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Radu Ioan Boţ ∗ Adela Elisabeta Capătă†

Abstract. In this paper we provide first existence results for solutions of
the generalized equilibrium problem with composed functions (GEPC) under
generalized convexity assumptions. Then we construct by employing some tools
specific to the theory of conjugate duality two gap functions for (GEPC). The
importance of these gap functions is to be seen in the fact that they equiva-
lently characterize the solutions of an equilibrium problem. We also prove that
for some particular instances of (GEPC) the gap functions we introduce here
become among others the celebrated Auslender’s and Giannessi’s gap functions.
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1 Introduction

In this paper we investigate the following generalized equilibrium problem with
composed functions

(GEPC) find ā ∈ A such that ϕ(ā, b) + g ◦ h(b) ≥ g ◦ h(ā) for all b ∈ A,

where X and Z are two topological vector spaces, the latter being partially or-
dered by a convex closed cone C, A is a nonempty subset of X, h : A → Z and
g : Z → R are given functions, while ϕ : A × A → R has the property that
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ϕ(a, a) = 0 for each a ∈ A. We provide, on the one hand, weak conditions that
guarantee the existence of solutions for this equilibrium problem and construct,
on the other hand, gap functions which constitute a valuable tool for determining
the solutions of (GEPC).

In section 2 we introduce first some preliminary notions in connection to con-
jugate functions. Then we recall some generalized convexity notions for vector
functions and discuss the relations between them. The notion of C-lower semi-
continuity for vector functions in the sense of Penot and Théra (cf. [19]) along
with some properties of it are also considered. We close the section with a result
on the existence of solutions for equilibrium problems which has been recently
introduced in [8].

The first result we give in section 3 is a theorem that characterizes the exis-
tence of a solution for (GEPC) under weak generalized convexity assumptions
and weak topological assumptions for the functions ϕ, g and h. A stronger ver-
sion of this result, where the generalized convexity assumptions are considered
only for ϕ and h, is also provided in case g is convex and C-increasing. This is
followed by another existence result given in the classical convex setting.

The same setting is maintained in section 4, where we attach for the beginning
a composed convex optimization problem to the equilibrium problem (GEPC).
Two conjugate dual problems (cf. [7]) of the composed convex problem are pro-
vided along with corresponding regularity conditions that ensure the so-called
strong duality. We use the formulation of the optimal objective value of the dual
problems in order to define the two gap functions for (GEPC) (see also [2,3] for
a similar approach).

In the last section of the paper we consider, both, the generalized equilibrium
problem and the equilibrium problem with a basic set defined via cone-inequality
constraints. These problems can be seen as particular instances of (GEPC)
and therefore we derive by means of the results obtained in the sections 3 and
4 existence results, respectively, we construct corresponding gap functions for
them. In this way we rediscover the gap function for the classical equilibrium
problem introduced in [17]. Whenever the equilibrium problem is reduced to
a variational inequality the gap functions become among others the celebrated
Auslender’s (cf. [4]) and Giannessi’s gap functions (cf. [12]).

2 Notations and preliminaries

Consider the topological vector spaces X and its topological dual space X∗. We
denote by 〈x∗, x〉 = x∗(x) the value at x ∈ X of the continuous linear functional
x∗ ∈ X∗. For a set U ⊆ X we denote by sqri(U) its strong quasi-relative interior,
which in case U is convex represents the set of the elements u ∈ U such that
∪λ>0 λ(U − u) is a closed linear subspace. By δU : X → R = R ∪ {±∞}, where
δU(x) = 0 for x ∈ U and δU(x) = +∞, otherwise, we denote the indicator
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function of U .
Having a function f : X → R = R ∪ {±∞} we use the classical notations for

domain dom(f) = {x ∈ X : f(x) < +∞} and epigraph epi(f) = {(x, r) ∈
X × R : f(x) ≤ r}. We call f proper if f(x) > −∞ for all x ∈ X and
dom(f) 6= ∅. The Fenchel-Moreau conjugate function of f is f ∗ : X∗ → R,
f ∗(x∗) = supx∈X{〈x∗, x〉 − f(x)}. Whenever f : U → R is defined on U and
takes (only) real values we denote by f ∗U : X∗ → R, f ∗U(x∗) = (f + δU)∗(x∗) =
supx∈U{〈x∗, x〉 − f(x)} the so-called conjugate function of f regarding the set U .
Between a function and its conjugate there is Young’s inequality f ∗(x∗) + f(x) ≥
〈x∗, x〉 for all x ∈ X and all x∗ ∈ X∗.

