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Abstract

Motivated by a classical result concerning the ε-subdifferential of the sum of two
proper, convex and lower semicontinuous functions, we give in this paper a similar
result for the enlargement of the sum of two maximal monotone operators defined on
a Banach space. This is done by establishing a necessary and sufficient condition for
a bivariate inf-convolution formula.
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1 Introduction and motivation

It is well known that the subdifferential of a proper, convex and lower semicontinuous
function f defined on a real Banach space, denoted by ∂f , is a maximal monotone operator
(cf. [28]). For ε ≥ 0, the ε-subdifferential, introduced in [8] and denoted by ∂εf , has an
important impact in convex analysis for both theoretical and practical applications. The
ε-subdifferential is an enlargement of ∂f , in the sense that ∂f(x) ⊆ ∂εf(x) for all x ∈ X
and ε ≥ 0.

Let us mention a result concerning the ε-subdifferential of the sum of two proper,
convex and lower semicontinuous functions f, g : X → R such that dom(f) ∩ dom(g) 6= ∅,
namely that epi(f∗) + epi(g∗) is closed in (X∗, ω(X∗, X))× R if and only if

∂ε(f + g)(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
∂ε1f(x) + ∂ε2g(x)

)
for all ε ≥ 0 and for all x ∈ X. (1)

This result is proved in [10, Theorem 1] in the framework of Banach spaces, however it
holds also in a real separated locally convex space (cf. [7]). The direct implication is shown
in [18, Theorem 2.1]. Sufficient conditions which guarantee the equality (1) can be found
in [32, Theorem 2.8.7].
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For an arbitrary monotone operator S : X ⇒ X∗ the following enlargement can be
defined for all x ∈ X and ε ≥ 0:

Sε(x) := {x∗ ∈ X∗ : 〈y∗ − x∗, y − x〉 ≥ −ε for all (y, y∗) ∈ G(S)}.

Introduced in [9], the enlargement turned out to have some useful applications and prop-
erties similar to those of the ε-subdifferential (local boundedness, demiclosed graph, Lip-
schitz continuity, the Brøndsted-Rockafellar property), see [12,13].

It is the aim of this paper to give a necessary and sufficient condition that guarantees
in the case of enlargements of maximal monotone operators an equality similar to (1).
This is achieved by giving in the next section a necessary and sufficient condition for the
bivariate inf-convolution formula

(h1�2h2)∗ = h∗1�1h
∗
2, (2)

where h1, h2 : X × Y → R are proper, convex and lower semicontinuous functions (see
Corollary 5). On the other hand, giving conditions for (2) turns out to be useful also for
the problem of establishing when the sum of two maximal monotone operators defined on
a reflexive Banach space is maximal monotone (see [23,30]).

By means of the condition for the bivariate inf-convolution formula, we give in the
last section of the paper a so-called closedness-type regularity condition which completely
characterizes the enlargement of the sum of two maximal monotone operators in terms of
the enlargements of the maximal monotone operators involved (see Theorem 11). Partic-
ularizing this result to the case of subdifferential operators we obtain exactly the result
established in [10].

2 A bivariate inf-convolution formula

Let us recall first some notions and results that will be used in the paper. Consider X,Y
real separated locally convex spaces and X∗, Y ∗ their topological dual spaces, respectively.
The notation ω(X∗, X) stands for the weak∗ topology induced by X on X∗, while by 〈x∗, x〉
we denote the value of the linear continuous functional x∗ ∈ X∗ at x ∈ X. For a subset
C of X we denote by cl(C) and icC its closure and intrinsic relative algebraic interior,
respectively. Let us note that if C is a convex set, then an element x ∈ X belongs to icC
if and only if

⋃
λ>0 λ(C − x) is a closed linear subspace of X (see [32]). The indicator

function of C, δC : X → R = R ∪ {±∞}, is defined as

δC(x) =
{

0, if x ∈ C,
+∞, otherwise.

For a function f : X → R we denote by dom(f) = {x ∈ X : f(x) < +∞} its domain
and by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r} its epigraph. We call f proper if dom(f) 6=
∅ and f(x) > −∞ for all x ∈ X. By cl(f) we denote the lower semicontinuous hull
of f , namely the function of which epigraph is the closure of epi(f) in X × R, that is
epi(cl(f)) = cl(epi(f)). Having f : X → R a proper function, for x ∈ dom(f) we define
the ε-sudifferential of f at x, where ε ≥ 0, by

∂εf(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 − ε for all y ∈ X}.
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For x /∈ dom(f) we take ∂εf(x) := ∅. The set ∂f(x) := ∂0f(x) is then the classical
subdifferential of f at x.

The Fenchel-Moreau conjugate of f is the function f∗ : X∗ → R defined by

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} for all x∗ ∈ X∗.

We have the so called Young-Fenchel inequality

f∗(x∗) + f(x) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗.

We mention here some important properties of conjugate functions. If f is proper, then f
is convex and lower semicontinuous if and only if f∗∗ = f (see [15,32]). As a consequence
we have that in case f is convex and cl(f) is proper, then f∗∗ = cl(f) ( [32, Theorem
2.3.4]).

One can give the following characterizations for the subdifferential and ε-subdifferential
of a proper function f by means of conjugate functions (see [15,32]):

x∗ ∈ ∂f(x)⇔ f(x) + f∗(x∗) = 〈x∗, x〉

and, respectively,
x∗ ∈ ∂εf(x)⇔ f(x) + f∗(x∗) ≤ 〈x∗, x〉+ ε.

