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REGULARITY CONDITIONS FOR FORMULAE
OF BICONJUGATE FUNCTIONS

Radu Ioan Boţ* and Sorin-Mihai Grad

Abstract. When the dual of a normed space X is endowed with the weak∗
topology, the biconjugates of the proper convex lower semicontinuous func-
tions defined on X coincide with the functions themselves. This is not the
case when X∗ is endowed with the strong topology. Working in the latter
framework, we give formulae for the biconjugates of some functions that ap-
pear often in convex optimization, which hold provided the validity of some
suitable regularity conditions. We also treat some special cases, rediscovering
and improving recent results in the literature. Finally, we give a regularity
condition that guarantees that the biconjugate of the supremum of a possi-
bly infinite family of proper convex lower semicontinuous functions defined
on a separated locally convex space coincides with the supremum of their
biconjugates.

1. INTRODUCTION

When working with convex functions defined in infinitely dimensional spaces,
one usually considers the duals of the used spaces endowed with the corresponding
weak∗ topologies. Then the proper convex lower semicontinuous functions coin-
cide with their biconjugates and different interesting and also “good-looking” results
can be derived. We refer the reader to [11] for a comprehensive survey of convex
analysis on locally convex spaces whose duals are endowed with the corresponding
weak∗ topologies. On the other hand, there are many problems given on spaces
whose duals are endowed with arbitrary topologies and not everything from the pre-
viously mentioned case can be one-to-one imported. Take for instance the maximal
monotone operators. When they are defined on reflexive Banach spaces convex
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analysis was successfully employed to help in dealing with different problems like
sums, compositions, surjectivity etc. Such investigations were performed also for
monotone operators defined on non-reflexive Banach spaces, but not all the results
could be extended in this case.

Among the recent papers dealing with biconjugates of convex functions defined
on normed spaces we mention [4, 6, 12]. The first two of them contain the formula
for the biconjugate of the maximum of two functions, while the last one brings
also formulae for the biconjugates of the functions obtained by several convexity-
preserving operations. In this paper we perform similar investigations, giving formu-
lae for the biconjugates of some functions that appear often in convex optimization.
First we deal with the biconjugate of a so-called perturbation function, which sat-
isfies a formula provided the fulfillment of some regularity conditions. Then we
particularize in different ways this function, considering the perturbation functions
used to obtain the Lagrange and Fenchel-Lagrange duals of a given convex con-
strained minimization problem, the perturbation function used for the Fenchel dual
to a convex unconstrained minimization problem and perturbations of composed
convex functions, respectively. For suitable values assigned to these functions we
obtain further formulae for the biconjugates of some special functions, which are
shown to hold under two types of regularity conditions, namely closedness-type
and interiority-type. Thus we rediscover and extend several recent results in the
literature. Finally, relaxing the hypothesis imposed on the space we work with in
the sense that instead of normed it is taken only separated and locally convex, we
give a regularity condition that guarantees that the biconjugate of the supremum
of a family of arbitrarily many proper, convex and lower semicontinuous functions
coincides with the supremum of the biconjugates of the mentioned functions.

Consider two separated locally convex vector spaces X and Y and their topo-
logical dual spaces X∗ and Y ∗. When X is a normed space with the norm ‖ · ‖, the
norm on X∗ is denoted by ‖ · ‖∗, and on this space we work with three topologies,
namely the strong one induced by ‖ · ‖∗ which attaches X ∗∗ as dual to X∗, the
weak∗ one induced by X on X∗, w∗(X∗, X), which makes X to be the dual of X∗

and the weak one induced by X∗∗ on X∗, w(X∗, X∗∗). The topologies considered
on the other spaces are taken in a similar way. We specify each time when a weak
topology is used, otherwise the strong one is considered. A normed space X can
be identified with a subspace of X ∗∗, and we denote by x̂ the canonical image in
X∗∗ of the element x ∈ X . Denote also Û = {x̂ : x ∈ U}, for U ⊆ X and by
〈x∗, x〉 = x∗(x) the value at x ∈ X of the linear continuous functional x∗ ∈ X∗.
Take Y to be partially ordered by the nonempty closed convex cone C, i.e. on Y
there is the partial order “≤C”, defined by z ≤C y ⇔ y − z ∈ C, z, y ∈ Y . To
Y we attach a greatest element with respect to “≤C” which does not belong to Y ,
denoted by ∞C and let Y • = Y ∪{∞C}. Then for any y ∈ Y • one has y ≤C ∞C
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and we consider on Y • the following operations: y + ∞C = ∞C + y = ∞C and
t · ∞C = ∞C for all y ∈ Y and all t ≥ 0. A function g : Y → R = R ∪ {±∞}
is said to be C-increasing if for y, z ∈ Y such that z ≤C y one has g(z) ≤ g(y).
The dual cone of C is C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C}. We define also
〈y∗,∞C〉 = +∞ for all y∗ ∈ C∗.

Given a subset U of X , by cl(U), co(U), δU and σU we denote its closure,
its convex hull, its indicator function and support function, respectively. For sets,
the closures in the weak∗ topologies are denoted by clw∗ , while the ones in the
weak topologies are denoted by clw. We also use the strong quasi relative interior
of a nonempty convex set U denoted sqri(U), which contains all the elements
x ∈ U for which the cone generated by U − x is a closed linear subspace. Denote
∆Xn := {(x, . . . , x) ∈ Xn : x ∈ X}. We use also the projection function PrX :
X ×Y → X , defined by PrX(x, y) = x ∀(x, y) ∈ X×Y and the identity function
on X , idX : X → X with idX(x) = x ∀x ∈ X .

For a function f :X→R we use the classical notations for domain dom (f) =
{x ∈ X : f(x) < +∞}, epigraph epi(f) = {(x, r) ∈ X × R : f(x) ≤ r} and
conjugate function f ∗ : X∗ → R, f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X}. When
X is normed, the conjugate function of the conjugate of a function f : X → R is
said to be the biconjugate of f and it is denoted by f ∗∗ : X∗∗ → R, f∗∗(x∗∗) =
sup{〈x∗∗, x∗〉 − f∗(x∗) : x∗ ∈ X∗}. If we consider on X∗ the weak∗ topology,
then we obtain another biconjugate for f , namely a function defined on X which
takes at each x ∈ X the value f ∗∗(x̂). We call f proper if f(x) > −∞ ∀x ∈ X
and dom(f ) = ∅. By convention, we consider 0f = δdom(f ). Given two proper
functions f, g : X → R, we have the infimal convolution of f and g defined by
f�g : X → R,

(
f�g

)
(a) = inf{f(x)+g(a−x) : x ∈ X}. The convex hull of the

function f : X → R is co(f) : X → R, the greatest convex function everywhere
less than or equal to f , while the greatest lower semicontinuous function everywhere
less than or equal to f is the lower semicontinuous hull of f , cl(f) : X → R. Note
that epi(cl(f)) = cl(epi(f)). Like for the sets, we denote for the functions the
lower semicontinuous hulls obtained when we work with the weak∗ topologies by
clw∗ and the ones when we deal with the weak topologies by clw, too. Some of the
notions introduced above can be generalized also for functions mapping into infinite
dimensional spaces. For a function h : X → Y • one has

• the domain: dom(h) = {x ∈ X : h(x) ∈ Y },
• h is proper: dom(h) = ∅,
• h is C-convex: h(tx+(1−t)y) ≤C th(x)+(1−t)h(y) ∀x, y ∈ X ∀t ∈ [0, 1],

• for λ ∈ C∗, (λh) : X → R, (λh)(x) = 〈λ, h(x)〉,

• the C-epigraph epiC(h) = {(x, y) ∈ X × Y : y ∈ h(x) + C},
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• h is C-epi-closed if epiC(h) is closed,
• h is star C-lower semicontinuous at x ∈ X : (λh) is lower semicontinuous
at x ∀λ ∈ C∗.

Remark 1.1. When a function is star C-lower semicontinuous, it is also C-
epi-closed. The reverse statements do not hold in general (see [2, 8]).

Given a linear continuous mapping A : X → Y , we have its adjoint A∗ :
Y ∗ → X∗ given by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for any (x, y∗) ∈ X × Y ∗. For the
proper function f : X → R we define also the infimal function of f through A as
Af : Y → R, Af(y) = inf

{
f(x) : x ∈ X, Ax = y

}
, y ∈ Y .

For an attained infimum (supremum) instead of inf (sup) we write min (max).
We give now some statements which play important roles in our paper. Note that
the third lemma was, to the best of our knowledge, unknown until now, and it
generalizes the result we give as Corollary 1.1, which was mentioned in [12], for
instance.

Lemma 1.1. (cf. [1, 10, 9]). Let Φ : X × Y → R be a proper convex lower
semicontinuous function with 0 ∈ Pr Y (dom(Φ)). For each x∗ ∈ X∗ one has

(1) (Φ(·, 0))∗(x∗) = sup
x∈X

{〈x∗, x〉 − Φ(x, 0)} = clw∗
(

inf
y∗∈Y ∗ Φ∗(·, y∗)

)
(x∗).

Lemma 1.2. (cf. [1, 5]). Let Φ : X × Y → R be proper convex lower
semicontinuous with 0 ∈ PrY (dom(Φ)). Then PrX∗×R(epi(Φ∗)) is w∗-closed if
and only if

(2) (Φ(·, 0))∗(x∗) = sup
x∈X

{〈x∗, x〉 − Φ(x, 0)} = min
y∗∈Y ∗ Φ∗(x∗, y∗) ∀x∗ ∈ X∗.

Lemma 1.3. Let X be a normed space and let the convex function f : X → R
have a nonempty domain. To f we attach the function

f̂ : X∗∗ → R, f̂(x∗∗) =
{

f(x), if x∗∗ = x̂,

+∞, otherwise.

If clw∗(f̂) is proper, then f ∗∗ = clw∗(f̂).

Proof. Suppose X ∗∗ endowed with w∗(X∗∗, X∗). Then the conjugate of f̂ ,
f̂∗ : X∗ → R looks for all x∗ ∈ X∗ like

f̂∗(x∗) = sup
x∗∗∈dom(f̂ )

{〈x∗∗, x∗〉 − f̂(x∗∗)} = sup
x∈dom(f )

{〈x∗, x̂〉 − f(x)}

= sup
x∈dom(f )

{〈x∗, x〉 − f(x)} = f∗(x∗).
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Thus, by the Fenchel-Moreau Theorem, one automatically has that the conjugate of
this function, which is nothing but f ∗∗, is equal to clw∗(f̂).

Corollary 1.1. If X is a normed space, for a nonempty convex subset U of it
one has (δU )∗∗ = δ

clw∗(Û)
.

2. NEW FORMULAE FOR BICONJUGATE FUNCTIONS

The perturbation functions play a very important role in duality and, as one can
see further, different functions used in optimization can be obtained from suitably
chosen perturbation functions. For more on the importance of perturbation functions
in convex analysis we refer to [1, 5, 11]. Further, unless otherwise specified, let
X and Y be normed spaces. Since there is no possibility of confusion, denote the
norms on X and Y by ‖ · ‖ and the ones on their duals by ‖ · ‖∗.

2.1. The biconjugate of a general perturbation function

Theorem 2.1. Let the proper convex function Φ : X ×Y → R fulfill the feasi-
bility condition 0 ∈ PrY (dom(Φ)). Then (Φ(·, 0))∗∗ ≥ Φ∗∗(·, 0). If Φ is also lower
semicontinuous, then (Φ(·, 0))∗∗ = Φ∗∗(·, 0) if and only if clw∗

(
infy∗∈Y ∗ Φ∗(·, y∗))

= cl
(
infy∗∈Y ∗ Φ∗(·, y∗)).

Proof. The first inequality follows from (Φ(·, 0))∗ ≤ infy∗∈Y ∗ Φ∗(·, y∗), by
considering the conjugates of these two functions. Take Φ moreover lower semi-
continuous. Then, using Lemma 1.1, one gets

(Φ(·, 0))∗ = clw∗
(

inf
y∗∈Y ∗ Φ∗(·, y∗)

)
≤ clw

(
inf

y∗∈Y ∗ Φ∗(·, y∗)
)

= cl
(

inf
y∗∈Y ∗ Φ∗(·, y∗)

)
≤ inf

y∗∈Y ∗ Φ∗(·, y∗),

from which, by considering the conjugates and taking into consideration that a
function and its closure have the same conjugate, follows

(Φ(·, 0))∗∗ =
(
clw∗

(
inf

y∗∈Y ∗ Φ∗(·, y∗)
))∗ ≥

(
cl

(
inf

y∗∈Y ∗ Φ∗(·, y∗)
))∗

=
(

inf
y∗∈Y ∗ Φ∗(·, y∗)

)∗

and the last term coincides obviously with Φ∗∗(·, 0). It is straightforward that if the
closure of infy∗∈Y ∗ Φ∗(·, y∗) coincides with its weak∗ closure one gets (Φ(·, 0))∗∗

= Φ∗∗(·, 0). Assume now this equality true. Then, by the previous inequality, we
have (

clw∗
(

inf
y∗∈Y ∗ Φ∗(·, y∗)

))∗
=

(
cl

(
inf

y∗∈Y ∗ Φ∗(·, y∗)
))∗

,
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followed by

(3)

(
clw∗

(
inf

y∗∈Y ∗ Φ∗(·, y∗)
))∗∗

(x∗∗∗)

=
(
cl

(
inf

y∗∈Y ∗ Φ∗(·, y∗)
))∗∗

(x∗∗∗) ∀x∗∗∗∈X∗∗∗.

