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Abstract. We propose a forward-backward proximal-type algorithm with inertial/memory
effects for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex
setting. Every sequence of iterates generated by the algorithm converges to a critical point
of the objective function provided an appropriate regularization of the objective satisfies the
Kurdyka- Lojasiewicz inequality, which is for instance fulfilled for semi-algebraic functions.
We illustrate the theoretical results by considering two numerical experiments: the first
one concerns the ability of recovering the local optimal solutions of nonconvex optimization
problems, while the second one refers to the restoration of a noisy blurred image.
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1 Introduction

Proximal-gradient splitting methods are powerful techniques used in order to solve opti-
mization problems where the objective to be minimized is the sum of a finite collection
of smooth and/or nonsmooth functions. The main feature of this class of algorithmic
schemes is the fact that they access each function separately, either by a gradient step if
this is smooth or by a proximal step if it is nonsmooth.

In the convex case (when all the functions involved are convex), these methods are
well understood, see for example [8], where the reader can find a presentation of the
most prominent methods, like the forward-backward, forward-backward-forward and the
Douglas-Rachford splitting algorithms.

On the other hand, the nonconvex case is less understood, one of the main difficulties
coming from the fact that the proximal point operator is in general not anymore single-
valued. However, one can observe a considerable progress in this direction when the func-
tions in the objective have the Kurdyka- Lojasiewicz property (so-called KL functions), as it
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is the case for the ones with different analytic features. This applies for both the forward-
backward algorithm (see [14], [6]) and the forward-backward-forward algorithm (see [18]).
We refer the reader also to [4, 5, 23, 25, 26, 34] for literature concerning proximal-gradient
splitting methods in the nonconvex case relying on the Kurdyka- Lojasiewicz property.

A particular class of the proximal-gradient splitting methods are the ones with iner-
tial/memory effects. These iterative schemes have their origins in the time discretization
of some differential inclusions of second order type (see [1, 3]) and share the feature that
the new iterate is defined by using the previous two iterates. The increasing interest in
this class of algorithms is emphasized by a considerable number of papers written in the
last fifteen years on this topic, see [1–3,7, 15–22,29,30,32,35].

Recently, an inertial forward-backward type algorithm has been proposed and analyzed
in [34] in the nonconvex setting, by assuming that the nonsmooth part of the objective
function is convex, while the smooth counterpart is allowed to be nonconvex. It is the aim of
this paper to introduce an inertial forward-backward algorithm in the full nonconvex setting
and to study its convergence properties. The techniques for proving the convergence of the
numerical scheme use the same three main ingredients, as other algorithms for nonconvex
optimization problems involving KL functions. More precisely, we show a sufficient decrease
property for the iterates, the existence of a subgradient lower bound for the iterates gap and,
finally, we use the analytic features of the objective function in order to obtain convergence,
see [6,14]. The limiting (Mordukhovich) subdifferential and its properties play an important
role in the analysis. The main result of this paper shows that, provided an appropriate
regularization of the objective satisfies the Kurdyka- Lojasiewicz property, the convergence
of the inertial forward-backward algorithm is guaranteed. As a particular instance, we also
treat the case when the objective function is semi-algebraic and present the convergence
properties of the algorithm.

In the last section of the paper we consider two numerical experiments. The first
one has an academic character and shows the ability of algorithms with inertial/memory
effects to detect optimal solutions which are not found by the non-inertial versions (similar
allegations can be found also in [34, Section 5.1] and [10, Example 1.3.9]). The second one
concerns the restoration of a noisy blurred image by using a nonconvex misfit functional
with nonconvex regularization.

2 Preliminaries

In this section we recall some notions and results which are needed throughout this paper.
Let N = {0, 1, 2, ...} be the set of nonnegative integers. For m ≥ 1, the Euclidean scalar
product and the induced norm on Rm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Notice
that all the finite-dimensional spaces considered in the manuscript are endowed with the
topology induced by the Euclidean norm.

The domain of the function f : Rm → (−∞,+∞] is defined by dom f = {x ∈ Rm :
f(x) < +∞}. We say that f is proper if dom f 6= ∅. For the following generalized
subdifferential notions and their basic properties we refer to [31, 36]. Let f : Rm →
(−∞,+∞] be a proper and lower semicontinuous function. If x ∈ dom f , we consider the
Fréchet (viscosity) subdifferential of f at x as the set

∂̂f(x) =

{
v ∈ Rm : lim inf

y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖

≥ 0

}
.
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For x /∈ dom f we set ∂̂f(x) := ∅. The limiting (Mordukhovich) subdifferential is defined
at x ∈ dom f by

∂f(x) = {v ∈ Rm : ∃xn → x, f(xn)→ f(x) and ∃vn ∈ ∂̂f(xn), vn → v as n→ +∞},

while for x /∈ dom f , one takes ∂f(x) := ∅.
Notice that in case f is convex, these notions coincide with the convex subdifferential,

which means that ∂̂f(x) = ∂f(x) = {v ∈ Rm : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ Rm} for all
x ∈ dom f .

Notice the inclusion ∂̂f(x) ⊆ ∂f(x) for each x ∈ Rm. We will use the following
closedness criteria concerning the graph of the limiting subdifferential: if (xn)n∈N and
(vn)n∈N are sequences in Rm such that vn ∈ ∂f(xn) for all n ∈ N, (xn, vn) → (x, v) and
f(xn)→ f(x) as n→ +∞, then v ∈ ∂f(x).

The Fermat rule reads in this nonsmooth setting as: if x ∈ Rm is a local minimizer of
f , then 0 ∈ ∂f(x). Notice that in case f is continuously differentiable around x ∈ Rm we
have ∂f(x) = {∇f(x)}. Let us denote by

crit(f) = {x ∈ Rm : 0 ∈ ∂f(x)}

the set of (limiting)-critical points of f . Let us mention also the following subdifferential
rule: if f : Rm → (−∞,+∞] is proper and lower semicontinuous and h : Rm → R is a
continuously differentiable function, then ∂(f + h)(x) = ∂f(x) +∇h(x) for all x ∈ Rm.

We turn now our attention to functions satisfying the Kurdyka- Lojasiewicz property.
This class of functions will play a crucial role when proving the convergence of the proposed
inertial algorithm. For η ∈ (0,+∞], we denote by Θη the class of concave and continuous
functions ϕ : [0, η)→ [0,+∞) such that ϕ(0) = 0, ϕ is continuously differentiable on (0, η),
continuous at 0 and ϕ′(s) > 0 for all s ∈ (0, η). In the following definition (see [5, 14]) we
use also the distance function to a set, defined for A ⊆ Rm as dist(x,A) = infy∈A ‖x− y‖
for all x ∈ Rm.

Definition 1 (Kurdyka- Lojasiewicz property) Let f : Rm → (−∞,+∞] be a proper and
lower semicontinuous function. We say that f satisfies the Kurdyka- Lojasiewicz (KL)
property at x ∈ dom ∂f = {x ∈ Rm : ∂f(x) 6= ∅} if there exist η ∈ (0,+∞], a neighborhood
U of x and a function ϕ ∈ Θη such that for all x in the intersection

U ∩ {x ∈ Rm : f(x) < f(x) < f(x) + η}

the following inequality holds

ϕ′(f(x)− f(x)) dist(0, ∂f(x)) ≥ 1.

If f satisfies the KL property at each point in dom ∂f , then f is called a KL function.

The origins of this notion go back to the pioneering work of  Lojasiewicz [28], where it
is proved that for a real-analytic function f : Rm → R and a critical point x ∈ Rm (that is
∇f(x) = 0), there exists θ ∈ [1/2, 1) such that the function |f − f(x)|‖∇f‖−1 is bounded
around x. This corresponds to the situation when ϕ(s) = s1−θ. The result of  Lojasiewicz
allows the interpretation of the KL property as a re-parametrization of the function values
in order to avoid flatness around the critical points. Kurdyka [27] extended this property
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to differentiable functions definable in an o-minimal structure. Further extensions to the
nonsmooth setting can be found in [5, 11–13].

One of the remarkable properties of the KL functions is their ubiquity in applications,
according to [14]. To the class of KL functions belong semi-algebraic, real sub-analytic,
semiconvex, uniformly convex and convex functions satisfying a growth condition. We
refer the reader to [4–6,11–14] and the references therein for more details regarding all the
classes mentioned above and illustrating examples.

An important role in our convergence analysis will be played by the following uni-
formized KL property given in [14, Lemma 6].

Lemma 1 Let Ω ⊆ Rm be a compact set and let f : Rm → (−∞,+∞] be a proper and
lower semicontinuous function. Assume that f is constant on Ω and f satisfies the KL
property at each point of Ω. Then there exist ε, η > 0 and ϕ ∈ Θη such that for all x ∈ Ω
and for all x in the intersection

{x ∈ Rm : dist(x,Ω) < ε} ∩ {x ∈ Rm : f(x) < f(x) < f(x) + η} (1)

the following inequality holds

ϕ′(f(x)− f(x)) dist(0, ∂f(x)) ≥ 1. (2)

We close this section by presenting two convergence results which will play a deter-
mined role in the proof of the results we provide in the next section. The first one was
often used in the literature in the context of Fejér monotonicity techniques for proving con-
vergence results of classical algorithms for convex optimization problems or more generally
for monotone inclusion problems (see [8]). The second one is probably also known, see for
example [18].

Lemma 2 Let (an)n∈N and (bn)n∈N be real sequences such that bn ≥ 0 for all n ∈ N,
(an)n∈N is bounded below and an+1+bn ≤ an for all n ∈ N. Then (an)n∈N is a monotonically
decreasing and convergent sequence and

∑
n∈N bn < +∞.

Lemma 3 Let (an)n∈N and (bn)n∈N be nonnegative real sequences, such that
∑

n∈N bn <
+∞ and an+1 ≤ a ·an + b ·an−1 + bn for all n ≥ 1, where a ∈ R, b ≥ 0 and a+ b < 1. Then∑

n∈N an < +∞.

3 A forward-backward algorithm

In this section we present an inertial forward-backward algorithm for a fully nonconvex op-
timization problem and study its convergence properties. The problem under investigation
has the following formulation.

Problem 1. Let f : Rm → (−∞,+∞] be a proper, lower semicontinuous function which
is bounded below and let g : Rm → R be a Fréchet differentiable function with Lipschitz
continuous gradient, i.e. there exists L∇g ≥ 0 such that ‖∇g(x) − ∇g(y)‖ ≤ L∇g‖x − y‖
for all x, y ∈ Rm. We deal with the optimization problem

(P ) inf
x∈Rm

[f(x) + g(x)]. (3)
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In the iterative scheme we propose below, we use also the function F : Rm → R,
assumed to be σ−strongly convex, i.e. F − σ

2 ‖ · ‖
2 is convex, Fréchet differentiable and

such that ∇F is L∇F -Lipschitz continuous, where σ, L∇F > 0. The Bregman distance to
F , denoted by DF : Rm × Rm → R, is defined as

DF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉 ∀(x, y) ∈ Rm × Rm.

Notice that the properties of the function F ensure the following inequalities

σ

2
‖x− y‖2 ≤ DF (x, y) ≤ L∇F

2
‖x− y‖2 ∀x, y ∈ Rm. (4)

We propose the following iterative scheme.

Algorithm 1. Choose x0, x1 ∈ Rm, α, α > 0, β ≥ 0 and the sequences (αn)n≥1, (βn)n≥1
fulfilling

0 < α ≤ αn ≤ α ∀n ≥ 1

and
0 ≤ βn ≤ β ∀n ≥ 1.

Consider the iterative scheme

(∀n ≥ 1) xn+1 ∈ argmin
u∈Rm

{DF (u, xn) + αn〈u,∇g(xn)〉+ βn〈u, xn−1 − xn〉+ αnf(u)} . (5)

Due to the subdifferential sum formula mentioned in the previous section, one can see
that any sequence generated by this algorithm satisfies the relation

xn+1 ∈ (∇F + αn∂f)−1(∇F (xn)− αn∇g(xn) + βn(xn − xn−1)) ∀n ≥ 1. (6)

Further, since f is proper, lower semicontinuous and bounded from below and DF is
coercive in its first argument (that is lim‖x‖→+∞DF (x, y) = +∞ for all y ∈ Rm), the
iterative scheme is well-defined, meaning that the existence of xn is guaranteed for each
n ≥ 2, since the objective function in the minimization problem to be solved at each
iteration is coercive.

Remark 4 The condition that f should be bounded below is imposed in order to ensure
that in each iteration one can choose at least one xn (that is the argmin in (5) is nonempty).
One can replace this requirement by asking that the objective function in the minimization
problem considered in (5) is coercive and the theory presented below still remains valid.
This observation is useful when dealing with optimization problems as the ones considered
in Subsection 4.1.

Before proceeding with the convergence analysis, we discuss the relation of our scheme
to other algorithms from the literature. Let us take first F (x) = 1

2‖x‖
2 for all x ∈ Rm. In

this case DF (x, y) = 1
2‖x− y‖

2 for all (x, y) ∈ Rm × Rm and σ = L∇F = 1. The iterative
scheme becomes

(∀n ≥ 1) xn+1 ∈ argmin
u∈Rm

{
‖u− (xn − αn∇g(xn) + βn(xn − xn−1))‖2

2αn
+ f(u)

}
. (7)
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A similar inertial type algorithm has been analyzed in [34], however in the restrictive case
when f is convex. If we take in addition β = 0, which enforces βn = 0 for all n ≥ 1, then
(7) becomes

(∀n ≥ 1) xn+1 ∈ argmin
u∈Rm

{
‖u− (xn − αn∇g(xn))‖2

2αn
+ f(u)

}
, (8)

the convergence of which has been investigated in [14] in the full nonconvex setting. No-
tice that forward-backward algorithms with variable metrics for KL functions have been
proposed in [23,25].

On the other hand, if we take g(x) = 0 for all x ∈ Rm, the iterative scheme in (7)
becomes

(∀n ≥ 1) xn+1 ∈ argmin
u∈Rm

{
‖u− (xn + βn(xn − xn−1))‖2

2αn
+ f(u)

}
, (9)

which is a proximal point algorithm with inertial/memory effects formulated in the non-
convex setting designed for finding the critical points of f . The iterative scheme without
the inertial term, that is when β = 0 and, so, βn = 0 for all n ≥ 1, has been considered in
the context of KL functions in [4].

Let us mention that in the full convex setting, which means that f and g are convex
functions, in which case for all n ≥ 2, xn is uniquely determined and can be expressed via
the proximal operator of f , (7) can be derived from the iterative scheme proposed in [32],
(8) is the classical forward-backward algorithm (see for example [8] or [24]) and (9) has
been analyzed in [3] in the more general context of monotone inclusion problems.

In the convergence analysis of the algorithm the following result will be useful (see for
example [33, Lemma 1.2.3]).

Lemma 5 Let g : Rm → R be Fréchet differentiable with L∇g-Lipschitz continuous gradi-
ent. Then

g(y) ≤ g(x) + 〈∇g(x), y − x〉+
L∇g

2
‖y − x‖2, ∀x, y ∈ Rm.

Let us start now with the investigation of the convergence of the proposed algorithm.

Lemma 6 In the setting of Problem 1, let (xn)n∈N be a sequence generated by Algorithm
1. Then one has

(f + g)(xn+1) +M1‖xn − xn+1‖2 ≤ (f + g)(xn) +M2‖xn−1 − xn‖2 ∀n ≥ 1,

where

M1 =
σ − αL∇g

2α
− β

2α
and M2 =

β

2α
. (10)

Moreover, for 0 < α ≤ α and β > 0 satisfying

σ > αL∇g + 2β
α

α
, (11)

one has M1 > M2.
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Proof. Let be n ≥ 1 fixed. Due to (5) we have

DF (xn+1, xn) + αn〈xn+1,∇g(xn)〉+ βn〈xn+1, xn−1 − xn〉+ αnf(xn+1)

≤ DF (xn, xn) + αn〈xn,∇g(xn)〉+ βn〈xn, xn−1 − xn〉+ αnf(xn)

or, equivalently,

DF (xn+1, xn) + 〈xn+1 − xn, αn∇g(xn)− βn(xn − xn−1)〉+ αnf(xn+1) ≤ αnf(xn). (12)

On the other hand, by Lemma 5 we have

〈∇g(xn), xn+1 − xn〉 ≥ g(xn+1)− g(xn)−
L∇g

2
‖xn − xn+1‖2.

At the same time

〈xn+1 − xn, xn−1 − xn〉 ≥ −
(

1

2
‖xn − xn+1‖2 +

1

2
‖xn−1 − xn‖2

)
,

and from (4) we have
σ

2
‖xn+1 − xn‖2 ≤ DF (xn+1, xn).

Hence, (12) leads to

(f + g)(xn+1) +
σ − L∇gαn − βn

2αn
‖xn+1 − xn‖2 ≤ (f + g)(xn) +

βn
2αn
‖xn−1 − xn‖2. (13)

Obviously M1 =
σ−L∇gα

2α − β
2α ≤

σ−L∇gαn−βn
2αn

and M2 = β
2α ≥

βn
2αn

thus,

(f + g)(xn+1) +M1‖xn − xn+1‖2 ≤ (f + g)(xn) +M2‖xn−1 − xn‖2

and the first part of the lemma is proved.
Finally, for 0 < α ≤ α and β > 0 satisfying σ > αL∇g + 2β αα , one has that M1 > M2

and the proof is complete. �

Remark 7 If α and β are positive numbers such that σ > αL∇g + 2β, then

α <
ασ

αL∇g + 2β
.

By choosing

α ≤ α < ασ

αL∇g + 2β
,

relation (11) is satisfied.
On the other hand, if α and β are positive numbers such that σ > αL∇g + 2β, then

2βα

σ − αL∇g
< α.

By choosing
2βα

σ − αL∇g
< α ≤ α,

relation (11) is again satisfied.

7



Proposition 8 In the setting of Problem 1, choose α, α, β satisfying (11) and M1,M2

satisfying (10). Assume that f + g is bounded from below. Then the following statements
hold:

(a)
∑

n≥1 ‖xn − xn−1‖2 < +∞;

(b) the sequence ((f + g)(xn) + M2‖xn−1 − xn‖2)n≥1 is monotonically decreasing and
convergent;

(c) the sequence ((f + g)(xn))n∈N is convergent.

Proof. For every n ≥ 1, set an = (f+g)(xn)+M2‖xn−1−xn‖2 and bn = (M1−M2)‖xn−
xn+1‖2. Then obviously from Lemma 6 one has for every n ≥ 1

an+1 + bn = (f + g)(xn+1) +M1‖xn − xn+1‖2 ≤ (f + g)(xn) +M2‖xn−1 − xn‖2 = an.

The conclusion follows now from Lemma 2. �

Lemma 9 In the setting of Problem 1, consider the sequences generated by Algorithm 1.
For every n ≥ 1 we have

yn+1 ∈ ∂(f + g)(xn+1), (14)

where

yn+1 =
∇F (xn)−∇F (xn+1)

αn
+∇g(xn+1)−∇g(xn) +

βn
αn

(xn − xn−1).

Moreover,

‖yn+1‖ ≤
L∇F + αnL∇g

αn
‖xn − xn+1‖+

βn
αn
‖xn − xn−1‖ ∀n ≥ 1 (15)

Proof. Let us fix n ≥ 1. From (6) we have that

∇F (xn)−∇F (xn+1)

αn
−∇g(xn) +

βn
αn

(xn − xn−1) ∈ ∂f(xn+1),

or, equivalently,
yn+1 −∇g(xn+1) ∈ ∂f(xn+1),

which shows that yn+1 ∈ ∂(f + g)(xn+1).
The inequality (15) follows now from the definition of yn+1 and the triangle inequality.

�

Lemma 10 In the setting of Problem 1, choose α, α, β satisfying (11) and M1,M2 satis-
fying (10). Assume that f + g is coercive, i.e.

lim
‖x‖→+∞

(f + g)(x) = +∞.

Then any sequence (xn)n∈N generated by Algorithm 1 has a subsequence convergent to a
critical point of f + g. Actually every cluster point of (xn)n∈N is a critical point of f + g.
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Proof. Since f + g is a proper, lower semicontinuous and coercive function, it follows
that infx∈Rm [f(x) + g(x)] is finite and the infimum is attained. Hence f + g is bounded
from below.

Let (xn)n∈N be a sequence generated by Algorithm 1. According to Proposition 8(b),
we have

(f + g)(xn) ≤ (f + g)(xn) +M2‖xn − xn−1‖2 ≤ (f + g)(x1) +M2‖x1 − x0‖2 ∀n ≥ 1.

Since the function f + g is coercive, its lower level sets are bounded, thus the sequence
(xn)n∈N is bounded.

Let x be a cluster point of (xn)n∈N. Then there exists a subsequence (xnk
)k∈N such

that xnk
→ x as k → +∞. We show that (f + g)(xnk

)→ (f + g)(x) as k → +∞ and that
x is a critical point of f + g, that is 0 ∈ ∂(f + g)(x).

We show first that f(xnk
)→ f(x) as k → +∞. Since f is lower semicontinuous one has

lim inf
k→+∞

f(xnk
) ≥ f(x).

On the other hand, from (5) we have for every n ≥ 1

DF (xn+1, xn) + αn〈xn+1,∇g(xn)〉+ βn〈xn+1, xn−1 − xn〉+ αnf(xn+1) ≤
DF (x, xn) + αn〈x,∇g(xn)〉+ βn〈x, xn−1 − xn〉+ αnf(x),

which leads to

1

αnk−1
(DF (xnk

, xnk−1)−DF (x, xnk−1)) +

1

αnk−1
(〈xnk

− x, αnk−1∇g(xnk−1)− βnk−1(xnk−1 − xnk−2)〉) +

f(xnk
) ≤ f(x) ∀k ≥ 2.

The latter combined with Proposition 8(a) and (4) shows that lim supk→+∞ f(xnk
) ≤ f(x),

hence limk→+∞ f(xnk
) = f(x). Since g is continuous, obviously g(xnk

)→ g(x) as k → +∞,
thus (f + g)(xnk

)→ (f + g)(x) as k → +∞.
Further, by using the notations from Lemma 9, we have ynk

∈ ∂(f + g)(xnk
) for every

k ≥ 2. By Proposition 8(a) and Lemma 9 we get ynk
→ 0 as k → +∞.

Concluding, we have:
ynk
∈ ∂(f + g)(xnk

) ∀k ≥ 2,

(xnk
, ynk

)→ (x, 0), k → +∞

(f + g)(xnk
)→ (f + g)(x), k → +∞.

Hence 0 ∈ ∂(f + g)(x), that is, x is a critical point of f + g. �

Lemma 11 In the setting of Problem 1, choose α, α, β satisfying (11) and M1,M2 satis-
fying (10). Assume that f + g is coercive and consider the function

H : Rm × Rm → (−∞,+∞], H(x, y) = (f + g)(x) +M2‖x− y‖2 ∀(x, y) ∈ Rm × Rm.

Let (xn)n∈N be a sequence generated by Algorithm 1. Then there exist M,N > 0 such that
the following statements hold:
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(H1) H(xn+1, xn) +M‖xn+1 − xn‖2 ≤ H(xn, xn−1) for all n ≥ 1;

(H2) for all n ≥ 1, there exists wn+1 ∈ ∂H(xn+1, xn) such that ‖wn+1‖ ≤ N(‖xn+1−xn‖+
‖xn − xn−1‖);

(H3) if (xnk
)k∈N is a subsequence such that xnk

→ x as k → +∞, then H(xnk
, xnk−1) →

H(x, x) as k → +∞ (there exists at least one subsequence with this property).

Proof. For (H1) just take M = M1 −M2 and the conclusion follows from Lemma 6.
Let us prove (H2). For every n ≥ 1 we define

wn+1 = (yn+1 + 2M2(xn+1 − xn), 2M2(xn − xn+1)),

where (yn)n≥2 is the sequence introduced in Lemma 9. The fact that wn+1 ∈ ∂H(xn+1, xn)
follows from Lemma 9 and the relation

∂H(x, y) =
(
∂(f + h)(x) + 2M2(x− y)

)
× {2M2(y − x)} ∀(x, y) ∈ Rm × Rm. (16)

Further, one has (see also Lemma 9)

‖wn+1‖ ≤ ‖yn+1 + 2M2(xn+1 − xn)‖+ ‖2M2(xn − xn+1)‖ ≤(
L∇F
αn

+ L∇g + 4M2

)
‖xn+1 − xn‖+

βn
αn
‖xn − xn−1‖.

Since 0 < α ≤ αn ≤ α and 0 ≤ βn ≤ β for all n ≥ 1, one can choose

N = sup
n≥1

{
L∇F
αn

+ L∇g + 4M2,
βn
αn

}
< +∞

and the conclusion follows.
For (H3), consider (xnk

)k∈N a subsequence such that xnk
→ x as k → +∞. We have

shown in the proof of Lemma 10 that (f + g)(xnk
) → (f + g)(x) as k → +∞. From

Proposition 8(a) and the definition of H we easily derive that H(xnk
, xnk−1)→ H(x, x) =

(f + g)(x) as k → +∞. The existence of such a sequence follows from Lemma 10. �

In the following we denote by ω((xn)n∈N) the set of cluster points of the sequence
(xn)n∈N.

Lemma 12 In the setting of Problem 1, choose α, α, β satisfying (11) and M1,M2 satis-
fying (10). Assume that f + g is coercive and consider the function

H : Rm × Rm → (−∞,+∞], H(x, y) = (f + g)(x) +M2‖x− y‖2 ∀(x, y) ∈ Rm × Rm.

Let (xn)n∈N be a sequence generated by Algorithm 1. Then the following statements are
true:

(a) ω((xn, xn−1)n≥1) ⊆ crit(H) = {(x, x) ∈ Rm × Rm : x ∈ crit(f + g)};

(b) limn→∞ dist((xn, xn−1), ω((xn, xn−1))n≥1) = 0;

(c) ω((xn, xn−1)n≥1) is nonempty, compact and connected;
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(d) H is finite and constant on ω((xn, xn−1)n≥1).

Proof. (a) According to Lemma 10 and Proposition 8(a) we have ω((xn, xn−1)n≥1) ⊆
{(x, x) ∈ Rm × Rm : x ∈ crit(f + g)}. The equality crit(H) = {(x, x) ∈ Rm × Rm : x ∈
crit(f + g)} follows from (16).

(b) and (c) can be shown as in [14, Lemma 5], by also taking into consideration [14,
Remark 5], where it is noticed that the properties (b) and (c) are generic for sequences
satisfying xn+1 − xn → 0 as n→ +∞.

(d) According to Proposition 8, the sequence ((f + g)(xn))n∈N is convergent, i.e.
limn→+∞(f + g)(xn) = l ∈ R. Take an arbitrary (x, x) ∈ ω((xn, xn−1)n≥1), where x ∈
crit(f + g) (we took statement (a) into consideration). From Lemma 11(H3) it fol-
lows that there exists a subsequence (xnk

)k∈N such that xnk
→ x as k → +∞ and

H(xnk
, xnk−1) → H(x, x) as k → +∞. Moreover, from Proposition 8 one has H(x, x) =

limk→+∞H(xnk
, xnk−1) = limk→+∞(f+g)(xnk

)+M2‖xnk
−xnk−1‖2 = l and the conclusion

follows. �

We give now the main result concerning the convergence of the whole sequence (xn)n∈N.

Theorem 13 In the setting of Problem 1, choose α, α, β satisfying (11) and M1,M2 sat-
isfying (10). Assume that f + g is coercive and that

H : Rm × Rm → (−∞,+∞], H(x, y) = (f + g)(x) +M2‖x− y‖2 ∀(x, y) ∈ Rm × Rm

is a KL function. Let (xn)n∈N be a sequence generated by Algorithm 1. Then the following
statements are true:

(a)
∑

n∈N ‖xn+1 − xn‖ < +∞;

(b) there exists x ∈ crit(f + g) such that limn→+∞ xn = x.

Proof. (a) Let (xn)n∈N be a sequence generated by Algorithm 1. According to Lemma 12
we can consider an element x ∈ crit(f + g) such that (x, x) ∈ ω((xn, xn−1)n≥1). In analogy
to the proof of Lemma 11 (by taking into account also the decrease property (H1)) one
can easily show that limn→+∞H(xn, xn−1) = H(x, x). We separately treat the following
two cases.

I. There exists n ∈ N such that H(xn, xn−1) = H(x, x). The decrease property (H1) in
Lemma 11 implies H(xn, xn−1) = H(x, x) for every n ≥ n. By using again property (H1)
in Lemma 11, one can show inductively that the sequence (xn, xn−1)n≥n is constant. From
here the conclusion follows automatically.

II. For all n ≥ 1 we have H(xn, xn−1) > H(x, x). Take Ω := ω((xn, xn−1)n≥1).
In virtue of Lemma 12(c) and (d) and Lemma 1, the KL property of H leads to the

existence of positive numbers ε and η and a concave function ϕ ∈ Φη such that for all

(x, y) ∈{(u, v) ∈ Rm × Rm : dist((u, v),Ω) < ε}
∩ {(u, v) ∈ Rm × Rm : H(x, x) < H(u, v) < H(x, x) + η} (17)

one has
ϕ′(H(x, y)−H(x, x)) dist((0, 0), ∂H(x, y)) ≥ 1. (18)
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Let n1 ∈ N such that H(xn, xn−1) < H(x, x) + η for all n ≥ n1. According to Lemma
12(b), there exists n2 ∈ N such that dist((xn, xn−1),Ω) < ε for all n ≥ n2.

Hence the sequence (xn, xn−1)n≥n where n = max{n1, n2}, belongs to the intersection
(17). So we have (see (18))

ϕ′(H(xn, xn−1)−H(x, x)) dist((0, 0), ∂H(xn, xn−1)) ≥ 1 ∀n ≥ n.

Since ϕ is concave, it holds

ϕ(H(xn, xn−1)−H(x, x))− ϕ(H(xn+1, xn)−H(x, x)) ≥
ϕ′(H(xn, xn−1)−H(x, x)) · (H(xn, xn−1)−H(xn+1, xn)) ≥

H(xn, xn−1)−H(xn+1, xn)

dist((0, 0), ∂H(xn, xn−1))
∀n ≥ n.

Let M,N > 0 be the real numbers furnished by Lemma 11. According to Lemma
11(H2) there exists wn ∈ ