
Dual Representations for Convex Risk
Measures via Conjugate Duality 1

R. I. BOŢ2, N. LORENZ3 AND G. WANKA4

Communicated by X. Q. Yang

1The research of R.I. Boţ and G. Wanka was partially supported by DFG (German Research

Foundation), Project WA 922/1-3.

2Assistant Professor, Faculty of Mathematics, Chemnitz University of Technology, Chemnitz, Ger-

many.

3PhD Student, Faculty of Mathematics, Chemnitz University of Technology, Chemnitz, Germany.

4Professor, Faculty of Mathematics, Chemnitz University of Technology, Chemnitz, Germany. Cor-

responding author. e-mail: gert.wanka@mathematik.tu-chemnitz.de

1



Abstract. The aim of this paper is to give dual representations for different convex

risk measures by employing their conjugate functions. To establish the formulas for the

conjugates, we use on the one hand some classical results from convex analysis and on

the other hand some tools from the conjugate duality theory. Some characterizations

of so-called deviation measures recently given in the literature turn out to be direct

consequences of our results.

Key Words. Conjugate functions, Conjugate duality, Convex risk measures, Con-

vex deviation measures.
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1. Introduction

In many practical applications, such as appear in portfolio optimization, the notion

of risk plays an important role. It reflects the uncertainty of some processes and the

biggest challenge in this context consists in quantifying it by an appropriate measure.

Until now, different formulations for the so-called risk measure have been considered.

A classical application in financial mathematics is the portfolio optimization problem

treated by Markowitz [1], where the risk of a portfolio is measured by means of the

standard deviation and variance, respectively.

In 1999 Artzner et al. [2] first gave an axiomatic definition of coherent risk mea-

sure. The properties stipulated for this class of measures seem to be common in many

practical problems. In 2002, Rockafellar et al. [3] introduced a new class of measures,

called deviation measures, closely related to the coherent risk measures. An important

representative of this class of measures is the variance. It is remarkable that the coher-

ent risk measures as well as the deviation measures fulfill some positive homogeneity

and subadditivity properties. As many risk measures used in practice are not endowed

with these properties, the class of coherent risk measures has been extended to the class

of convex risk measures (see for example [4–6]) in the definition of which sublinearity
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is replaced by convexity. Recent papers where several theoretical results concerning

convex risk measures have been given are those of Pflug ( [7]) and Ruszczynski and

Shapiro ( [8, 9]).

In [8], some necessary and sufficient conditions for the optimal solutions of opti-

mization problems with convex risk measures as objective functions are given, whereas

in [7] the author provides some dual representations for a number of convex risk and

deviation measures with practical relevance.

In this paper, we consider different convex risk and deviation measures (some of them

also investigated by Pflug [7]) and calculate their conjugate functions. To this end, we

use the powerful theory of conjugate functions from convex analysis as well as several

duality results for convex optimization problems in separated locally convex spaces. By

making use of the the Fenchel-Moreau theorem, we also give dual representations for

all measures we deal with. In this way, we extend and improve the results obtained by

Pflug [7].

Optimality conditions for portfolio optimization problems involving different convex

risk measures have been formulated by Rockafellar and its coauthors ( [10,11]). In this

context, we refer also to [12] where the necessary and sufficient optimality conditions
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have been derived via the duality theory. For the investigations in [12], having formulas

for the conjugates of the considered measure functions is of big importance. It is

worth mentioning that, in [13], in connection to a portfolio optimization problem an l∞

function was used as risk measure, whereby the optimality conditions were derived by

employing duality theory too.

The paper is organized as follows. In Section 2, we introduce some notations and

preliminary results from convex analysis as well as from stochastic theory. Further,

in Section 3, we introduce the notion of convex risk measure and, closely connected

with it, that of convex deviation measure. Then, we furnish some examples for both

classes of measures. Section 4 is devoted to the calculation of the conjugate functions

of some classical convex risk and deviation measures. In Section 5 we deal with some

elaborated convex risk and deviation measures and calculate their conjugates by using

the general formula of the conjugate of a composite convex function. In Section 6,

some dual representations for the convex risk and deviation measures considered in the

previous two sections are provided and a comparison with the results obtained by Pflug

in [7] is made. A conclusive section closes the paper.

2. Notations and Preliminary Results
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Let Z be a separated locally convex space and Z∗ its topological dual space en-

dowed with the weak∗ topology. We denote by 〈x∗, x〉 := x∗(x) the value of the linear

continuous functional x∗ ∈ Z∗ at x ∈ Z.

For a set D ⊆ Z we denote by int(D) its interior and by

core(D) = {d ∈ D : ∀x ∈ Z ∃ε > 0 : ∀λ ∈ [−ε, ε] d+ λx ∈ D}

its algebraic interior. One always has that int(D) ⊆ core(D). The indicator function

δD : Z → R ∪ {+∞} of the set D is defined by

δD(x) = 0, if x ∈ D, δD(x) = +∞, otherwise.

Given a function f : Z → R = R∪{±∞}, we consider the (Fenchel-Moreau) conjugate

function of f , f ∗ : Z∗ → R, defined by

f ∗(x∗) = sup
x∈Z
{〈x∗, x〉 − f(x)}.

Similarly, the biconjugate function of f , f ∗∗ : Z → R, is defined by

f ∗∗(x) = sup
x∗∈Z∗

{〈x∗, x〉 − f ∗(x∗)}.

Further, for the function f : Z → R, we consider also its epigraph

epi(f) = {(x, r) : x ∈ Z, r ∈ R : f(x) ≤ r}
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and its effective domain

dom(f) = {x ∈ Z : f(x) < +∞}.

We say that f is proper if dom(f) 6= ∅ and f(x) > −∞,∀x ∈ Z. By the Fenchel-Moreau

theorem, whenever f : Z → R is a proper, convex and lower semicontinuous function,

it holds that f = f ∗∗.

