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Abstract. Regularization methods are techniques for learning functions from given
data. We consider regularization problems the objective function of which consisting of
a cost function and a regularization term with the aim of selecting a prediction function
f with a finite representation f(·) =

∑n
i=1 cik(·, Xi) which minimizes the error of predic-

tion. Here the role of the regularizer is to avoid overfitting. In general these are convex
optimization problems with not necessarily differentiable objective functions. Thus in
order to provide optimality conditions for this class of problems one needs to appeal on
some specific techniques from the convex analysis. In this paper we provide a general
approach for deriving necessary and sufficient optimality conditions for the regularized
problem via the so-called conjugate duality theory. Afterwards we employ the obtained
results to the Support Vector Machines problem and Support Vector Regression problem
formulated for different cost functions.

Keywords. machine learning, Tikhonov regularization, convex duality theory, op-
timality conditions
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1 Some elements of statistical learning
Support Vector Machines are techniques for solving problems of learning from a given
example data set based on the Structural Risk Minimization Principle and they were
first mentioned by Vapnik in [22]. The reader is also referred to [21, 23] for a deeper
insight into this field.

Evgeniou, Pontil and Poggio distinguish in [8] between two types of statistical learn-
ing problems: the Support Vector Machines Regression problem (SVMR) and the Reg-
ularization Networks (RN). The problems belonging to the first class have as possible
application the approximation and determination of a function by means of a data
set. We deal here with a particular case of this problem, the so-called Support Vector
Machines Classification (SVMC).
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Consider a given set with n training data {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ Rk
and Yi ∈ R, i = 1, . . . , n, and let F be a space of functions defined on Rk with real values.
The SVMC problem looks for a function f ∈ F such that for a previously unknown value
X the function f predicts the value Y . The penalty for predicting f(Xi) having as true
value Yi for i = 1, . . . , n is measured by a so-called cost function v : R2 → R.

The problem of finding an optimal function f in F is ill-posed since there are in-
finitely many solutions. In order to get a well-posed problem, and, consequently, to
be able to provide a particular solution, we need some additional a priori information
about f . A common one is the assumption that the function f is smooth, in other
words, two similar inputs correspond to two similar outputs. In this way one is able
to control the complexity of f . To this aim one has to introduce a regularization term
λ
2 Ω(f) (cf. [2, 3, 20]), where the regularization parameter λ > 0 controls the tradeoff
between the cost function and the regularizer Ω (cf. [25]). In this context Ω is also
called smoothness functional and has the desired characteristic of taking high values
for non-smooth functions and low values for smooth functions. The following Tikhonov
regularization problem arises

inf
f∈F

{
n∑
i=1

v(f(Xi), Yi) + λ

2 Ω(f)
}
, (1)

the objective function of which being called regularization functional.
Further let Hk be a Reproducing Kernel Hilbert Space (RKHS) introduced by a kernel

function k : Rk×k → R (cf. [1]). In the following we ask f to be an element of Hk.
Moreover, we assume that k is symmetric, namely that k(x, y) = k(y, x) for x, y ∈ Rk.
The kernel function k introduces a kernel matrix K ∈ Rn×n, where k(Xi, Xj) = Kij for
i, j = 1, . . . , n. In this context K, which is a symmetric matrix, is said to be the Gram
matrix of k with respect to X1, . . . , Xn. A symmetric kernel function k : Rk×k → R which
for all n ≥ 1 and all finite sets {X1, . . . , Xn} ⊂ Rk fulfills

∑n
i,j=1 aiajk(Xi, Xj) ≥ 0 for

every arbitrary a ∈ Rn is called finitely positive semidefinite kernel (cf. [19]). One can
easily see that such a kernel function gives rise to a positive semidefinite Gram matrix
K. On the other hand, it is worth noticing that (see [19, Theorem 3.11]) a k which is
either continuous or has a finite domain can be decomposed as k(x, y) = 〈Φ(x),Φ(y)〉,
where Φ : Rk → F is a feature map and F a Hilbert space, if and only if it is finitely
positive semidefinite.

It is well-known that when having a symmetric finitely positive definite kernel k and
a corresponding Gram matrix one can find a RKHS Hk induced by it, such that the so-
called reproducing property, namely that f(x) = 〈f(·), k(x, ·)〉 for all x ∈ Rk, is fulfilled
(cf. [1]). Shawe-Taylor and Cristianini have shown in [19] that one can construct a
RKHS Hk even for a symmetric finitely positive semidefinite kernel function such that
the reproducing property is valid. More than that, via the so-called representer theorem
(cf. [25]) one has that for every minimizer f of (1) there exists c = (c1, . . . , cn)T ∈ Rn
such that

f =
n∑
j=1

cjk(·, Xj). (2)

This is the setting considered in this paper and in the following we additionally
assume that for f ∈ Hk the smoothness functional is defined as Ω(f) = ‖f‖2k, where
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|| · ||k is the norm in Hk. If for f ∈ Hk the vector c ∈ Rn is the one that comes from the
representation given in (2), then Ω(f) = ||f ||2k = cTKc and for all i = 1, ..., n it holds
f(Xi) =

∑n
j=1 cjKij = (Kc)i. Thus the optimization problem (1) can be equivalently

written as
inf
c∈Rn

{
n∑
i=1

v((Kc)i, Yi) + λ

2 c
TKc

}
. (3)

