cl(∩i∈ICi)
and thus

ri(cl(∩i∈Iri(Ci))) = ri(cl(∩i∈ICi)). (6)

As a consequence of Lemma 2.1 and the almost convexity of Ci (i ∈ I), the
sets ri(Ci) are convex. Thus ∩i∈Iri(Ci) is also convex (and, by the hypothesis,
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nonempty). Applying now again Lemma 2.1 for the convex set ∩i∈Iri(Ci) leads
to

ri(cl(∩i∈Iri(Ci))) = ri(∩i∈Iri(Ci)) ⊆ ∩i∈Iri(Ci) ⊆ ∩i∈ICi,

which, together with (6) proves the assertion (ii).
(iii) By Theorem 6.5 (part two) of [15] applied to cl(Ci) instead of Ci we

obtain
ri(∩i∈Icl(Ci)) = ∩i∈Iri(cl(Ci)). (7)

The right hand side of this relation equals ∩i∈Iri(Ci). Using (i), (ii) and Lemma
2.1 one gets ri(∩i∈Icl(Ci)) = ri(cl(∩i∈ICi)) = ri(∩i∈ICi), and this together
with (7) provides (iii).

Next we show another important property of almost convex sets. The fol-
lowing result can be seen as an extension of Theorem 6.7 of [15].

Theorem 2.2 Let T : Rn → Rm be a linear mapping and let C ⊆ Rm be an
almost convex set such that T−1(ri(C)) 6= ∅. Then

ri(T−1(C)) = T−1(ri(C)), cl(T−1(C)) = T−1(cl(C)).

Proof: Let D = Rn × C, and let G ⊆ Rn × Rm be the graph of T . By the
hypothesis the set ri(G) ∩ ri(D) = G ∩ ri(D) is nonempty. Thus, by Theorem
2.1 (ii) G∩D is an almost convex set. We have T−1(C) = PrRn(G∩D), where
PrRn is the projection operator of Rn×Rm to Rn. Since this operator is linear,
we obtain by Lemma 2.4

ri(T−1(C)) = PrRn(ri(G ∩D)) = PrRn(G ∩ ri(D)) = T−1(ri(C)),

thus proving the first claim. For the second claim observe that cl(T−1(C)) ⊆
T−1(cl(C)) by the continuity of T . The reverse inclusion follows by the obvious
relations (using that G ∩ ri(D) = ri(G) ∩ ri(D) 6= ∅)

cl(T−1(C)) = cl(PrRn(G ∩D)) ⊇ PrRn(cl(G ∩D))

= PrRn(G ∩ cl(D)) = T−1(cl(C)).

By Theorem 2.2 we immediately obtain the following result.

Corollary 2.1 If the linear operator T : Rn → Rm satisfies T−1(ri(C)) 6= ∅
for an almost convex set C ⊆ Rm, then T−1(C) is an almost convex set.

2.2 Almost convex functions

In this subsection we define the concept of almost convexity for extended real
valued functions and for vector valued functions with respect to a set. Also, we
show some important properties needed for establishing strong duality results.

Let f : Rn → R, g : Rn → Rm and M ⊆ Rm a nonempty set. Recall that
the epigraph of f is defined to be the set epi(f) = {(x, r) ∈ Rn ×R : f(x) ≤ r}
and the effective domain as dom(f) = {x ∈ Rn : f(x) < +∞}. The function f
is called proper if f(x) > −∞ for all x ∈ Rn and dom(f) 6= ∅.

Define the epigraph of g with respect to the set M as

epiM (g) = {(x, y) ∈ Rn × Rm : y − g(x) ∈ M}.
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Definition 2.2 The function f : Rn → R is said to be almost convex if epi(f)
is an almost convex set (in Rn × R). Moreover, the vector-valued function
g : Rn → Rm is almost convex with respect to M (shortly M -almost convex) if
epiM (g) is an almost convex set (in Rn × Rm).

We notice that dom(f)) = PrRn(epi(f)) with PrRn : Rn×R → Rn the linear
projection operator, is almost convex if f is almost convex as a consequence of
Lemma 2.4 (i).

Recall that in Example 2.1 we constructed an almost convex set C ⊆ R2

which is not a convex set. Taking the indicator function δC of the set C it is
immediate that this function is almost convex but not convex. With respect
to vector-valued functions, the set M is usually a convex cone of K (e.g. in
optimization theory) and the concept of K-convex functions, defined as having
their epigraph a convex set, is widely used within the literature.