Having f, g : X → R two proper functions we consider their infimal convolution,
namely the function denoted by f�g : X → R, f�g(x) = infu∈X{f(u) + g(x − u)}, for
all x ∈ X. We say that the infimal convolution is exact at x ∈ X if the infimum in the
definition is attained. Moreover, f�g is said to be exact if it is exact at every x ∈ X.

For a function f : A × B → R, where A and B are nonempty sets, we denote by
f> the transpose of f , namely the function f> : B × A → R, f>(b, a) = f(a, b) for all
(b, a) ∈ B×A. We consider also the projection operator prA : A×B → A, prA(a, b) = a for
all (a, b) ∈ A×B. When an infimum or a supremum is attained we write min, respectively
max instead of inf, respectively sup.

For M,Z two subsets of X, we say that M is closed regarding the set Z if M ∩ Z =
cl(M) ∩ Z. It is worth noting that a closed set is closed regarding any set. Several
weak regularity conditions (in the theory of maximal monotone operators and convex
optimization) are expressed by using this notion, see [3–6].

The result below plays an important role in the following. Let us mention that on the
space R we consider the usual topology.

Lemma 1 Let φ : X × Y → R be a proper, convex and lower semicontinuous function
with 0 ∈ prY (dom(φ)). Then

epi
(
(φ(·, 0))∗

)
= cl

(
prX∗×R(epi(φ∗))

)
. (3)

Remark 1 It was observed in [33, pp. 197] and [22, pp. 628–629] that in the hypotheses
of the above lemma, we have (φ(·, 0))∗ = clw∗ h, where h : X∗ → R is defined by h(x∗) =
infy∗∈Y ∗ φ∗(x∗, y∗), from which Lemma 1 follows immediately (see also [6, Theorem 2]).

Theorem 2 Let φ : X × Y → R be a proper, convex and lower semicontinuous function
such that 0 ∈ prY (dom(φ)) and U be a nonempty subset of X∗. Then the following
statements are equivalent:
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(i) supx∈X{〈x∗, x〉 − φ(x, 0)} = miny∗∈Y ∗ φ∗(x∗, y∗) for all x∗ ∈ U ;

(ii) prX∗×R(epi(φ∗)) is closed regarding U × R in (X∗, ω(X∗, X))× R.

Proof. We prove first the implication (i)⇒(ii). Take an arbitrary element (x∗, r) ∈
cl
(

prX∗×R(epi(φ∗))
)
∩ (U ×R). Lemma 1 guarantees that (x∗, r) ∈ epi

(
(φ(·, 0))∗

)
, which

implies (φ(·, 0))∗(x∗) ≤ r, that is supx∈X{〈x∗, x〉 − φ(x, 0)} ≤ r. From (i) we obtain the
existence of an element y∗ ∈ Y ∗ such that φ∗(x∗, y∗) ≤ r, hence (x∗, r) ∈ prX∗×R(epi(φ∗))∩
(U ×R). Hence we have cl

(
prX∗×R(epi(φ∗))

)
∩ (U ×R) ⊆ prX∗×R(epi(φ∗))∩ (U ×R), and

since the reverse inclusion is always satisfied, we obtain that (ii) is fulfilled.
Conversely, suppose now that (ii) is true and take x∗ ∈ U arbitrary. From the Young-

Fenchel inequality we obtain

(φ(·, 0))∗(x∗) ≤ inf
y∗∈Y ∗

φ∗(x∗, y∗). (4)

If (φ(·, 0))∗(x∗) = +∞, then (i) is obviously satisfied. So we may suppose that (φ(·, 0))∗(x∗)
< +∞. Taking into consideration that 0 ∈ prY (dom(φ)) we easily derive that (φ(·, 0))∗(x∗)
∈ R. We get by Lemma 1 and (ii) that (x∗, (φ(·, 0))∗(x∗)) ∈ epi

(
(φ(·, 0))∗

)
∩ (U × R) =

cl
(

prX∗×R(epi(φ∗))
)
∩ (U × R) =

(
prX∗×R(epi(φ∗))

)
∩ (U × R). Hence there exists an

element y∗ ∈ Y ∗ such that φ∗(x∗, y∗) ≤ (φ(·, 0))∗(x∗). Combining this with (4) we obtain
(φ(·, 0))∗(x∗) = φ∗(x∗, y∗) = miny∗∈Y ∗ φ∗(x∗, y∗). As x∗ ∈ U was arbitrary taken, the
proof is complete.

Remark 2 An anonymous reviewer proposed us an alternative proof of the above theorem.
Let X be a topological space, U ⊆ X and A ⊆ X × R. One can prove that A ∩ (U × R) =
cl(A)∩ (U ×R) if and only if A∩ ({u}×R) = cl(A)∩ ({u}×R) for all u ∈ U . Using this
remark, one can deduce Theorem 2 from the corresponding statement with U a singleton.
Indeed, for U = {x∗}, the statement (i) is nothing else than (φ(·, 0))∗(x∗) = clw∗ h(x∗) =
h(x∗) and the infimum in the definition of h(x∗) is attained, while (ii) asserts that for
A := (prX∗×R(epi(φ∗)) one has A ∩ ({x∗} × R) = cl(A) ∩ ({x∗} × R). For x∗ = 0 the
equivalence of (i) and (ii) is nothing else than [25, Theorem 4.3.1] (see also [24, pp. 6]).
The statement for x∗ 6= 0 follows easily by a translation.

Remark 3 Considering in the previous theorem U := X∗ we obtain, in the same hypothe-
ses as in Theorem 2, that the following conditions are equivalent:

(i) supx∈X{〈x∗, x〉 − φ(x, 0)} = miny∗∈Y ∗ φ∗(x∗, y∗) for all x∗ ∈ X∗;

(ii) prX∗×R(epi(φ∗)) is closed in (X∗, ω(X∗, X))× R.

This statement can be deduced from [26, Theorem 2.2] and it was proved also in [11] in the
case of Banach spaces and in [6] in the framework of separated locally convex spaces. Let us
notice that condition (i) is refered in the literature as stable strong duality ( [6,11,29]).

Corollary 3 Let f, g : X → R be proper, convex and lower semicontinuous functions
such that dom(f) ∩ dom(g) 6= ∅ and U be a nonempty subset of X∗. Then the following
statements are equivalent:

(i) (f + g)∗(x∗) = (f∗�g∗)(x∗) and f∗�g∗ is exact at x∗ for all x∗ ∈ U ;
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(ii) epi(f∗) + epi(g∗) is closed regarding U × R in (X∗, ω(X∗, X))× R.

Proof. Consider the function φ : X ×X → R defined by φ(x, y) = f(x) + g(x+ y) for all
(x, y) ∈ X×X. A simple computation shows that φ∗(x∗, y∗) = f∗(x∗−y∗) +g∗(y∗) for all
(x∗, y∗) ∈ X∗ ×X∗. One can prove easily that the hypotheses of Theorem 2 are satisfied
for this particular choice of the function φ. The result follows now by applying Theorem
2.

Remark 4 In case U := X∗, the previous corollary was established also in [10, Theorem
1] and [2, Theorem 3.2]).

The following result will lead to the bivariate inf-convolution formula.

Theorem 4 Let h1, h2 : X×Y → R be proper, convex and lower semicontinuous functions
such that prX(dom(h1))∩prX(dom(h2)) 6= ∅ and V be a nonempty subset of Y ∗. Consider
the functions h1�2h2 : X × Y → R, (h1�2h2)(x, y) = inf{h1(x, u) + h2(x, v) : u, v ∈
Y, u+ v = y} and h∗1�1h

∗
2 : X∗× Y ∗ → R, (h∗1�1h

∗
2)(x∗, y∗) = inf{h∗1(u∗, y∗) + h∗2(v∗, y∗) :

u∗, v∗ ∈ X∗, u∗ + v∗ = x∗}. Then the following conditions are equivalent:

(i) (h1�2h2)∗(x∗, y∗) = (h∗1�1h
∗
2)(x∗, y∗) and h∗1�1h

∗
2 is exact at (x∗, y∗) (that is, the

infimum in the definition of (h∗1�1h
∗
2)(x∗, y∗) is attained) for all (x∗, y∗) ∈ X∗ × V ;

(ii) {(a∗+b∗, u∗, v∗, r) : h∗1(a∗, u∗)+h∗2(b∗, v∗) ≤ r} is closed regarding the set X∗×∆V ×R
in (X∗, ω(X∗, X)) × (Y ∗, ω(Y ∗, Y )) × (Y ∗, ω(Y ∗, Y )) × R, where ∆V = {(y∗, y∗) :
y∗ ∈ V }.

Proof. Take an arbitrary (x∗, y∗) ∈ X∗×Y ∗. The following equality can be easily derived:

(h1�2h2)∗(x∗, y∗) = sup
x∈X,u,v∈Y

{〈x∗, x〉+ 〈y∗, u+ v〉 − h1(x, u)− h2(x, v)}. (5)

Define now the functions F,G : X ×Y ×Y → R, by F (x, u, v) = h1(x, u) and G(x, u, v) =
h2(x, v) for all (x, u, v) ∈ X × Y × Y . It holds (h1�2h2)∗(x∗, y∗) = (F + G)∗(x∗, y∗, y∗).
One can show that for all (x∗, u∗, v∗) ∈ X∗ × Y ∗ × Y ∗, the conjugate functions F ∗, G∗ :
X∗ × Y ∗ × Y ∗ → R have the following forms: F ∗(x∗, u∗, v∗) = h∗1(x∗, u∗) + δ{0}(v∗) and
G∗(x∗, u∗, v∗) = h∗2(x∗, v∗)+δ{0}(u∗), respectively. Further we have (F ∗�G∗)(x∗, y∗, y∗) =
(h∗1�1h

∗
2)(x∗, y∗).

Hence the condition (i) is fulfilled if and only if (F+G)∗(x∗, y∗, y∗) = (F ∗�G∗)(x∗, y∗, y∗)
and (F ∗�G∗)(x∗, y∗, y∗) is exact at (x∗, y∗, y∗) for all (x∗, y∗, y∗) ∈ X∗ ×∆V . In view of
Corollary 3, the last condition is equivalent to epi(F ∗) + epi(G∗) is closed regarding the
set X∗ ×∆V × R in (X∗, ω(X∗, X)) × (Y ∗, ω(Y ∗, Y )) × (Y ∗, ω(Y ∗, Y )) × R. Finally the
equality epi(F ∗) + epi(G∗) = {(a∗+ b∗, u∗, v∗, r) : h∗1(a∗, u∗) +h∗2(b∗, v∗) ≤ r}, the proof of
which presents no difficulty, gives the desired result.

We give now a necessary and sufficient condition for the bivariate inf-convolution for-
mula. For the particular case when V := Y ∗ we obtain from the previous result the
following corollary.

Corollary 5 Let h1, h2 : X × Y → R be proper, convex and lower semicontinuous func-
tions such that prX(dom(h1)) ∩ prX(dom(h2)) 6= ∅. The following statements are equiva-
lent:
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(i) (h1�2h2)∗ = h∗1�1h
∗
2 and h∗1�1h

∗
2 is exact;

(ii) {(a∗ + b∗, u∗, v∗, r) : h∗1(a∗, u∗) + h∗2(b∗, v∗) ≤ r} is closed regarding the subspace
X∗ ×∆Y ∗ × R in (X∗, ω(X∗, X))× (Y ∗, ω(Y ∗, Y ))× (Y ∗, ω(Y ∗, Y ))× R.

Remark 5 A generalized interior point condition which guarantees relation (i) in Corol-
lary 5 was given in [30, Theorem 4.2], namely:

(CQSZ) 0 ∈ ic
(
prX(dom(h1))− prX(dom(h2))

)
.

Nevertheless, unlike the condition (ii), which is necessary and sufficient for (i), the
condition (CQSZ) is only sufficient, as the following example, which can be found in [3],
shows.

Example 6 Take X = Y = R2, equipped with the Euclidean norm ‖ · ‖2, f, g : R2 → R,
f = ‖ · ‖2 + δR2

+
, g = δ−R2

+
,

h1(x, x∗) = f(x) + f∗(x∗) for all (x, x∗) ∈ R2 × R2

and, respectively,

h2(x, x∗) = g(x) + g∗(x∗) for all (x, x∗) ∈ R2 × R2.

One can see that g∗ = δR2
+

and f∗ = δB(0,1)−R2
+

, where B(0, 1) is the closed unit ball of

R2. We have

{(x∗ + y∗, x, y, r) : f(x) + f∗(x∗) + g(y) + g∗(y∗) ≤ r} =

R2 × {(x, y, r) : x ∈ R2
+, y ∈ −R2

+, ‖x‖2 ≤ r},

which is closed, hence closed regarding the set R2 ×∆R2 ×R. Thus, by Corollary 5, (i) is
fulfilled. However, condition (CQSZ) becomes: R2

+ is a closed linear subspace of R2, and
thus it fails in this case.

By taking in Theorem 4 Y := X∗ and V := X, where X is supposed to be a normed
space, so that V = X can be seen as a subspace of Y ∗ = X∗∗, we obtain the following
result.

Corollary 7 Let h1, h2 : X ×X∗ → R be proper, convex and lower semicontinuous func-
tions in the strong topology of X ×X∗ such that prX(dom(h1))∩ prX(dom(h2)) 6= ∅. The
following statements are equivalent:

(i) (h1�2h2)∗(x∗, x) = (h∗1�1h
∗
2)(x∗, x) and h∗1�1h

∗
2 is exact at (x∗, x) for all (x∗, x) ∈

X∗ ×X;

(ii) {(a∗ + b∗, u∗∗, v∗∗, r) : h∗1(a∗, u∗∗) + h∗2(b∗, v∗∗) ≤ r} is closed regarding the subspace
X∗ ×∆X × R in (X∗, ω(X∗, X))× (X∗∗, ω(X∗∗, X∗))× (X∗∗, ω(X∗∗, X∗))× R.
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3 Monotone operators and enlargements

In the following we recall some notions and results concerning monotone operators. For
the rest of the paper we assume that X is a nonzero real Banach space. A set-valued
operator S : X ⇒ X∗ is said to be monotone if

〈y∗ − x∗, y − x〉 ≥ 0, whenever x∗ ∈ S(x) and y∗ ∈ S(y).

The monotone operator S is called maximal monotone if its graph

G(S) = {(x, x∗) : x∗ ∈ S(x)} ⊆ X ×X∗

is not properly contained in the graph of any other monotone operator S′ : X ⇒ X∗. The
classical example of a maximal monotone operator is the subdifferential of a proper, convex
and lower semicontinuous function (see [28]). However, there exist maximal monotone
operators which are not subdifferentials (see [29]).

An element (x0, x
∗
0) ∈ X ×X∗ is said to be monotonically related to the graph of S if

〈y∗ − x∗0, y − x0〉 ≥ 0 for all (y, y∗) ∈ G(S).

One can show that a monotone operator S is maximal monotone if and only if the set of
monotonically related elements to G(S) is exactly G(S).

To any monotone operator S : X ⇒ X∗ we associate the Fitzpatrick function ϕS :
X ×X∗ → R, defined by

ϕS(x, x∗) = sup{〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ S(y)},

which is obviously convex and weak-weak∗ (w−w∗) lower semicontinuous. Introduced by
Fitzpatrick (cf. [16]), it proved to be very important in the theory of maximal monotone
operators, revealing some connections between convex analysis and monotone operators
(see [1,3–5,14,23,30] and the references therein). Considering the functions c : X ×X∗ →
R, c(x, x∗) = 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗ and cS : X ×X∗ → R, cS = c + δG(S), we
get the equality ϕS(x, x∗) = (cS)∗>(x, x∗) for all (x, x∗) ∈ X ×X∗, where we consider the
natural injection X ⊆ X∗∗. The function ψS = cl(co cS), where the closure is taken in
the strong topology of X ×X∗, is well-linked to the Fitzpatrick function. Let us mention
that on X ×X∗ we have ψ∗>S = ϕS and, in the framework of reflexive Banach spaces the
equality ϕ∗>S = ψS holds (cf. [13, Remark 5.4]).

Lemma 8 ( [16]) Let S be a maximal monotone operator. Then

(i) ϕS(x, x∗) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗;

(ii) G(S) = {(x, x∗) ∈ X ×X∗ : ϕS(x, x∗) = 〈x∗, x〉}.

Motivated by these properties of the Fitzpatrick function, the notion of representative
function of a monotone operator was introduced and studied in the literature.

Definition 1 For S : X ⇒ X∗ a monotone operator, we call representative function
of S a convex and strong lower semicontinuous function hS : X ×X∗ → R fulfilling

hS ≥ c and G(S) ⊆ {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x∗, x〉}.

7



We observe that if G(S) 6= ∅ (in particular if S is maximal monotone), then every
representative function of S is proper. It follows immediately from Lemma 8, that the
Fitzpatrick function associated to a maximal monotone operator is a representative func-
tion of the operator. The following proposition is a direct consequence of the results
from [13] (see also [19, Proposition 1.2, Theorem 4.2 (1)]).

Proposition 9 Let S : X ⇒ X∗ be a maximal monotone operator and hS be a represen-
tative function of S. Then:

(i) ϕS(x, x∗) ≤ hS(x, x∗) ≤ ψS(x, x∗) for all (x, x∗) ∈ X ×X∗;

(ii) the canonical restriction of h∗>S to X ×X∗ is also a representative function of S;

(iii) {(x, x∗) ∈ X × X∗ : hS(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X × X∗ : h∗>S (x, x∗) =
〈x∗, x〉} = G(S).

Remark 6 These properties of representative functions are well-known in the framework
of reflexive Banach spaces (see [23]). For more on the properties of representative functions
we refer to [3, 20, 23] and the references therein.

The following concept of enlargement of an arbitrary monotone operator S : X ⇒ X∗

was introduced in [9]: given ε ≥ 0, let Sε : X ⇒ X∗ be defined for all x ∈ X by

Sε(x) := {x∗ ∈ X∗ : 〈y∗ − x∗, y − x〉 ≥ −ε for all (y, y∗) ∈ G(S)}.

This notion was intensively studied in [9,12–14,17,27,31]. Due to the monotonicity of S,
we have S(x) ⊆ Sε(x) for all x ∈ X and ε ≥ 0. The operator S0 need not to be monotone.
It is worth noting that G(S0) is exactly the set of monotonically related elements to G(S),
hence S is maximal monotone if and only if S = S0 ( [9, Proposition 2] and [27, Proposition
3.1]). The enlargement Sε can be characterized via the Fitzpatrick function associated to
S:

x∗ ∈ Sε(x)⇔ ϕS(x, x∗) ≤ ε+ 〈x∗, x〉.

Motivated by this characterization, the following enlargement for the monotone oper-
ator S can be considered (cf. [13, 14]): for a representative function hS of S we define for
all x ∈ X and ε ≥ 0

SεhS
(x) := {x∗ ∈ X∗ : hS(x, x∗) ≤ ε+ 〈x∗, x〉}.

Obviously, SεϕS
= Sε and G(S) ⊆ G(SεhS

) for all ε ≥ 0. Moreover, SεhS
has convex closed

values and it holds Sε1hS
(x) ⊆ Sε2hS

(x), provided that 0 ≤ ε1 ≤ ε2. Further, if S is maximal
monotone, then, in view of Proposition 9, we have

S(x) ⊆ SεψS
(x) ⊆ SεhS

(x) ⊆ SεϕS
(x) = Sε(x)

and
S(x) ⊆ SεψS

(x) ⊆ Sεh∗S (x) ⊆ SεϕS
(x) = Sε(x),

where Sεh∗S (x) = {x∗ ∈ X∗ : h∗S(x∗, x) ≤ ε + 〈x∗, x〉}, as well as S = S0
ψS

= S0
hS

= S0
h∗S

=
S0
ϕS

= S0. Let us notice that in case S is a monotone operator and S = S0
hS

, where
hS 6= ϕS , we do not necessarily have that S is maximal monotone.
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Remark 7 If S = ∂f , where f is a proper, convex and lower semicontinuous function,
then

∂f(x) ⊆ ∂εf(x) ⊆ ∂εf(x) := (∂f)ε(x)

and the inclusions can be strict (see [9,21]). Moreover, taking h : X×X∗ → R, h(x, x∗) =
f(x) + f∗(x∗) for all (x, x∗) ∈ X ×X∗, which is a representative function of ∂f , we see
that (∂f)εh(x) = ∂εf(x).