Unfortunately, the most popular and most efficient cost functions used in the literature
on machine learning fail to be differentiable (see, for instance, [8, 16, 18]). This causes
some difficulties when trying to furnish optimality conditions for the above problem.
On the other hand, these functions turn out to be convex in the first variable and,
consequently, problem (3) becomes a convex optimization problem. In the following
section we provide a general approach for deriving optimality condition for problem
(3) by means of the conjugate duality theory in convex optimization. The optimality
conditions for (3) will be expressed as systems of nonlinear equations involving the
conjugates of the cost functions or, alternatively, via convex subdifferential formulae.
As a byproduct we extend in this way the approach presented in [14], where when
dealing with problem (3) the authors impose invertibility for K. We show that, in
spite of the fact that we avoid this assumption, one can deliver handleable optimality
conditions for (3), only by exploiting the very strong results of the convex analysis.

The described regularization framework includes many well-known learning meth-
ods. Depending on the application one can use different cost functions (see for instance
[8, 14] for several examples). In section 3 we consider some particular instances of
the Support Vector Machines Classification problem, namely when the output Y takes
values in {+1,−1}. In this case we speak about a (binary) classification problem. In
particular we deal with the hinge loss (or soft margin) (cf. [7, 22]) vhl : R × R → R,
vhl(a, Y ) = (1− (a+ b)Y )+, for b ∈ R, but also with the generalized hinge loss (cf. [5])
vghl : R× R→ R, vghl(a, Y ) = (1− (a+ b)Y )u+, where u > 1 is given.

In section 4 we turn our attention to the Support Vector Regression problem, which
is characterized by the fact that the output Y may take arbitrary real values. In this
context we deal with the following extended loss function vel : R×R→ R = R∪{±∞},
vel(a, Y ) = δ[−ε,ε](Y − a), where ε > 0, as well as with a generalization of Vapnik’s
ε-insensitive loss introduced by Smola, Schölkopf and Müller in [18], which we describe
in detail in subsection 4.2. Especially by means of the extended loss we succeed in
underlining the role of the regularity conditions when providing optimality conditions
even in the context of machine learning. Obviously, via the general approach from
section 2 one can consider also other cost functions suitable for the classification and
regression problem.

It is worth to notice that in the investigations made in the sections 3 and 4 we
take advantage of the convexity properties of cost functions involved. This fact allows
us to employ the convex duality theory and to make use of the well-developed convex
subdifferential calculus. On the other hand, this approach suggests the possibility to
use nonsmooth and nonconvex cost functions in statistical learning. In order to provide
optimality conditions for the optimization problems arising in this way, one could apply
the calculus formulae which exist in the literature for different subdifferentials. In a first
step one could consider locally Lipschitz cost functions in connection with the Clarke
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subdifferential (cf. [6]), but also some more general classes of functions in connection
with some appropriate subdifferential notions, as one can find in [10].

The paper is closed by a conclusive section.

2 Notation and preliminary results
For two vectors x, y ∈ Rn we denote by xT y their scalar product, where the upper index
T transposes a column vector into a row one and viceversa. By ei, i = 1, ..., n, we denote
the i-th unit-vector in Rn. For a nonempty set D ⊆ Rn we denote by δD : Rn → R the
indicator function of D, which is defined by δD(x) = 0 if x ∈ D, being equal to +∞,
otherwise. Further, by ri(D) we denote the relative interior of the set D, that is the
interior of D relative to its affine hull. For a function f : Rn → R we denote its effective
domain by dom(f) = {x ∈ Rn : f(x) < +∞} and say that f is proper if dom(f) 6= ∅
and f > −∞. The (Fenchel-Moreau) conjugate function of f is f∗ : Rn → R, defined
by f∗(p) = supx∈Rn{pTx− f(x)}. We have the following relation, known as the Young-
Fenchel inequality, f(x) + f∗(p)− pTx ≥ 0 and this is true for all x, p ∈ Rn. For x ∈ Rn
with f(x) ∈ R we denote by ∂f(x) := {p ∈ Rn : f(y)− f(x) ≥ pT (y − x) ∀y ∈ Rn} the
(convex) subdifferential of f at x. Otherwise, we assume by convention that ∂f(x) = ∅.
For x ∈ Rn with f(x) ∈ R one has that

p ∈ ∂f(x)⇔ f(x) + f∗(p) = pTx.

For a linear mapping K : Rn → Rm we denote by Im(K) := {Kx : x ∈ Rn} the image
of K. Further, for x ∈ R we define x+ := max(0, x).

In order to develop a duality theory and to formulate necessary and sufficient opti-
mality conditions for problem (3), we treat first, by means of some techniques from the
convex analysis, the following optimization problem

(P ) inf
c∈Rn

{ l∑
i=1

vi(Kc) + g(c)
}
,

where g : Rn → R and vi : Rm → R, i = 1, . . . , l, are proper and convex functions and
K : Rn → Rm is a linear mapping such that K−1

(⋂l
i=1 dom(vi)

)
∩ dom(g) 6= ∅. The

latter condition is called feasibility condition and guarantees that v(P ) < +∞, where
by v(P ) we denote the optimal objective value of (P ). Throughout the paper, for a
given optimization problem, we write min (max) instead of inf (sup) if the infimum
(supremum) is attained. Before stating optimality conditions for (P ) we consider its
following Fenchel-type conjugate dual problem

(D) sup
pi∈Rm,i=1,...,l

{
−

l∑
i=1

v∗i (pi)− g∗
(
−KT

(
l∑

i=1
pi
))}

.

