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Abstract. In this paper we investigate the applicability of a recently introduced
primal-dual splitting method in the context of solving portfolio optimization problems
which assume the minimization of risk measures associated to different convex utility
functions. We show that, due to the splitting characteristic of the used primal-dual
method, the main effort in implementing it constitutes in the calculation of the prox-
imal points of the utility functions, which assume explicit expressions in a number of
cases. When quantifying risk via the meanwhile classical Conditional Value-at-Risk, an
alternative approach relying on the use of its dual representation is presented as well.
The theoretical results are finally illustrated via some numerical experiments on real and
synthetic data sets.
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1 Introduction and preliminaries
In financial mathematics, quantifying the risk of future random outcomes is an essential
concern for decision makers who, of course, have their own attitude towards risk. In the
classical portfolio theory by Markowitz, the variance was used to measure the risk of
future returns. However, subsequent developments in the theory of risk measures showed
that the variance does not have desirable properties, one major drawback being given
by the fact that it measures deviations of the random variable in both directions, i. e. it
penalizes losses and gains in the same way.

When dealing with uncertainty, modern risk measures build on the wide-spread recog-
nition that asymmetry is a desirable property since investors have different positions on
downside and upside outcomes. The first axiomatic way of defining risk measures has
been given by Artzner, Delbaen, Eber and Heath in [1] and refers to coherent risk mea-
sures. Nevertheless, it has become a standard in modern risk management to assess the
riskiness of a portfolio by means of convex risk measures, introduced by Föllmer and
Schied in [17], as well as of convex deviation measures, introduced by Rockafellar, Urya-
sev and Zabarankin in [23]. The convex deviation measures are connected with the risk
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measures when those are applied to the difference between a random variable and its ex-
pectation, instead of to the random variable itself, both being designed to be used in risk
analysis. However, deviation measures evaluate uncertainty in the form of nonconstancy,
whereas risk measures can be understood as estimates of capital requirements for future
net worths.

In this paper we give a unifying framework for solving portfolio optimization problems
assuming the minimization of a risk functional associated to a convex utility function
subject to constraints on the expected return of the portfolio and on the budget. The
convex risk measure in the objective is expressed in terms of the Optimized Certainty
Equivalent (OCE), a fundamental concept for quantifying risk by means of a utility
function introduced by Ben-Tal and Teboulle in [3] (see also [4]). For the particular case
of the Conditional Value-at-Risk an alternative approach involving its dual representation
is also considered. The approach we propose in this paper assumes the solving of these
constrained optimization problems, which in their majority have an nondifferentiable
objective function with an intricate formulation, via a primal-dual proximal splitting
method which has been recently introduced in [10]. In the last years one can notice
an increasing interest in primal-dual algorithms when solving nondifferentiale convex
optimization problems (see, for instance, [6, 9–14, 25]), as they achieve a full splitting
which assumes a separate evaluation of each function via its proximal points, while the
occurring linear continuous operators and their adjoints are only evaluated via forward
steps. Most primal-dual algorithms also allow inexact evaluations of the proximal points
which, however, can have a negative impact on the overall performance. On the other
hand, in a lot of applications, as it will be also the case for majority of the convex risk
measures considered in this paper, exact implementations of the proximal operators are
possible. We refer to the mentioned literature for applications of the primal-dual methods
in image and signal processing, location theory and machine learning.

The structure of the paper is the following. In the remaining of this subsection we give
some elements of convex analysis, present the primal-dual proximal algorithm along with
its convergence behaviour and introduce the necessary apparatus for defining convex risk
measures. Section 2 is dedicated to the formulation of the portfolio optimization problem
to be solved, when the risk is quantified via the Optimized Certainty Equivalent, and
to investigations on the applicability of the primal-dual method in this context. In
Section 3 an alternative approach for solving the portfolio optimization problem having
as objective the Conditional Value-at-Risk is presented. We illustrate the applicability
of the proposed primal-dual method in the context of portfolio optimization problems
in Section 4 by some numerical experiments on real and synthetic data. A conclusive
section closes the paper.

1.1 Convex analysis

Let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖·‖ =
√
〈·, ·〉.

The symbol R++ denotes the set of strictly positive real numbers and R+ := R++ ∪ {0}.
For a given set S ⊆ H, the function δS : H → R := R ∪ {±∞}, defined by δS(x) = 0
for x ∈ S and δS(x) = +∞, otherwise, denotes its indicator function. For a function
f : H → R we denote by dom f := {x ∈ H : f(x) < +∞} its effective domain and call f
proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ H. Let be

Γ(H) := {f : H → R : f is proper, convex and lower semicontinuous}.
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The conjugate function of f is f∗ : H → R, f∗(p) = sup {〈p, x〉 − f(x) : x ∈ H} for
all p ∈ H and, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well. The (convex) subdifferential of
f : H → R at x ∈ H is the set ∂f(x) = {p ∈ H : f(y) − f(x) ≥ 〈p, y − x〉 ∀y ∈ H}, if
f(x) ∈ R, and is taken to be the empty set, otherwise. For a linear continuous operator
L : H → G, the operator L∗ : G → H, defined via 〈Lx, y〉 = 〈x, L∗y〉 for all x ∈ H and all
y ∈ G, denotes its adjoint.