The next result recalled here provides a sufficient condition for the formula of the

conjugate of the composition of a convex function with a linear continuous mapping

( [14]). In what follows, U is another separated locally convex space. All around

this paper, we write min (max) instead of inf (sup) when the infimum (supremum) is

attained.

Theorem 2.1 ( [14]) Let f : Z → R be a proper and convex function and A : U → Z

a linear continuous mapping. Assume that there exists x′ ∈ A−1(dom(f)) such that f

is continuous at Ax′. Then,

(f ◦ A)∗(u∗) = min{f ∗(z∗) : A∗z∗ = u∗},∀u∗ ∈ U∗. (1)

Let us notice that in the literature one can also find further sufficient conditions for

(1). We refer to [14] for other generalized interior point conditions and to [15] for a
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so-called closedness-type condition.

In the following we turn our attention to the Lagrange duality in connection to the

optimization problem with geometric and cone constraints

(P) inf
x∈T

f(x),

T = {x ∈ S : g(x) ∈ −C},

where Z and Y are two separated locally convex spaces, the latter being partially

ordered by the nonempty convex cone C ⊆ Y , S ⊆ Z is a nonempty and convex

set, f : Z → R a proper and convex function and g : Z → Y• a proper and C-convex

function fulfilling dom f∩S∩g−1(−C) 6= ∅. Denoting by≤C the partial ordering induced

by C on Y , to the latter we attach an abstract maximal element with respect to ≤C ,

denoted by∞C and let Y• := Y∪{∞C}. Then for every y ∈ Y one has y ≤C ∞C , while

on Y• the following operations are considered: y+∞C =∞C+y =∞C and t∞C =∞C

for all y ∈ Y and all t ≥ 0. Moreover, if λ ∈ C∗ = {y∗ ∈ Y∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ C},

which is the positive dual cone of C, we let 〈λ,∞C〉 := +∞.

For the function g : Z → Y• we denote by dom g = {x ∈ Z : g(x) ∈ Y} its domain

and by epiC g = {(x, y) ∈ Z × Y : g(x) ≤C y} its C-epigraph. We say that g is proper

if its domain is a nonempty set. The function g is said to be C-convex if epiC g is a
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convex subset of Z ×Y , while g is said to be C-epi closed if epiC g is a closed subset of

Z × Y ( [16]).

The Lagrange dual problem to (P) is

(D) sup
λ∈C∗

inf
x∈S
{f(x) + 〈λ, g(x)〉}

and for the primal-dual pair (P) − (D) weak duality is always fulfilled. In order to

formulate a strong duality result for (P) and (D) one needs to have a so-called regularity

condition fulfilled. In the literature one can find, both, generalized interior point and

closedness-type regularity conditions for Lagrange duality and for the relations between

these two classes of conditions we refer to [17]. In this paper, we deal with two regularity

conditions of the first type, which are stated in the following ( [17]):

(SC) ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − int(C)

and

(RC) Z and Y are Fréchet spaces,S is closed, f is lower semicontinuous,

g is C-epi closed and 0 ∈ core
(
g(dom f ∩ S ∩ dom g) + C

)
.

While (SC) is the classical Slater constraint qualification, for an incipient work dealing

with regularity conditions involving generalizations of the interior, as happens for (RC),
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we refer to [18]. Denoting by v(P) and v(D) the optimal objective values of (P) and

(D), respectively, we can state the following strong duality result ( [14,17,18]).

Theorem 2.2 If (SC) or (RC) is fulfilled, then v(P) = v(D) and the Lagrange dual

has an optimal solution.

Let us mention that in order to have strong Lagrange duality one can consider in

(RC) instead of the algebraic interior more general interiority notions, like the so-called

strong quasi-relative interior. As one will see later working with the algebraic interior

is sufficient for our aims.

Consider now the probability space (Ω,F,P), where Ω is a basic space, F a σ-algebra

on Ω and P a probability measure on the measurable space (Ω,F). For a measurable

random variable x : Ω→ R the expectation value is defined with respect to P by

E(x) =
∫
Ω

x(ω)dP(ω).

The essential supremum of x is essupx = inf{a ∈ R : P(ω : x(ω) > a) = 0}. Further-

more, for p ∈ (1,+∞) let Lp be the following linear space of random variables:

Lp := Lp(Ω,F,P,R) =
{
x : Ω→ R, x measurable,

∫
Ω

|x(ω)|pdP(ω) < +∞
}
.

The space Lp equipped with the norm ||x||p = (E(|x|p))
1
p for x ∈ Lp is a reflexive
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Banach space. It is well-known that the dual space of Lp is Lq := Lq(Ω,F,P,R), where

q ∈ (1,+∞) fulfills 1
p

+ 1
q

= 1. The closed unit ball in Lq is denoted by Bq(0, 1).

For x ∈ Lp, x∗ ∈ Lq and x∗x : Ω → R, where (x∗x)(ω) := x∗(ω) · x(ω), one can

define now

〈x∗, x〉 := E(x∗x) =
∫
Ω

x∗(ω)x(ω)dP(ω).

Equalities and inequalities between random variables are to be viewed in the sense of

holding almost surely (a.s.). Thus for x, y : Ω → R when we write x = y or x ≥ y we

mean x = y a.s. or x ≥ y a.s., respectively. For p ∈ (1,+∞), the cone

(Lp)+ = {x ∈ Lp : x ≥ 0 a.s.}

is inducing the partial ordering denoted by “≥”. The dual cone of (Lp)+ is (Lq)+, where

q ∈ (1,+∞) fulfills 1
p

+ 1
q

= 1. The partial ordering induced by (Lq)+ is also denoted

by “≥”. As these orderings are given in different linear spaces, no confusion is possible.