Next we show that for (P ) and (D) weak duality always holds, namely that v(P ) ≥ v(D),
where by v(D) we denote the optimal objective value of the dual (D).

Theorem 1. (weak duality theorem) It holds v(P ) ≥ v(D).
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Proof. Let be c ∈ Rn and pi ∈ Rm, i = 1, . . . , l. Then, by the Young-Fenchel inequality,
it holds

−
l∑

i=1
v∗i (pi)− g∗

(
−KT

(
l∑

i=1
pi
))
≤

l∑
i=1

vi(Kc) + g(c).

From here one automatically has that v(D) ≤ v(P ).

For strong duality, namely the situation when v(P ) = v(D) and the dual has an
optimal solution, we need to impose the fulfillment of a so-called regularity condition.
With this respect we use a weak interior-point regularity condition.

Theorem 2. (strong duality theorem) Assume that the regularity condition

(CQ) ∃c′ ∈ ri(dom(g)) such that Kc′ ∈
l⋂

i=1
ri(dom(vi))

is fulfilled. Then v(P ) = v(D) and the dual has an optimal solution.

Proof. Since (CQ) is fulfilled, by [15, Theorem 6.5], one has that there exists ∃c′ ∈
ri(dom(g)) such that Kc′ ∈ ri

(
dom

(∑l
i=1 vi

))
. Thus, by [15, Corollary 31.2.1], there

exists p ∈ Rm such that

v(P ) = max
p∈Rm

−
(

l∑
i=1

vi

)∗
(p)− g∗(−KT p)

 = −
(

l∑
i=1

vi

)∗
(p)− g∗(−KT p).

Using again (CQ), from [15, Theorem 16.4] it follows that there exist p1, . . . , pl ∈
Rm,

∑l
i=1 p

i = p, such that(
l∑

i=1
vi

)∗
(p) = min

{
l∑

i=1
v∗i (pi) :

l∑
i=1

pi = p

}
=

l∑
i=1

v∗i (pi).

Thus we get v(P ) = −
∑l
i=1 v

∗
i (pi) − g∗

(
−KT (

∑l
i=1 p

i)
)

= v(D) and (p1, . . . , pl) is an
optimal solution to the dual (D).

The strong duality theorem plays a determinant role when deriving necessary and
sufficient optimality conditions for the primal-dual pair (P )-(D).

Theorem 3. (optimality conditions) (a) Assume that (CQ) is fulfilled. If c ∈ Rn is an
optimal solution to (P ), then there exists (p1, . . . , pl), pi ∈ Rm, i = 1, . . . , l, an optimal
solution to (D), such that the following optimality conditions are satisfied:

(i) vi(Kc) + v∗i (pi) = piT (Kc), i = 1, . . . , l;

(ii) g(c) + g∗
(
−

l∑
i=1

KT pi
)

+ (Kc)T
(

l∑
i=1

pi
)

= 0.

(b) If c ∈ Rn and (p1, . . . , pl) fulfill the optimality conditions (i)− (ii), then they are
optimal solutions to (P ) and (D), respectively, and v(P ) = v(D).
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Proof. (a) If c is an optimal solution to (P ), then, by Theorem 2, there exists (p1, . . . , pl),
an optimal solution to (D), such that

l∑
i=1

vi(Kc) + g(c) = −
l∑

i=1
v∗i (pi)− g∗

(
−KT

(
l∑

i=1
pi
))

or, equivalently,
l∑

i=1

[
vi(Kc) + v∗i (pi)− piT (Kc)

]
+
[
g(c) + g∗

(
l∑

i=1
KT pi

)
+ (Kc)T

(
l∑

i=1
pi
)]

= 0.

In this way we get a sum of l+ 1 nonnegative terms (cf. the Young-Fenchel inequality)
which is zero. Thus equality in these inequalities must hold and (i)− (ii) are valid.

(b) All calculations done within part (a) can be carried out in reverse direction,
which concludes the proof.

Remark 1. One can easily notice that the optimality conditions from Theorem 3 can
be equivalently written as

(i) pi ∈ ∂vi(Kc), i = 1, . . . , l;

(ii) KT

(
−

l∑
i=1

pi
)
∈ ∂g(c).

In other words, providing that (CQ) is fulfilled, c̄ ∈ Rn is an optimal solution to (P ) if
and only if

0 ∈ KT

(
l∑

i=1
∂vi(Kc)

)
+ ∂g(c).

The sufficiency in the above equivalence is always valid.

We come now to the optimization problem (3)

inf
c∈Rn

{
n∑
i=1

v((Kc)i, Yi) + λ

2 c
TKc

}
,

where λ > 0, K ∈ Rn×n is a symmetric positive semidefinite matrix and v : R×R→ R
a given cost function. For the latter we assume that for all Yi ∈ R the function v(·, Yi) :
R→ R, i = 1, ..., n, is convex. Moreover, we suppose that there exists c′ ∈ Rn such that
(Kc′)i ∈ dom(v(·, Yi)) for all i = 1, ..., n, which is actually a natural feasibility condition.
These assumptions are not restrictive at all, as they are fulfilled for the majority of the
cost functions that appear in the literature of machine learning. Defining g : Rn → R
by g(c) := λ

2 c
TKc and vi : Rn → R by vi(c) := v(ci, Yi), for i = 1, . . . , n, one can easily

see that problem (3) is a particular instance of (P ). Recall that in our context the labels
Yi ∈ R, i = 1, . . . , n, are given constants.