The weak∗ closure of infy∗∈Y ∗ Φ∗(·, y∗) is proper and convex (cf. [1], for in-
stance) and also weak∗ lower semicontinuous, which yields that it is lower semi-
continuous, too. On the other hand, cl

(
infy∗∈Y ∗ Φ∗(·, y∗)) is convex and lower

semicontinuous and also proper because it is greater than or equal to the proper
function clw∗

(
infy∗∈Y ∗ Φ∗(·, y∗)) and if it would be everywhere equal to +∞ then

Φ∗ would be everywhere +∞, too. But when this happens, then Φ∗∗ takes ev-
erywhere on X̂ the value −∞, and this contradicts the properness of Φ, which is
also convex and lower semicontinuous and fulfills Φ(x, 0) = Φ∗∗(x̂, 0) whenever
x ∈ X . Applying now the well-known biconjugate theorem (see [11], for instance),
we obtain

(
clw∗

(
infy∗∈Y ∗ Φ∗(·, y∗)))∗∗(x̂∗) = clw∗

(
infy∗∈Y ∗ Φ∗(·, y∗))(x∗) and(

cl
(
infy∗∈Y ∗ Φ∗(·, y∗)))∗∗(x̂∗) = cl

(
infy∗∈Y ∗ Φ∗(·, y∗))(x∗) ∀x∗ ∈ X∗. Finally,

(3) yields clw∗
(
infy∗∈Y ∗ Φ∗(·, y∗)) = cl

(
infy∗∈Y ∗ Φ∗(·, y∗)).

Theorem 2.2. Let the proper convex lower semicontinuous function Φ :
X × Y → R fulfill 0 ∈ PrY (dom(Φ)). If one has

(RC) PrX∗×R(epi(Φ∗)) is w∗-closed,

or

(RC′) X and Y are Banach spaces and 0 ∈ sqri(PrY (dom(Φ))),

then (Φ(·, 0))∗∗ = Φ∗∗(·, 0).

Proof. Lemma 1.2 says that (RC) is equivalent to (2) which is implied also by
(RC′) according to [11, Theorem 2.7.1]. Since the epigraph of the closure of the
infimal value function of Φ∗ coincides with the closure of the projection of epi(Φ∗)
on X∗ × R and the latter set is both w∗-closed and closed, the conclusion follows
by the previous theorem.

Remark 2.1. Note that the equalities in Theorem 2.1 are further equivalent to
clw∗

(
PrX∗×R(epi(Φ∗)

)
= cl

(
PrX∗×R(epi(Φ∗))

)
. The assertion in Theorem 2.1

can be also derived as a consequence of [12, Proposition 6], by taking A : X →
X × Y , A(x) = (x, 0) and h = Φ. The same applies for (RC′) ⇒ (Φ(·, 0))∗∗ =
Φ∗∗(·, 0) in Theorem 2.2. Because (RC) is equivalent to (2) and (RC′) implies it,
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it is straightforward that (RC ′) yields (RC). There are examples where (RC) is
valid, unlike (RC ′). Therefore one can note that (RC) is indeed weaker than (RC ′).
Usually, the condition (RC) and the ones springing from it are said to be closedness-
type regularity conditions, while (RC ′) belongs to the so-called interiority-type
regularity conditions.

2.2 Biconjugates of the function to be minimized in a constrained convex
optimization problem

Let f : X → R be a proper convex function, h : X → Y • a proper C-convex
function and S ⊆ X a nonempty convex set. Denote G = S∩h−1(−C) and assume
that G ∩ dom(f ) is nonempty.

Consider the general convex optimization problem

(P ) inf
x∈S,

h(x)∈−C

f(x).

Different dual problems can be attached to (P ), some of them by means of the
perturbation theory. In the following we will particularize the function Φ from the
previous subsection to be the perturbation functions which are used to obtain the
Lagrange and Fenchel-Lagrange dual problems to (P ) (cf. [3], for instance). Recall
that Φ : X × Y → R is a perturbation function for the problem (P ) when

(4) Φ(x, 0) = f(x) + δG(x) ∀x ∈ X.

The perturbation function used to attach to (P ) its Lagrange dual problem is

ΦL : X × Y → R, ΦL(x, y) =

{
f(x), if x ∈ S, h(x) ∈ y − C,

+∞, otherwise.

One can verify that this function satisfies (4), is proper and convex, and its conjugate
is

Φ∗
L : X∗×Y ∗ → R, Φ∗

L(x∗, y∗) =

{
(f + ((−y∗)h) + δS)∗(x∗), if y∗ ∈ −C∗,

+∞, otherwise.

Further, one can determine the second conjugate of ΦL, which is

Φ∗∗
L : X∗∗×Y ∗∗ → R, Φ∗∗

L (x∗∗, y∗∗) = sup
y∗∈C∗

{−〈y∗∗, y∗〉+(f+(y∗h)+δS)∗∗(x∗∗)}.

We obtain the following statement.
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Theorem 2.3. One has always (f + δG)∗∗ ≥ supy∗∈C∗(f + (y∗h) + δS)∗∗.
Assuming the additional hypotheses

(HL) f is lower semicontinuous, h is C-epi-closed and S is closed,

fulfilled, it follows that the inequality above is always fulfilled as equality if and
only if clw∗(infy∗∈C∗(f + (y∗h) + δS)∗) = cl(infy∗∈C∗(f + (y∗h) + δS)∗). Under
(HL), if one has

(RCL)
⋃

y∗∈C∗ epi((f + (y∗h) + δS)∗) is w∗-closed,

or

(RC′
L) X and Y are Banach spaces and 0 ∈ sqri(h(S∩dom(f )∩dom(h))+C),

then (f + δG)∗∗ = supy∗∈C∗(f + (y∗h) + δS)∗∗.

Proof. The first part follows directly from Theorem 2.1, noting that (HL) yields
the lower semicontinuity of ΦL. Further, the feasibility condition 0 ∈ PrY (dom
(ΦL)) is equivalent to saying that G ∩ dom(f ) is nonempty, which is true. Noting
that (RC) becomes (RCL) for ΦL and (RC ′) turns into (RC ′

L), we can apply
Theorem 2.2 and we are done.

If we want to separate f from h in the formula of (f + δG)∗∗, a good choice
is to consider the perturbation function which leads to the Fenchel-Lagrange dual
problem to (P ). It is

ΦFL : X × X × Y → R, ΦFL(x, z, y) =
{

f(x + z), if x ∈ S, h(x) ∈ y − C,

+∞, otherwise.

This function satisfies the feasibility condition and (4), being also proper and convex.
Simple calculations show that its conjugate is Φ∗

FL : X∗ × X∗ × Y ∗ → R,

Φ∗
FL(x∗, z∗, y∗) =

{
f∗(z∗) + (((−y∗)h) + δS)∗(x∗ − z∗), if y∗ ∈ −C∗,
+∞, otherwise,

while its second conjugate of turns out to be Φ∗∗
FL : X∗∗ × X∗∗ × Y ∗∗ → R,

Φ∗∗
FL(x∗∗, z∗∗, y∗∗) = f∗∗(x∗∗ + z∗∗) + sup

y∗∈C∗
{−〈y∗∗, y∗〉 + ((y∗h) + δS)∗∗(x∗∗)}.

This perturbation function leads to another formula for the biconjugate of f + δG.



Formulae of Biconjugate Functions 1929

Theorem 2.4. One always has (f+δG)∗∗ ≥ f∗∗+supy∗∈C∗((y∗h)+δS)∗∗. As-
suming the additional hypotheses (H L) fulfilled, it follows that the inequality above
is always fulfilled as equality if and only if cl w∗(infy∗∈C∗(f∗�((y∗h) + δS)∗) =
cl(infy∗∈C∗(f∗�((y∗h) + δS)∗). Under (HL), if one has

(RCFL) epi(f∗) +
⋃

y∗∈C∗ epi(((y∗h) + δS)∗) is w∗-closed,

or

(RC′
FL) X and Y are Banach spaces and

0 ∈ sqri(dom(f ) × C − (epi−C(−h)) ∩ (S × Y)),

then (f + δG)∗∗ = f∗∗ + supy∗∈C∗((y∗h) + δS)∗∗.

Proof. The first part follows directly from Theorem 2.1, noting that (HL) yields
the lower semicontinuity of ΦFL, too. Further, noting that (RC) becomes (RCFL)
for ΦFL and (RC ′) turns into (RC ′

FL), we can apply Theorem 2.2, which yields
the conclusion.

2.3. Biconjugates of the sum of functions to be minimized in an unconstrained
convex optimization problem

In the previous subsection we gave formulae for the biconjugate of the function
to be minimized in a constrained convex optimization problem, where usually La-
grange duality is considered. In order to do similar things for unconstrained convex
optimization problems to which Fenchel dual problems are usually attached, consider
the proper convex functions f : X → R and g : Y → R and the linear continuous
operator A : X → Y fulfilling the feasibility condition A(dom(f )) ∩ dom(g) = ∅.
We are interested to give the biconjugate of the function f + g ◦ A. In order to do
this, let the perturbation function

ΦA : X × Y → R, ΦA(x, y) = f(x) + g(Ax + y).

By construction this is a proper convex function which satisfies the feasibility con-
dition and also ΦA(x, 0) = f(x) + g(Ax) ∀x ∈ X . The conjugate of ΦA is

ΦA : X∗ × Y ∗ → R, ΦA(x∗, y∗) = f∗(x∗ − A∗y∗) + g∗(y∗),

and its biconjugate turns out to be

Φ∗∗
A : X∗∗ × Y ∗∗ → R, Φ∗∗

A (x∗∗, y∗∗) = f∗∗(x∗∗) + g∗∗(A∗∗x∗∗ + y∗∗).

We have the following statement.
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Theorem 2.5. One always has (f + g ◦A)∗∗ ≥ f∗∗ + g∗∗ ◦A∗∗. Assuming the
additional hypotheses

(HA) f and g are lower semicontinuous,

fulfilled, it follows that the inequality above is always fulfilled as equality if and
only if clw∗(f∗�A∗g∗) = cl(f∗�A∗g∗). Under (HA), if one has

(RCA) epi(f∗) + (A∗ × idR)(epi(g∗)) is w∗-closed,

or

(RC′
A) X and Y are Banach spaces and 0 ∈ sqri(dom(g)− A(dom(f ))),

then (f + g ◦ A)∗∗ = f∗∗ + g∗∗ ◦ A∗∗.

Proof. The first part follows directly from Theorem 2.1, noting that (HA)
yields the lower semicontinuity of ΦA. Further, noting that (RC) becomes (RCA)
for ΦA and (RC ′) turns into (RC ′

A), we can apply Theorem 2.2, which yields the
conclusion.

When f(x) = 0 ∀x ∈ X , the feasibility condition becomes A(X)∩dom(g) = ∅
and the result given above collapses into the following statement.

Theorem 2.6. One always has (g ◦A)∗∗ ≥ g∗∗ ◦A∗∗. Assuming the additional
hypothesis

(H0) g is lower semicontinuous,

fulfilled, it follows that the inequality above is always fulfilled as equality if and
only if clw∗(A∗g∗) = cl(A∗g∗). Under (H0), if one has

(RC0) (A∗ × idR)(epi(g∗)) is w∗-closed,

or

(RC′
0) X and Y are Banach spaces and 0 ∈ sqri(dom(g)−A(X)),

then (g ◦A)∗∗ = g∗∗ ◦ A∗∗.

When taking Y = Xn, fi : X → R, i = 1, . . . , n, proper convex functions,
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g(x) =
∑n

i=1 fi(xi), where x = (x1, . . . , xn) ∈ Xn and Ax = (x, . . . , x), the fea-
sibility condition becomes ∩n

i=1dom(fi) = ∅ and we obtain the following assertions.
Theorem 2.7. One always has (

∑n
i=1 fi)∗∗ ≥

∑n
i=1 f∗∗

i . Assuming the addi-
tional hypotheses
(Hn) fi is lower semicontinuous, i = 1, . . . , n,

fulfilled, it follows that the inequality above is always fulfilled as equality if and
only if clw∗(�n

i=1f
∗
i ) = cl(�n

i=1f
∗
i ). Under (Hn), if one has

(RCn)
n∑

i=1
epi(f∗

i ) is w∗-closed,

or

(RC′
n) X is a Banach space and 0 ∈ sqri

( n∏
i=1

dom(fi) − ∆Xn

)
,

then (
∑n

i=1 fi)∗∗ =
∑n

i=1 f∗∗
i .