Having two proper functions f, g : H → R, their infimal convolution is defined by
f � g : H → R, (f � g)(x) = infy∈H {f(y) + g(x− y)} for all x ∈ H, being a convex
function when f and g are convex. The parallel sum of the subdifferentials of f and
g, seen as set-valued operators, is defined as ∂f �∂g : H ⇒ H, (∂f �∂g)(x) = {p ∈
H : x ∈ (∂f)−1(p) + (∂g)−1(p)}, where (∂f)−1(p) = {x ∈ H : p ∈ ∂f(x)}. One has
that (∂f �∂g)(x) ⊆ ∂(f � g)(x) for every x ∈ H. For f ∈ Γ(H), its subdifferential
∂f : H⇒ H is a maximally monotone operator (cf. [19]) and by Proxf (x) we denote the
proximal point of f at x ∈ H, representing the unique optimal solution of the optimization
problem

inf
y∈H

{
f(y) + 1

2‖y − x‖
2
}
. (1.1)

For every γ ∈ R++ we have Moreau’s decomposition formula (cf. [2, Theorem 14.3])

Id = Proxγf +γ Proxγ−1f∗ ◦γ−1Id, (1.2)

where Id denotes the identity operator on H. When S ⊆ H is a nonempty convex and
closed set, the proximal point of δS at x ∈ H is

ProxδS
(x) = PS(x) = arg min

y∈S

1
2‖y − x‖

2,

being nothing else than the projection of x on S.
For H and Gi, i = 1, ...,m, given real Hilbert spaces, f ∈ Γ(H), gi, li ∈ Γ(Gi),

i = 1, ...,m, and Li : H → Gi, i = 1, ...,m, nonzero linear continuous operators we
consider the convex optimization problem

(P ) inf
x∈H

{
f(x) +

m∑
i=1

(gi� li)(Lix)
}

and its Fenchel-type conjugate dual problem (see, for instance, [5, 10,13])

(D) sup
(v1,...,vm)∈G1×...×Gm

{
−f∗

(
−

m∑
i=1

L∗i vi

)
−

m∑
i=1

(g∗i (vi) + l∗i (vi))
}
.

By denoting with v(P ) and v(D) the optimal objective values of the problems (P ) and
(D), respectively, in general one has weak duality, i.e., v(P ) ≥ v(D). Strong duality,
which is the situation when v(P ) = v(D) and the dual problem (D) has an optimal
solution, holds, when some appropriate qualification condition is fulfilled. The following
error-tolerant proximal splitting algorithm which is suitable for simultaneously solving
the problems (P ) and (D) was given in [10, Algorithm 3.1]. Its competitiveness is empha-
sized by several numerical experiments in the context of location and image processing
problems, also in comparison to other recently introduced iterative schemes.
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Algorithm 1.1.
Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G1× . . .×Gm and τ and σi, i = 1, ...,m, be strictly positive
real numbers such that

τ
m∑
i=1

σi‖Li‖2 < 4.

Furthermore, let (λn)n≥0 be a sequence in (0, 2), (an)n≥0 a sequence in H, (bi,n)n≥0 and
(di,n)n≥0 sequences in Gi for all i = 1, . . . ,m and set

(∀n ≥ 0)



p1,n = Proxτf
(
xn − τ

2
∑m
i=1 L

∗
i vi,n

)
+ an

w1,n = 2p1,n − xn
For i = 1, . . . ,m⌊
p2,i,n = Proxσig∗i

(
vi,n + σi

2 Liw1,n
)

+ bi,n
w2,i,n = 2p2,i,n − vi,n

z1,n = w1,n − τ
2
∑m
i=1 L

∗
iw2,i,n

xn+1 = xn + λn(z1,n − p1,n)
For i = 1, . . . ,m⌊
z2,i,n = Proxσil∗i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

+ di,n
vi,n+1 = vi,n + λn(z2,i,n − p2,i,n).

(1.3)

Remark 1.1. When l = δ{0}, the infimal convolution g� l is nothing else than the
function g. In this situation, the conjugate of l is the function identical to zero and for
all σ ∈ R++ one has Proxσl∗ = Id.

The subsequent theorem was given in [10, Theorem 3.1] and characterizes the con-
vergence behaviour of the sequences generated by Algorithm 1.1.