Let us notice that, by assuming invertibility for the matrix K, Rifkin and Lippert
have investigated in [14] the problem (3) from the point of view of the optimality
conditions, by equivalently rewriting it as being

inf
c∈Rn

{
n∑
i=1

v(ci, Yi) + λ

2 c
TK−1c

}
,
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where K−1 is the inverse matrix of K. As follows from the investigations made above
one can provide a dual problem to (3) and then derive optimality conditions for this
primal-dual pair without making this assumption. More than that, different to [14], in
the formulation of the optimality conditions the cost function and the regularization
appear separately.

To this aim we need the formula for the conjugate function of g, which looks like
(cf. [9]):

g∗(p) =
{

1
2λp

TK−p, if p ∈ Im(K),
+∞, otherwise, ∀p ∈ Rn,

where K− is the Moore-Penrose pseudo-inverse of K. This leads to the following dual
problem to (3)

sup
pi∈Rn,i=1,...,n,

K

(
−

n∑
i=1

pi

)
∈Im(K)

−
n∑
i=1

v∗i (pi)−
1

2λ

(
n∑
i=1

pi
)T

KK−K

(
n∑
i=1

pi
) .

Since, obviously, K
(
−

n∑
i=1

pi
)
∈ Im(K), it holds

KK−
(
K

(
n∑
i=1

pi
))

= PrIm(K)

(
K

(
n∑
i=1

pi
))

= K

(
n∑
i=1

pi
)
,

where PrIm(K) denotes the orthogonal projection onto Im(K) and fulfills (cf. [9])
PrIm(K)(x) = x for all x ∈ Im(K). In this way we obtain the following dual prob-
lem to (3)

sup
pi∈Rn,i=1,...,n

−
n∑
i=1

v∗i (pi)−
1

2λ

(
n∑
i=1

pi
)T

K

(
n∑
i=1

pi
) . (4)

Remark 2. (a) In order to ensure the existence of strong duality for (3) and (4) one
needs to assume that Im(K) ∩

⋂n
i=1 ri(dom(vi)) 6= ∅.

(b) In this particular instance we have ∂g(c) = {λKc} for all c ∈ Rn. Thus, whenever
the above regularity condition is valid and c̄ ∈ Rn is an optimal solution to (3), then
there exists (p1, . . . , pn), pi ∈ Rn, i = 1, . . . , n, an optimal solution to (4), such that the
following optimality conditions are satisfied:

(i) pi ∈ ∂vi(Kc), i = 1, . . . , n;

(ii) K
(
λc+

l∑
i=1

pi
)

= 0.

If c ∈ Rn and (p1, . . . , pn) fulfill the optimality conditions (i) − (ii) from above, then
they are optimal solutions to (3) and (4), respectively, and the optimal objective values
of the two problems coincide.

In other words, if Im(K)∩
⋂n
i=1 ri(dom(vi)) 6= ∅, then c̄ ∈ Rn is an optimal solution

to (3) if and only if

−λKc ∈ K
(

n∑
i=1

∂vi(Kc)
)
.
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The sufficiency in the above equivalence is always valid.

3 The Support Vector Machines problem
Let us consider as first particular instance of (3), the so-called Support Vector Ma-
chines problem. To this aim we assume that the training data set is given such that
{(X1, Y1), . . . , (Xn, Yn)} ⊆ Rk×{−1,+1} and obtain, consequently, a problem from the
family of binary classification problems. More precisely we are looking for a function
f : Rk → R such that f(Xi) > 0 if Yi = +1 and f(Xi) < 0 if Yi = −1. This means that
the classification is realized by the sign-function, i.e. for a given value X the predicted
value is equal to the sign of f(X) for f(X) 6= 0, whereas for f(X) = 0 we have to
specify the allocation to one of the two classes. The set of points {X ∈ Rk : f(X) = 0}
is called the decision boundary.

3.1 Hinge loss

As cost function we consider first the hinge loss function vhl : R× R→ R, vhl(a, Y ) =
(1− (a+ b)Y )+, where b ∈ R is for the beginning a fixed bias term, which is one of the
functions widely used in applications on Support Vector Machines Classification. Values
for which (a+ b)Y ≤ 1 are penalized linearly whereas the cost function is indifferent to
(a+ b)Y > 1. Therefore problem (3) becomes the following optimization problem

(P hl) inf
c∈Rn

{
n∑
i=1

(1− ((Kc)i + b)Yi)+ + λ

2 c
TKc

}
.

One can easily notice that for Yi ∈ {−1,+1} the function vhl(·, Yi) is convex and has
as effective domain R for all i = 1, ..., n. Thus the feasibility condition imposed for the
problem (3) is fulfilled.