Having a random variable x : Ω → R which takes the constant value c ∈ R, i.e.

x = c a.s., we identify it with the real number c ∈ R.

For an arbitrary random variable x : Ω → R we also define x−, x+ : Ω → R in the

following way x−(ω) := max(−x(ω), 0) for all ω ∈ Ω and x+(ω) := max(x(ω), 0) for all

ω ∈ Ω, respectively. One can easily see that x = x+−x−, x+ = (−x)− and x− = (−x)+.
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3. Risk Measures and Deviation Measures

In this section we give some formal definitions of the convex risk and deviation

measures. In 2002, Föllmer and Schied [4] first introduced the convex risk measures as

an extension of the well-known coherent risk measures. The latter have been introduced

in [2], where for the first time an axiomatic way for defining risk measures has been given.

Rockafellar and his coauthors (see [3]) introduced along the coherent risk measures the

so-called deviation measures and studied the relation between these concepts. Here we

deal with the broad class of convex risk measures as it was also done by Ruszczynski

and Shapiro ( [8]) and Pflug ( [7]), respectively. We want to notice that a large number

of risk functions mentioned in the literature does not have the sublinearity properties

asked by the axioms of a coherent risk measure, however the properties in the definition

of a convex risk measure are fulfilled. In the following definition we introduce the notion

of a convex risk measure as it appears in [7].

Definition 3.1 The function ρ : Lp → R is called a convex risk measure if the

following properties are fulfilled:

(R1) Translation invariance: ρ(x+ b) = ρ(x)− b, ∀x ∈ Lp, ∀b ∈ R;

(R2) Strictness: ρ(x) ≥ −E(x), ∀x ∈ Lp;

12



(R3) Convexity: ρ(λx+ (1− λ)y) ≤ λρ(x) + (1− λ)ρ(y), ∀λ ∈ [0, 1],∀x, y ∈ Lp.

For certain applications it can be useful to postulate some monotonicity properties

for the risk measure, like, for example, the monotonicity with respect to the pointwise

ordering:

x ≥ y ⇒ ρ(x) ≥ ρ(y), ∀x, y ∈ Lp.

Closely related to the risk measure one can define the so-called convex deviation

measure.

Definition 3.2 The function d : Lp → R is called a convex deviation measure if the

following properties are fulfilled:

(D1) Translation invariance: d(x+ b) = d(x), ∀x ∈ Lp, ∀b ∈ R;

(D2) Strictness: d(x) ≥ 0, ∀x ∈ Lp;

(D3) Convexity: d(λx+ (1− λ)y) ≤ λd(x) + (1− λ)d(y), ∀λ ∈ [0, 1],∀x, y ∈ Lp.

The following theorem states the connection between convex risk and convex devi-

ation measures (see [3], [7], [11], [19]).

Theorem 3.1 The function ρ : Lp → R is a convex risk measure if and only if

d : Lp → R, d(x) = ρ(x) + E(x) for x ∈ Lp, is a convex deviation measure.

Next we give some examples of convex risk measures and corresponding deviation
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measures.

Example 3.1 Consider first, for p = 2, ρ : L2 → R defined by

ρ(x) = ||x− E(x)||22 − E(x), x ∈ L2.

This is a convex risk measure and it is closely related to the classical variance σ2(x)

which is its corresponding deviation measure

d(x) = σ2(x) = ||x− E(x)||22, x ∈ L2.

Example 3.2 Let be again p = 2 and ρ : L2 → R defined by

ρ(x) = ||x− E(x)||2 − E(x), x ∈ L2.

The related convex deviation measure is the standard deviation σ(x)

d(x) = σ(x) = ||x− E(x)||2, x ∈ L2.

The convex risk and deviation measures in Example 3.1 and Example 3.2 are spe-

cial cases of some general classes of risk and deviation measures, respectively, that we

introduce in the following.

Example 3.3 For p ∈ (1,+∞) and a ≥ 1 let be the convex risk measure ρ : Lp → R,

ρ(x) = ||x− E(x)||ap − E(x), x ∈ Lp.
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The corresponding convex deviation measure is d : Lp → R,

d(x) = ||x− E(x)||ap, x ∈ Lp.

In case p = a = 1, d is the so-called mean absolute deviation.

Example 3.4 Similar to Example 3.3, for p ∈ (1,+∞) and a ≥ 1 we consider the

following pairs of convex risk and deviation measures, ρ : Lp → R and d : Lp → R

defined by

ρ(x) = ||(x− E(x))−||ap − E(x), d(x) = ||(x− E(x))−||ap

and

ρ(x) = ||(x− E(x))+||ap − E(x), d(x) = ||(x− E(x))+||ap,

respectively. The deviation measures we get by taking a = p = 1 are the so-called lower

and upper semideviation, respectively. For p = 2 and a = 1 we obtain the standard

lower and upper semideviation, respectively.

4. Conjugates of Convex Deviation Measures: Case a=1

In this section we deal with formulas for the conjugate functions of some convex

deviation measures, including those in Example 3.3 and Example 3.4, whenever p ∈

(1,+∞) and a = 1. Having these formulas, one can easily calculate the formulas for
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the conjugate functions of the corresponding risk measures. The following relation

proves this, as for x∗ ∈ Lq it holds

ρ∗(x∗) = sup
x∈Lp
{〈x∗, x〉 − ρ(x)} = sup

x∈Lp
{〈x∗, x〉 − d(x) + E(x)}

= sup
x∈Lp
{〈x∗, x〉 − d(x) + 〈1, x〉} = sup

x∈Lp
{〈x∗ + 1, x〉 − d(x)} = d∗(x∗ + 1). (2)

In order to derive the formulas for the conjugates of the convex deviation measures we

need the following preliminary results.