Theorem 1.1. Suppose that there exists x ∈ H such that

0 ∈ ∂f(x) +
m∑
i=1

L∗i ((∂gi�∂li)(Lix)). (1.4)

(i) If
+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . ,m,

and
∑+∞
n=0 λn(2− λn) = +∞, then

(a) (xn, v1,n, . . . , vm,n)n≥0 converges weakly to a point (x, v1, . . . , vm) ∈ H × G1 ×
. . .× Gm such that, when setting

p1 = Proxτf

(
x− τ

2

m∑
i=1

L∗i vi

)
,

and p2,i = Proxσig∗i

(
vi + σi

2 Li(2p1 − x)
)
, i = 1, ...,m,

p1 is an optimal solution to the primal problem (P ), (p2,1, . . . , p2,m) is an
optimal solution to the dual problem (D) and v(P ) = v(D).

(b) λn(z1,n − p1,n) → 0 (n → +∞) and λn(z2,i,n − p2,i,n) → 0 (n → +∞) for
i = 1, ...,m.
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(c) whenever H and Gi, i = 1, ...,m, are finite-dimensional Hilbert spaces, an →
0 (n→ +∞) and bi,n → 0 (n→ +∞) for i = 1, ...,m, then (p1,n)n≥0 converges
strongly to an optimal solution to (P ) and (p2,1,n, . . . , p2,m,n)n≥0 converges
strongly to an optimal solution to (D).

(ii) If

+∞∑
n=0
‖an‖H < +∞,

+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . ,m, inf
n≥0

λn > 0

and f and g∗i , i = 1, ...,m, are uniformly convex,

then (p1,n)n≥0 converges strongly to an optimal solution to the primal problem (P ),
(p2,1,n, . . . , p2,m,n)n≥0 converges strongly to an optimal solution to the dual problem
(D) and v(P ) = v(D).

1.2 Convex risk measures

Let (Ω,F,P) be a probability space, where the elements ω of Ω represent future states,
or individual scenarios, F is a σ-algebra on measurable subsets of Ω and P is a probability
measure on F. For a measurable random variable X : Ω → R ∪ {+∞} the expectation
value with respect to P is defined by E[X] :=

∫
ΩX(ω) dP(ω). Whenever X takes the

value +∞ on a subset of positive measure we have E[X] = +∞. Equalities between
random variables are to be interpreted in an almost surely (a.s.) way. Random variables
X : Ω→ R ∪ {+∞} which take a constant value λ ∈ R, i.e X = λ a.s., will be identified
with the real number λ. Similarly, inequalities of the form X ≥ λ, X ≤ λ, X ≤ Y , etc.,
are to be viewed in the sense of holding almost surely. By FX we denote the distribution
function of X, i. e. FX(λ) = P(X ≤ λ). By taking this into account, essential supremum
and essential infimum of a random variable X are, respectively,

essup(X) = inf {a ∈ R : P(X > a) = 0} = inf {a ∈ R : X ≤ a}
essinf(X) = − essup(−X) = sup {a ∈ R : X ≥ a} .

Each random variable X can be represented as X = X+−X−, where X+, X− are random
variables defined viaX+(ω) = max{X(ω), 0} andX−(ω) = max{−X(ω), 0} for all ω ∈ Ω.

Consider further the real Hilbert space

L2 := L2(Ω,F,P) =
{
X : Ω→ R ∪ {+∞} : X is measurable,

∫
Ω
|X(ω)|2 dP(ω) < +∞

}
endowed with inner product and norm defined for arbitrary X,Y ∈ L2 via

〈X,Y 〉 =
∫

Ω
X(ω)Y (ω) dP(ω) and ‖X‖ = (〈X,X〉)

1
2 =

(∫
Ω

(X(ω))2 dP(ω)
) 1

2
,

respectively.

Definition 1.1 (Risk functions). A proper function ρ : L2 → R is called risk function.
The risk function ρ is said to be

(i) convex, if ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all λ ∈ (0, 1), X,Y ∈ L2;
(ii) positively homogeneous, if ρ(0) = 0 and ρ(λX) = λρ(X) for all λ ∈ R++, X ∈ L2;
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(iii) monotone, if X ≥ Y implies ρ(X) ≤ ρ(Y ) for all X,Y ∈ L2;
(iv) cash-invariant, if ρ(X + c) = ρ(X)− c for all c ∈ R, X ∈ L2;
(v) a convex risk measure, if ρ is convex, monotone and cash-invariant;
(vi) a coherent risk measure, if ρ is a positively homogeneous convex risk measure.

Axioms for coherent risk measures were first given in the literature by Artzner, Del-
baen, Eber and Heath in [1], while later one, Föllmer and Schied considered in [17] the
convex risk measures, by replacing the sublinearity with the weaker assumption of con-
vexity. More precisely, when the value ρ(X) is understood as a capital requirement for
the future net worth X, a convex risk measure guarantees that the capital requirement
of the convex combination of two positions does not exceed the convex combination of
the capital requirements of the positions taken separately. For properties and examples
of coherent and convex risk measures we refer to [1, 4, 7, 15,16,18,20–23].