Taking in this statement n = 2 or from Theorem 2.5 in case X = Y and
A = idX , the feasibility condition turns into dom(f )∩ dom(g) = ∅ and we get the
following statement.

Theorem 2.8. One always has (f +g)∗∗ ≥ f∗∗+g∗∗. Assuming the additional
hypotheses (HA) fulfilled, it follows that the inequality above is always fulfilled as
equality if and only if clw∗(f∗�g∗) = cl(f∗�g∗). Under (HA), if one has

(RCS) epi(f∗) + epi(g∗) is w∗-closed,

or

(RC′
S) X is a Banach space and 0 ∈ sqri(dom(g)− dom(f )),

then (f + g)∗∗ = f∗∗ + g∗∗.

Remark 2.2. In the last three theorems we rediscover and partially extend
some recent results given in [12].

Using Theorem 2.8 and Corollary 1.1 we can give another formula for the
biconjugate of the function f + δU , where U ⊆ X is a nonempty convex set.

Theorem 2.9. One always has (f + δU )∗∗ ≥ f∗∗ + δ
clw∗(Û)

. Assuming the
additional hypotheses
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(HF ) f is lower semicontinuous and U is closed,

fulfilled, it follows that the inequality above is always fulfilled as equality if and
only if clw∗(f∗�σU) = cl(f∗�σU ). Under (HF ), if one has

(RCF ) epi(f∗) + epiσU is w∗-closed,

or

(RC′
F ) X is a Banach space and 0 ∈ sqri(dom(f ) − U),

then (f + δU )∗∗ = f∗∗ + δ
clw∗(Û)

.

Remark 2.3. When U coincides with G, the feasible set of the problem (P )
considered earlier, the statement from above gives another characterization of the
biconjugate of f +δG which corresponds to the perturbation function used to attach
to (P ) its Fenchel dual problem, namely

ΦF : X × X → R, ΦF (x, z) =

{
f(x + z), if x ∈ G,

+∞, otherwise.

Remark 2.4. A sufficient hypothesis to have G closed is to take S closed and
h C-epi-closed. Note also that under these hypotheses one has (cf. [2]) epiσG =
clw∗(epi(σS) + ∪y∗∈C∗epi((y∗h)∗)).

3. OTHER IMPORTANT BICONJUGATES

In this section we give formulae for the biconjugates of other important functions
in optimization, namely composed convex functions and indicators of constraint sets.

3.1. Biconjugates of the composed convex functions

Consider the proper convex function f :X→R, the proper convex C-increasing
function g : Y → R with the convention g(∞C) = +∞ and the proper C-convex
function h : X → Y •. We impose moreover the feasibility condition

(
h(dom(h) ∩

dom(f )) + C
) ∩ dom(g) = ∅. We give two formulae for the biconjugate of the

function f + g ◦ h, by considering different perturbation functions (see also [1]).
Let first the perturbation function

Φ1 : X × Y → R, Φ1(x, y) = f(x) + g(h(x) + y).
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It is proper and convex, fulfills the feasibility condition required in Theorem 2.1
and Φ1(x, 0) = (f + g ◦ h)(x) ∀x ∈ X , and its conjugate function turns out to be

Φ∗
1 : X∗ × Y ∗ → R, Φ∗

1(x
∗, y∗) =

{
g∗(y∗) + (f + (y∗h))∗(x∗), if y∗ ∈ C∗,

+∞, otherwise.

Here we used the fact that g∗(y∗) = +∞ whenever y∗ /∈ C∗. The biconjugate of
Φ1 is Φ∗∗

1 : X∗∗ × Y ∗∗ → R,

Φ∗∗
1 (x∗∗, y∗∗) = sup

x∗∈X∗,
y∗∈C∗

{〈x∗∗, x∗〉 + 〈y∗∗, y∗〉 − g∗(y∗) − (f + (y∗h))∗(x∗)}

= sup
y∗∈C∗

{(f + (y∗h))∗∗(x∗∗) + 〈y∗∗, y∗〉 − g∗(y∗)}.

We are ready now to give the first formula for the biconjugate of f + g ◦ h.

Theorem 3.1. One always has (f + g ◦ h)∗∗ ≥ supy∗∈C∗{(f + (y∗h))∗∗(·)−
g∗(y∗)}. Assuming the additional hypotheses

(HCC) f and g are lower semicontinuous and h is star C-lower semicontinuous,

fulfilled, it follows that the inequality above is always fulfilled as equality if and only
if clw∗(infy∗∈C∗{(f+(y∗h))∗(·)+g∗(y∗)} = cl(infy∗∈C∗{(f+(y∗h))∗(·)+g∗(y∗)}.
Under (HCC), if one has

(RC1)
⋃

y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((f + (y∗h))∗)

)
is w∗-closed,

or

(RC′
1) X and Y are Banach spaces and 0 ∈ sqri(dom(g)−h(dom(f )∩dom(h))),

then (f + g ◦ h)∗∗ = supy∗∈dom(g∗){(f + (y∗h))∗∗(·)− g∗(y∗)}.
Proof. The first part follows directly from Theorem 2.1, since (HCC) guarantees

(cf. [1]) that the proper convex function Φ1 coincides at each (x, y) ∈ X ×Y with
Φ∗∗

1 (x̂, ŷ), thus it is lower semicontinuous. Further, noting that (RC) becomes
(RC1) for Φ1 and (RC ′) turns into (RC ′

1), we can apply Theorem 2.2, which
yields the conclusion.

If we want to have f separated from h in the formula of the biconjugate, the
following perturbation function can be considered

Φ2 : X × X × Y → R, Φ2(x, z, y) = f(x + z) + g(h(x) + y).



1934 Radu Ioan Boţ and Sorin-Mihai Grad

It is proper and convex, fulfills the feasibility condition required in Theorem 2.1 and
Φ2(x, 0, 0) = (f + g ◦ h)(x) ∀x ∈ X . Using again that g∗(y∗) = +∞ whenever
y∗ /∈ C∗, the conjugate function of Φ2 turns out to be Φ∗

2 : X∗ × X∗ × Y ∗ → R,

Φ∗
2(x

∗, z∗, y∗) =

{
f∗(z∗) + g∗(y∗) + (y∗h)∗(x∗ − z∗), if y∗ ∈ C∗,

+∞, otherwise,

while its biconjugate is Φ∗∗
2 : X∗∗ × X∗∗ × Y ∗∗ → R,

Φ∗∗
2 (x∗∗, z∗∗, y∗∗) = sup

x∗,z∗∈X∗,y∗∈C∗
{〈x∗∗, x∗〉+〈z∗∗, z∗〉+〈y∗∗, y∗〉−f∗(z∗)−g∗(y∗)

−(y∗h)∗(x∗−z∗)} = f∗∗(x∗∗ + z∗∗)+ sup
y∗∈C∗

{(y∗h)∗∗(x∗∗)+〈y∗∗, y∗〉−g∗(y∗)} .

