
Conjugate Duality and the Control of Linear Discrete

Systems
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Abstract. In this paper we deal with the minimization of a convex function over the solution

set of a range inclusion problem determined by a multivalued operator with convex graph. We

attach a dual problem to it, provide regularity conditions guaranteeing strong duality and derive

for the resulting primal-dual pair necessary and sufficient optimality conditions. We also discuss

the existence of optimal solutions for the primal and dual problems by using duality arguments.

The theoretical results are applied in the context of the control of linear discrete systems.
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1 Introduction

In many optimal control problems the constraints set, whether this is described by linear discrete

systems or by differential inclusions, is the set of zeros of a multivalued operator, see [1-11].
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Having this in mind, we deal in this paper from the point of view of the convex conjugate duality

theory with a convex optimization problem having such a constraint set and to which we attach

a dual optimization problem by making use of the so-called lower support function. For the

primal-dual pair of optimization problems we provide a number of sufficient regularity conditions

guaranteeing strong duality, which is the situation when the optimal objective values of the two

problems coincide and the dual has an optimal solution. To this end we make use of techniques

relying on the perturbation theory in the conjugate duality. By relying on the apparatus of convex

subdifferential calculus we are also able to formulate necessary and sufficient optimality conditions

for the primal problem under investigation. By using duality arguments we also discuss the so-

called reverse strong duality, which is the situation when the optimal objective values of the two

problems coincide and the primal has an optimal solution.

The structure of the paper is as follows. In the next section we give a short overview of

the notions and results used in the paper. In Section 3 we introduce the primal problem under

investigation and its conjugate dual, address the issue of guaranteeing strong duality, formulate

necessary and sufficient optimality conditions and study the existence of optimal solutions for the

primal. In Section 4 we apply the general results in the context of the control of linear discrete

systems and rediscover some results from the literature as particular cases.

2 Elements of Convex Analysis

For the notions and results which we recall in this section we refer the reader to [9, 12-17]. Consider

X a real separated locally convex space and X∗ its topological dual space. For x∗ ∈ X∗ and x ∈ X

we denote by 〈x∗, x〉 the value of the linear and continuous functional x∗ at x. The interior of a

set A ⊆ X is denoted by intA, while, if A is convex, then sqriA denotes the set of those elements

x ∈ A with the property that ∪λ>0λ(A− x) is a closed linear subspace. Note that we always have

intA ⊆ sqriA. If X = Rn, then sqriA = riA, where riA denotes the relative interior of A, that

is the interior of A with respect to the affine hull of A. If K ⊆ X is a cone, then we denote by
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K∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 ∀x ∈ K} its positive dual cone.

For a given function f : X → R := {±∞} we consider its domain defined by dom f = {x ∈

X : f(x) < +∞} and say that f is proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X. By

f∗ : X∗ → R, defined by f∗(x∗) = supx∈X{〈x∗, x〉 − f(x)} for all x∗ ∈ X∗, we denote the Fenchel

conjugate of f . For all (x, x∗) ∈ X × X∗ the Young-Fenchel inequality f(x) + f∗(x∗) ≥ 〈x∗, x〉

holds. The notation δA : X → R ∪ {+∞} is used for the indicator function of a set A ⊆ X, which

is the function that takes the value 0 on A and +∞ on X \A. Notice that the conjugate function

of δA is nothing else than the support function of A, σA : X∗ → R, σA(x∗) = supx∈A〈x∗, x〉. We

denote by barA the barrier cone of A, which is defined as the domain of the support function of

A, that is barA = domσA.

The (convex) subdifferential of f at a point x ∈ X such that f(x) ∈ R is defined by ∂f(x) =

{x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}. In case f(x) ∈ {±∞} we set ∂f(x) := ∅. This

(global) notion is a generalization to the nonsmooth case of the gradient. Indeed, if f : X → R is

proper, convex and Gâteaux differentiable at x ∈ dom f , then ∂f(x) = {∇f(x)} (cf. [17, Theorem

2.4.4(i)]). We notice the following characterization of the subdifferential via conjugate functions:

x∗ ∈ ∂f(x) if and only if f(x) + f∗(x∗) = 〈x∗, x〉.