Take Z another topological vector space along with its topological dual space
Z∗ and assume that Z is partially ordered by a nonempty convex closed cone
C, i.e. on Z there is the partial order “≤C”, defined by z ≤C y ⇔ y − z ∈ C
whenever z, y ∈ Z. Obviously, by y ≥C z for y, z ∈ Z we understand z ≤C y. To
Z we attach a greatest element with respect to “≤C” which does not belong to Z,
denoted by∞C , and let Z• = Z∪{∞C}. Then for any z ∈ Z• one has z ≤C ∞C .
We consider on Z• the following operations: z + ∞C = ∞C + z = ∞C and
t · ∞C =∞C for all z ∈ Z and all t ≥ 0. Having a set U ⊆ X, in analogy to the
indicator function, we consider the function δ•U : X → Z•, defined by δ•U(x) = 0
for x ∈ U and δ•U(x) =∞C , otherwise, which we call the vector indicator function
of the set U .

A function g : Z• → R is said to be C-increasing if g(∞C) = +∞ and
for y, z ∈ Z• such that z ≤C y one has g(z) ≤ g(y). The dual cone of C is
C∗ = {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0 for all z ∈ C}. By convention, let 〈z∗,∞C〉 = +∞
whenever z∗ ∈ C∗.

Next we extend some of the notions from above to vector functions. Let be
h : X → Z•. The domain of the function h is defined by dom(h) = {x ∈ X :
h(x) ∈ Z}, while its C-epigraph by epiC(h) = {(x, z) ∈ X × Z : z ∈ h(x) + C}.
We say that h is proper whenever dom(h) 6= ∅. For z∗ ∈ C∗ we consider the
function (z∗h) : X → R defined by (z∗h)(x) = 〈z∗, h(x)〉. The conventions made
above yield that dom(z∗h) = dom(h) for all z∗ ∈ C∗.

In the following we consider some generalized convexity notions for vector
functions. Let A ⊆ X be a nonempty set and h : A → Z a given function. We
say that h is C-convex on A (cf. [10]) if A is convex and for all t ∈ [0, 1] and
a1, a2 ∈ A one has

h(ta1 + (1− t)a2) ≤C th(a1) + (1− t)h(a2).

We notice that h is C-convex on A if and only if epiC(h+ δ•A) is a convex set.
For the next notion we refer to the paper of Ky Fan [11]. We say that h is

C-convexlike on A if for all t ∈ [0, 1] and a1, a2 ∈ A there exists a ∈ A such that

h(a) ≤C th(a1) + (1− t)h(a2).
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We notice that h is C-convexlike on A if and only if h(A) + C is a convex set.
Obviously, if h is C-convex on A, then h is C-convexlike on A.

The notion that we introduce next slightly generalizes a notion due to Jeyaku-
mar (cf. [13]). Assume that the cone C is solid, i.e. int(C) 6= ∅.. We say that h
is C-subconvexlike on A if for all c ∈ int(C), t ∈ [0, 1] and a1, a2 ∈ A there exists
a ∈ A such that

h(a) ≤C th(a1) + (1− t)h(a2) + c.

We refer to [5] for the proof of the fact that h is C-subconvexlike on A if and
only if h(A) + int(C) is a convex set. Obviously, when int(C) 6= ∅, then h is C-
convexlike on A implies h is C-subconvexlike on A. The following characterization
of a C-subconvexlike function was given in [18].

Lemma 2.1. Let A ⊆ X be a nonempty set, h : A→ Z a given function and C
a convex solid closed cone. The following assertions are equivalent:

(i) h is C-subconvexlike on A;

(ii) there exists c ∈ C such that for all ε > 0, t ∈ [0, 1] and a1, a2 ∈ A there
exists a ∈ A such that

f(a) ≤C tf(a1) + (1− t)h(a2) + εc;

(iii) there exists c ∈ int(C) such that for all ε > 0, t ∈ [0, 1] and a1, a2 ∈ A there
exists a ∈ A such that

f(a) ≤C tf(a1) + (1− t)h(a2) + εc;

The function h : A→ Z is called C-concave (C-concavelike, C-subconcavelike)
on A if −h is C-convex (C-convexlike, C-subconvexlike) on A.