We are ready now to give the second formula for the biconjugate of f +g ◦h, where
f and h are separated.

Theorem 3.2. One always has (f + g ◦ h)∗∗ ≥ f∗∗ + supy∗∈C∗{(y∗h)∗∗(·)−
g∗(y∗)}. Assuming the additional hypotheses (H CC) fulfilled, the inequality above
is always fulfilled as equality if and only if cl w∗(infy∗∈C∗{(f∗�(y∗h)∗)(·)+g∗(y∗)})
= cl(infy∗∈C∗{(f∗�(y∗h)∗)(·) + g∗(y∗)}). Under (HCC), if one has

(RC2) epi(f∗) +
⋃

y∗∈dom(g∗)
(
(0, g∗(y∗)) + epi((y∗h))∗)

)
isw∗ − closed,

or

(RC′
2) X and Y are Banach spaces and 0 ∈ sqri(dom(f )× dom(g)− epiC(h)),

then (f + g ◦ h)∗∗ = f∗∗ + sup
y∗∈dom(g∗)

{(y∗h)∗∗(·)− g∗(y∗)}.

Proof. The first part follows directly from Theorem 2.1, because (HCC) guar-
antees (cf. [1]) that the proper convex function Φ2 coincides at each (x, z, y) ∈
X ×X ×Y with Φ∗∗

2 (x̂, ẑ, ŷ), thus it is lower semicontinuous. Further, noting that
(RC) becomes (RC2) for Φ2 and (RC ′) turns into (RC ′

2), we can apply Theorem
2.2, which yields the conclusion.

Remark 3.1. When (HCC) is valid, one has (f + g ◦ h)∗∗(x̂) = f∗∗(x̂) +
g∗∗(ĥ(x)) ∀x ∈ X .

3.2. Biconjugates of indicators of constraint sets

Let h : X → Y • be a proper C-convex function with the property that
h−1(−C) = ∅. The conjugate of the function δh−1(−C) plays important roles
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in many recent papers on duality in convex optimization. Thus the question how
does its biconjugate look when the duals of the spaces X and Y are endowed with
the strong topology arises naturally. We give in the following a statement for this
biconjugate function. It can be obtained from Theorem 2.3 or Theorem 2.4 for
f(x) = 0 ∀x ∈ X and S = X or from Theorem 3.1 or Theorem 3.2 for f(x) = 0
∀x ∈ X and g = δ−C .

Theorem 3.3. One always has δ∗∗h−1(−C) ≥ supy∗∈C∗(y∗h)∗∗. Assuming the
additional hypothesis

(HC) h is C-epi-closed,

fulfilled, it follows that the inequality above is always fulfilled as equality if and
only if clw∗(infy∗∈C∗(y∗h)∗) = cl(infy∗∈C∗(y∗h)∗). Under (HC), if one has

(RCC)
⋃

y∗∈C∗ epi((y∗h)∗) is w∗-closed,

or

(RC′
C) X and Y are Banach spaces and 0 ∈ sqri(h(dom(h)) + C),

then δ∗∗
h−1(−C)

= supy∗∈C∗(y∗h)∗∗.

Remark 3.2. One may wonder how can we apply Theorem 3.1 or Theorem 3.2
to obtain the statement above, since in their additional hypotheses (HCC) h needs
to be taken star C-lower semicontinuous, not C-epi-closed as in (HC). Fortunately,
in the special case f(x) = 0 ∀x ∈ X and g = δ−C the perturbation functions Φ1

and Φ2 are lower semicontinuous even when we weaken the topological assumption
on h from star C-lower semicontinuity to (HC).

4. THE BICONJUGATE OF THE SUPREMUM OF A FAMILY OF CONVEX FUNCTIONS

In the recent papers [4, 6, 12] the biconjugate of the maximum of two proper
convex functions defined on a normed space is determined via different approaches.
The natural question which arises is how would the formula of the biconjugate of
the supremum of a possibly infinite family of proper convex functions look like
and under which regularity conditions. In the following we give an answer to this
question and we show that the formulae we give hold even in locally convex spaces.

Consider further a dual system formed by a separated locally convex vector
space X and its topological dual X∗. According to [7], with a family M of
totally saturated bounded subsets of X one can induce on X∗ the so-called uniform
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convergence topology onM denoted τM. Consider further X∗ endowed with τM.
Restricting the sets inM to satisfy certain properties, one obtains different classical
locally convex topologies onX∗. For instance, when all the elements ofM are finite
sets τM becomes the weak∗ topology, when they are absolutely convex and weakly
compact it coincides with the Mackey topology τk , while when all these sets are
weakly bounded we get the strong topology on X∗, τb. Note that τb coincides, when
X is a normed space, with the strong topology induced by the norm on X∗. The
weak∗ topology is the weakest uniform convergence topology that can be considered
on X∗, while τb is the strongest. The dual of X∗ is X if and only if τM is weaker
than τk, but stronger than weak∗. On the other hand, when τM is strictly stronger
than τk , but weaker than τb, the dual of X∗, denoted X∗∗ and referred to also as
the bidual of X , does not coincide anymore with X . Note also that by endowing
X∗ with any τM stronger than weak∗ its dual has X among its linear subspaces.

In this section we take X to be a separated locally convex space and its dual
X∗ to be endowed with an arbitrary uniform convergence topology τM which is
strictly stronger than τk, but weaker than τb. Then X∗ has a dual X ∗∗ which
does not coincide with X . In this case the biconjugate of a function f : X → R is
defined analogously to the case when X is normed. Let the proper convex functions
ft : X → R, t ∈ T , where T is an arbitrary index set, possibly uncountable, such
that dom

(
supt∈T ft

) = ∅. This yields the nonemptiness of the set ∩t∈Tdom(ft).
R

T is the space of all functions y : T → R, endowed with the product topology and
with the operations being the usual pointwise ones. For simplicity, denote yt = y(t)
∀y ∈ R

T ∀t ∈ T . Let ∆RT be the subset of the constant functions y ∈ R
T . The

dual space of R
T is (RT )∗, the so-called space of generalized finite sequences λ =

(λt)t∈T such that λt ∈ R ∀t ∈ T , and with only finitely many λt different from zero.
The positive cone in R

T is R
T
+ = {y ∈ R

T : yt = y(t) ≥ 0 ∀t ∈ T}, and its dual
is the positive cone in (RT )∗, namely (RT

+)∗ = {y∗ = (y∗t )t∈T ∈ (RT )∗ : y∗t ≥ 0
∀t ∈ T}. Denote also B = {y∗ ∈ (RT

+)∗ :
∑

t∈T y∗t = 1}. Using previous results
from this paper we can formulate the following statement for the biconjugate of
supt∈T ft.