We denote by NA := ∂δA the normal cone of the set A ⊆ X. One can easily check that

NA(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ A}, if x ∈ A, and NA(x) = ∅, if x /∈ A. For x ∈ A we

have x∗ ∈ NA(x) if and only if σA(x∗) = 〈x∗, x〉.

For Y another real separated locally convex space we consider a multivalued operator F : X ⇒

Y and denote by GrF = {(x, y) ∈ X×Y : y ∈ F (x)} its graph. We consider the domain of F defined

by DomF := prX GrF = {x ∈ X : F (x) 6= ∅} and its range RangeF := prY GrF = ∪x∈XF (x).

Here, prX : X×Y → X, prX(x, y) = x, denotes the projection operator on X, while prY is defined

analogously. The inverse operator F−1 : Y ⇒ X is defined by (y, x) ∈ GrF−1 if and only if

(x, y) ∈ GrF . We say that F is convex, if GrF is a convex set, and that F is closed, if GrF is a

closed set.
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The following function associated to F , called lower support function, will play an important

role in our investigations:

sF : X × Y ∗ → R, sF (x, y∗) = inf
y∈F (x)

〈y∗, y〉.

Notice that for every (x, y∗) ∈ X × Y ∗ it holds sF (x, y∗) = −σF (x)(−y∗). The lower support

function is well-studied in the literature, see [9, 18-21], and some of it most important properties

are mentioned as follows. These properties are probably well-known, however we include some

details of their proofs for reader’s convenience.

Proposition 2.1 The following properties are true:

(i) dom sF (·, y∗) = DomF for all y∗ ∈ Y ∗;

(ii) if F is convex, then sF (·, y∗) is a convex function on X for all y∗ ∈ Y ∗;

(iii) if (x, y) ∈ GrF , then sF (x, y∗) = 〈y∗, y〉 if and only if −y∗ ∈ NF (x)(y);

(iv)
(
sF (·, y∗)

)∗(x∗) = σGrF (x∗,−y∗) for all (x∗, y∗) ∈ X∗ × Y ∗;

(v) (x∗,−y∗) ∈ NGrF (x, y) if and only if x∗ ∈ ∂sF (·, y∗)(x) and −y∗ ∈ NF (x)(y).

Proof. (i), (ii) and (iii) follow easily from the definition of the lower support function.

(iv) For (x∗, y∗) ∈ X∗ × Y ∗ we have
(
sF (·, y∗)

)∗(x∗) = supx∈X{〈x∗, x〉 − sF (x, y∗)}

= supx∈X{〈x∗, x〉 − infy∈F (x)〈y∗, y〉} = supx∈X,y∈F (x){〈x∗, x〉 − 〈y∗, y〉} = σGrF (x∗,−y∗).

(v) Take first (x∗,−y∗) ∈ NGrF (x, y). Then (x, y) ∈ GrF and by using (iv) we obtain(
sF (·, y∗)

)∗(x∗) = σGrF (x∗,−y∗) = 〈x∗, x〉 − 〈y∗, y〉. Further,

〈x∗, x〉 ≤ sF (x, y∗) +
(
sF (·, y∗)

)∗(x∗)
= sF (x, y∗) + 〈x∗, x〉 − 〈y∗, y〉

≤ 〈y∗, y〉+ 〈x∗, x〉 − 〈y∗, y〉

= 〈x∗, x〉,

hence 〈x∗, x〉 = sF (x, y∗) +
(
sF (·, y∗)

)∗(x∗) and sF (x, y∗) = 〈y∗, y〉, which proves that x∗ ∈

∂sF (·, y∗)(x) and −y∗ ∈ NF (x)(y) (cf. (iii)).