Let be i ∈ {1, ..., n} fixed. The conjugate function of vhli : Rn → R, vhli (c) = (1−(ci+
b)Yi)+, can be calculated by employing the Lagrange duality. For p = (p1, ..., pn)T ∈ Rn
we have

−(vhli )∗(p) = inf
c∈Rn
{−pT c+ (1− (ci + b)Yi)+} = inf

c∈Rn,z∈R,
z≥0,z≥1−(ci+b)Yi

{−pT c+ z} =

sup
q≥0,r≥0

{
inf
c∈Rn
{(−p− reiYi)T c}+ inf

z∈R
{z(1− q − r)}+ r(1− bYi)

}
=

sup
q,r≥0,q+r=1,
−p−reiYi=0

r(1− bYi) = sup
r∈[0,1],

p+reiYi=0

r(1− bYi) =

{
−pi(Yi − b), if piYi ∈ [−1, 0], pj = 0, ∀j 6= i,
−∞, otherwise.

One can notice that in case b = 0 we rediscover the formula of the conjugate given in
[14]. Now the problem (4) leads to the following dual problem to (P hl)

(Dhl) sup
pi∈Rn,Pi∈R,pi=eiPi,
pi

iYi∈[−1,0],i=1,...,n,

−
n∑
i=1

pii(Yi − b)−
1

2λ

(
n∑
i=1

pi
)T

K

(
n∑
i=1

pi
) ,
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which can be equivalently written as

(Dhl) sup
Pi∈R,PiYi∈[−1,0],

i=1,...,n

{
−

n∑
i=1

Pi(Yi − b)−
1

2λP
TKP

}
.

That the regularity condition is fulfilled has to do with the fact that the function
v(·, Yi) has full effective domain for all i = 1, ..., n. Consequently, the strong duality
is automatically guaranteed. In the following result we state necessary and sufficient
optimality conditions for the primal-dual pair (P hl) − (Dhl) and these are derived via
Theorem 3 and Remark 2.

Theorem 4. (a) If c ∈ Rn is an optimal solution to (P hl), then there exists P =
(P 1, . . . , Pn)T ∈ Rn, an optimal solution to (Dhl), such that the following optimality
conditions are satisfied:

(i) (1− ((Kc)i + b)Yi)+ + P i(Yi − b) = P i(Kc)i, i = 1, . . . , n;

(ii) −1 ≤ P iYi ≤ 0, i = 1, . . . , n;

(iii) K(λc+ P ) = 0.

(b) If c ∈ Rn and P = (P 1, . . . , Pn)T fulfill the optimality conditions (i)− (iii), then
they are optimal solutions to (P hl) and (Dhl), respectively, and v(P hl) = v(Dhl).

Remark 3. (a) One should notice that in case b = 0 (Dhl) becomes the dual problem
given for (P hl) in [14] under the assumption that K is a symmetric and positive definite
matrix.

(b) By making use of some slack variables the optimization problem (P hl) can be
equivalently written as

(P hl) inf
c∈Rn

n∑
i=1

ξ + λ
2 c
TKc.

s.t. ((Kc)i + b)Yi ≥ 1− ξi, i = 1, ...,m
ξi ≥ 0, i = 1, ...,m

(5)

Consequently, we rediscovered above the dual problem and the optimality conditions for
the Support Vector Machines Classification problem with fixed (or without) bias term,
which has been investigated, for instance, in [8, 13, 24].

Remark 4. In the classical formulation of the Support Vector Machines Classification
problem one minimizes over both c ∈ Rn and b ∈ R (see [7, 16, 19]), the primal
optimization problem having the following formulation

inf
c∈Rn,b∈R

n∑
i=1

ξ + λ
2 c
TKc

s.t. ((Kc)i + b)Yi ≥ 1− ξi, i = 1, ...,m
ξi ≥ 0, i = 1, ...,m

(6)

or, equivalently,

inf
b∈R

inf
c∈Rn

{
n∑
i=1

(1− ((Kc)i + b)Yi)+ + λ

2 c
TKc

}
.
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By making use of the dual problem of the inner infimum problem, that we determined
above, we further get the following formulation for (6)

inf
b∈R

max
Pi∈R,PiYi∈[−1,0],

i=1,...,n

{
−

n∑
i=1

Pi(Yi − b)−
1

2λP
TKP

}
,

where by writing “max” instead of “sup” we want to point out the fact that the supre-
mum is attained. Consider the function L : R × {P = (P1, ..., Pn) ∈ Rn : PiYi ∈
[−1, 0], i = 1, . . . , n} → R, L(b;P ) = −

∑n
i=1 Pi(Yi − b) − 1

2λP
TKP . As L is convex in

the first variable and concave and continuous in the second one, by the classical Ky Fan
minmax theorem (see, for instance, [17, Theorem 3.2]), one has that

inf
b∈R

max
Pi∈R,PiYi∈[−1,0],

i=1,...,n

{
−

n∑
i=1

Pi(Yi − b)−
1

2λP
TKP

}
=

max
Pi∈R,PiYi∈[−1,0],

i=1,...,n

inf
b∈R

{
−

n∑
i=1

Pi(Yi − b)−
1

2λP
TKP

}
=

max
Pi∈R,PiYi∈[−1,0],i=1,...,n,∑n

i=1 Pi=0

{
−

n∑
i=1

PiYi −
1

2λP
TKP

}
. (7)

The problem (7) is the classical dual optimization problem to (6) as one can find it
in the literature on Support Vector Machines. Via Theorem 4 one can show that if
(c, b) ∈ Rn×R is an optimal solution to (6), then there exists P = (P 1, . . . , Pn)T ∈ Rn,
an optimal solution to (7), such that the following optimality conditions are satisfied:

(i) (1− ((Kc)i + b)Yi)+ + P i(Yi − b) = P i(Kc)i, i = 1, . . . , n;

(ii) −1 ≤ P iYi ≤ 0, i = 1, . . . , n;

(iii) K(λc+ P ) = 0;

(iv)
∑n
i=1 P̄i = 0.