In the following we turn our attention to a generalization of the classical
lower semicontinuity to vector functions, the so-called C-lower semicontinuity
introduced by Penot and Théra in [19] (see also [1,9]). We refer for other gener-
alizations of the lower semicontinuity to [14,15].

Definition 2.1. A function h : X → Z• is said to be C-lower semicontinuous
at x ∈ X if for any neighborhood V ⊆ Z of zero and for any z ∈ Z, satisfying
z ≤C h(x), there exists a neighborhood U ⊆ X of x such that

h(U) ⊆ z + V + C ∪ {∞C}.

Remark 2.1. If h(x) ∈ Z, then the above definition amounts to saying that for
any neighborhood V ⊆ Z of zero there exists a neighborhood U ⊆ X of x such
that

h(U) ⊆ h(x) + V + C ∪ {∞C}.
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Regarding the composition of two lower semicontinuous functions one has the
following result which has been proved in [19].

Proposition 2.2. Let h : X → Z• be a C-lower semicontinuous function at
x ∈ X and g : Z• → R a C-increasing and lower semicontinuous function at
h(x). Then g ◦ h is lower semicontinuous at x.

In the following we recall a recent result introduced in [8] which ensure the
existence of a solution of the classical equilibrium problem under weak convex-
ity assumptions. To this end we need first some notions that extend to vector
functions some concepts considered in [8] for scalar functions of two variables.

Definition 2.2. (cf. [8]) Let Z be a topological vector space partially ordered by
the convex solid closed cone C. The function ϕ : A×B → Z is said to be

(a) C-subconcavelike on A in its first variable if for all c ∈ int(C), t ∈ [0, 1] and
a1, a2 ∈ A there exists a ∈ A such that

ϕ(a, b) ≥C tϕ(a1, b) + (1− t)ϕ(a2, b)− c for all b ∈ B.

(b) C-subconvexlike on B in its second variable if for all c ∈ int(C), t ∈ [0, 1]
and b1, b2 ∈ B there exists b ∈ B such that

ϕ(a, b) ≤C tϕ(a, b1) + (1− t)ϕ(a, b2) + c for all a ∈ A.

(c) C-subconcavelike – C-subconvexlike in A×B if it is C-subconcavelike on A
in its first variable and C-subconvexlike on B in its second variable.

In case Z = R and C = R+ we use the terms subconcavelike, subconvexlike
and subconcavelike – subconvexlike for R+-subconcavelike, R+-subconvexlike and
R+-subconcavelike – R+-subconvexlike, respectively.

We can state now the result mentioned above.

Theorem 2.3. (cf. [8]) Let A be a nonempty compact subset of X, B a given
nonempty set and ψ : A×B → R a given function fulfilling:

(i) for each b ∈ B the function ψ(·, b) : A→ R is upper semicontinuous on A;

(ii) ψ is subconcavelike – subconvexlike on A×B;

(iii) sup
a∈A

ψ(a, b) ≥ 0 for all b ∈ B.

Then the equilibrium problem

(EP ) find ā ∈ A such that ψ(ā, b) ≥ 0 for all b ∈ B

admits a solution.
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3 Existence results for the generalized equilib-

rium problem with composed functions

The aim of this section is to give some existence results for the solutions of
(GEPC) under under generalized convexity assumptions for the functions in-
volved.

Theorem 3.1. Let A be a nonempty compact set and the following conditions
fulfilled:

(i) for each b ∈ A the function ϕ(·, b) is upper semicontinuous on A;

(ii) h is C-lower semicontinuous on A;

(iii) g is lower semicontinuous;

(iv) the function (a, b) 7→ ϕ(a, b) − g(h(a)) is subconcavelike on A in its first
variable;

(v) the function (a, b) 7→ ϕ(a, b) + g(h(b)) is subconvexlike on A in its second
variable.

Then the generalized equilibrium problem with composed functions (GEPC)
admits a solution.

Proof. The proof follows as a direct consequence of Theorem 2.3 when one takes
ψ : A× A→ R defined by ψ(a, b) = ϕ(a, b) + g(h(b))− g(h(a)).

By Proposition 2.2 follows that g ◦ h is lower semicontinuous and combining
this fact with the hypothesis (i) it yields that for each b ∈ B ψ(·, b) : A → R is
upper semicontinuous on A. That ψ is subconcavelike – subconvexlike on A×A
follows by (iv) and (v) and, since ψ(a, a) = 0 for all a ∈ A, the hypothesis (iii)
in Theorem 2.3 is also fulfilled. Thus Theorem 2.3 guarantees the existence of a
solution for (GEPC).