Conversely, suppose that x∗ ∈ ∂sF (·, y∗)(x) and −y∗ ∈ NF (x)(y). Then (x, y) ∈ GrF and,
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by (iii) and (iv), σGrF (x∗,−y∗) =
(
sF (·, y∗)

)∗(x∗) = 〈x∗, x〉 − sF (x, y∗) = 〈x∗, x〉 − 〈y∗, y〉, thus

(x∗,−y∗) ∈ NGrF (x, y). �

3 Duality Results

Consider the primal optimization problem

(P ) inf
0∈F (x)

f(x),

where X,Y are real separated locally convex spaces, f : X → R and F : X ⇒ Y are such that

dom f ∩ F−1(0) 6= ∅. To (P ) we attach the following dual problem

(D) sup
y∗∈Y ∗

inf
x∈X

[f(x) + sF (x, y∗)].

In this section we investigate the primal-dual pair (P ) − (D) from the point of view of the

existence of strong duality and some of its consequences. We denote by v(P ) and v(D) the optimal

objective values of the problems (P ) and (D), respectively. Weak duality, namely v(D) ≤ v(P ),

holds, the proof of this inequality relying on the fact that 0 ∈ F (x) implies sF (x, y∗) ≤ 0 for all

y∗ ∈ Y ∗. Of much more importance is the situation called strong duality, namely when v(D) = v(P )

and the dual problem has an optimal solution, for which we provide as follows several so-called

regularity conditions. The proof of the next duality result relies on conjugate duality specific

techniques.

Theorem 3.1 Let f : X → R be a proper and convex function and F : X ⇒ Y a convex

multivalued operator. If one of the following conditions is fulfilled:

(i) ∃x′ ∈ dom f such that 0 ∈ intF (x′);

(ii) X,Y are Fréchet spaces, f is lower semicontinuous, F is closed and

0 ∈ intF (dom f);
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(iii) X,Y are Fréchet spaces, f is lower semicontinuous, F is closed and

0 ∈ sqriF (dom f).

(iv) Y is finite dimensional and

0 ∈ riF (dom f),

then for (P ) and (D) strong duality holds, namely, there exists y∗ ∈ Y ∗ such that

inf
0∈F (x)

f(x) = sup
y∗∈Y ∗

inf
x∈X

[f(x) + sF (x, y∗)] = inf
x∈X

[f(x) + sF (x, y∗)].

Proof. Consider the function Φ : X × Y → R defined for all (x, y) ∈ X × Y by

Φ(x, y) = f(x) + δGrF (x,−y) = f(x) + δ−F (x)(y).

According to the hypotheses, Φ is a convex function.

The condition 0 ∈ intF (x′) ensures that the function δ−F (x) is continuous at 0, hence condition

(i) reads as:

∃x′ ∈ X such that (x′, 0) ∈ dom Φ and Φ(x′, ·) is continuous at 0.

On the other hand, if f is lower semicontinuous and F is closed, then the function Φ is lower

semicontinuous, too. Furthermore, it holds F (dom f) = −prY dom Φ. Hence the conditions (ii)

(respectively (iii)) ensure that Φ is a lower semicontinuous function and

0 ∈ int(prY dom Φ) (respectively 0 ∈ sqri(prY dom Φ)).

Similarly, condition (iv) can be equivalently written as

0 ∈ ri(prY dom Φ).

Now we can apply [14, Theorem 1.7] (see also [17, Theorem 2.7.1], [15, Proposition 2.3]) and

conclude that there exists y∗ ∈ Y ∗ such that

inf
x∈X

Φ(x, 0) = sup
y∗∈Y ∗

−Φ∗(0, y∗) = −Φ∗(0, y∗). (1)
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It is immediate that infx∈X Φ(x, 0) = v(P ). Let us compute the conjugate function of Φ. For

(x∗, y∗) ∈ X∗ × Y ∗ we have

Φ∗(x∗, y∗) = sup
x∈X,y∈Y

{〈x∗, x〉+ 〈y∗, y〉 − f(x)− δF (x)(−y)}

= sup
x∈X
{〈x∗, x〉 − f(x) + sup

y∈Y
[〈y∗, y〉 − δF (x)(−y)]}

= sup
x∈X
{〈x∗, x〉 − f(x)− sF (x, y∗)}

= (f + sF (·, y∗))∗(x∗).

Thus −Φ∗(0, y∗) = infx∈X [f(x) + sF (x, y∗)] and the conclusion follows now from (1). �

Remark 3.1 If X is also finite dimensional, then the following more useful equivalent formu-

lation of the condition (iv) in the above theorem, from the point of view of its verifiability, can be

given:

0 ∈ riF (dom f)⇔ there exists x′ ∈ ri dom f ∩ ri(DomF ) and 0 ∈ riF (x′). (2)

Indeed, for C := GrF ∩ (dom f × Y ), one has F (dom f) = prY (C), thus (see [16, Theorem 6.6])

0 ∈ riF (dom f)⇔ 0 ∈ prY (riC)⇔ there exists x′ ∈ X such that (x′, 0) ∈ riC.

Finally, (2) follows by using the following characterization of the relative interior of C (see [16,

Theorem 6.8])

(x, y) ∈ riC ⇔ x ∈ ri dom f ∩ ri(DomF ) and y ∈ riF (x). (3)

The existence of strong duality gives rise to the following optimality conditions for the primal-

dual pair (P )− (D).

Theorem 3.2 (a) Assume that the hypotheses of Theorem 3.1 are fulfilled and let x be an

optimal solution to the primal problem (P ). Then there exists y∗ ∈ Y ∗, an optimal solution to

(D), such that

(i) f(x) = minx∈X [f(x) + sF (x, y∗)];

(ii) sF (x, y∗) = 0.

(b) Assume that x ∈ F−1(0) and y∗ ∈ Y ∗ satisfy the relations (i) − (ii). Then x is an optimal

solution to (P ), y∗ is an optimal solution to (D) and v(P ) = v(D).

7



Proof. The result is a direct consequence of Theorem 3.1. Alternatively, one can apply [15,

Proposition 2.4] for the function Φ considered in the proof of Theorem 3.1. �

Remark 3.2 (a) Notice that in Theorem 3.2(b) no regularity condition is needed for the validity

of this result.

(b) The conditions (i)-(ii) in statement (a) of Theorem 3.2 ensure that sF (·, y∗) is a proper

function, while relation (i) is nothing else than 0 ∈ ∂(f + sF (·, y∗))(x). If, additionally to the

hypotheses of Theorem 3.2(a), we suppose that f is finite and continuous at a point in DomF ,

then 0 ∈ ∂(f + sF (·, y∗))(x) is the same as 0 ∈ ∂f(x) + ∂sF (·, y∗)(x) (see, for instance, [17,

Theorem 2.8.7], [14, Theorem 2.2]). The latter reads as: there exists x∗ ∈ ∂f(x) such that

−x∗ ∈ ∂sF (·, y∗)(x). A direct consequence of (ii) and Proposition 2.1(iii) is that −y∗ ∈ NF (x)(0),

hence −(x∗, y∗) ∈ NGrF (x, 0) (see Proposition 2.1(v)). In conclusion, the optimality conditions

(i)-(ii) in Theorem 3.2(a) can be written as:

sF (x, y∗) = 0 and there exists x∗ ∈ ∂f(x) such that − (x∗, y∗) ∈ NGrF (x, 0).

Remark 3.3 Notice that if we consider the particular case F (x) := g(x) + K for all x ∈ X,

where g : X → Y is a given function and K ⊆ Y is a convex cone, then (P ) reduces to the

optimization problem with cone constraints

(PK) inf
g(x)∈−K

f(x).

In this case the lower support function fulfills sF (x, y∗) = 〈y∗, g(x)〉 for all (x, y∗) ∈ X ×K∗ and

sF (x, y∗) = −∞ for all (x, y∗) ∈ X× (Y ∗ \K∗), which means that the dual problem (D) is nothing

else than the classical Lagrange dual to (PK)

(DK) sup
y∗∈K∗

inf
x∈X

[f(x) + 〈y∗, g(x)〉].