Fact 4.1 Let be f1 : Lp → R, f1(x) = ||x||p. The conjugate function of f1 is

f ∗1 : Lq → R, f ∗1 = δBq(0,1). �

Fact 4.2 Consider now f2 : Lp → R, f2(x) = ||x−||p. For x∗ ∈ Lq one obtains the

following formula for the conjugate function of f2, f ∗2 : Lq → R,

−f ∗2 (x∗) = inf
x∈Lp
{||x−||p − 〈x∗, x〉} = inf

x∈Lp
{||max(−x, 0)||p − 〈x∗, x〉}.

Having for an arbitrary z ∈ Lp with the property z ≥ max(−x, 0) ≥ 0 that ||z||p ≥

||max(−x, 0)||p, one gets further

−f ∗2 (x∗) = inf
x∈Lp,z∈Lp,
z≥max(−x,0)

{||z||p − 〈x∗, x〉} = inf
(x,z)∈Lp×Lp,
−x−z≤0,
−z≤0

{||z||p − 〈x∗, x〉}.
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Consider the following convex optimization problem

(Px∗) inf
(x,z)∈Lp×Lp,
−x−z≤0,
−z≤0

{||z||p − 〈x∗, x〉}.

To formulate it in the language of the problem (P) considered in Section 2 one has to

take Z = Y = S = Lp × Lp, C = (Lp)+ × (Lp)+, f : Z → R, f(x, z) = ||z||p − 〈x∗, x〉

and g : Z → Y , g(x, z) = (−x − z,−z). Consequently, the Lagrange dual problem of

(Px∗) looks like

(Dx∗) sup
λ1,λ2∈(Lq)+

inf
(x,z)∈Lp×Lp

{||z||p − 〈x∗, x〉 − 〈λ1, z〉 − 〈λ2, x+ z〉}

or, equivalently,

(Dx∗) sup
λ1,λ2∈(Lq)+

{
inf
x∈Lp
{−〈x∗ + λ2, x〉} − (|| · ||p)∗(λ1 + λ2)

}
.

Since infx∈Lp{−〈x∗+ λ2, x〉} = −δ{0}(x∗+ λ2) and (|| · ||p)∗(λ1 + λ2) = δBq(0,1)(λ1 + λ2),

the optimal objective value of the Lagrange dual (Dx∗) can be written as

v(Dx∗) =


0, if x∗ ∈

(
Bq(0, 1) + (Lq)+

)
∩ −(Lq)+,

−∞, otherwise,

=


0, if x∗ ∈ Bq(0, 1) ∩ −(Lq)+,

−∞, otherwise.
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The last equality comes in fact from the fact that the sets
(
Bq(0, 1) + (Lq)+

)
∩−(Lq)+

and Bq(0, 1) ∩ −(Lq)+ coincide. As the inclusion Bq(0, 1) ∩ −(Lq)+ ⊆
(
Bq(0, 1) +

(Lq)+

)
∩ −(Lq)+ is trivial, we have to prove only the opposite one.

Let be u∗ ∈
(
Bq(0, 1)+(Lq)+

)
∩−(Lq)+. Then u∗ = t∗+z∗ ≤ 0, where t∗ ∈ Bq(0, 1)

and z∗ ∈ (Lq)+. Since −u∗ ≥ 0 and −z∗ ≤ 0 we have 0 ≤ −u∗ = −t∗ − z∗ ≤ −t∗ and

so ||u∗||q = || − u∗||q ≤ || − t∗||q = ||t∗||q ≤ 1. Thus u∗ ∈ Bq(0, 1) ∩ −(Lq)+.

In order to identify −f ∗2 (x∗) with the optimal objective value of (Dx∗) we have

to prove that between (Px∗) and (Dx∗) strong duality holds. As (Px∗) is a convex

optimization problem, in order to close the gap between these duals we have only to

verify the fulfillment of one of the two regularity conditions stated in Section 2. Noticing

that int((Lp)+) = ∅ it is clear that the classical Slater constraint qualification (SC) fails.

On the other hand the functions f and g are continuous and g(dom f∩S∩dom g)+C =

Lp × Lp and (0, 0) belongs to the algebraic interior of this set. Thus the regularity

conditions (RC) is fulfilled and so by Theorem 2.2 it follows that

f ∗2 (x∗) = −v(Px∗) = −v(Dx∗) =


0, if ||x∗||q ≤ 1, x∗ ≤ 0,

+∞, otherwise.

(3)

Finally we give a further formulation for the conjugate of f2 by showing that its effective
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domain can be restricted to the set of those x∗ ∈ Lq which fulfill x∗ ≤ 0 and −1 ≤

E(x∗) ≤ 0. (Note that x∗ ≤ 0 implies E(x∗) ≤ 0 and that ||x∗||q ≤ 1 implies |E(x∗)| ≤

1.) This leads to the following formula for the conjugate of f2 (see also [7]):

f ∗2 (x∗) =


0, if x∗ ≤ 0, ||x∗||q ≤ 1, −1 ≤ E(x∗) ≤ 0,

+∞, otherwise.

(4)

�

In the next example we deal with the conjugate function of the deviation measure

d1 : Lp → R, d1(x) = ||x− E(x)||p, which will be derived via Theorem 2.1.

Fact 4.3 Consider d1 : Lp → R, d1(x) = ||x − E(x)||p and A : Lp → Lp, Ax =

x− E(x). Here we have to interpret E(x) ∈ R as a (constant) element of Lp. Denoting

for C ∈ F by 1C : Ω→ R the indicator function

1C(ω) =


1, if ω ∈ C,

0, otherwise,

the linear continuous mapping A can be represented as Ax = x− E(x)1Ω for x ∈ Lp.