One might wonder whether there exist K-almost convex functions without
being K-convex, or, in other words, the concept introduced in Definition 2.2
is a proper generalization of K-convexity? The next example provides such a
function.

Example 2.3 (K-almost convex function which is not K-convex) Let g : R →
R2 given by

g(x) =

{
(x, 0), x ∈ Q,

(0, 0), x ∈ R \Q,

and let K = {(0, 0)} ∪ {(s, t) ∈ R2 : t > 0}. It is obvious that epiK(g) =
graph(g) + {0} ×K and

graph(g) = {(x, x, 0) ∈ R3 : x ∈ Q} ∪ {(x, 0, 0) ∈ R3 : x ∈ R \Q}.

This leads to epiK(g) = graph(g) ∪ {(x, y, z) ∈ R3 : z > 0}. It can be easily
seen that this set is almost convex without being convex.

It follows by Definition (2.2) and Lemma 2.1 that for an M -almost convex
function g : Rn → Rm the set ri(epiM (g)) is nonempty and convex. The next
result establishes an exact formulation of this set.

Lemma 2.5 Suppose that g : Rn → Rm is an M -almost convex function. Then
one has

ri((epiM (g))) = {(x, y) ∈ Rn × Rm : y − g(x) ∈ ri(M)}. (8)

Proof: Consider the projection operators PrRn : Rn × Rm → Rn on Rn and
PrRm : Rn × Rm → Rm on Rm.

For an element (x, y) ∈ Rn ×Rm, one has that (x, y) ∈ ri((epiM (g))) if and
only if x ∈ Rn and y ∈ PrRm (ri((epiM (g))) ∩ ({x} × Rm)). Since by Lemma
2.4 we obtain PrRn (ri((epiM (g)) = ri (PrRn(epiM (g))) = Rn, for all x ∈ Rn it
holds

∅ 6= ri((epiM (g))) ∩ ({x} × Rm) = ri((epiM (g))) ∩ ri({x} × Rm)

= ri (epiM (g) ∩ ({x} × Rm)) .

Thus by Lemma 2.4 (ii) (x, y) ∈ ri((epiM (g))) if and only if x ∈ Rn and

y ∈ PrRm (ri ((epiM (g)) ∩ ({x} × Rm)))
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= ri (PrRm((epiM (g)) ∩ ({x} × Rm))) .

Since for x ∈ Rn, PrRm((epiM (g)) ∩ ({x} × Rm)) = g(x) + M , we get that
(x, y) ∈ ri((epiM (g))) if and only if x ∈ Rn and y ∈ ri(g(x)+M) = g(x)+ri(M).
This concludes the proof.

Lemma 2.5 leads to the following result.

Lemma 2.6 Suppose that X ⊆ Rn is an almost convex set and g : Rn → Rm is
an M -almost convex function. Then one has ri(g(X)+M) = g(ri(X))+ri(M).

Proof: By using the projection operator PrRm : Rn × Rm → Rm, we can
write ri(g(X) + M) equivalently as

ri(g(X) + M) = riPrRm (epiM (g) ∩ (X × Rm)) .

As shown by the proof of Lemma 2.5 ri((epiM (g)))∩ ({x} ×Rm) 6= ∅ for every
x ∈ Rn, thus ri(epiM (g)) ∩ ri(X × Rm) is nonempty and by Theorem 2.1 and
Lemma 2.4 we get that epiM (g) ∩ (X × Rm) is almost convex and moreover

riPrRm (epiM (g) ∩ (X × Rm)) = PrRm (ri(epiM (g) ∩ (X × Rm)))

= PrRm (ri(epiM (g)) ∩ (ri(X)× Rm)) .

But, by the previous lemma it holds ri(epiM (g))∩ (ri(X)×Rm) = {(x, y) :
x ∈ ri(X), y ∈ g(x) + ri(M)} and so PrRm (ri(epiM (g)) ∩ (ri(X)× Rm)) =
g(ri(X)) + ri(M). In conclusion, ri(g(X) + M) = g(ri(X)) + ri(M).

It is well-known that any local minimum point of a convex function is also
a global minimum point. One might wonder whether this important property
still holds for almost convex functions. The next result shows that it is indeed
the case.