Remark 3.1. It is an easy exercise to verify that the assumptions (iv) and (v)
in Theorem 3.1 are consequences of

(iv′) the function (a, b) 7→ (ϕ(a, b),−g(h(a))) is R2
+-subconcavelike on A in

its first variable
and, respectively,

(v′) the function (a, b) 7→ (ϕ(a, b), g(h(b))) is R2
+-subconcavelike on B in its

second variable.

When g : Z → R is a convex and C-increasing function one can give some
sufficient conditions for the hypotheses (iv′) and (v′) in the remark above which
involve only the vector function h. To this end we consider two generalized
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convexity notions that can be seen in analogy to the ones introduced in Definition
2.2.

We say that (a, b) 7→ (ϕ(a, b),−h(a)) is subconcavelike – C-concavelike on A
in its first variable whenever for ε > 0, t ∈ [0, 1] and a1, a2 ∈ A there exists a ∈ A
such that

(ϕ(a, b),−h(a)) ≥R+×C t(ϕ(a1, b),−h(a1)) + (1− t)(ϕ(a2, b),−h(a2))− (ε, 0)

for all b ∈ A.
We say that (a, b) 7→ (ϕ(a, b), h(b)) is subconvexlike – C-convexlike on A in

its second variable whenever for ε > 0, t ∈ [0, 1] and b1, b2 ∈ A there exists b ∈ A
such that

(ϕ(a, b), h(b)) ≤R+×C t(ϕ(a, b1), h(b1)) + (1− t)(ϕ(a, b2), h(b2)) + (ε, 0)

for all a ∈ A.
Now we can state a second result on the existence of solutions for (GEPC).

Theorem 3.2. Let A be a nonempty compact set and the following conditions
fulfilled:

(i) for each b ∈ A the function ϕ(·, b) is upper semicontinuous on A;

(ii) h is C-lower semicontinuous on A;

(iii) g is convex, lower semicontinuous and C-increasing;

(iv) the function (a, b) 7→ (ϕ(a, b),−h(a)) is subconcavelike – C-concavelike on
A in its first variable;

(v) the function (a, b) 7→ (ϕ(a, b), h(b)) is subconvexlike – C-convexlike on A in
its second variable.

Then the generalized equilibrium problem with composed functions (GEPC)
admits a solution.

Proof. The desired conclusion will follow if we prove that the assumptions (iv)
and (v) in Theorem 3.1 are fulfilled.

We start with (iv) and to this aim we consider arbitrary ε > 0, t ∈ [0, 1] and
a1, a2 ∈ A. Then there exists a ∈ A such that

(ϕ(a, b),−h(a)) ≥R+×C t(ϕ(a1, b),−h(a1)) + (1− t)(ϕ(a2, b),−h(a2))− (ε, 0)

for all b ∈ B. This yields that

ϕ(a, b) ≥ tϕ(a1, b) + (1− t)ϕ(a2, b)− ε for all b ∈ B
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and, since g is convex and C-increasing,

g(h(a)) ≤ tg(h(a1)) + (1− t)g(h(a2)).

The relations above allow us to write for all b ∈ A

ϕ(a, b)− g(h(a)) ≥ t(ϕ(a1, b)− g(h(a1))) + (1− t)(ϕ(a2, b)− g(h(a2)))− ε,

which actually means that (a, b) 7→ ϕ(a, b) − g(h(a)) is subconcavelike on A in
its first variable.

Analogously one can prove that hypothesis (v) imply that (a, b) 7→ ϕ(a, b) +
g(h(b)) is subconvexlike on A in its second variable. In this way the existence of
a solution for (GEPC) follows from Theorem 3.1.

The next corollary shows that when considering classical assumptions for
the sets and functions involved in the formulation of the equilibrium problem
(GEPC), then this has a solution. Recall that the function ϕ : A × A → R is
said to be concave-convex if ϕ(·, b) is concave for all b ∈ A and ϕ(a, ·) is convex
for all a ∈ A.

Corollary 3.3. Let A be a nonempty convex and compact set and the following
conditions fulfilled:

(i) for each b ∈ A the function ϕ(·, b) is upper semicontinuous on A;

(ii) h is C-convex and C-lower semicontinuous on A;

(iii) g is convex, lower semicontinuous and C-increasing;

(iv) the function ϕ is concave-convex on A× A.