Since d1(x) = ||Ax||p for all x ∈ Lp, in order to calculate d∗1, we can make use of

Theorem 2.1. Since || · ||p is continuous on Lp, the regularity condition stated in this
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result is fulfilled and so for all x∗ ∈ Lq we have

d∗1(x∗) = min{(|| · ||p)∗(y∗) : A∗y∗ = x∗}

=


0, if ∃y∗ ∈ Lq : A∗y∗ = x∗ and ||y∗||q ≤ 1,

+∞, otherwise.

From the calculation above one can see that we need the adjoint operator of A. In

the following we show that A is self-adjoint, i.e. A = A∗. For x ∈ Lp and x∗ ∈ Lq

it holds 〈x∗, Ax〉 = 〈x∗, x − E(x)〉 = 〈x∗, x〉 − 〈x∗,E(x)1Ω〉. The second term can be

written as follows (we apply here the Theorem of Fubini)

〈x∗,E(x)1Ω〉 =
∫
Ω

x∗(ω)E(x)dP(ω) =
∫
Ω

x∗(ω)
∫

Ω

x(τ)dP(τ)
 dP(ω)

=
∫
Ω

x(τ)
∫

Ω

x∗(ω)dP(ω)
 dP(τ) =

∫
Ω

x(τ)E(x∗)dP(τ) = 〈E(x∗)1Ω, x〉.

Consequently, 〈x∗, Ax〉 = 〈x∗ − E(x∗)1Ω, x〉 for all x ∈ Lp and this means that

A∗x∗ = x∗ − E(x∗)1Ω = x∗ − E(x∗).

Thus the conjugate function of d1 looks for x∗ ∈ Lq like

d∗1(x∗) =


0, if ∃y∗ ∈ Lq : y∗ − E(y∗) = x∗ and ||y∗||q ≤ 1,

+∞, otherwise.

We prove now that there exists y∗ ∈ Lq such that y∗ − E(y∗) = x∗ and ||y∗||q ≤ 1 if

and only if E(x∗) = 0 and there exists c ∈ R such that ||x∗− c||q ≤ 1. Let be a y∗ ∈ Lq
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fulfilling y∗ − E(y∗) = x∗ and ||y∗||q ≤ 1. Then E(x∗) = E(y∗ − E(y∗)) = 0 and for

c := −E(y∗) one has ||x∗ − c||q ≤ 1. On the other hand, assume that E(x∗) = 0 and

that there exists c ∈ R with the property ||x∗ − c||q ≤ 1. Defining y∗ := x∗ − c ∈ Lq

one has ||y∗||q ≤ 1 and y∗ − E(y∗) = x∗.

Thus the conjugate of d1 at x∗ ∈ Lq turns out to be

d∗1(x∗) =


0, if E(x∗) = 0 and min

c∈R
||x∗ − c||q ≤ 1,

+∞, otherwise.

Considering the convex risk measure ρ1 : Lp → R, ρ1(x) = d1(x)−E(x) = ||x−E(x)||p−

E(x), by (2), one can easily deduce the formula for the conjugate of ρ1 : Lp → R. For

x∗ ∈ Lq this looks like

ρ∗1(x∗) = d∗1(x∗ + 1) =


0, if E(x∗) = −1 and min

c∈R
||x∗ − c||q ≤ 1,

+∞, otherwise.

(5)

�

In the last application that we consider in this section we calculate the conjugate

function of the convex deviation measure known also as lower semideviation. After that

we derive the formula for the conjugate of the corresponding convex risk measure.

Fact 4.4 Let be d2 : Lp → R, d2(x) = ||(x − E(x))−||p. Denoting again by

A : Lp → Lp the linear continuous mapping defined by Ax = x − E(x) for x ∈ Lp, we
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have that d2 = f2 ◦ A. Since f2 is a convex and continuous function with real values,

by Theorem 2.1 and (4) one has for all x∗ ∈ Lq

d∗2(x∗) = min{f ∗2 (y∗) : A∗y∗ = x∗}

=


0, if ∃y∗ ∈ Lq : A∗y∗ = x∗, y∗ ≤ 0, ||y∗||q ≤ 1, −1 ≤ E(y∗) ≤ 0,

+∞, otherwise.

Since A∗y∗ = y∗ − E(y∗) for y∗ ∈ Lq (see Fact 4.3), for all x∗ ∈ Lq it holds

d∗2(x∗) =


0, if ∃y∗ ∈ Lq : y∗ − E(y∗) = x∗, y∗ ≤ 0, ||y∗||q ≤ 1,−1 ≤ E(y∗) ≤ 0,

+∞, otherwise.

Like in Fact 4.3 one can show that there exists y∗ ∈ Lq such that y∗ − E(y∗) =

x∗, y∗ ≤ 0, ||y∗||q ≤ 1 and −1 ≤ E(y∗) ≤ 0 if and only if E(x∗) = 0 and there exists

c ∈ R fulfilling 0 ≤ c ≤ 1, ||x∗ − c||q ≤ 1 and x∗ ≤ c. Thus

d∗2(x∗) =


0, if E(x∗) = 0 and ∃c ∈ R : 0 ≤ c ≤ 1, ||x∗ − c||q ≤ 1, x∗ ≤ c,

+∞, otherwise.

Let us prove now that for x∗ ∈ Lq the relations

E(x∗) = 0 and there exists c ∈ R such that 0 ≤ c ≤ 1, ||x∗ − c||q ≤ 1, x∗ ≤ c (6)

and

E(x∗) = 0, x∗ ≤ 1, || essupx∗ − x∗||q ≤ 1 (7)
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are equivalent. Assuming that (6) holds, one has x∗ ≤ c ≤ 1. Further we have

essupx∗ ≤ c and this means that c− x∗ ≥ essupx∗− x∗ ≥ 0, implying 1 ≥ ||c− x∗||q ≥

|| essupx∗ − x∗||q. Relation (7) is so proved. On the other hand, if (7) holds, one can

take c = essupx∗. That c ≤ 1 and x∗ ≤ c is obvious. Assuming now that c < 0, this

would mean that E(x∗) < 0. In conclusion, relation (6) must also hold.