These are the optimality conditions for the primal-dual pair (6)-(7) as they can be found
in the above mentioned literature.

3.2 Generalized hinge loss

Chapelle considered in [5] a more general cost function than vhl, the so-called gen-
eralized hinge loss. We slightly modify it by inserting the fixed bias term b ∈ R and,
consequently, work in this subsection with vghl : R×R→ R, vghl(a, Y ) = (1−(a+b)Y )u+,
where u > 1 is a given constant. Also here, for Yi ∈ {−1,+1} the function vghl(·, Yi) is
convex and has as effective domain R for all i = 1, ..., n. Employing it as cost function
for our learning problem, it leads to the following primal optimization problem

(P ghl) inf
c∈Rn

{
n∑
i=1

(1− ((Kc)i + b)Yi)u+ + λ

2 c
TKc

}
.
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For all c ∈ Rn consider vghli : Rn → R, vghli (c) = (1−(ci+b)Yi)u+. In order to calculate its
conjugate we notice first that for all i = 1, ..., n it holds vghli = k ◦ vhli , where k : R→ R
is defined by

k(x) =
{
xu, x ≥ 0,
+∞, otherwise.

Now one can use the formula for the conjugate of a composed convex function. Let
i ∈ {1, ..., n} and p = (p1, ..., pn)T ∈ Rn be fixed. Both functions vhli and k are convex
and the latter is increasing on the set vhli (Rn) + R+ = R+. Since there obviously exists
c′ ∈ Rn with vhli (c′) > 0, it holds vhli (c′) ∈ ri(dom(k))∩ ri(vhli (R)) and so, by [4, relation
(1)], one gets

(vghli )∗(p) =
(
k ◦ vhli

)∗
(p) = min

q≥0
{k∗(q) + (qvhli )∗(p)}.

But for all q ∈ R+ we have k∗(q) = (u − 1)
( q
u

) u
u−1 . Further we need (qvi)∗(p). For

q > 0, by using the formula for the conjugate of vhli from the previous subsection, we
obtain that

(qvhli )∗(p) = q
(
vhli

)∗ (1
q
p

)
=
{
pi(Yi − b), if piYi ∈ [−q, 0], pj = 0, j = 1, ..., n, j 6= i
+∞, otherwise,

while for q = 0 it holds (qvi)∗(p) = δ{0}(p). In conclusion we obtain that (vghli )∗(p) =
minq≥0,piYi∈[−q,0]

[
(u− 1)

( q
u

) u
u−1 + pi(Yi − b)

]
in case pj = 0 for j = 1, ..., n, j 6= i, being

otherwise equal to +∞. Alternatively, one can derive the same formula by using the
second identity of Table 3 in [14]. Thus one can provide the following dual problem to
(P ghl)

(Dghl) sup
Pi∈R,qi≥0,

PiYi∈[−qi,0],i=1...,n

{
n∑
i=1

[
(1− u)

(
qi
u

) u
u−1
− Pi(Yi − b)

]
− 1

2λP
TKP

}
.

The cost function investigated in this subsection being one with full domain, the exis-
tence of strong duality is automatically guaranteed. Next we state the corresponding
optimality conditions for the primal-dual pair (P ghl)− (Dghl).

Theorem 5. (a) If c ∈ Rn is an optimal solution to (P ghl), then there exists (P , q) ∈
Rn × R+, P = (P 1, ..., Pn)T , an optimal solution to (Dghl), such that the following
optimality conditions are satisfied:

(i) (1− ((Kc)i + b)Yi)u+ + (u− 1)
(
q
u

) u
u−1 + P i(Yi − b) = P i(Kc)i, i = 1, . . . , n;

(ii) −q ≤ P iYi ≤ 0, i = 1, . . . , n;

(iii) K(λc+ P ) = 0.

(b) If c ∈ Rn and (P , q) ∈ Rn × R+, P = (P 1, ..., Pn)T , fulfill the optimality condi-
tions (i)− (iii), then they are optimal solutions to (P ghl) and (Dghl), respectively, and
v(P ghl) = v(Dghl).

11



Remark 5. By means of a minmax approach, similar to the one described in Remark
4, one can provide a dual problem and optimality conditions for the problem employing
the generalized hinge loss as cost function, but when minimizing over both c ∈ Rn and
b ∈ R.

4 The Support Vector Regression problem
The next particular instance of the general machine learning problem we treat in this
paper is the problem of Support Vector Regression. This is a technique of predic-
tive data analysis, where one tries to estimate the dependencies between the points
{X1, . . . , Xn} ⊂ Rk and {Y1, . . . , Yn} ⊂ R of the data set, represented by means of a
function f . Thus for a given point X we predict Y by Y = f(X).

Here we deal first with a general abstract cost function which gathers as special case
some classical cost functions used in the literature on Support Vector Regression. To
this aim we consider ε > 0 fixed. Let be β : R → R a proper, convex and increasing
function with β(x) ≥ 0 for all x ∈ R. Define the general cost function vsvr : R×R→ R,
vsvr(a, Y ) = β(|Y − a| − ε). Then v(·, Yi) : R → R is convex and in the following we
assume that there exists c′ ∈ Rn such that |Yi − (Kc′)i| ∈ dom(β) + ε for i = 1, ..., n.
In this way the feasibility condition imposed in section 2 is verified. Suppose also
that ri(dom(β)) ∩ (−ε,+∞) 6= ∅, a condition which is not too restrictive since, in the
particular cases treated below, it will be automatically verified. The primal optimization
problem looks in this case like

(P svr) inf
c∈Rn

{
n∑
i=1

β(|Yi − (Kc)i| − ε) + λ

2 c
TKc

}
.

Let be i ∈ {1, ..., n} fixed and vsvri : Rn → R, vsvri (c) = vsvr(ci, Yi). For its conjugate
at p = (p1, ..., pn)T ∈ Rn we have the following formulation

(vsvri )∗(p) =
{
piYi + (β ◦ (| · | − ε))∗(−pi), if pj = 0, j = 1, ..., n, j 6= i,
+∞, otherwise.

Again, by [4, relation (1)], it holds

(β ◦ (| · | − ε))∗(−pi) = min
q≥0
{β∗(q) + (q| · | − qε)∗(−pi)}.

For all q ≥ 0 we have

(q| · | − qε)∗(−pi) =
{
εq, if |pi| ≤ q,
+∞, otherwise

and therefore
(β ◦ (| · | − ε))∗(−pi) = min

q≥0,|pi|≤q
{β∗(q) + εq}.

Thus, for this special choice of the cost function, the dual problem (4) turns out to be

(Dsvr) sup
Pi∈R,qi≥0,

|Pi|≤qi,i=1,...,n

{
−

n∑
i=1

(β∗(qi) + PiYi + εqi)−
1

2λP
TKP

}
.
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The optimality conditions for this primal-dual pair are consequences of Theorem 3 and
Remark 2.

Theorem 6. (a) Assume that the following regularity condition

∃c′ ∈ Rn : |(Kc′)i − Yi| ∈ ri(dom(β)) + ε, i = 1, ..., n,

is fulfilled. If c ∈ Rn is an optimal solution to (P svr), then there exists (P , q) ∈ Rn ×
Rn+, P = (P 1, ..., Pn)T , q = (q1, ..., qn)T , an optimal solution to (Dsvr), such that the
following optimality conditions are satisfied:

(i) β(|Yi − (Kc)i| − ε) + β∗(qi) + P iYi + εqi = P i(Kc)i, i = 1, . . . , n;

(ii) |P i| ≤ qi, i = 1, . . . , n;

(iii) K(λc+ P ) = 0.

(b) If c ∈ Rn and (P , q) ∈ Rn × Rn+, P = (P 1, ..., Pn)T , q = (q1, ..., qn)T , fulfill the
optimality conditions (i) − (iii), then they are optimal solutions to (P svr) and (Dsvr),
respectively, and v(P svr) = v(Dsvr).

4.1 Extended loss

When considering β : R → R, β = δR− , which is a proper, convex and increasing
function, one obtains as cost function for the regression problem

vel : R× R→ R, vel(a, Y ) =
{

0, if |Y − a| ≤ ε,
+∞, otherwise.

The condition ri(dom(β)) ∩ (−ε,+∞) 6= ∅ is in this case fulfilled and in order to fit
in the general framework one has to impose only the feasibility condition, namely that
there exists c′ ∈ Rn such that |Yi − (Kc′)i| ≤ ε for i = 1, ..., n. Consequently, we obtain
the following primal optimization problem

(P el) inf
c∈Rn,

|Yi−(Kc)i|≤ε,i=1,...,n

{
λ

2 c
TKc

}

and via (Dsvr), using that β∗ = δR+ , the corresponding dual problem

(Del) sup
Pi∈R,i=1,...,n

{
−

n∑
i=1

(PiYi + ε|Pi|)−
1

2λP
TKP

}
.

The regularity condition which ensures strong duality and the corresponding optimality
conditions for this primal-dual pair follow from Theorem 6.

Theorem 7. (a) Assume that the following regularity condition

∃c′ ∈ Rn : |(Kc′)i − Yi| < ε, i = 1, ..., n,

is fulfilled. If c ∈ Rn is an optimal solution to (P el), then there exists P =
(P 1, ..., Pn)T ∈ Rn, an optimal solution to (Del), such that the following optimality
conditions are satisfied:

13



(i) P iYi + ε|P i| = P i(Kc)i, i = 1, . . . , n;

(ii) |Yi − (Kc)i| ≤ ε, i = 1, . . . , n;

(iii) K(λc+ P ) = 0.

(b) If c ∈ Rn and P = (P 1, ..., Pn)T ∈ Rn fulfill the optimality conditions (i)− (iii),
then they are optimal solutions to (P el) and (Del), respectively, and v(P el) = v(Del).

Remark 6. The important role that is played in general by the regularity conditions
in the duality theory, but also in some of its particular instances, is underlined by the
investigations made in this subsection. Without having such a condition fulfilled one
may have serious difficulties to provide optimality conditions for the solutions of the
problem (P el). This is another reason why we consider that the results we present in
this paper decisively improve the ones in [14].