Then the generalized equilibrium problem with composed functions (GEPC)
admits a solution.

Proof. Consider some arbitrary ε > 0, t ∈ [0, 1] and a1, a2 ∈ A. Then for
a := ta1 + (1− t)a2 ∈ A it holds

(ϕ(a, b),−h(a)) ≥R+×C t(ϕ(a1, b),−h(a1)) + (1− t)(ϕ(a2, b),−h(a2))− (ε, 0)

for all b ∈ A. This means that (a, b) 7→ (ϕ(a, b),−h(a)) is subconcavelike – C-
concavelike on A in its first variable. Analogously one can prove that the function
(a, b) 7→ (ϕ(a, b), h(b)) is subconvexlike – C-convexlike on A in its second variable.
The conclusion follows now via Theorem 3.2.
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4 Two gap functions for (GEPC)

In this section we provide two gap functions for (GEPC) for the construction
of which we employ the conjugate duality for composed convex optimization
problems. For the notion of gap function for an equilibrium problem we refer to
[17], where this notion has been introduce as an extension of the similar notion for
variational inequalities (cf. [4]). A function γ : X → R is said to be gap function
for the generalized equilibrium problem with composed functions (GEPC) if

(i) γ(a) ≥ 0 for all a ∈ A;

(ii) γ(ā) = 0 for ā ∈ A if and only if ā is a solution of (GEPC).

Throughout the section we assume that X and Z are separated locally convex
spaces, A ⊆ X is a nonempty convex and closed set, ϕ : A × A → R is convex
in its second variable, i.e. ϕ(a, ·) is convex for all a ∈ A, h : A→ Z is C-convex
and C-lower semicontinuous on A and g : Z → R is convex and C-increasing.
In Corollary 3.3 we proved that (GEPC) admits a solution if, additionally, A is
compact and ϕ is concave and upper semicontinuous in its first variable.

For a fixed a ∈ A let us consider the composed optimization problem

(P (a)) inf
b∈A
{ϕ(a, b) + g(h(b))}.

When one succeeds in attaching to (P (a)) a dual problem, let this be called
(D(a)), and in guaranteeing the existence of strong duality for this primal-dual
pair, then a gap function γ : X → R for (GEPC) can be defined as being
γ(a) := −v(D(a)) + g(h(a)), where by v(D(a)) we denote the optimal objective
value of the optimization problem (D(a)). Let us extend the functions involved
in the formulation of (GEPC) to the whole space X in the following way. We

define ϕ̃a : X → R, ϕ̃a = ϕ(a, ·) + δA, h̃ : X → Z•, h̃ = h + δ•A and assume, by
convention, that g(∞C) = +∞. Thus ϕ̃a is a convex function with dom(ϕ̃a) = A

and h̃ is a C-convex and C-lower semicontinuous (as h is C-lower semicontinuous

on A and A is closed) vector function with dom(h̃) = A. Now one can write
(P (a)), equivalently, as an optimization problem over the whole space X

(P (a)) inf
b∈X
{ϕ̃a(b) + g(h̃(b))}.

For the first conjugate dual problem to (P (a)) introduced here

(D1(a)) sup
z∗∈C∗

{−g∗(z∗)− (ϕ̃a + (z∗h̃))∗(0)}

we refer to [9] (see also [7, 20]). For this primal-dual pair one always has weak
duality, i.e. v(D1(a)) ≤ v(P (a)), and, under the fulfilment of a so-called regularity
condition, strong duality, which is the situation when v(P (a)) = v(D1(a)) and
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(D1(a)) has an optimal solution. In the literature one can find, both, interior
point and closedness-type regularity conditions for composed convex optimization
problems and for the relations between these two classes of conditions we refer
to [7]. In this paper we deal with two regularity conditions of the first type, which
are stated in the following:

(RC1
1(a)) there exists b ∈ dom(ϕ̃a) ∩ dom(h̃) ∩ h̃−1(dom(g)) such that

g is continuous at h̃(b)

and, respectively,

(RC2
1(a)) X and Z are Fréchet spaces, ϕ̃a and g are lower semicontinuous,

and 0 ∈ sqri
(

dom(g)− h(dom(ϕ̃a) ∩ dom(h̃))
)

.