Theorem 10 Let S, T : X ⇒ X∗ be two maximal monotone operators with representative
functions hS and hT , respectively, such that prX(dom(hS))∩ prX(dom(hT )) 6= ∅ and con-
sider the function h : X×X∗ → R, h(x, x∗) = (hS�2hT )∗(x∗, x) for all (x, x∗) ∈ X×X∗. If

{(a∗ + b∗, u∗∗, v∗∗, r) : h∗S(a∗, u∗∗) + h∗T (b∗, v∗∗) ≤ r} is closed regarding the subspace
X∗ ×∆X × R in (X∗, ω(X∗, X))× (X∗∗, ω(X∗∗, X∗))× (X∗∗, ω(X∗∗, X∗))× R,

then h is a representative function of the monotone operator S + T . If additionally X is
reflexive, then S + T is a maximal monotone operator.

Proof. The function h is obviously convex and strong-weak∗ lower semicontinuous, hence
lower semicontinuous in the strong topology of X ×X∗. Applying Corollary 7 we obtain
h(x, x∗) = (h∗S�1h

∗
T )(x∗, x) and h∗S�1h

∗
T is exact at (x∗, x) for all (x∗, x) ∈ X∗ ×X. By

using Proposition 9 we have for all (x, x∗) ∈ X ×X∗ that h(x, x∗) = (h∗S�1h
∗
T )(x∗, x) =

inf{h∗S(u∗, x) + h∗T (v∗, x) : u∗, v∗ ∈ X∗, u∗ + v∗ = x∗} ≥ inf{〈u∗, x〉 + 〈v∗, x〉 : u∗, v∗ ∈
X∗, u∗ + v∗ = x∗} = 〈x∗, x〉, hence h ≥ c.

It remains to show that G(S + T ) ⊆ {(x, x∗) : h(x, x∗) = 〈x∗, x〉}. Take an arbitrary
(x, x∗) ∈ G(S + T ). There exist u∗ ∈ S(x) and v∗ ∈ T (x) such that x∗ = u∗ + v∗.
Employing once more Proposition 9 we obtain

〈x∗, x〉 ≤ h(x, x∗) = (h∗S�1h
∗
T )(x∗, x)

≤ h∗S(u∗, x) + h∗T (v∗, x) = 〈u∗, x〉+ 〈v∗, x〉 = 〈x∗, x〉,

thus G(S + T ) ⊆ {(x, x∗) : h(x, x∗) = 〈x∗, x〉}.
Actually, we prove that in this case

G(S + T ) = {(x, x∗) : h(x, x∗) = 〈x∗, x〉}. (6)

Take an arbitrary (x, x∗) such that h(x, x∗) = 〈x∗, x〉. Since we have that h(x, x∗) =
(h∗S�1h

∗
T )(x∗, x) and h∗S�1h

∗
T is exact at (x∗, x), there exist u∗, v∗ ∈ X∗, u∗ + v∗ = x∗

such that
h∗S(u∗, x) + h∗T (v∗, x) = 〈u∗, x〉+ 〈v∗, x〉. (7)

The function hS and hT being representative, from Proposition 9 we have h∗S(u∗, x) ≥
〈u∗, x〉 and h∗T (v∗, x) ≥ 〈v∗, x〉, hence, in view of (7), the inequalities above must be
fulfilled as equalities, thus by Proposition 9 we get u∗ ∈ S(x) and v∗ ∈ T (x), so x∗ =
u∗ + v∗ ∈ S(x) + T (x) = (S + T )(x) and (6) is fulfilled.

Suppose now that X is a reflexive Banach space. Since in this case the weak∗ topology
coincides with the weak topology and the weak closure of a convex set is exactly the strong
closure of the same set, the regularity condition becomes
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{(a∗+ b∗, u, v, r) : h∗S(a∗, u)+h∗T (b∗, v) ≤ r} is closed regarding the subspace X∗×∆X×R
in the strong topology of X∗ ×X ×X × R,

which is exactly the condition given in [3] for the maximal monotonicity of the operator
S + T . However, we give in the following a different proof of this result.

Since hS and hT are representative functions we have hS�2hT ≥ c. As the duality
product is continuous, it follows cl‖·‖×‖·‖∗(hS�2hT ) ≥ c. From the definition of h we obtain
h∗> = cl‖·‖×‖·‖∗(hS�2hT ) ≥ c. The conclusion follows now by combining [23, Proposition
2.1] with relation (6).

Remark 8 In case of reflexive Banach spaces, the condition in the above theorem is the
weakest one given so far for the maximality of the sum of two maximal monotone operators
(see [3–5] for a discussion regarding several conditions given in the literature on this topic).

Let us state now the main result of the paper.

Theorem 11 Let S, T : X ⇒ X∗ be two maximal monotone operators with representative
functions hS and hT , respectively, such that prX(dom(hS)) ∩ prX(dom(hT )) 6= ∅ and
consider again the function h defined as in the previous theorem. Then the following
statements are equivalent:

(i) {(a∗ + b∗, u∗∗, v∗∗, r) : h∗S(a∗, u∗∗) + h∗T (b∗, v∗∗) ≤ r} is closed regarding the subspace
X∗ ×∆X × R in (X∗, ω(X∗, X))× (X∗∗, ω(X∗∗, X∗))× (X∗∗, ω(X∗∗, X∗))× R;

(ii) (S + T )εh(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
Sε1h∗S

(x) + T ε2h∗T
(x)
)

for all ε ≥ 0 and for all x ∈ X,

where (S + T )εh(x) := {x∗ ∈ X∗ : h(x, x∗) ≤ ε+ 〈x∗, x〉} for every x ∈ X and ε ≥ 0.

Remark 9 In view of Theorem 10, when the condition (i) is fulfilled, then h is a repre-
sentative function of the operator S + T , hence the notation (S + T )εh(x) := {x∗ ∈ X∗ :
h(x, x∗) ≤ ε+ 〈x∗, x〉} is justified. Conversely, when condition (ii) is true, then (i) is also
fulfilled (see the proof below), thus also in this case the use of this notation makes sense.

Proof. Let us suppose that (i) is fulfilled and take x ∈ X and ε ≥ 0. We show first the
inclusion ⋃

ε1,ε2≥0
ε1+ε2=ε

(
Sε1h∗S

(x) + T ε2h∗T
(x)
)
⊆ (S + T )εh(x). (8)

Indeed, take ε1, ε2 ≥ 0, ε1 + ε2 = ε, u∗ ∈ Sε1h∗S (x) and v∗ ∈ T ε2h∗T (x). Then h(x, u∗ + v∗) =
(hS�2hT )∗(u∗ + v∗, x) ≤ (h∗S�1h

∗
T )(u∗ + v∗, x) ≤ h∗S(u∗, x) + h∗T (v∗, x) ≤ ε1 + 〈u∗, x〉 +

ε2 + 〈v∗, x〉 = ε + 〈u∗ + v∗, x〉, hence u∗ + v∗ ∈ (S + T )εh(x), that is, the inclusion (8) is
true. Let us mention that this inclusion is always fulfilled, as there is no need of (i) to
prove (8).

However, to show the opposite inclusion, we use condition (i). Take x∗ ∈ (S +
T )εh(x). We have (hS�2hT )∗(x∗, x) ≤ ε + 〈x∗, x〉. After applying Corollary 7, we get
(h∗S�1h

∗
T )(x∗, x) ≤ ε + 〈x∗, x〉 and the infimum in the definition of (h∗S�1h

∗
T )(x∗, x) is

attained. Hence, there exist u∗, v∗ ∈ X∗ such that u∗ + v∗ = x∗ and

h∗S(u∗, x) + h∗T (v∗, x) ≤ ε+ 〈u∗, x〉+ 〈v∗, x〉. (9)
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Take ε1 := h∗S(u∗, x)− 〈u∗, x〉 and ε2 := ε− ε1. By using Proposition 9 and the inequality
(9) we obtain ε1 ≥ 0, and ε2 ≥ h∗T (v∗, x)−〈v∗, x〉 ≥ 0. Thus u∗ ∈ Sε1h∗S (x) and v∗ ∈ T ε2h∗T (x),
that is x∗ = u∗ + v∗ ∈

⋃
ε1,ε2≥0
ε1+ε2=ε

(
Sε1h∗S

(x) + T ε2h∗T
(x)
)
, so (ii) is fulfilled.

Conversely, assume that (ii) is true. We start by proving that

h(x, x∗) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗. (10)

Take an arbitrary (x0, x
∗
0) ∈ X×X∗ such that h(x0, x

∗
0) ≤ 〈x∗0, x0〉. By using the condition

(ii) for ε := 0 we obtain x∗0 ∈ (S + T )0h(x0) = S0
h∗S

(x0) + T 0
h∗T

(x0) = S(x0) + T (x0). Hence
there exist u∗0 ∈ S(x0) and v∗0 ∈ T (x0) such that x∗0 = u∗0 + v∗0. From Proposition 9 we
obtain hS(x0, u

∗
0) = 〈u∗0, x0〉 and hT (x0, v

∗
0) = 〈v∗0, x0〉. Like in (5) we get

h(x0, x
∗
0) = sup

x∈X,u∗,v∗∈X∗
{〈x∗0, x〉+ 〈u∗, x0〉+ 〈v∗, x0〉 − hS(x, u∗)− hT (x, v∗)}

≥ 〈x∗0, x0〉+ 〈u∗0, x0〉+ 〈v∗0, x0〉 − hS(x0, u
∗
0)− hT (x0, v

∗
0) = 〈x∗0, x0〉,

thus (10) is fulfilled.
In view of Corollary 7, it is sufficient to show that h(x, x∗) = (h∗S�1h

∗
T )(x∗, x) and that

h∗S�1h
∗
T is exact at (x∗, x) for all (x∗, x) ∈ X∗ ×X. Take an arbitrary (x∗, x) ∈ X∗ ×X.

The inequality
h(x, x∗) ≤ (h∗S�1h

∗
T )(x∗, x) (11)

is always true. In case when h(x, x∗) = +∞, there is nothing to be proved. The condition
prX(dom(hS)) ∩ prX(dom(hT )) 6= ∅ ensures that h(x, x∗) > −∞, so we may suppose that
h(x, x∗) ∈ R. Let us denote by r := h(x, x∗). We have h(x, x∗) = 〈x∗, x〉 + (r − 〈x∗, x〉).
With ε := r − 〈x∗, x〉 ≥ 0 (cf. (10)), we obtain that x∗ ∈ (S + T )εh(x). Since (ii) is true,
there exist ε1, ε2 ≥ 0, ε1 + ε2 = ε and u∗ ∈ Sε1h∗S (x) and v∗ ∈ T ε2h∗T (x), respectively, such
that x∗ = u∗ + v∗. Further, adding the two inequalities

h∗S(u∗, x) ≤ ε1 + 〈u∗, x〉

and
h∗T (v∗, x) ≤ ε2 + 〈v∗, x〉

we obtain
h∗S(u∗, x) + h∗T (v∗, x) ≤ ε1 + ε2 + 〈u∗ + v∗, x〉 = r = h(x, x∗),

hence, in view of (11) we get h(x, x∗) = h∗S(u∗, x) + h∗T (v∗, x) = (h∗S�1h
∗
2)(x∗, x) and the

proof is complete.