The function g is K-convex, i.e. λg(u) + (1 − λ)g(v) − g(λu + (1 − λ)v) ∈ K for all u, v ∈ X

and λ ∈ [0, 1] if and only if F is a convex multivalued operator, while g is K-epi closed, i.e. its

K-epigraph epiK g := {(x, y) ∈ X × Y : y ∈ g(x) + K} is a closed set (see [14]), if and only if F

is a closed multivalued operator. Furthermore, condition (i) in Theorem 3.1 becomes the classical
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Slater condition:

∃x′ ∈ dom f such that g(x′) ∈ − intK,

while, as F (dom f) = g(dom f) + K, the conditions (ii), (iii) and (iv) in the same result become

the regularity conditions (RCCL

2′′ ), (RCCL
2 ) and (RCCL

3 ), respectively, considered in the context of

Lagrange duality in [14]. In this way we rediscover for f proper and convex the strong duality

result Theorem 3.4 in [14] as a particular case of Theorem 3.1, while the optimality conditions in

Theorem 3.2 give rise to the generalized Karush-Kuhn-Tucker conditions for the primal-dual pair

(PK)− (DK).

We close the section by addressing the so-called reverse strong duality, which is the situation

when v(P ) = v(D) and the primal problem has an optimal solution.

Theorem 3.3 Let X and Y be reflexive Banach spaces, f a proper, convex and lower semicon-

tinuous function and F a convex and closed multivalued operator such that dom f ∩ F−1(0) 6= ∅

and

0 ∈ sqri
( ⋃
y∗∈Y ∗

dom(f + sF (·, y∗))∗
)
. (4)

Then v(P ) = v(D) and the primal problem has an optimal solution.

Proof. Consider again the function Φ defined in the proof of Theorem 3.1, which is in the present

context proper, convex and lower semicontinuous. According to the formula of the conjugate

function of Φ, we have that prX∗ dom Φ∗ =
⋃
y∗∈Y ∗ dom(f + sF (·, y∗))∗, hence condition (4) reads

0 ∈ sqri(prX∗ dom Φ∗). Let us introduce now the function Γ : Y ∗×X∗ → R, Γ(y∗, x∗) = Φ∗(x∗, y∗).

The properties of the function Φ ensure that Γ is proper, convex, lower semicontinuous (with respect

to the strong topology on Y ∗ ×X∗) and that it holds 0 ∈ sqri(prX∗ dom Γ). Taking into account

that X,Y are reflexive Banach spaces, it follows by [14, Theorem 1.7] (see also [15, Proposition

2.3], [17, Theorem 2.7.1]) that there exists x̄ ∈ X such that

inf
y∗∈Y ∗

Γ(y∗, 0) = sup
x∈X
−Γ∗(0, x) = −Γ∗(0, x̄)

or, equivalently,

sup
y∗∈Y ∗

−Γ(y∗, 0) = inf
x∈X

Γ∗(0, x) = Γ∗(0, x̄). (5)
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The conclusion follows from (5) by taking into account that

−Γ(y∗, 0) = −Φ∗(0, y∗) = inf
x∈X

[f(x) + sF (x, y∗)] ∀y∗ ∈ Y ∗

and

Γ∗(0, x) = Φ(x, 0) = f(x) + δ−F (x)(0) ∀x ∈ X.

�

Remark 3.4 In the hypotheses of Theorem 3.3, a sufficient condition for (4) is given by

0 ∈ int
(

dom f∗ + prX∗(bar GrF )
)
. (6)

This is a direct consequence of the fact that

dom f∗ + prX∗(bar GrF ) ⊆
⋃

y∗∈Y ∗
dom(f + sF (·, y∗))∗. (7)

Indeed, take u∗ ∈ dom f∗ and v∗ ∈ prX∗(bar GrF ). Then there exists y∗ ∈ Y ∗ such that

σGrF (v∗, y∗) < +∞, hence, due to Proposition 2.1(iv), v∗ ∈ dom(sF (·,−y∗))∗. Thus u∗ + v∗ ∈

dom f∗ + dom(sF (·,−y∗))∗ ⊆ dom(f + sF (·,−y∗))∗ and (7) holds.

It is also worth mentioning, that, if the proper and convex function f is continuous at a point

in domF , then (7) is fulfilled as equality (see [17, Theorem 2.8.7]).

Corollary 3.1 Let X and Y be reflexive Banach spaces, f a proper, convex, lower semicontinu-

ous and coercive function (that is lim‖x‖→+∞ f(x) = +∞) and F a convex and closed multivalued

operator such that dom f ∩F−1(0) 6= ∅. Then v(P ) = v(D) and the primal problem has an optimal

solution.