Let γ1 : X → R be defined by

γ1(a) := −v(D1(a)) + g(h(a)) = inf
z∗∈C∗

{g∗(z∗) + (ϕ(a, ·) + (z∗h))∗A(0)}+ g(h(a))

= inf
z∗∈C∗

sup
b∈A
{g∗(z∗) + g(h(a))− ϕ(a, b)− 〈z∗, h(b)〉}.

Theorem 4.1. If the regularity condition

(RC1
γ1

) there exists b ∈ A such that g is continuous at h(b)

or the regularity condition

(RC2
γ1

) X and Z are Fréchet spaces and ϕ(a, ·) and g are
lower semicontinuous for all a ∈ A

is fulfilled, then γ1 is a gap function for (GEPC).

Proof. We show that γ1 is a gap function for (GEPC) by verifying the conditions
(i)− (ii) from the definition.

Consider first an arbitrary a ∈ A. Then, by weak duality,

γ1(a) = −v(D1(a)) + g(h(a)) ≥ −v(P (a)) + g(h(a)) =

sup
b∈A
{g(h(a))− g(h(b))− ϕ(a, b)} ≥ 0.

Here we used the fact that ϕ(a, a) = 0 for all a ∈ A. This proves statement (i)
in the definition of the gap function.

Consider now ā ∈ X such that ā is a solution for (GEPC). This is equivalent
to ā ∈ A and g(h(ā)) = infb∈A{ϕ(ā, b) + g(h(b))} = v(P (ā)). On the other hand
one can notice that (RC1

γ1
) is fulfilled if and only if (RC1

1(a)) is fulfilled for all
a ∈ A. Coming now to (RC2

γ1
), it is easy to see that this condition guarantees the

fulfilment of (RC2
1(a)) for all a ∈ A. With respect to this statement, let us notice

that as dom(g) = X, the condition 0 ∈ sqri
(

dom(g)− h(dom(ϕ̃a) ∩ dom(h̃))
)

is

automatically fulfilled. Therefore, by [7, Theorem 4.1], one has that v(P (a)) =
v(D(a)) for all a ∈ A. Consequently, g(h(ā)) = v(D(ā)) or, equivalently, γ1(ā) =
0.
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The second gap function that we introduce in this section for (GEPC) can be
seen as a refinement of γ1 and its construction is based on the following conjugate
dual problem one can also attach to (P (a)) (cf. [7])

(D2(a)) sup
b∗∈X∗,z∗∈C∗

{
−g∗(z∗)− (ϕ̃a)

∗(b∗)− (z∗h̃)∗(−b∗)
}
.

For the two interior point regularity conditions which ensure strong duality for
the primal-dual pair (P (a))− (D2(a))

(RC1
2(a)) there exists b ∈ dom(ϕ̃a) ∩ dom(h̃) ∩ h̃−1(dom(g)) such that ϕ̃a

is continuous at b and g is continuous at h̃(b)

and, respectively,

(RC2
2(a)) X and Z are Fréchet spaces, ϕ̃a and g are lower semicontinuous,

and 0 ∈ sqri
(

dom(ϕ̃a)× dom(g)− epiC(h̃)
)

we refer again to [7].
Let γ2 : X → R be defined by

γ2(a) := −v(D2(a)) + g(h(a)) =

inf
b∗∈X∗,z∗∈C∗

{g(h(a)) + g∗(z∗) + (ϕ(a, ·))∗A(b∗) + (z∗h)∗A(−b∗)}.

Theorem 4.2. If the regularity condition

(RC1
γ2

) for all a ∈ A there exists b ∈ A such that ϕ(a, ·) is continuous
at b and g is continuous at h(b)

or the regularity condition

(RC2
γ2

) X and Z are Fréchet spaces, ϕ(a, ·) and g are
lower semicontinuous for all a ∈ A and 0 ∈ sqri(A− A)

is fulfilled, then γ2 is a gap function for (GEPC).

Proof. The proof follows in the lines of the proof of Theorem 4.1. With respect
to this one should notice that in case (RC1

γ2
) is fulfilled, then (RC1

2(a)) is also
fulfilled for all a ∈ A. On the other hand, condition (RC2

γ2
) guarantees the

fulfilment of (RC2
2(a)) for all a ∈ A. This fact is obvious when one notices

that condition 0 ∈ sqri
(

dom(ϕ̃a)× dom(g)− epiC(h̃)
)

is nothing else than 0 ∈
sqri (A×X − epiC(h+ δ•A)) or, equivalently, 0 ∈ sqri((A−A)×Z). As sqri((A−
A)× Z) = sqri(A− A)× Z, this is further equivalent to 0 ∈ sqri(A− A).