4.2 A generalization of Vapnik’s ε-insensitive loss

Smola, Schölkopf and Müller considered in [18] a cost function for the Support Vector
Regression problem which generalizes the celebrated Vapnik’s ε-insensitive loss function.
They derive optimality conditions for the primal problem treated in this setting by
using Wolfe duality. We show in the following that using the general approach based
on conjugate duality presented in this paper one may obtain a more handleable dual
problem and corresponding optimality conditions than the ones in [18].

Let κ : R→ R be a convex and increasing function with κ(0) = 0 and κ(x) ≥ 0 for
all x ≥ 0. Taking β : R → R, β(x) = 0 for x < 0 and β(x) = κ(x), otherwise, notice
that β is a proper, convex and increasing function and it gives rise to the general cost
function considered in [18]

vgil : R× R→ R, vgil(a, Y ) =
{

0, if |Y − a| ≤ ε,
κ(|Y − a| − ε), otherwise.

As β has full domain, the feasibility conditions imposed at the beginning of this section
are fulfilled. The primal optimization problem (P svr) looks like

(P gil) inf
c∈Rn

{
n∑
i=1

vgil((Kc)i, Yi) + λ

2 c
TKc

}

and again, via (Dsvr), the corresponding dual problem becomes

(Dgil) sup
Pi∈R,qi≥0,

|Pi|≤qi,i=1,...,n

{
−

n∑
i=1

((κ+ δR+)∗(qi) + PiYi + εqi)−
1

2λP
TKP

}
.

We can state the following optimality conditions, by noting that the regularity condition
is in this case automatically fulfilled.

Theorem 8. (a) If c ∈ Rn is an optimal solution to (P gil), then there exists (P , q) ∈
Rn × Rn+, P = (P 1, ..., Pn)T , q = (q1, ..., qn)T , an optimal solution to (Dgil), such that
the following optimality conditions are satisfied:
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(i) vgil((Kc)i, Yi) + (κ+ δR+)∗(qi) + P iYi + εqi = P i(Kc)i, i = 1, . . . , n;

(ii) |P i| ≤ qi, i = 1, . . . , n;

(iii) K(λc+ P ) = 0.

(b) If c ∈ Rn and (P , q) ∈ Rn × Rn+, P = (P 1, ..., Pn)T , q = (q1, ..., qn)T , fulfill the
optimality conditions (i) − (iii), then they are optimal solutions to (P gil) and (Dgil),
respectively, and v(P gil) = v(Dgil).

Vapnik’s ε-insensitive loss

vil : R× R→ R, vil(a, Y ) =
{

0, if |Y − a| ≤ ε,
|Y − a| − ε, otherwise

arises when κ is the identity on R. The primal problem we get in this setting is

(P il) inf
c∈Rn

{
n∑
i=1

vil((Kc)i, Yi) + λ

2 c
TKc

}

and since, (κ+ δR+)∗(r) = δ(−∞,1](r) for r ∈ R, we obtain as dual problem to it

(Dil) sup
Pi∈R,

|Pi|≤1,i=1,...,n

{
−

n∑
i=1

(PiYi + ε|Pi|)−
1

2λP
TKP

}
.

We have the following optimality conditions for the primal-dual pair (P il)− (Dil).

Theorem 9. (a) If c ∈ Rn is an optimal solution to (P il), then there exists P =
(P 1, ..., Pn)T ∈ Rn, an optimal solution to (Dil), such that the following optimality
conditions are satisfied:

(i) vil((Kc)i, Yi) + P iYi + ε|Pi| = P i(Kc)i, i = 1, . . . , n;

(ii) |P i| ≤ 1, i = 1, . . . , n;

(iii) K(λc+ P ) = 0.

(b) If c ∈ Rn and P = (P 1, ..., Pn)T ∈ Rn, fulfill the optimality conditions (i)− (iii),
then they are optimal solutions to (P il) and (Dil), respectively, and v(P il) = v(Dil).

Remark 7. Investigations regarding duality and optimality conditions for the Sup-
port Vector Regression problem with the ε-insensitive loss as cost functions have been
previously made in [8, 16, 18].

5 Conclusions
In this paper we give optimality conditions for regularization problems, the objective
function of which consists of a cost function and a regularization term, with the aim of
selecting a prediction function f with a finite representation f(·) =

∑n
i=1 cik(·, Xi) which
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minimizes the error of prediction. The problems that arise in this context are convex
optimization problems with not necessarily differentiable objective functions. There-
fore, in order to provide optimality conditions for this class of problems we introduce
first a dual problem, guarantee the existence of strong duality and derive, finally, the
desired optimality conditions. The obtained results are employed to the Support Vector
Machines problem and Support Vector Regression problem formulated for different cost
functions.

We are confident that one can take advantage of the theoretical fundamentals pre-
sented in this paper for providing via the conjugate duality theory algorithmic and
numerical implementations for statistical learning problems. The employment of the
Fenchel duality furnishes the framework for successfully using smoothing techniques for
solving the convex optimization problems which occur, in the lines of the ones devel-
oped by Nesterov in several works (see [11, 12]). This is topic of our current and future
research.
Acknowledgements. The authors are thankful to anonymous reviewers for their com-
ments which improved the quality of the paper.
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