Proof. The coercivity of the function f guarantees that 0 ∈ int(dom f∗) (see, for example, [17,

Exercise 2.41]), thus the conclusion follows from Remark 3.4 by taking into account also that

0 ∈ prX∗(bar GrF ). �

Remark 3.5 In the hypotheses of Theorem 3.3, another sufficient condition for (6) reads

(−dom f∗) ∩ prX∗(int bar GrF ) 6= ∅.
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Indeed, by using the open mapping principle, we have

0 ∈ dom f∗ + prX∗(int bar GrF ) ⊆ dom f∗ + int prX∗(bar GrF )

⊆ int
(

dom f∗ + prX∗(bar GrF )
)
.

4 The Control of Linear Discrete Systems

In the following we apply the theoretical results obtained in the previous section in the context of

the control of discrete linear systems. To this end we consider the optimization problem

inf f(x0, u0, x1, u1, ..., xk−1, uk−1, xk),

s.t. x0 ∈ S, ui ∈ Si, i = 0, ..., k − 1

Pixi+1 − Lixi −Kiui ∈ Ci, i = 0, ..., k − 1

(8)

where k ∈ N, k ≥ 2, Xi, Ui, Yi, i = 0, ..., k − 1, and Xk are real Banach spaces, S ⊆ X0 and

Si ⊆ Ui, i = 0, ..., k − 1, are nonempty convex sets, f :
∏k−1
i=0 (Xi × Ui) × Xk → R is proper,

convex and continuous at some point of its domain, Pi : Xi+1 → Yi are linear continuous and

surjective operators, Li : Xi → Yi and Ki : Ui → Yi are linear continuous operators and Ci ⊆ Yi

are nonempty convex closed cones, i = 0, ..., k − 1. The spaces Xi, i = 0, ..., k, are the so-called

state spaces, while Ui, i = 0, ..., k − 1, are the control spaces.

Our aim is to formulate optimality conditions for the problem (8) by making use of Theorem

3.2 and also to show in which circumstances this result is applicable. To this end we notice that

(8) can be written in the form of (P ) by taking

F :
k−1∏
i=0

(Xi × Ui)×Xk ⇒ X0 ×
k−1∏
i=0

Ui ×
k−1∏
i=0

Xi+1,

F (x0, u0, ..., xk−1, uk−1, xk) = (S − x0)×
k−1∏
i=0

(Si − ui)×
k−1∏
i=0

(
P−1
i (Lixi +Kiui + Ci)− xi+1

)
.

The multivalued operator F is convex and, since Pi are surjective, i = 0, ..., k−1, it has full domain

and full range.

Concerning the fulfillment of the regularity conditions, one can notice that the one formulated
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in Theorem (3.1)(i) holds, if there exists (x′0, u
′
0, ..., x

′
k−1, u

′
k−1, x

′
k) ∈ dom f such that

x′0 ∈ intS, u′i ∈ intSi and Pix
′
i+1 − Lix′i −Kiu

′
i ∈ intCi, i = 0, ..., k − 1.

If the sets S, Si and Ci, i = 0, ..., k−1, have nonempty interiors and the function f takes only finite

values (hence it is continuous on its whole domain of definition), then this regularity condition is

automatically fulfilled and Theorem 3.2 can be applied.

On the other hand, it holds

F (dom f) =


(S − x0)×

∏k−1
i=0 (Si − ui)×

∏k−1
i=0

(
P−1
i (Lixi +Kiui + Ci)− xi+1

)
:

(x0, u0, ..., xk−1, uk−1, xk) ∈ dom f

 .

If the sets S, Si and Ci, i = 0, ..., k − 1, are closed, then F is a closed multivalued operator. If the

function f is lower semicontinuous and takes only finite values (hence it is continuous on its whole

domain of definition), then the condition 0 ∈ sqriF (dom f) in Theorem 3.1(iii) is automatically

fulfilled and Theorem 3.2 can be applied in this case, too.

Coming now to the formulation of the optimality conditions, one has that for two given elements

x = (x0, u0, ..., xk−1, uk−1, xk) and y∗ = (y∗0 , u
∗
0, u
∗
1, ..., u

∗
k−1, y

∗
1 , y
∗
2 , ..., y

∗
k) it holds

sF (x, y∗) = inf
y0∈S−x0

〈y∗0 , y0〉+
k−1∑
i=0

inf
zi∈Si−ui

〈u∗i , zi〉

+
k−1∑
i=0

inf
yi+1∈P−1

i (Lixi+Kiui+Ci)−xi+1

〈y∗i+1, yi+1〉

= −〈y∗0 , x0〉 − σS(−y∗0) +
k−1∑
i=0

(
− 〈u∗i , ui〉 − σSi

(−u∗i )
)

+
k−1∑
i=0

(
−〈y∗i+1, xi+1〉+ inf

vi+1∈P−1
i (Lixi+Kiui+Ci)

〈y∗i+1, vi+1〉

)
.

Consider an optimal solution x = (x0, u0, ..., xk−1, uk−1, xk) to (8) and an optimal solution

y∗ = (y∗0, u
∗
0, u
∗
1, ..., u

∗
k−1, y

∗
1, y
∗
2, ..., y

∗
k) to its dual problem such that (i)-(ii) in Theorem 3.2 are

fulfilled. According to Remark 3.2(b), we equivalently have sF (x, y∗) = 0 and that there exists

x∗ = (x∗0, u
∗
0, ..., x

∗
k−1, u

∗
k−1, x

∗
k) ∈ ∂f(x) such that −x∗ ∈ ∂sF (·, y∗)(x).

Since x ∈ S, ui ∈ Si, Pixi+1 − Lixi −Kiui ∈ Ci, i = 0, ..., k − 1, we have

−〈y∗0, x0〉 − σS(−y∗0) ≤ 0,
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−〈u∗i , ui〉 − σSi
(−u∗i ) ≤ 0, i = 0, ..., k − 1,

and

−〈y∗i+1, xi+1〉+ inf
vi+1∈P−1

i (Lixi+Kiui+Ci)
〈y∗i+1, vi+1〉 ≤ 0, i = 0, ..., k − 1.

As sF (x, y∗) = 0, it follows that all above inequalities must be fulfilled as equalities, and from here

we get that

−y∗0 ∈ NS(x0), −u∗i ∈ NSi
(ui), i = 0, ..., k − 1

and

inf
vi+1∈P−1

i (Lixi+Kiui+Ci)
〈y∗i+1, vi+1〉 = 〈y∗i+1, xi+1〉, i = 0, ..., k − 1.

For i = 0, ..., k − 1, since Pi is surjective, by [14, Theorem 3.4] we obtain a Lagrange multiplier

λi ∈ C∗i such that

inf
vi+1∈P−1

i (Lixi+Kiui+Ci)
〈y∗i+1, vi+1〉 = inf

vi+1∈Xi+1
Pivi+1−Lixi−Kiui∈Ci

〈y∗i+1, vi+1〉

= inf
vi+1∈Xi+1

{〈y∗i+1, vi+1〉+ 〈λi,−Pivi+1 + Lixi +Kiui〉}

= 〈λi, Lixi +Kiui〉 − δ{P∗i λi}(y
∗
i+1).

Thus

y∗i+1 = P ∗i λi and 〈y∗i+1, xi+1〉 = 〈λi, Lixi +Kiui〉, i = 0, ..., k − 1.

This means that the optimality conditions (i)-(ii) in Theorem 3.2 read:

there exist x∗ = (x∗0, u
∗
0, ..., x

∗
k−1, u

∗
k−1, x

∗
k) ∈ ∂f(x) and λi ∈ C∗i , i = 0, ..., k − 1, such that

−y∗0 ∈ NS(x0),

−u∗i ∈ NSi
(ui), y∗i+1 = P ∗i λi, 〈y∗i+1, xi+1〉 = 〈λi, Lixi +Kiui〉, i = 0, ..., k − 1,

and

−x∗ ∈ ∂sF (·, y∗)(x).
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Hence, for every x = (x0, u0, ..., xk−1, uk−1, xk) it holds

sF (x, y∗) = −〈y∗0, x0〉 − σS(−y∗0) +
k−1∑
i=0

(
− 〈u∗i , ui〉 − σSi

(−u∗i )
)

+
k−1∑
i=0

(
−〈P ∗i λi, xi+1〉+ inf

vi+1∈P−1
i (Lixi+Kiui+Ci)

〈P ∗i λi, vi+1〉

)

= −〈y∗0, x0〉 − σS(−y∗0) +
k−1∑
i=0

(
− 〈u∗i , ui〉 − σSi

(−u∗i )
)

+
k−1∑
i=0

(
− 〈y∗i+1, xi+1〉+ 〈L∗i λi, xi〉+ 〈K∗i λi, ui〉

)
.

Thus −x∗ ∈ ∂sF (·, y∗)(x) if and only if −x∗i = −y∗i + L∗i λi, −u∗i = −u∗i + K∗i λi, i = 0, ..., k − 1,

and −x∗k = −y∗k.

Altogether, the optimality conditions (i)-(ii) in Theorem 3.2 read:

there exist λi ∈ C∗i , i = 0, ..., k − 1, such that

−y∗0 ∈ NS(x0), (9)

−u∗i ∈ NSi(ui), y
∗
i+1 = P ∗i λi, 〈y∗i+1, xi+1〉 = 〈λi, Lixi +Kiui〉, i = 0, ..., k − 1, (10)

and

(y∗0 − L∗0λ0, u
∗
0 −K∗0λ0, ..., y

∗
k−1 − L∗k−1λk−1, u

∗
k−1 −K∗k−1λk−1, y

∗
k) ∈ ∂f(x). (11)

Remark 4.1 The following optimization problem has been investigated in [6] from the point

of view of the formulation of optimality conditions

inf
k−1∑
i=0

(
1
2 〈xi, Qxi〉+ 1

2 〈ui, Rui〉
)
,

s.t. xi+1 = Φxi +Dui, i = 0, ..., k − 1

(12)

with H and U real Hilbert spaces, D : U → H and Φ : H → H, i = 0, ..., k − 1, linear continuous

operators, Q : H → H a linear continuous and self-adjoint positive semidefinite operator and

R : U → U a linear continuous and self-adjoint positive definite operator.

Taking S = Xi = Yi = H, i = 0, ..., k − 1, Xk = H, Si = Ui = U , i = 0, ..., k − 1, Ci = {0}, Pi

the identity operator on H, Li = Φ, Ki = D, i = 0, ..., k − 1, and defining

f(x0, u0, ..., xk−1, uk−1, xk) =
k−1∑
i=0

(
1
2
〈xi, Qxi〉+

1
2
〈ui, Rui〉

)
,
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the problem under investigation becomes the optimization problem (8). Due to the fact that f is

convex, continuous and with full domain, the regularity condition in Theorem 3.1(iii) is fulfilled.

Thus, if x = (x0, u0, ..., xk−1, uk−1, xk) is an optimal solution to (12), then there exist an

optimal solution y∗ = (y∗0, u
∗
0, u
∗
1, ..., u

∗
k−1, y

∗
1, y
∗
2, ..., y

∗
k) to its dual such that, according to (9)-(11),

y∗0 = y∗k = 0, u∗i = 0, i = 0, ..., k − 1,

ui = −R−1D∗y∗i+1 and y∗i = Φ∗y∗i+1 +Qxi, i = 0, ..., k − 1.

In this way we rediscover the optimality conditions given in [6, Theorem 3.2].

5 Conclusions

By means of conjugate duality techniques we investigate in this paper a convex optimization

problem with the constraints set described by making use of a convex and closed multivalued

operator. We attache a dual problem to it and study the relations between the primal-dual pair of

optimization problems. Optimality conditions are delivered and the existence of optimal solutions

is investigated, as well. The theoretical outcomes are applied to the control of linear discrete

systems and in this way some results from the literature are rediscovered as special instances of

the general approach. As further possible research directions, one can treat also other type of

linear control systems, but also general continuous convex control problems.
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