Remark 4.1. By employing some conjugate calculus it is easy to see that for all
a ∈ X it holds γ2(a) ≥ γ1(a). On the other hand, as follows from the investiga-
tions made in [7, section 4], for guaranteeing that γ1 and γ2 are gap functions one
can replace the C-lower semicontinuity for h with the weaker assumption that h
is star C-lower semicontinuous, namely that the function (z∗h) : X → R is lower
semicontinuous for all z∗ ∈ C∗.
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5 Particular cases

In this section we discuss some particular instances of the generalized equilibrium
problem with composed functions (GEPC). We provide existence results and
show that the gap functions introduced in section 4 collapse in these special
situations among others with some celebrated gap functions from the literature.

5.1 The classical generalized equilibrium problem

Consider X a topological vector space, A ⊆ X a nonempty set, h : A → R and
ϕ : A×A→ R given functions such that ϕ(a, a) = 0 for all a ∈ A. The so-called
generalized equilibrium problem

(GEP ) find ā ∈ A such that ϕ(ā, b) + h(b) ≥ h(ā) for all b ∈ A

can be seen as a particular instance of (GEPC) whenever one takes Z = R,
C = R+ and g : R → R defined by g(z) = z for all z ∈ R, which is a convex,
continuous and C-increasing function. For recent investigations on (GEP ), where
the authors propose a so-called dual equilibrium problem to it, we refer to [6].

By means of the existence theorems given for (GEPC) in section 3, one can
easily provide for (GEP ) existence results under generalized convexity assump-
tions. We do this only in the case when the sets and functions involved fulfill
classical convexity assumptions, since this is the setting that we consider below
when constructing gap functions for (GEP ). The following result is an easy
consequence of Corollary 3.3

Theorem 5.1. Let A be a nonempty convex and compact set and the following
conditions fulfilled:

(i) for each b ∈ A the function ϕ(·, b) is upper semicontinuous on A;

(ii) h is convex and lower semicontinuous on A;

(iii) the function ϕ is concave-convex on A× A.

Then the generalized equilibrium problem (GEP ) admits a solution.

The gap functions that we propose for (GEP ) are particularizations of γ1 and
γ2. To this aim let us assume that X is a separated locally convex spaces, A is
convex and closed, ϕ : A×A→ R is convex in its second variable and h : A→ R
is convex and lower semicontinuous on A. Since g∗ = δ{1}, γ1 and γ2 turn out to
be

γGEP1 (a) = sup
b∈A
{h(a)− h(b)− ϕ(a, b)}

and
γGEP2 (a) = inf

b∗∈X∗
{h(a) + (ϕ(a, ·))∗A(b∗) + h∗A(−b∗)},

12



respectively.
As the regularity condition (RC1

γ1
) is automatically fulfilled, it follows that

γGEP1 is always a gap function for (GEP ), while γGEP2 has this property if the
regularity condition

(RC1
γGEP
2

) for all a ∈ A there exists b ∈ A such that

ϕ(a, ·) is continuous at b

or the regularity condition

(RC2
γGEP
2

) X is a Fréchet space, ϕ(a, ·) is lower semicontinuous

for all a ∈ A and 0 ∈ sqri(A− A)

is fulfilled.
Assuming that h(a) = 0 for all a ∈ A, (GEP ) becomes the classical equilib-

rium problem

(EP ) find ā ∈ A such that ϕ(ā, b) ≥ 0 for all b ∈ A.

A dual formulation for (EP ) via conjugate calculus has been given in [16]. For
(EP ) the two gap functions γGEP1 and γGEP2 become equal and collapse into
γEP : X → R

γEP (a) = γGEP1 (a) = γGEP2 (a) = sup
b∈A
{−ϕ(a, b)} for all a ∈ X,

which always fulfills the properties (i) and (ii) in the definition of the gap function.
In this way we rediscover the gap function for the equilibrium problem (EP )
introduced in [17]. Let us notice that in case ϕ(a, b) := 〈F (a), b− a〉, where F :
A → X∗, the equilibrium problem (EP ) becomes the celebrated Stampacchia’s
variational inequality and γEP is nothing else than the corresponding so-called
Auslender’s gap function studied in [4].

5.2 The equilibrium problem with a basic set defined via
cone-inequality constraints

Consider again X and Z two topological vector spaces, the latter being partially
ordered by the convex closed cone C, A ⊆ X a nonempty set and h : A → Z
such that B := {a ∈ A : h(a) ∈ −C} is nonempty and ϕ : A × A → R is a
given functions with the property that ϕ(a, a) = 0 for all a ∈ A. The equilibrium
problem that we investigate in this subsection

(EPIC) find ā ∈ B such that ϕ(ā, b) ≥ 0 for all b ∈ B.

This class of equilibrium problems has been considered in finite dimensional
spaces, for instance, in [12]. Choosing g : X → R, g := δ−C , one can equiv-
alently formulate (EPIC) as an equilibrium problem of type (GEPC), namely

(EPIC) find ā ∈ A such that ϕ(ā, b) + g(h(b)) ≥ g(h(ā)) for all b ∈ A.

13



In order to state existence results and gap functions for (EPIC) one can use
the corresponding results for the generalized equilibrium problem with composed
functions obtained in the sections 3 and 4. Different to the investigations made
there, we notice that dom(g) = −C and this means that the domain of g is now
not necessary equal to the whole space X. This fact has no influence on the
existence results, but on the regularity conditions introduced in connection to
the gap functions.

Noticing that g is a convex, lower semicontinuous and C-increasing function,
we get via Corollary 3.3 the following existence result for (EPIC).

Theorem 5.2. Let A be a nonempty convex and compact set and the following
conditions fulfilled:

(i) for each b ∈ A the function ϕ(·, b) is upper semicontinuous on A;

(ii) h is C-convex and C-lower semicontinuous on A;

(iii) the function ϕ is concave-convex on A× A.

Then the equilibrium problem (EPIC) admits a solution.

Further we introduce for (EPIC) two gap functions which are nothing else
than particularizations of γ1 and, respectively, γ2. To this end we assume that
X is a separated locally convex space, A is convex and closed, ϕ : A × A →
R is convex in its second variable and h : A → Z is C-convex and C-lower
semicontinuous on A. Since g∗ = δ∗−C = δC∗ , γ1 and γ2 turn out to be

γEPIC1 (a) = inf
z∗∈C∗

sup
b∈A
{g(h(a))− ϕ(a, b)− 〈z∗, h(b)〉}

=

{
inf
z∗∈C∗

sup
b∈A
{−ϕ(a, b)− 〈z∗, h(b)〉}, if a ∈ A, h(a) ∈ −C,

+∞, otherwise

and
γEPIC2 (a) = inf

z∗∈C∗,b∗∈X∗
{g(h(a)) + (ϕ(a, ·))∗A(b∗) + (z∗h)∗A(−b∗)}

=

{
inf

z∗∈C∗,b∗∈X∗
{(ϕ(a, ·))∗A(b∗) + (z∗h)∗A(−b∗)}, if a ∈ A, h(a) ∈ −C,

+∞, otherwise,

respectively. Via the general regularity conditions introduced in section 4 one can
easily deduce that γEPIC1 if a gap function for (EPIC) if the regularity condition

(RC1
γEPIC
1

) 0 ∈ h(A) + int(C)

or the regularity condition

(RC2
γEPIC
1

) X and Z are Fréchet spaces, ϕ(a, ·) is lower semicontinuous

for all a ∈ A and 0 ∈ sqri(h(A) + C)
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is fulfilled. On the other hand, γEPIC2 if a gap function for (EPIC) if the regu-
larity condition

(RC1
γEPIC
2

) for all a ∈ A there exists b ∈ A such that

ϕ(a, ·) is continuous at b and h(b) ∈ − int(C)

or the regularity condition

(RC2
γEPIC
2

) X and Z are Fréchet spaces, ϕ(a, ·) is lower semicontinuous

for all a ∈ A and 0 ∈ sqri (A× (−C)− epiC(h+ δ•A)).

We close the paper by noticing that in case X = Rn, Z = Rm, C = Rm
+ , A ⊆ Rn,

h : A → Rm and ϕ(a, b) := 〈F (a), b − a〉, where F : A → Rn, the gap function
γEPIC1 is nothing else than the so-called Giannesi’s gap function introduced and
investigated in [12].
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