Theorem 4.1. One always has
(
supt∈T ft

)∗∗ ≥ supy∗∈B
(∑

t∈T y∗t ft

)∗∗. As-
suming the additional hypotheses

(HT ) ft is lower semicontinuous whenever t ∈ T ,

fulfilled, there is always

(5)
(

sup
t∈T

ft

)∗∗
=

(
clw∗

(
inf

y∗∈B

( ∑
t∈T

y∗t ft

)∗))∗ ≥ sup
y∗∈B

(∑
t∈T

y∗t ft

)∗∗
.

When X is a normed space the inequality in (5) is always fulfilled as equality if
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and only if clw∗(infy∗∈B(
∑

t∈T y∗t ft)∗) = cl(infy∗∈B(
∑

t∈T y∗t ft)∗).
Under (HT ), if one has

(RCT ) co
( ⋃

t∈T epi(f∗
t )

)
is w∗-closed,

or

(RC′
T ) T is at most countable, X is a Fr échet space and

0 ∈ sqri
( ∏

t∈T

ft

( ⋂
t∈T dom(ft)

)
− ∆RT + R

T
+

)
,

or

(RC′′
T ) T is finite,

then

(6)
(

sup
t∈T

ft

)∗∗
= sup

y∗∈B

(∑
t∈T

y∗t ft

)∗∗
.

Proof. For each y∗ ∈ B one has supt∈T ft ≥
∑

t∈T y∗t ft and so
(
supt∈T ft

)∗∗≥( ∑
t∈T y∗t ft

)∗∗. This yields the first inequality.
From [1, Section 4.3] we know that, provided the fulfillment of (HT ), one

always has (supt∈T ft)∗ = clw∗
(
infy∗∈B

(∑
t∈T y∗t ft

)∗). Conjugating in both sides
we obtain (supt∈T ft)∗∗ =

(
clw∗

(
infy∗∈B

(∑
t∈T y∗t ft

)∗))∗. On the other hand,
clw∗

(
infy∗∈B

(∑
t∈T y∗t ft

)∗) ≤ infy∗∈B
(∑

t∈T y∗t ft

)∗, which yields
(7)

(
clw∗

(
inf

y∗∈B

( ∑
t∈T

y∗t ft

)∗))∗ ≥
(

inf
y∗∈B

( ∑
t∈T

y∗t ft

)∗)∗
= sup

y∗∈B

(∑
t∈T

y∗t ft

)∗∗
,

and using the equality obtained before we get (5). If clw∗(infy∗∈B(
∑

t∈T y∗t ft)∗) =
cl(infy∗∈B(

∑
t∈T y∗t ft)∗), the inequality in (7) is fulfilled as equality, since a func-

tion and its lower semicontinuous hull have the same conjugate, and this means that
the inequality in (5) turns into an equality. So far we did no need the additional
assumption on the space X to be normed. But this is needed to show the other im-
plication in the desired equivalence regarding the equality case in the inequality from
(5). If this inequality is fulfilled as equality, then

(
clw∗(infy∗∈B(

∑
t∈T y∗t ft)∗)

)∗ =(
cl(infy∗∈B(

∑
t∈T y∗t ft)∗)

)∗ and, using a similar argumentation to the one in the
proof of Theorem 2.1, we obtain clw∗(infy∗∈B (

∑
t∈T y∗t ft)∗) = cl(infy∗∈B(

∑
t∈T

y∗t ft)∗). This was the only place in this subsection whereX had to be taken normed.
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To prove the second part of the theorem we treat each regularity condition
separately. First, note that there is always

co
( ⋃

t∈T epi(f∗
t )

)
⊆

⋃
y∗∈B epi

(( ∑
t∈T

y∗t ft

)∗)
⊆ epi

(
inf

y∗∈B

(∑
t∈T

y∗t ft

)∗) ⊆ epi
((

sup
t∈T

ft

)∗)
,

and the weak∗ closures of all these sets coincide with epi
((

supt∈T ft

)∗). Assuming
the validity of (RCT ), the sets in the chain of inclusions from above become equal,
therefore one gets

(8)
(

sup
t∈T

ft

)∗
= min

y∗∈B

( ∑
t∈T

y∗ft

)∗
.

Now we deal with (RC ′
T ). Note that for any arbitrary x∗ ∈ X∗, we have

(9) −
(

sup
t∈T

ft

)∗
(x∗) = inf

x∈X

{
− 〈x∗, x〉+ sup

t∈T
ft(x)

}
= inf

x∈X,u∈R,
ft(x)≤u∀t∈T

{u−〈x∗, x〉}.

Let us take a closer look to the term in the right-hand side of (9). Removing the
term 〈x∗, x〉, we can see inf{u : x ∈ X, u ∈ R, ft(x) ≤ u ∀t ∈ T} as a convex
minimization problem like (P ), for X = X×R, Y = R

T , S = X×R, f(x, u) = u

and

h(x, u) =

 (ft(x)− u)t∈T , if x ∈
⋂

t∈T dom(ft),

∞
RT

+
, otherwise.

One can easily notice that S is nonempty, convex and closed, f is proper, convex
and lower semicontinuous and it can be proven that h is proper, R

T
+-convex and

R
T
+-epi-closed. Note moreover that S ∩h−1(−R

T
+)∩ dom(f ) = ∅. It is known (cf.

[1] for instance) that (RCL) guarantees in this case the stable strong duality for
the problem (P ) and its Lagrange dual. Since (RC′

L) yields (RCL), the mentioned
stable strong duality holds under the fulfillment of (RC ′

L), too. Giving to S, f and
h the values assigned above, it is not hard to see that in this case (RC ′

L) turns into
(RC′

T ). Assuming this condition fulfilled, one obtains (see also [2]) then that there
is stable strong duality for the special case of the problem (P ) taken above and its
Lagrange dual, which yields that for all x∗ ∈ X∗ one has

(10) inf
x∈X,u∈R,

ft(x)≤u∀t∈T

{u − 〈x∗, x〉} = max
y∗∈(RT

+)∗
inf

x∈X,
u∈R

{u − 〈x∗, x〉+ (y∗h)(x, u)}.

Rewriting the term in the right-hand side, we obtain further

inf
x∈X,u∈R,

ft(x)≤u∀t∈T

{u − 〈x∗, x〉} = max
y∗∈(RT

+)∗
inf

x∈X,
u∈R

{
u − 〈x∗, x〉+

∑
t∈T

y∗t (ft(x) − u)
}
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= max
y∗∈(RT

+)∗

{
inf
x∈X

{
− 〈x∗, x〉+

∑
t∈T

y∗t ft(x)
}

+ inf
u∈R

u
(
1 −

∑
t∈T

y∗t
)}

= max
y∗∈B

−
( ∑

t∈T

y∗t ft

)∗
(x∗) = − min

y∗∈B

(∑
t∈T

y∗t ft

)∗
(x∗).

Using (9) the equalities above yield (8).
If (RC′′

T ) is valid, let T = {1, . . . , n}. In this case R
T becomes R

n and we
use the fact that int(Rn

+) = ∅. For any x̄ ∈ ∩n
t=1dom(ft) there is always an ū >

maxt=1,...,n ft(x̄) such that (ft(x̄) − ū)t=1,...,n ∈ −int(Rn
+). This means actually

that for each x∗ ∈ X∗ the classical Slater Constraint Qualification for the convex
minimization problem considered in the left-hand side of (10) is valid. Then there
is strong duality for this problem and its Lagrange dual, which lies in the right-hand
side of (10), whenever x∗ ∈ X∗. Relation (8) follows analogously to the case of the
validity of (RC′

T ). Alternatively, when (RC′′
T ) holds one can apply [11, Corollary

2.8.11] to obtain (sup1≤t≤n ft)∗ = min{(∑n
t=1 y∗t ft)∗ : y∗t ≥ 0,

∑n
t=1 y∗t = 1},

which is nothing but (8).
We have proven that under any of the three regularity conditions we considered

(8) holds. Taking the conjugates of the terms in both sides of it, (6) follows.

Remark 4.1. Note that when T is uncountable R
T is not a Fréchet space, thus

no interiority-type regularity conditions originating from (RC′
L) can be considered

in the statement above in this case.
We proved that provided the validity (HT ) and of each of (RCT ), (RC′

T ) and
(RC′′

T ) one has (6). Since the regularity conditions given in [4, 6, 12] ensure that
the biconjugate of the maximum of two functions coincides with the maximum of
their biconjugates, it is natural to look for conditions which guarantee the formula(
supt∈T ft

)∗∗ = supt∈T f∗∗
t . In the following we show that (RCT ) guarantees this

formula, too.

Theorem 4.2. One always has
(
supt∈T ft

)∗∗ ≥ supt∈T f∗∗
t . Assuming the ad-

ditional hypothesis (HT ) and the condition (RCT ) fulfilled, it follows
(
supt∈T ft

)∗∗
= supt∈T f∗∗

t .

Proof. Conjugating twice both sides of the obvious inequality fj ≤ supt∈T ft

∀j ∈ T we get f∗∗
j ≤ (

supt∈T ft

)∗∗ ∀j ∈ T . Taking the supremum regarding j ∈ T

in the left-hand side we obtain the desired inequality, sup t∈T f∗∗
t ≤ (

supt∈T ft

)∗∗.
In [1, Section 4.3] we have shown that there is

(11) epi
((

sup
t∈T

ft

)∗)
= clw∗

(
co

(
epi

(
inf
t∈T

f∗
t

)))
= clw∗

(
co

( ⋃
t∈T

epi(f∗
t )

))
.
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Since
⋃

t∈T epi(f∗
t ) is a subset of epi(inf t∈T f∗

t ), one has

(12) co
( ⋃

t∈T

epi(f∗
t )

)
⊆ co

(
epi

(
inf
t∈T

f∗
t

))
.

Let (x, r) ∈ co
(
epi

(
inf t∈T f∗

t

))
. Using the definition of the convex hull of a

function it follows immediately that (x, r) ∈ epi
(
co

(
inft∈T f∗

t

))
, therefore

(13) co
(
epi

(
inf
t∈T

f∗
t

))
⊆ epi

(
co

(
inf
t∈T

f∗
t

))
.

As

clw∗
(
epi

(
co

(
inf
t∈T

f∗
t

)))
=epi

(
clw∗

(
co

(
inf
t∈T

f∗
t

)))
=clw∗

(
co

(
epi

(
inf
t∈T

f∗
t

)))
,

from (11), (12) and (13) we obtain, using also the fulfillment of (RCT ), epi((supt∈T

ft)∗) = epi(co (inft∈T f∗
t )), which is nothing but (supt∈T ft)∗ = co(inft∈T f∗

t ).
Considering the conjugates of these functions one gets (supt∈T ft)∗∗ = (co(inft∈T

f∗
t ))∗. Since the convex hull of a function is greater than or equal to the lower semi-
continuous convex hull of the same function and it is less than or equal to the func-
tion itself and [11, Theorem 2.3.1(iv)] asserts that the conjugates of cl(co(f)) and f

coincide for each function f , it follows that (co(inft∈T f∗
t ))∗ = (inft∈T f∗

t )∗. There-
fore, we have (supt∈T ft)∗∗ = (inft∈T f∗

t )∗. Since (inft∈T f∗
t )∗ = supt∈T f∗∗

t , one
gets (supt∈T ft)∗∗ = supt∈T f∗∗

t .

Remark 4.2. When T contains only two elements, say T = {1, 2}, we obtain
from the statement given above a new regularity condition that, provided the lower
semicontinuity of the proper convex functions f1, f2 : X → R, ensures the formula
(sup{f1, f2})∗∗ = sup{f∗∗

1 , f∗∗
2 }, namely

(RCM) co
(
epi(f∗

1 )
⋃

epi(f∗
2 )

)
is w∗-closed.

Regularity conditions of interiority-type which guarantee the same formula can be
found also in [6, Theorem 6], [4, Theorem 3.1] and [12, Proposition 7]. In all these
papers X was considered a normed space, and this fact plays a decisive role in the
proofs of the mentioned formula, while our results are given for X locally convex.
Of course, we can formulate them also in the framework used in Sections 2 and 3
and in [4, 6, 12] by taking X normed and X ∗ endowed with τb.

Remark 4.3. Taking into consideration the discussion from the beginning of
this section, one can expect to extend in a natural way the results given in the
previous two sections from normed to locally convex spaces, in which case the
regularity conditions arising from (RC′) would impose the spaces to be Fréchet,
not Banach.
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