This leads to the following formula for d∗2 for x∗ ∈ Lq

d∗2(x∗) =


0, if E(x∗) = 0, x∗ ≤ 1, || essupx∗ − x∗||q ≤ 1,

+∞, otherwise.

(8)

As above the formula for the conjugate function of the corresponding convex risk mea-

sure ρ2 : Lp → R, ρ2(x) = ||(x − E(x))−||p − E(x) can be also calculated. By (2) we

have for all x∗ ∈ Lq

ρ∗2(x∗) = d∗2(x∗ + 1) =


0, if E(x∗) = −1, x∗ ≤ 0, || essupx∗ − x∗||q ≤ 1,

+∞, otherwise.

�

Remark 4.1 One can notice that the formulas for the conjugates of f2 and d2

allow us to calculate the formulas for the conjugates of the functions x 7→ ||x+||p and

x 7→ ||(x − E(x))+||p, as these are nothing but f2(−x) and d2(−x), respectively. In
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general for h : Z → R defined as h(x) = f(−x) it holds for x∗ ∈ Z∗

h∗(x∗) = sup
x∈Z
{〈x∗, x〉 − f(−x)} = sup

x∈Z
{〈−x∗, x〉 − f(x)} = f ∗(−x∗).

5. Conjugates of Convex Deviation Measures: Case a>1

In this section we extend our investigations on the conjugate functions of convex

deviation measures given in Example 3.3 and Example 3.4 to the case a > 1 (as before,

we assume that p ∈ (1,+∞)). We use relation (2) in order to calculate the conjugate

functions of the corresponding convex risk measures.

In our approach we use the very well-developed calculus existing in the theory of

conjugate functions. The functions considered in this section will be viewed as compo-

sitions of a convex and increasing function with a convex function. The conjugates will

be obtained by using the formula for the conjugate of a composite convex function. The

theorem which provides this formula follows and is nothing else than an adaptation of

Theorem 2.8.10 in [14].

Theorem 5.1 ( [14]) Let Z be a separated locally convex space and f : Z → R,

g : R→ R convex functions such that g is increasing on f(Z) + [0,+∞). Assume that
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there exists x′ ∈ Z such that f(x′) ∈ dom(g) and g is continuous at f(x′). Then

(g ◦ f)∗(x∗) = min
β∈R+
{g∗(β) + (βf)∗(x∗)}, ∀x∗ ∈ Z∗. (9)

In the following we apply Theorem 5.1 by taking f as being the convex deviation

measures considered in Section 4, while g : R→ R is the function defined for a > 1 by

g(x) =


xa, if x ≥ 0,

+∞, otherwise.

The set f(Lp)+[0,+∞) is nothing else than [0,+∞) and one can see that both functions

f and g are convex, while g is increasing on [0,+∞). For the particular situations we

treat below the regularity condition will be fulfilled, consequently, formula (9) will hold.

First of all let us furnish the formula for the conjugate function of g.

Lemma 5.1 The conjugate function of g is g∗ : R→ R,

g∗(β) =


(a− 1)

(
β
a

) a
a−1 , if β ≥ 0,

0, otherwise.

(10)

Proof. By definition it holds g∗(β) = sup
x∈R

(xβ − g(x)) = sup
x≥0

(xβ − xa). In the case

β ≤ 0, one gets g∗(β) = 0. In case β > 0, we consider h : [0,+∞)→ R, h(x) = xβ−xa.

One has h′(x) = 0 ⇔ x =
(
β
a

) 1
a−1 > 0. Since h is concave it attains its maximum at
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x =
(
β
a

) 1
a−1 > 0 and so

g∗(β) = β

(
β

a

) 1
a−1

−

(β
a

) 1
a−1
a = β

(
β

a

) 1
a−1 [

1− 1
a

]
= (a− 1)

(
β

a

) a
a−1

.

In this way we get (10). �

In order to calculate the formulas for the conjugate functions of the convex deviation

measures in Example 3.3 and Example 3.4 we need the following intermediate formulas.

Fact 5.1 Let be f3 : Lp → R, f3(x) = ||x||ap. For x ∈ Lp we have f3(x) = (g ◦f1)(x).

For a fixed β ∈ R+ we provide first the formula for (βf1)∗(x∗).

Since for β > 0 and x∗ ∈ Lq it holds (see Fact 4.1)

(βf1)∗(x∗) = βf ∗1

(
1
β
x∗
)

= β(|| · ||p)∗
(

1
β
x∗
)

=


0, if ||x∗

β
||q ≤ 1,

+∞, otherwise,

=


0, if ||x∗||q ≤ β,

+∞, otherwise,

and for β = 0 one has (βf1)∗ = δ{0}, we finally get for all β ≥ 0 and all x∗ ∈ Lq

(βf1)∗(x∗) =


0, if ||x∗||q ≤ β,

+∞, otherwise.

Thus with Theorem 5.1 the conjugate of f3 becomes for all x∗ ∈ Lq

f ∗3 (x∗) = min
β≥0,
||x∗||q≤β

g∗(β) = min
β≥0,
||x∗||q≤β

(a− 1)
(
β

a

) a
a−1

= (a− 1)
∣∣∣∣∣
∣∣∣∣∣1ax∗

∣∣∣∣∣
∣∣∣∣∣
a
a−1

q

.
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Fact 5.2 Let be f4 : Lp → R, f4(x) = ||x−||ap for x ∈ Lp. One can see that in this

case f4 = g ◦ f2. In order to use the relation in (9) we have to calculate first (βf2)∗ for

β ≥ 0. If β = 0 one has again (βf2)∗ = δ{0}, while if β > 0 and x∗ ∈ Lq, by (3) it yields

(βf2)∗(x∗) = βf ∗2

(
1
β
x∗
)

=


0, if ||x∗||q ≤ β, x∗ ≤ 0,

+∞, otherwise.

By (9) it follows that for all x∗ ∈ Lq such that x∗ ∈ −(Lq)+ one has

f ∗4 (x∗) = min
β≥0
{g∗(β) + (βf2)∗(x∗)} = min

β≥0,
||x∗||q≤β

(a− 1)
(
β

a

) a
a−1
 = (a− 1)

∣∣∣∣∣
∣∣∣∣∣1ax∗

∣∣∣∣∣
∣∣∣∣∣
a
a−1

q

.

If x∗ 6∈ −(Lq)+, then f ∗4 (x∗) = +∞. Consequently, for all x∗ ∈ Lq we obtain

f ∗4 (x∗) =


(a− 1)

∣∣∣∣∣∣ 1
a
x∗
∣∣∣∣∣∣ aa−1

q
, if x∗ ∈ −(Lq)+,

+∞, otherwise.

�

In the next application we deal with the convex deviation measure considered in

Example 3.3, d3 : Lp → R, d3(x) = ||x− E(x)||ap.

Fact 5.3 The convex deviation measure d3 can be written as d3 = g ◦ d1. Let be
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β ≥ 0 and x∗ ∈ Lq. If β = 0 one has (βd1)∗ = δ{0}, while if β > 0 it holds,

(βd1)∗(x∗) = βd∗1

(
1
β
x∗
)

=


0, if E(x∗) = 0 and min

c∈R
||x∗ − c||q ≤ β,

+∞, otherwise.

For all x∗ ∈ Lq such that E(x∗) = 0 we have (see (9))

d∗3(x∗) = min
β≥0,

β≥min
c∈R
||x∗−c||q

{g∗(β)} = min
c∈R

(a− 1)
∣∣∣∣∣
∣∣∣∣∣1a(x∗ − c)

∣∣∣∣∣
∣∣∣∣∣
a
a−1

q

 ,

while d∗3(x∗) = +∞, if E(x∗) 6= 0. In conclusion, for all x∗ ∈ Lq it holds

d∗3(x∗) =


min
c∈R

{
(a− 1)

∣∣∣∣∣∣ 1
a
(x∗ − c)

∣∣∣∣∣∣ aa−1

q

}
, if E(x∗) = 0,

+∞, otherwise.

The conjugate function of the corresponding convex risk measure ρ3 : Lp → R, ρ3(x) =

d3(x)− E(x) = ||x− E(x)||ap − E(x), turns out for all x∗ ∈ Lq to be (see (2))

ρ∗3(x∗) = d∗3(x∗ + 1) =


min
c∈R

{
(a− 1)

∣∣∣∣∣∣ 1
a
(x∗ − c)

∣∣∣∣∣∣ aa−1

q

}
, if E(x∗) = −1,

+∞, otherwise.

�

The last conjugate function calculated in this section is that of the convex deviation

measure given in Example 3.4.

Fact 5.4 Considering d4 : Lp → R, d4(x) = ||(x − E(x))−||ap, one can see that

d4 = g ◦ d2. First of all we calculate the conjugate of βd2 for β ≥ 0.

28



Let be β ≥ 0 and x∗ ∈ Lq. If β = 0, then (βd2)∗ = δ{0}, while when β > 0 one has

(see (8))

(βd2)∗(x∗) = βd∗2

(
1
β
x∗
)

=


0, if E(x∗) = 0, x∗ ≤ β, || essupx∗ − x∗||q ≤ β,

+∞, otherwise.

Let us notice that in the case E(x∗) = 0, if β ≥ || essupx∗−x∗||q, then β ≥ E(essupx∗−

x∗) = essupx∗, which yields the following formula for the above conjugate

(βd2)∗(x∗) =


0, if E(x∗) = 0, || essupx∗ − x∗||q ≤ β,

+∞, otherwise.

Consequently, by (9), for all x∗ ∈ Lq such that E(x∗) = 0 it holds

d∗4(x∗) = inf
β≥0,

β≥|| essupx∗−x∗||q

(a− 1)
(
β

a

) a
a−1
 = (a− 1)

∣∣∣∣∣
∣∣∣∣∣1a(essupx∗ − x∗)

∣∣∣∣∣
∣∣∣∣∣
a
a−1

q

,

while if E(x∗) 6= 0, we have d∗4(x∗) = +∞. Thus for all x∗ ∈ Lq we get

d∗4(x∗) =


(a− 1)

∣∣∣∣∣∣ 1
a
(essupx∗ − x∗)

∣∣∣∣∣∣ aa−1

q
, if E(x∗) = 0,

+∞, otherwise.

The formula for the conjugate function of the corresponding convex risk measure ρ4 :

Lp → R, ρ4(x) = d4(x) − E(x) = ||(x − E(x))−||ap − E(x), follows. For all x∗ ∈ Lq it

holds (see (2))

ρ∗4(x∗) = d∗4(x∗ + 1) =


(a− 1)

∣∣∣∣∣∣ 1
a
(essupx∗ − x∗)

∣∣∣∣∣∣ aa−1

q
, if E(x∗) = −1,

+∞, otherwise.
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6. Dual Representation of Convex Risk Measures

In this section we give for the convex risk and deviation measures considered in the

previous sections some dual representations which will follow by applying the Fenchel-

Moreau theorem. For p ∈ (1,+∞) and f : Lp → R one of the treated convex risk

or deviation measures, as these enjoy properness, convexity and lower semicontinuity

properties, it holds

f(x) = f ∗∗(x) = sup
x∗∈Lq

{〈x∗, x〉 − f ∗(x∗)} = sup
x∗∈Lq

{E(x∗x)− f ∗(x∗)},∀x ∈ Lp. (11)

Thus by using the formulas of the conjugates derived in the previous sections, we

obtain in a very natural way the desired dual representations, which turn out to be

generalizations of some recently published results by Pflug ( [7]). More than that, we

show the usefulness of the powerful theory of conjugate functions in this field as well.

Fact 6.1 The first convex deviation measure we investigate is d1 : Lp → R, d1(x) =

||x− E(x)||p. We have proven that for all x∗ ∈ Lq

d∗1(x∗) =


0, if E(x∗) = 0 and min

c∈R
||x∗ − c||q ≤ 1,

+∞, otherwise,
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and so, by (11),

d1(x) = sup{E(x∗x) : x∗ ∈ Lq, E(x∗) = 0 and min
c∈R
||x∗ − c||q ≤ 1},∀x ∈ Lp.

Analogously, by (5), we obtain

ρ1(x) = sup
{

E(x∗x) : x∗ ∈ Lq, E(x∗) = −1 and min
c∈R
||x∗ − c||q ≤ 1

}
,∀x ∈ Lp.

�

Pflug gives in Proposition 3 in [7] in the case p ∈ (1,+∞) representations for the

above treated convex risk and deviation measures, which are actually generalizations

of the standard deviation. The formulas given by Pflug are not quite accurate, as he

considers for instance inf instead of min. As we have seen in the previous sections, the

existence of a c ∈ R, such that ||x∗ − c||q ≤ 1, is indispensable. Let us also notice that

Pflug uses instead of convex risk measures so-called acceptability functionals (we denote

them like in [7] by A). They are linked to the convex risk measures in our paper by the

relation A(x) = −ρ(x) for x ∈ Lp.

Fact 6.2 Consider now d2 : Lp → R, d2(x) = ||(x−E(x))−||p, the deviation measure

31



investigated in Fact 4.4. For the conjugate function d∗2 it holds for x∗ ∈ Lq (see (8))

d∗2(x∗) =


0, if E(x∗) = 0, x∗ ≤ 1, || essupx∗ − x∗||q ≤ 1,

+∞, otherwise,

and so one obtains the following dual representation

d2(x) = sup{E(x∗x) : x∗ ∈ Lq, E(x∗) = 0, x∗ ≤ 1, || essupx∗ − x∗||q ≤ 1}, ∀x ∈ Lp.

Similary, we get

ρ2(x) = sup{E(x∗x) : x∗ ∈ Lq, E(x∗) = −1, x∗ ≤ 0, || essupx∗ − x∗||q ≤ 1},∀x ∈ Lp.

�

The last two dual representations are actually the formulas gained in Proposition 5

in [7].

Fact 6.3 For a > 1 let be d3 : Lp → R, d3(x) = ||x− E(x)||ap, the convex deviation

measure considered in Fact 5.3. Its conjugate function d∗3 : Lq → R looks for all x∗ ∈ Lq

like

d∗3(x∗) =


min
c∈R

{
(a− 1)

∣∣∣∣∣∣ 1
a
(x∗ − c)

∣∣∣∣∣∣ aa−1

q

}
, if E(x∗) = 0,

+∞, otherwise.

By (11) we get the following dual representation for d3

d3(x) = sup

E(x∗x)−min
c∈R

(a− 1)
∣∣∣∣∣
∣∣∣∣∣1a(x∗ − c)

∣∣∣∣∣
∣∣∣∣∣
a
a−1

q

 : x∗ ∈ Lq,E(x∗) = 0

 ,∀x ∈ Lp.
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Similarly, for the corresponding convex risk measure we obtain

ρ3(x) = sup

E(x∗x)−min
c∈R

(a− 1)
∣∣∣∣∣
∣∣∣∣∣1a(x∗ − c)

∣∣∣∣∣
∣∣∣∣∣
a
a−1

q

 : x∗ ∈ Lq,E(x∗) = −1

 ,∀x ∈ Lp.
�

Pflug gives in Proposition 2 in [7] a similar formula just for the special case when

a = p, where p ∈ (1,+∞). More than that, in the mentioned paper nothing about the

attainability of the inner infimum is mentioned.

Fact 6.4 Finally, again for a > 1 we consider the deviation measure d4 : Lp → R,

d4(x) = ||(x− E(x))−||ap. Via Fact 5.4 one has for all x∗ ∈ Lq that

d∗4(x∗) =


(a− 1)

∣∣∣∣∣∣ 1
a
(essupx∗ − x∗)

∣∣∣∣∣∣ aa−1

q
, if E(x∗) = 0,

+∞, otherwise,

and so d4 can be represented as

d4(x) = sup

E(x∗x)− (a− 1)
∣∣∣∣∣
∣∣∣∣∣1a(essupx∗ − x∗)

∣∣∣∣∣
∣∣∣∣∣
a
a−1

q

: x∗ ∈ Lq,E(x∗) = 0

 ,∀x ∈ Lp.
Further, for the corresponding convex risk measure ρ4 : Lp → R, ρ4(x) = ||(x −

E(x))−||ap − E(x), we get

ρ4(x) = sup

E(x∗x)− (a− 1)
∣∣∣∣∣
∣∣∣∣∣1a(essupx∗ − x∗)

∣∣∣∣∣
∣∣∣∣∣
a
a−1

q

: x∗ ∈ Lq, E(x∗) = −1

 ,∀x ∈ Lp.
The above statements generalize Proposition 4 in [7] where these formulas have been

given just in the case a = p, where p ∈ (1,+∞).
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7. Conclusions

In this paper, we provide dual representations for different convex risk and deviation

measures by making use of their conjugate functions. For establishing the formulas for

the conjugates, we employ on the one hhand some classical results from convex analysis

and on the other hand some tools from the conjugate duality theory. Several dual

characterizations given for deviation measures in [7] are rediscovered as consequences

of our results, some of them being herewith improved.
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