Theorem 2.3 Suppose f : Rn → R is a proper almost convex function. If
x̄ ∈ dom(f) is a local minimum point of f then it is also a global minimum
point of f .

Proof: Our assumption means that there exists an ε > 0 such that f(x̄) ≤
f(x) for every x ∈ dom(f)∩B(x̄, ε), where B(x̄, ε) is the open ball centered at
x̄ with radius ε. Supposing the contrary, there exists an element ȳ ∈ dom(f)
such that

f(ȳ) < f(x̄) (9)

We have ȳ ∈ dom(f) ⊆ dom(f̄), where f̄ is the so called lower semicontinuous
hull function of f , which - in case f is almost convex - is a convex function (see
for instance [6]). Therefore ri(dom(f̄)) 6= ∅, thus by choosing an element z̄ ∈
ri(dom(f̄)) we obtain by Theorem 6.1 of [15] tz̄+(1−t)ȳ ∈ ri(dom(f̄)), ∀ 0 <
t ≤ 1. Thus, by Theorem 1 of [3] (see also [6]) and the convexity of f̄ we obtain

f(tz̄ + (1− t)ȳ) = f̄(tz̄ + (1− t)ȳ) ≤ tf̄(z̄) + (1− t)f̄(ȳ)

= f̄(ȳ) + t(f̄(z̄)− f̄(ȳ)) ≤ f(ȳ) + t(f̄(z̄)− f̄(ȳ)), ∀ 0 < t ≤ 1. (10)

Due to (9) we may choose a (sufficiently small) t̄ > 0 such that f(ȳ) + t̄(f̄(z̄)−
f̄(ȳ)) < f(x̄) and such, denoting z(t̄) = t̄z̄ + (1 − t̄)ȳ ∈ ri(dom(f̄)) we obtain
by (10) that

f(z(t̄)) < f(x̄). (11)
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Now since x̄ ∈ dom(f) ⊆ dom(f̄), again by Theorem 6.1 of [15] we have
λz(t̄) + (1− λ)x̄ ∈ ri(dom(f̄)), ∀ 0 < λ ≤ 1, hence by (11)

f(λz(t̄) + (1− λ)x̄) = f̄(λz(t̄) + (1− λ)x̄)

≤ λf̄(z(t̄)) + (1− λ)f̄(x̄) < f̄(x̄) ≤ f(x̄), ∀ 0 < λ ≤ 1. (12)

Since λz(t̄) + (1 − λ)x̄ → x̄ as λ → 0, one may choose 0 < λ̄ < 1 such
that x(λ̄) = λ̄z(t̄) + (1 − λ̄)x̄ ∈ B(x̄, ε) and such, by (12) we obtain that
f(x(λ̄)) < f(x̄), contradicting the hypothesis. This completes the proof.

As well-known, the property discussed in Theorem 2.3 i.e, ”local minima
coincide with global minima” is satisfied by quasiconvex functions as well. One
might wonder what is the relationship between the classes of almost convex
and quasiconvex functions. The next two examples show that none of them
is included in the other. First we construct an almost convex function whose
domain is a convex set, which is not quasiconvex.

Example 2.4 (Almost convex function which is not quasiconvex) Let C =
[0, 1]× [0, 1] ∈ R2 and define f : R2 → R as

f(x, y) =


1, (x, y) = (0, 1/2)
0, (x, y) ∈ C \ {(0, 1/2)}
+∞, (x, y) /∈ C.

It is easy to see that f is almost convex. On the other hand,

1 = f

(
(0, 0) + (0, 1)

2

)
> max{f(0, 0), f(0, 1)} = 0,

showing that f is not quasiconvex.

It is obvious that not any quasiconvex function is almost convex. For in-
stance, f : R → R given by

f(x) =

{√
x, x ≥ 0

0, x < 0

is increasing, and such quasiconvex, but clearly not almost convex.

3 Strong duality for almost convex optimization prob-
lems

One of the most fruitful approaches in the duality theory is the one based
on the so-called perturbation theory. The main idea is to attach to a general
optimization problem (notice that every constrained optimization problem may
be equivalently written as an optimization problem without constraints, but
with a different objective function)

(P ) inf
x∈Rn

F (x),

where F : Rn → R = R ∪ {±∞}, a dual one by using the perturbation function
Φ : Rn × Rm → R. We call Rm the space of the perturbation variables and Φ
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has to fulfill the following relation Φ(x, 0) = F (x),∀x ∈ Rn. A dual problem to
(P ) may be defined as follows ([5], [15])

(D) sup
y∗∈Rm

{−Φ∗(0, y∗)},

where by Φ∗ we denote the conjugate of the function Φ.
From this generalized dual one can obtain for constrained primal problems in

particular three dual problems (i.e., Lagrange, Fenchel and Fenchel-Lagrange)
by choosing the perturbation function Φ in an appropriate way as done in [16]
and [2].

In connection with the perturbation function Φ define the so called infimal
value function h : Rm → R by

h(y) = inf{Φ(x, y) : x ∈ Rn}. (13)

Obviously, the primal problem (P ) can be written as h(0) = inf{Φ(x, 0) : x ∈
Rn}, while an easy calculation shows that the dual (D) is the problem

sup
y∗∈Rm

{−h∗(y∗)},

where h∗ denotes the conjugate function of h. If we denote by v(P ) and v(D)
the optimal objective values of the primal and the dual problems, respectively,
then it is immediate that v(D) ≤ v(P ) (weak duality). It is well-known that
under usual convexity and regularity assumptions the strong duality also holds,
i.e., v(P ) = v(D) and the dual problem admits at least one solution (see for
instance [15]). It comes out naturally to investigate whether the strong duality
holds for the general problems (P ) and (D) if one is weakening the convexity
assumptions usually considered in the literature. Next we show that the strong
duality result for the above mentioned problems by replacing the convexity with
almost convexity still holds.

Theorem 3.1 Suppose that the function h : Rm → R is almost convex and
0 ∈ ri(dom(h)). Then there exists a vector y∗ ∈ Rm such that

h(0) = −h∗(y∗). (14)

Proof: In case h(0) = −∞ (14) holds trivially for every y∗ ∈ Rm. Therefore,
we can assume that h(0) > −∞ and so, by 0 ∈ ri(dom(h)) it follows that h(0) is
finite. As mentioned within the proof of Theorem 2.3, the function h̄ is convex.
Moreover (cf. [6] or [3]) ri(dom(h)) = ri(dom(h̄)) and h(0) = h̄(0), thus h̄(0)
is also finite. It follows by Corollary 7.2.1 of [15] that h̄ is proper and since
0 ∈ ri(dom(h̄)) we obtain from Theorem 23.4 of [15] that ∂h̄(0) 6= ∅, which
implies the existence of a vector y∗ ∈ ∂h̄(0) meaning that

h̄(0) + h̄∗(y∗) = 0. (15)

Since h(0) = h̄(0) and (h̄)∗ = h∗ (15) reduces to (14).

Observe that Theorem 3.1 provides strong duality between the primal prob-
lem (P ) and its dual (D). Indeed, relation (14) implies v(P ) = v(D) with y∗

being a solution of (D).
In the last result almost convexity of the function h plays a crucial role.

Therefore it is natural to ask which condition on the function Φ guarantees the
almost convexity of h. The next result gives an answer to this question.
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Theorem 3.2 If the function Φ is almost convex, then h is also almost convex.

Proof: First we show that the set cl(epi(h)) is convex. To do so, let us denote
by PrRm×R : Rn ×Rm ×R → Rm ×R the projection operator of Rn ×Rm ×R
on Rm × R. Clearly this is a linear operator. Denoting by epiS(h) the strict
epigraph of h, i.e. the set {(y, r) ∈ Rm×R : h(y) < r}, it is immediate to check
that

epiS(h) ⊆ PrRm×R(epi(Φ)) ⊆ epi(h). (16)

Taking into consideration that cl(epiS(h)) = cl(epi(h)), relation (16) leads to
cl(epi(h)) = cl(PrRm×R(epi(Φ))). Since epi(Φ) is almost convex, it follows
by Lemma 2.4 (i) that PrRm×R(epi(Φ) is almost convex, hence cl(epi(h)) is a
convex set. In order to prove the relation ri(cl(epi(h)) ⊆ epi(h), observe that
ri(cl(epi(h))) = ri(cl(PrRm×R(epi(Φ)))) ⊆ PrRm×R(epi(Φ)) ⊆ epi(h). This
completes the proof.

The next result is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.1 Suppose that the function Φ : Rn × Rm → R is almost convex
and 0 ∈ riPrRm(dom(Φ)). Then we have strong duality between the problems
(P ) and (D).

Proof: By Theorem 3.2 the function h given by (13) is almost convex. More-
over, the obvious equality dom(h) = PrRm(dom(Φ)) implies that ri(dom(h)) =
riPrRm(dom(Φ)). Thus by Theorem 3.1 we obtain h(0) = −h∗(y∗). This im-
plies by h(0) = v(P ), h∗(y∗) = Φ∗(0, y∗) and weak duality (v(D) ≤ v(P )) that
v(D) = v(P ) and y∗ is a solution of the dual problem.

4 Applications: Lagrange, Fenchel and
Fenchel-Lagrange duality

In this section we apply the results of Section 3 to obtain strong duality for
almost convex optimization problems in case of different types of dual problems
considered within the literature (see for instance [16] and [2]).

4.1 Lagrange and Fenchel-Lagrange duality for almost convex
optimization problems

Let X ⊆ Rn be a nonempty set and K ⊆ Rk a nonempty convex cone with
K∗ := {k∗ ∈ Rk : k∗T k ≥ 0,∀k ∈ K} its dual cone. Consider the partial
ordering ≤K induced by K in Rk, namely for y, z ∈ Rk we have that y ≤K z, iff
z− y ∈ K. Let f : Rn → R and g = (g1, . . . , gk)T : Rn → Rk. The optimization
problem which we investigate in this subsection is the following

(P 1) inf
x∈G

f(x),

where
G = {x ∈ X : g(x) ≤K 0}.

In what follows we always suppose that the set G ∩ dom(f) is nonempty. We
denote by v(P 1) the optimal objective value of (P 1). It is easy to see that in fact
(P 1) is a particular case of (the general) primal problem (P ): take F : Rn → R
given by F (x) = f(x) + δG(x), with δG the indicator function of the set G.
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By giving particular forms for the perturbation function Φ : Rn × Rm → R
introduced in Section 3 we obtain two types of dual problems attached to the
primal optimization problem (P 1): the Lagrange and the Fenchel-Lagrange dual
problem. Using the general duality theorem established in Section 3 (Corollary
3.1), we obtain strong duality results for these types of dual problems. Let us
first start with Lagrange duality.

Consider the function ΦL : Rn × Rk → R defined by

ΦL(x, y) =
{

f(x), if x ∈ X, g(x) ≤K y,
+∞, otherwise.

(17)

Notice that evaluating Φ∗
L(0, y∗) yields (cf. [16], [2]) with the definition of

the dual problem (D) introduced in Section 3 (with m = k and Φ = ΦL) the
well-known Lagrange dual problem

(DL) sup
y∗∈K∗

inf
x∈X

{f(x) + (y∗)T g(x)}.

The next result guarantees the almost convexity of the function ΦL under some
suitable conditions upon X, f and g.

Theorem 4.1 If X ⊆ Rn is an almost convex set, f : Rn → R is an almost
convex function, g : Rn → Rk is a K-almost convex (vector -valued) function
and

ri(X) ∩ ri(dom(f)) 6= ∅, (18)

then ΦL given by relation (17) is an almost convex function.

Proof: Define the linear operator T : Rn × R× Rk → Rn × Rk × R given by
T (x, r, y) = (x, y, r). Then it is easy to verify that

epi(ΦL) = T (epi(f)× Rk) ∩ ((epiK(g)× R) ∩
(
X × Rk × R

)
. (19)

By Lemmas 2.3 and 2.4 (i) the sets T (epi(f) × Rk), epiK(g) × R and X ×
Rk × R are almost convex. If we show that

ri
(
T (epi(f)× Rk)

)
∩ ri ((epiK(g)× R) ∩ ri

(
X × Rk × R

)
6= ∅

or, equivalently,

T (ri(epi(f))× Rk) ∩ (ri(epiK(g))× R) ∩
(
ri(X)× Rk × R

)
6= ∅, (20)

then the assertion follows by Theorem 2.1 (ii).
To do so, we consider x′ ∈ ri(dom(f)) ∩ ri(X), k′ ∈ ri(K) and y′ :=

g(x′) + k′.
Since x′ ∈ ri(dom(f)) ⊆ dom(f) we may choose a number r′ ∈ R with

f(x′) < r′. The function f is almost convex, hence one has ri(dom(f)) =
ri(dom(f̄)) and f(x′) = f̄(x′) (see [3] or [6]). It is also known (cf. [15])
that ri(epi(f̄)) = {(x, r) : f̄(x) < r, x ∈ ri(dom(f̄))}, therefore (x′, r′) ∈
ri(epi(f̄)) = ri(epi(f)). Thus (x′, r′, y′) ∈ ri(epi(f)) × Rk and (x′, y′, r′) ∈
T (ri(epi(f))× Rk).

More than that, by Lemma 2.5 one has (x′, y′, r′) ∈ (ri(epiK(g))× R) ∩(
ri(X)× Rk × R

)
. showing that (20) holds and concluding the proof.

Notice that the regularity condition (18) in Theorem 4.1 is essential: if we
drop it, the almost convexity of ΦL cannot be guaranteed, as the next example
shows.
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Example 4.1 Consider the set C = ([0, 2]× [0, 2]) \ ({0}×]0, 1[), let f = δC ,
g : R2 → R defined by g(x, y) = −1 for all (x, y) ∈ R2, K = R+ and X =
{0} × R ⊆ R2. Then all the assumptions of Theorem 4.1 are satisfied, except
(18). Evaluating epi(ΦL) by formula (19) we obtain

epi(ΦL) = ({(0, 0)} ∪ ({0} × [1, 2]))× [−1,+∞[×R+,

which is not an almost convex set.

Assuming relation (18) fulfilled, we say that the problem (P 1) satisfies the
generalized Slater condition if

0 ∈ ri[g(X ∩ dom(f)) + K]

or, equivalently, (cf. Lemma 2.6 and Theorem 2.1)

0 ∈ g(ri(X) ∩ ri(dom(f))) + ri(K). (21)

The result below states strong Lagrangian duality for almost convex func-
tions under suitable assumptions.

Theorem 4.2 Suppose that the assumptions of Theorem 4.1 and (21) hold.
Then the strong Lagrangian duality holds, i.e. v(P 1) = v(DL) and the dual
problem admits a solution.

Proof: We show that the assumptions of Corollary 3.1 hold for Φ = ΦL.
Almost convexity of ΦL is guaranteed by Theorem 4.1, so we only have to
verify the regularity condition

0 ∈ riPrRk(dom(ΦL)). (22)

It is immediate to show that PrRkdom(ΦL) = g(X ∩ dom(f)) + K, and so,
(21) is equivalent to (22).

Notice that in case the cone K has a nonempty interior (as for instance
when K = Rk

+ (the positive orthant of Rk)), the generalized Slater condition
(21) reduces to the (usual) Slater condition, namely

0 ∈ g(X ∩ dom(f)) + int(K), (23)

or, equivalently, there exists an element x̂ ∈ X ∩ dom(f) such that g(x̂) ∈
−int(K). Indeed, since in this case g(X ∩ dom(f)) + int(K) is an open set we
have by Theorem 3.2 of [7] that

ri[g(X ∩ dom(f)) + K] = int[g(X ∩ dom(f)) + K]

= int[g(X ∩ dom(f)) + int(K)] = g(X ∩ dom(f)) + int(K).

Let us turn now to study Fenchel-Lagrange duality.
Consider the function ΦFL : Rn × Rn × Rk → R given by

ΦFL(x, u, y) =
{

f(x + u), if x ∈ X, g(x) ≤K y,
+∞, otherwise.

(24)

Observe that evaluating Φ∗
FL(0, u∗, y∗) yields (cf. [16], [2]) with the defi-

nition of the dual problem (D) introduced in Section 3 (with m = n + k and
Φ = ΦFL) the Fenchel-Lagrange dual problem

(DFL) sup
u∗∈Rn,y∗∈K∗

{−f∗(u∗) + inf
x∈X

[(u∗)T x + (y∗)T g(x)]}.

First we give sufficient conditions for the almost convexity of the function ΦFL.
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Theorem 4.3 If X ⊆ Rn is an almost convex set, f : Rn → R is an almost
convex function, g : Rn → Rk is a K-almost convex function and (18) holds,
i.e., ri(X) ∩ ri(dom(f)) 6= ∅, then ΦFL given by relation (24) is an almost
convex function.

Proof: Consider the linear operators V : Rn×Rn×Rk×R → Rn×R×Rk and
W : Rn×Rk×Rn×R → Rn×Rn×Rk×R given by V (x, u, y, r) = (x+u, r, y)
and W (x, y, u, r) = (x, u, y, r), respectively. Then it can be easily checked that

epi(ΦFL) = V −1(epi(f)×Rk)∩W (epiK(g)×Rn×R)∩(X×Rn×Rk×R). (25)

By the same arguments as in the proof of Theorem 4.1 it follows that the sets
W (epiK(g)×Rn×R) and X×Rn×Rk×R are almost convex. Since f is almost
convex, the set ri(epi(f))×Rk is nonempty, and so, if (x, r, y) ∈ ri(epi(f))×Rk,
then (x, 0, y, r) ∈ V −1(ri(epi(f) × Rk)), hence V −1(ri(epi(f) × Rk)) 6= ∅. By
Corollary 2.1 one gets that the set V −1(epi(f) × Rk) is almost convex, too.
Therefore the assertion follows by Theorem 2.1 (ii) if we show that

ri(V −1(epi(f)× Rk)) ∩ ri(W (epiK(g)× Rn × R)) ∩ ri(X × Rn × Rk × R) 6= ∅.

Let us choose x′ ∈ ri(X) ∩ ri(dom(f)), k′ ∈ ri(K), r′ > f(x′) and define
y′ := g(x′) + k′. Then, by the same argument as in the proof of Theorem 4.1,
(x′, r′) ∈ ri(epi(f)). By Lemma 2.5, (x′, y′, 0, r′) ∈ ri(epiK(g)) × Rn × R and
so, by Lemma 2.4 (ii) it follows that (x′, 0, y′, r′) ∈ W (ri(epiK(g))×Rn×R) =
ri(W (epiK(g)×Rn×R)). It is obvious that (x′, 0, y′, r′) ∈ ri(X×Rn×Rk×R).
Finally, since (x′, 0, y′, r′) ∈ V −1ri((epi(f) × Rk)), by Theorem 2.2 we obtain
that (x′, 0, y′, r′) ∈ ri(V −1(epi(f) × Rk)). Thus we have found an element
belonging to

ri(V −1(epi(f)× Rk)) ∩ ri(W (epiK(g)× Rn × R)) ∩ ri(X × Rn × Rk × R),

showing that this set is nonempty. This completes the proof.

Comparing Theorems 4.1 and 4.3 it can be seen that the same conditions
guarantee the almost convexity of ΦL and ΦFL. As the next result shows, the
same conditions guarantee the strong Lagrange and strong Fenchel-Lagrange
duality for almost convex functions.

Theorem 4.4 Suppose that the assumptions of Theorem 4.2 hold. Then the
strong Fenchel-Lagrange duality holds, i.e., v(P 1) = v(DFL) and the dual prob-
lem admits a solution.

Proof: We show that the assumptions of Corollary 3.1 hold for Rn × Rk

instead of Rm and for Φ = ΦFL. Almost convexity is guaranteed by Theorem
4.3, so we only have to verify the regularity condition

(0, 0) ∈ riPrRn×Rk(dom(ΦFL)). (26)

To this aim consider the function F : Rn → Rn×Rk given by F (x) = (−x, g(x)).
It is immediate to check that PrRn×Rk(dom(ΦFL)) = F (X) + dom(f)×K.

Let us show that F is a dom(f)×K-almost convex function. Indeed,

epidom(f)×K(F ) = {(x, u, y) ∈ Rn × Rn × Rk : (u, y)− F (x) ∈ dom(f)×K}

= {(x, u, y) ∈ Rn × Rn × Rk : x + u ∈ dom(f), y − g(x) ∈ K},
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which is nothing else than the domain of ΦFL for the particular case X = Rn.
We have shown in Theorem 4.3 that ΦFL is almost convex (for any almost
convex set X ⊆ Rn) and its domain being the projection of its epigraph, it
follows that epidom(f)×K(F ) is an almost convex set, i.e., F is a dom(f) ×K-
almost convex function. Now applying Lemma 2.6 for Rn×Rk instead of Rk, F
instead of g and dom(f)×K instead of M , we obtain that (26) is equivalent to
(0, 0) ∈ F (ri(X)) + ri(dom(f))× ri(K), which is nothing else than there exists
a vector x′ ∈ ri(X) ∩ ri(dom(f)) such that g(x′) ∈ −ri(K). Since the latter is
equivalent to (21), the proof is complete.

4.2 Fenchel duality for almost convex optimization problems

Consider the functions f : Rn → R, g : Rk → R and a linear operator A : Rn →
Rk. Define ΦF : Rn × Rk → R by

ΦF (x, y) = f(x) + g(Ax + y). (27)

The primal problem we deal with in this subsection is

(P 2) inf
x∈Rn

{f(x) + g(Ax)}.

Notice that evaluating Φ∗
F (0, y∗) yields with the definition of the dual problem

(D) introduced in Section 3 (with m = k and Φ = ΦF ) the well-known Fenchel
dual problem

(DF ) sup
y∗∈Rk

{−f∗(−A∗y∗)− g∗(y∗)},

where A∗ denotes the adjoint operator of A. The next result, needed for Fenchel
duality, provides sufficient conditions for almost convexity of ΦF .

Theorem 4.5 If f : Rn → R and g : Rk → R are proper almost convex
functions, than the function ΦF given by (27) is almost convex.

Proof: Let us consider the linear operators V : Rn×Rk×R → Rn×Rk×R and
W : Rn×R×Rk ×R → Rn×Rk ×R defined by V (x, y, r) = (x,Ax + y, r) and
W (x, r, y, s) = (x, y, r + s), respectively. Then a simple calculation shows that
the epigraph of ΦF can be evaluated as epi(ΦF ) = V −1(W (epi(f)× epi(g))).

Indeed, (x, y, r) ∈ epi(ΦF ) ⇔ f(x)+g(Ax+y) ≤ r ⇔ ((x, f(x)), (Ax+y, r−
f(x))) ∈ epi(f) × epi(g) ⇔ (x,Ax + y, r) ∈ W (epi(f) × epi(g)) ⇔ (x, y, r) ∈
V −1(W (epi(f)× epi(g))).

By Lemma 2.3 and Lemma 2.4 (i) it follows that W (epi(f) × epi(g)) is an
almost convex set, and by Corollary 2.1 we conclude the proof if we show that
V −1(ri(W (epi(f)×epi(g)))) 6= ∅. Since f and g are almost convex, ri(epi(f))×
ri(epi(g)) 6= ∅, thus, by Lemma 2.4 (ii) we obtain ri(W (epi(f) × epi(g))) =
W (ri(epi(f) × epi(g))) 6= ∅. Choose an element (x′, y′, r′) ∈ ri(W (epi(f) ×
epi(g))). Then (x′, y′ − Ax′, r′) ∈ V −1(ri(W (epi(f) × epi(g)))) and we are
done.

Notice that differently to Theorems 4.1 and 4.3 in Theorem 4.5 no regularity
condition is needed.

Now let us give sufficient conditions for the Fenchel duality in case of almost
convex optimization problems.
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Theorem 4.6 If the assumptions of Theorem 4.5 are satisfied and

ri(dom(g)) ∩A(ri(dom(f))) 6= ∅, (28)

the strong Fenchel duality holds, i.e., v(P 2) = v(DF ) and the dual problem
admits a solution.

Proof: By Theorem 4.5 we obtain that ΦF is almost convex. The result
follows by Corollary 3.1 if we show that

0 ∈ riPrRk(dom(ΦF )). (29)

To do this, let us observe that y ∈ PrRk(dom(ΦF )) ⇔ ∃x ∈ Rn : f(x) +
g(Ax + y) < +∞ ⇔ ∃x ∈ Rn : x ∈ dom(f), Ax + y ∈ dom(g) ⇔ ∃x ∈ Rn : x ∈
dom(f), y ∈ dom(g)−Ax ⇔ y ∈ dom(g)−A(dom(f)). This shows that (29) is
equivalent to 0 ∈ ri(dom(g)−A(dom(f))), which is equivalent to (28).

Let us finally notice that in Theorem 4.6 we have rediscovered the strong
Fenchel duality result for almost convex optimization problems presented in [3]
by using a different approach.
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Optimization and and its Applications 76, Springer-Verlag, New York, pp.
3-87.

15



[9] Giannessi, F., Rapcsák, T. (1995): Images, separation of sets and ex-
tremum problems, In: Recent Trends in Optimization Theory and Appli-
cations, Edited by R. P. Agarwal, World Scientific Series in Applicable
Analysis 5, World Scientific, River Edge, pp. 79-106.

[10] John, R. (2005): Uses of generalized convexity and generalized monotonic-
ity in economics, In: Handbook of Generalized Convexity and Generalized
Monotonicity, Edited by N. Hadjisavvas, S. Komlósi and S. Schaible, Non-
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