One can give also an interior point condition in order to guarantee the equality (ii)
in the previous result. The following corollary is a direct consequence of Theorem 11
combined with Remark 5.

Corollary 12 Let S, T : X ⇒ X∗ be two maximal monotone operators with representative
functions hS and hT , respectively, such that prX(dom(hS)) ∩ prX(dom(hT )) 6= ∅. If the
following condition is satisfied
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(CQSZ) 0 ∈ ic
(
prX(dom(hS))− prX(dom(hT ))

)
,

then (S + T )εh(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
Sε1h∗S

(x) + T ε2h∗T
(x)
)
, for all ε ≥ 0, for all x ∈ X.

Remark 10 The condition (CQSZ) in the above result is only sufficient for the equality
(ii), as it can be seen by taking X = R2, S := ∂f , T := ∂g, where f, g, hS and hT are
defined as in Example 6.

We show in the following how the result given in [10, Theorem 1] for ε-subdifferentials
can be derived from Theorem 11.

Corollary 13 Let f, g : X → R be proper, convex and lower semicontinuous such that
dom(f) ∩ dom(g) 6= ∅. The following statements are equivalent:

(i) epi(f∗) + epi(g∗) is closed in (X∗, ω(X∗, X))× R;

(ii) ∂ε(f + g)(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
∂ε1f(x) + ∂ε2g(x)

)
for all ε ≥ 0 and for all x ∈ X.

Proof. Consider the functions h1, h2 : X × X∗ → R, h1(x, x∗) = f(x) + f∗(x∗) and
h2(x, x∗) = g(x)+g∗(x∗) for all (x, x∗) ∈ X×X∗. We have h∗1(x∗, x∗∗) = f∗∗(x∗∗)+f∗(x∗)
and h∗2(x∗, x∗∗) = g∗∗(x∗∗) + g∗(x∗) for all (x∗, x∗∗) ∈ X∗ × X∗∗. Further, the condition
(h1�2h2)∗(x∗, x) = (h∗1�1h

∗
2)(x∗, x) and h∗1�1h

∗
2 is exact at (x∗, x) for all (x∗, x) ∈ X∗×X

is fulfilled if and only if (f + g)∗ = f∗�g∗ and f∗�g∗ is exact. Applying Corollary 3
for U = X∗, (i) is fulfilled if and only if (f + g)∗ = f∗�g∗ and f∗�g∗ is exact, which
is equivalent to (h1�2h2)∗(x∗, x) = (h∗1�1h

∗
2)(x∗, x) and h∗1�1h

∗
2 is exact at (x∗, x) for all

(x∗, x) ∈ X∗ ×X. The later one is equivalent to (see Corollary 7)

{(a∗ + b∗, u∗∗, v∗∗, r) : h∗1(a∗, u∗∗) + h∗2(b∗, v∗∗) ≤ r} is closed regarding the subspace
X∗ ×∆X × R in (X∗, ω(X∗, X))× (X∗∗, ω(X∗∗, X∗))× (X∗∗, ω(X∗∗, X∗))× R.

Since h1 and h2 are representative functions of the maximal monotone operators ∂f
and ∂g, respectively, we obtain, by Theorem 11, applied to the operators S := ∂f and
T := ∂g, that (i) is fulfilled if and only if for all ε ≥ 0 and for all x ∈ X we have

(∂f + ∂g)εh(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(
(∂f)ε1h∗1(x) + (∂g)ε2h∗2(x)

)
,

where h : X × X∗ → R, h(x, x∗) = (h1�2h2)∗(x∗, x) = (f + g)(x) + (f + g)∗(x∗) for
all (x, x∗) ∈ X × X∗. Taking into consideration that (∂f + ∂g)εh(x) = {x∗ ∈ X∗ :
(f+g)(x)+(f+g)∗(x∗) ≤ ε+〈x∗, x〉} = ∂ε(f+g)(x) and (∂f)ε1h∗1(x) = ∂ε1f(x), respectively,
(∂g)ε2h∗2(x) = ∂ε2g(x) (cf. Remark 7) we get the desired result.

Remark 11 (a) In reflexive Banach spaces one can deduce the equivalence in Corollary
13 by using the results presented in [14] for enlargements of monotone operators (see [14,
Theorem 6.9]).
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(b) Following the approach presented above, one can give a similar result to Theorem
11, where, instead of S+T one can consider the operator S+A∗TA, where S : X ⇒ X∗ and
T : Y ⇒ Y ∗ are maximal monotone operators, X,Y are Banach spaces and A : X → Y is
a linear and continuous operator and A∗ : Y ∗ → X∗ is its adjoint operator. We preferred
to consider the case S + T in order to make the presentation more clear.
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