In our investigations a central role will be played by a generalized convex risk measure
associated to the so-called Optimized Certainty Equivalent, which was introduced for
concave utility functions in [3] and adapted to convex utility functions in [7]. For the
utility functions considered throughout this paper we make the following assumption.

Assumption 1.1 (Convex utility function). Let u : R → R be a proper, convex, lower
semicontinuous and nonincreasing function such that u(0) = 0 and −1 ∈ ∂u(0).

In the literature the two conditions imposed on u are known as the normalization
conditions and are equivalent to u(0) = 0 and u(t) ≥ −t for all t ∈ R. The generalized
convex risk measure we use in order to quantify the risk was given under the name
Optimized Certainty Equivalent (OCE) in [4] and is defined as (see, also, [7])

ρu : L2 → R ∪ {+∞}, ρu(X) = inf
λ∈R
{λ+ E [u(X + λ)]} . (1.5)

By Assumption 1.1, it follows that ρu(X) ≥ −E [X] for every X ∈ L2 and that ρu fulfills
the requirements of being a convex risk measure.

2 Solving a general portfolio optimization problem
Consider a portfolio with a number of N ≥ 1 different positions with returns Ri ∈ L2,
i = 1, . . . , N , a nonzero vector of expected returns µ = (E [R1] , . . . ,E [RN ])T and µ∗ ≤
maxi=1,...,N E [Ri] a given lower bound for the expected return of the portfolio. In this
section we discuss the employment of Algorithm 1.1 when solving for different convex
utility functions the optimization problem

inf
xTµ≥µ∗, xT

1
N =1,

x=(x1,...,xN )T∈RN
+

ρu

(
N∑
i=1

xiRi

)
, (2.1)

which assumes the minimization of the risk of the portfolio subject to constraints on the
expected return of the portfolio and on the budget. Here, 1N denotes the vector in RN
having all entries equal to 1. By using (1.5), we obtain the following reformulation of the
problem (2.1)

inf
xTµ≥µ∗, xT

1
N =1,

x=(x1,...,xN )T∈RN
+ , λ∈R

{
λ+ E

[
u

(
N∑
i=1

xiRi + λ

)]}
, (2.2)
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which will prove to be more suitable for being solved by means of the primal-dual prox-
imal splitting algorithm presented in the previous section. In this sense, the following
result, which relates the optimal solutions of the two optimization problems is of certain
importance.

Proposition 2.1. The following statements are true.

(a) If (x, λ) is an optimal solution to (2.2), for x = (x1, . . . , xN )T , then x is an optimal
solution to (2.1).

(b) If x = (x1, . . . , xN )T is an optimal solution to (2.1) and

λ ∈ arg min
λ∈R

{
λ+ E

[
u

(
N∑
i=1

x̄iRi + λ

)]}
,

then (x, λ) is an optimal solution to (2.2).

Remark 2.1. A sufficient condition guaranteeing that

arg min
λ∈R

{λ+ E [u (X + λ)]} 6= ∅ ∀X ∈ L2

was given in [7, Theorem 4] and reads

{d ∈ R : u∞(d) = −d} = {0}, (2.3)

where u∞ : R → R, u∞(d) = sup{u(x + d) − u(x) : x ∈ dom u}, denotes the recession
function of the function u. Moreover, in the light of the same result, it follows that under
(2.3)

ρu(X) = sup
Ξ∈L2

E(Ξ)=−1

{〈X,Ξ〉 − E [u∗(Ξ)]} ∀X ∈ L2,

thus ρu is lower semicontinuous. Since X is compact, this further implies that (2.1)
has an optimal solution and, consequently, that (2.2) has an optimal solution, too. All
particular convex utility functions we deal with in this paper fulfill condition (2.3).

According to Proposition 2.1, determining an optimal solution to problem (2.2) will
lead to an optimal solution to the portfolio optimization problem (2.1). However, as we
will show in the following, problem (2.2) is a particular case of the problem (P ), thus it
can be solved by Algorithm 1.1, but also by some other primal-dual proximal splitting
methods. In order to show this, let us first consider the linear (hence continuous) operator

K : RN × R→ L2, (x1, . . . , xn, λ) 7→
N∑
i=1

xiRi + λ.

In order to determine its adjoint operator K∗ : L2 → RN × R we use that

〈K(x, λ), Z〉 =
∫

Ω

(
N∑
i=1

xiRi(ω) + λ

)
Z(ω) dP(ω) =

N∑
i=1

xi 〈Ri, Z〉+ λ 〈1, Z〉

= 〈(x, λ),K∗Z〉
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for all (x, λ) ∈ RN × R and all Z ∈ L2 and get

K∗Z = (〈R1, Z〉 , . . . , 〈RN , Z〉 ,E [Z])T ∀Z ∈ L2.

Further, by considering the convex and closed sets

S =
{
x ∈ RN : xTµ ≥ µ∗

}
T =

{
x ∈ RN : xT1N = 1

}
,

the optimization problem (2.2) can be equivalently written as

inf
(x,λ)∈RN×R

{
δRN

+
(x) + λ+ δS×R(x, λ) + δT×R(x, λ) + (E [u] ◦K) (x, λ)

}
. (2.4)

It is obvious that the functions (x, λ) 7→ δRN
+

(x) + λ, δS×R and δT×R are proper,
convex and lower semicontinuous. Furthermore, in the light of Assumption 1.1 and by
using Fatou’ lemma, it follows that E [u] has these properties, as well. This means that
problem (2.4) fits into the formulation of the problem (P ).

Remark 2.2. For utility functions fulfilling Assumption 1.1 and condition (2.3), we have
already seen that the optimization problem (2.4) has an optimal solution. Due to the
fact that a Slater-type qualification condition is fulfilled, from here it follows (see [5])
that condition (1.4) in Theorem 1.1 holds.

By having a closer look into the formulation of Algorithm 1.1, one can notice the
exposed role played by the proximal points of the functions occurring in the objective of
the problem to be solved. Having these determined, one can easily obtain via (1.2) the
proximal points of their conjugates, when needed. It is an easy calculation to see that
for (x, λ) ∈ RN × R and γ ∈ R++ it holds

Proxγf (x, λ) = arg min
(y,ν)∈RN

+×R

{
γν + 1

2 ‖(y, ν)− (x, λ)‖2
}

=
(
PRN

+
(x) , λ− γ

)
,

with
f : RN × R→ R, f(y, ν) = δRN

+
(y) + ν,

ProxγδS×R(x, λ) = (PS (x) , λ) and ProxγδT×R(x, λ) = (PT (x) , λ) ,

where (see, for instance, [2, Example 28.16 and Example 3.21]),

PS(x) =
{
x, if xTµ ≥ µ∗

x+ µ∗−xTµ

‖µ‖2 µ, otherwise and PT (x) = x+ 1− xT1N

N
1
N .

As we show below, in order to determine the proximal points of E [u] one needs more
intricate arguments.

Proposition 2.2. For arbitrary random variables X ∈ L2 and γ ∈ R++ it holds

ProxγE[u](X)(ω) = Proxγu (X(ω)) ∀ω ∈ Ω a. s.. (2.5)
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Proof. We have

ProxγE[u](X) = arg min
Y ∈L2

{
γE [u(Y )] + 1

2 ‖Y −X‖
2
}

= arg min
Y ∈L2

{
γ

∫
Ω
u(Y (ω))dP(ω) + 1

2

∫
Ω

(Y (ω)−X(ω))2 dP(ω)
}

= arg min
Y ∈L2

∫
Ω

(
γu(Y (ω)) + 1

2(Y (ω)−X(ω))2
)

dP(ω).

Hence, using the interchangeability of integration and minimization (see [24, Theorem
14.60]), we have

ProxγE[u](X)(ω) = arg min
y∈R

{
γu(y) + 1

2 (y −X(ω))2
}

= Proxγu (X(ω)) ∀ω ∈ Ω a. s.

In what follows we provide explicit formulae for the proximal points of some popular
convex utility functions considered the literature, which will be of importance for the
numerical experiments presented in the last section and which involve the convex risk
measures which rely on them.

2.1 Piecewise linear utility

For γ2 < −1 < γ1 ≤ 0 we consider the piecewise linear utility function

u1 : R→ R, u1(t) =
{
γ2t, if t ≤ 0
γ1t, if t > 0 = γ1 [t]+ − γ2 [t]− .

Assumption 1.1 is fulfilled since u1(0) = 0 and −1 ∈ ∂u1(0) = [γ2, γ1] and, since for all
d ∈ R (see [7])

(u1)∞(d) =


γ2d, if d < 0,
0, if d = 0,
γ1d, if d > 0,

condition (2.3) is fulfilled, as well. Hence, u1 gives rise to the lower semicontinuous
coherent risk measure

ρu1(X) = inf
λ∈R

{
λ+ γ1E [X + λ]+ − γ2E [X + λ]−

}
∀X ∈ L2. (2.6)

For every γ ∈ R++ and t ∈ R it holds

Proxγu1 (t) = arg min
s∈R

{
γ
(
γ1 [s]+ − γ2 [s]−

)
+ 1

2 (s− t)2
}

=


t− γγ2, if t < γγ2
0, if t ∈ [γγ2, γγ1]
t− γγ1, if t > γγ1

= [t− γγ1]+ − [t− γγ2]− .

When setting γ1 = 0 and γ2 = − 1
1−α for some α ∈ (0, 1), the convex risk measure (2.6)

becomes the classical so-called Conditional Value-at-Risk at level α (see, for example,
[20, 21])

CVaRα : L2 → R, CVaRα(X) = inf
λ∈R

{
λ+ 1

1− αE [X + λ]−
}
. (2.7)

9



The infimum in the in the expression of the Conditional Value-at-Risk is attained for
every X ∈ L2 at the so-called Value-at-Risk at level α, i.e.,

VaRα(X) = arg min
λ∈R

{
λ+ 1

1− αE [X + λ]−
}
.

2.2 Exponential utility function

Consider the exponential utility function u2 : R → R, u2(t) = exp(−t) − 1. It fulfills
Assumption 1.1 and, since (u2)∞ = δ[0,+∞), condition (2.3) is fulfilled, as well. It gives
rise via (1.5) to the so-called entropic risk measure

ρu2(X) = inf
λ∈R
{λ+ E [exp(−X − λ)− 1]} ∀X ∈ L2, (2.8)

which is a lower semicontinuous convex risk measure. For arbitrary γ ∈ R++ and t ∈ R
it holds

Proxγu2 (t) = arg min
s∈R

{
γ(exp(−s)− 1) + 1

2 (s− t)2
}

Although no closed form expression for the proximal points of γu2 can be given, these can
be efficiently calculated by applying Newton’s method under the use of previous iterates
as starting points.

2.3 Indicator utility function

By choosing the utility function u3 : R→ R, u3(t) = δ[0,+∞)(t), one has (u3)∞ = δ[0,+∞),
thus, both Assumption 1.1 and condition (2.3) are fulfilled. It gives rise to the so-called
worst-case risk measure

ρu3(X) = inf
λ∈R

X+λ≥0

λ = − essinf X = essup(−X) ∀X ∈ L2, (2.9)

which is a lower semicontinuous convex risk measure. For arbitrary γ ∈ R++ and t ∈ R
it holds

Proxγu3 (t) = arg min
s∈R

{
γδ[0,+∞)(s) + 1

2 (s− t)2
}

= P[0,+∞)(t).

2.4 Quadratic utility function

For a fixed β ∈ R++ we consider the quadratic utility function

u4 : R→ R, u4(t) =
{

β
2 t

2 − t, if t ≤ 1
β

− 1
2β , if t > 1

β

.

Obviously, (u4)∞ = δ[0,+∞), thus, both Assumption 1.1 and condition (2.3) are also
fulfilled for this utility function. For arbitrary γ ∈ R++ and t ∈ R, it holds

Proxγu4 (t) = arg min
s∈R

{
γu4(s) + 1

2 (s− t)2
}

=
{

t+γ
1+γβ , if t ≤ 1

β

t, if t > 1
β

.
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2.5 Logarithmic utility function

For θ ∈ R++, we consider the logarithmic utility function

u5 : R→ R, u5(t) =
{
−θ ln

(
1 + t

θ

)
, if t > −θ

+∞, if t ≤ −θ .

For this special utility function, one can also show that (u5)∞ = δ[0,+∞), hence that (2.3)
is fulfilled. The properties in Assumption 1.1 hold as well and therefore, via (1.5), we
obtain the convex risk measure

ρu5(X) = inf
λ∈R

X+λ>−θ

{
λ− θE

[
ln
(

1 + X + λ

θ

)]}
∀X ∈ L2.

The proximal points of the logarithmic utility function take an explicit expression. For
arbitrary γ ∈ R++ and t ∈ R, it holds

Proxγu5 (t) = arg min
s∈R
s>−θ

{
−γθ ln

(
1 + s

θ

)
+ 1

2 (s− t)2
}

= t− θ
2 +

√
(θ − t)2

4 + θ(γ + t).

3 An alternative approach for CVaR
In this section we propose an alternative approach for solving the portfolio optimization
problem (2.1) when the risk measure in the objective is the Conditional Value-at-Risk
at a given confidence level α ∈ (0, 1). To this aim we work in a discrete probability
space with Ω finite, which is the natural framework in real-life applications. We denote
by |Ω| the cardinal of the set Ω. Thus, the probability measure P can be represented
as a vector (p1, ..., p|Ω|) ∈ R|Ω| with pi ≥ 0, i = 1, ..., |Ω|, and

∑|Ω|
i=1 pi = 1 and the

space of random variables L2 can be identified with the finite-dimensional space R|Ω|.
The investigations made in this section rely on the following dual representation of the
Conditional Value-at-Risk given in [18,22], namely, for every X ∈ R|Ω| it holds

CVaRα(X) = sup
q∈Q
−qTX, (3.1)

where

Q =

q ∈ R|Ω| :
|Ω|∑
i=1

qi = 1, 0 ≤ qi ≤
pi

1− α, i = 1, . . . , |Ω|

 . (3.2)

By introducing the convex and closed sets

U =

x ∈ R|Ω| :
|Ω|∑
i=1

xi = 1


V =

{
x ∈ R|Ω| : 0 ≤ xi ≤

pi
1− α, i = 1, . . . , |Ω|

}
,

we obtain Q = U ∩ V , hence, for every X ∈ R|Ω| it holds

CVaRα(X) = δ∗Q(−X) = δ∗U∩V (−X) = (δU + δV )∗ (−X) = (δ∗U � δ∗V ) (−X), (3.3)
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where the last equality follows from [2, Theorem 15.3 & Proposition 15.5] and the fact
that the intersection of the relative interiors of the sets U and V is nonempty.

Thus, for given Ri ∈ R|Ω|, i = 1, ..., N, the portfolio optimization problem

inf
xTµ≥µ∗

xT
1

N =1, x∈RN
+

CVaRα

(
N∑
i=1

xiRi

)
(3.4)

can be equivalently written as

inf
x∈RN

{
δRN

+
(x) + δS(x) + δT (x) + (δ∗U � δ∗V ) (Rx)

}
, (3.5)

where S and T are the sets already introduced in the previous section and R : RN → R|Ω|
is defined as R(x1, ..., xN ) = −

∑N
i=1 xiRi.

One can easily notice that the optimization problem (3.4) fits in the formulation of the
general convex optimization problem (P ), all the extended real-valued functions present
in its objective being proper, convex and lower semicontinuous, and thus it can be solved
by means of Algorithm 1.1. We would also like to point out that the primal-dual splitting
algorithms proposed in [13, 25] are also designed to solve convex optimization problems
involving infimal convolutions, however, they cannot be applied in this situation. This is
because they require that one of the two functions occurring in the infimal convolution are
strongly convex, which is for the problem (3.5) not the case. For the implementation of
Algorithm 1.1 one has only to determine the projections on some simple convex and closed
sets, for which one actually has explicit expressions. We would also like to emphasize
that, from this point of view, it is preferable to work with the sets U and V separately,
instead of dealing with their intersection Q.

Remark 3.1. The approach described above can be analogously employed when consid-
ering portfolio optimization problems having as objective a weighted sum of Conditional
Value-at-Risk functionals taken at different levels of confidence.

4 Numerical experiments

4.1 Simulated data

The first numerical experiments we made followed the scope to compare different ap-
proaches for solving the portfolio optimization problem which assumes the quantification
of risk by means of the Conditional Value-at-Risk. More precisely, we compared the
performances of Algorithm 1.1 when applied in the context of the approaches proposed
in the sections 2 and 3, but also with the linear programming approach, widely used in
this context in the literature. To this end we used synthetic data obtained by creating
random returns Ri ∈ R|Ω|, i = 1, ...., N , where N represents the number of assets in the
portfolio.

By making use of the Matlab plugins provided by CPLEX1, Gurobi2 and Mosek3, we
first solved the reformulation of (3.4) as a linear program, that can be easily obtained by
means of (2.7). Then we used the primal-dual method given in Algorithm 1.1 to solve

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
2http://www.gurobi.com/de/produkte/gurobi-optimizer/gurobi-overview
3http://www.mosek.com/products/mosek
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(3.4) via two different approaches, namely, on the one hand, by solving the reformulation
(2.4) proposed in Section 2 and, on the other hand, by solving the reformulation (3.5)
given in Section 3 and relying on the dual representation of the objective. We terminated
the algorithms when subsequent iterates start to stay within an accuracy level of 1 % with
respect to the set of constraints and to the optimal objective value reported by the linear
programming solver. Within these examples we used the confidence level α = 0.95.
The algorithms were implemented in Matlab on an Intel Core i5-2400 processor under
Windows 7 (64 Bit).

|Ω| N CPLEX Gurobi Mosek OCE (iterations) DR (iterations)
1000 100 0.03s 0.15s 0.12s 0.07s (250) 0.06s (247)
1000 500 0.10s 0.58s 1.39s 3.45s (1078) 1.66s (519)
1000 1000 0.21s 0.58s 1.40s 12.85s (1772) 3.94s (546)

10000 100 4.35s 3.12s 2.18s 1.89s (252) 1.36s (185)
10000 500 5.68s 8.55s 18.42s 38.76s (1087) 12.48s (351)
10000 1000 8.89s 21.87s 45.67s 174.05s (2465) 27.79s (394)

Table 4.1: CPU times in seconds for solving the portfolio optimization problem when using the
linear programming (LP) approach via CPLEX, Gurobi and Mosek, the Optimized Certainty
Equivalent (OCE) approach and the dual representation (DR) approach.

By analyzing the results given in Table 4.1 one should recognize that CPLEX, Gurobi
and Mosek are implemented on architecture-specific guidelines with runtime optimized
source code. On the other hand, our implementations of the OCE and the DR approach
are simple java-based Matlab scripts that are naturally slower. Table 4.1 shows that the
commercial solvers CPLEX, Gurobi and Mosek are performing quite differently when
applied to the portfolio optimization problem. For N = 100 the primal-dual solver
applied to the OCE and the DR problem is competitive is this field. For larger N ,
the architecture-specific solvers are better, especially when compared with the OCE
results. For |Ω| = 10000, however, the primal-dual implementation with respect to the
DR approach keeps up with Gurobi and Mosek. When running Algorithm 1.1 we used
the following parameters:

• OCE: σ1 = 50, σ2 = 50, σ3 = 70/ ‖K‖L2 , τ = 3/(σ1 + σ2 + σ3 ‖K‖2L2), λ = 1.99;
• DR (|Ω| = 1000): σ1 = 2, σ2 = 2, σ3 = 0.1/ ‖R‖L2 , τ = 2/(σ1 + σ2 + σ3 ‖R‖2L2),
λ = 1.99;
• DR (|Ω| = 10000): σ1 = 0.1, σ2 = 0.1, σ3 = 0.001/ ‖R‖L2 , τ = 2/(σ1 + σ2 +
σ3 ‖R‖2L2), λ = 1.99.

4.2 Real data

For the experiments described as follows we took weekly opening courses over the last
13 years from assets belonging to the indices DAX and NASDAQ in order to obtain the
returns Ri ∈ R|Ω|, i = 1, ..., N , for |Ω| = 689 and N = 106. The data was provided
by the Yahoo finance database. Assets which do not support the required historical
information like Volkswagen AG (DAX) or Netflix, Inc. (NASDAQ) were not taken into
consideration.

We solved the portfolio optimization problem (2.1) by taking as objective function
the corresponding convex risk measures induced by the linear, exponential, indicator,
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quadratic and logarithmic utility function. More precisely, we solved with Algorithm
1.1 its equivalent reformulation (2.1) and used to this end the formulae for the proximal
points of each utility function given in Section 2. The values of the expected returns
associated with Ri, i = 1, ..., N ranged from −0.2690 (Commerzbank AG, DAX) to 1.4156
(priceline.com Incorporated, NASDAQ).

Table 4.2 collects some computational results when computing by using Algorithm
1.1 optimal solutions for the five utility functions. The stopping criterion was the same
as in Section 4.1. Table 4.2 shows that Algorithm 1.1 in combination with the worst-case
risk measure, i.e., the one induced by the indicator utility function, performed poorly
on the given dataset. It also shows that the algorithm is sensitive with respect to the
lower bound of the expected return µ∗. When calculating the proximal points of the
exponential utility function we used five iterations of Newton’s method with previous
iterates as starting points to obtain an appropriate approximation.

µ∗ linear (α = 0.95) exponential indicator quadr. (β = 1) log. (θ = 5)
0.3 0.14s(500) 0.18s(402) - (> 15000) 0.05s(170) 0.53s(1891)
0.5 0.15s(520) 0.15s(336) - (> 15000) 0.06s(196) 0.38s(1335)
0.7 0.33s(1202) 0.31s(682) - (> 15000) 0.06s(186) 0.72s(2570)
0.9 0.32s(1164) 0.40s(885) - (> 15000) 0.08s(272) 1.07s(3820)
1.1 0.41s(1526) 6.80s(15222) - (> 15000) 0.14s(486) 1.18s(4198)
1.3 0.42s(1570) 5.45s(12155) - (> 15000) 0.41s(1476) 6.61s(23547)

Table 4.2: CPU times in seconds and the number of iterations when solving the portfolio opti-
mization problem (2.1) under different utility functions.

Figure 4.1 shows the efficient frontiers for problem (2.1). When using the indica-
tor utility function we stopped the algorithm after a number of 30000 iterations. The
objective value, however, still oscillated in this scenario.

5 Conclusions
In this paper we solve portfolio optimization problems which assume the minimization
of risk measures associated to different convex utility functions by means of primal-
dual splitting methods. The latter evaluate individually the functions and operators
arising in the formulation of the problems to be solved, thus, being suitable for solving
complexely structured convex minimization problems. When employing them in the
context of solving the portfolio optimization problems addressed in the paper, the main
effort constitutes the calculation of the proximal points of the utility functions, which
actually assume explicit expressions in a number of cases. In the numerical experiments
we compare first the primal-dual methods with other approaches for solving portfolio
optimization problems with simulated data, when quantifying risk via the Conditional
Value-at-Risk. Secondly, we solve the portfolio optimization problems with real data
under the use of different utility functions and compare the performances of the resulting
primal-dual algorithms.

Acknowledgements. The authors are thankful to an anonymous reviewer for re-
marks and suggestions which have improved the quality of the paper.
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(b) exponential utility

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

risk
e
x
p
e
c
te

d
 r

e
tu

rn

(c) indicator utility
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(d) quadratic utility
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(e) logarithmic utility
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Figure 4.1: The efficient frontiers for the portfolio optimization problem under different convex
risk measurements.
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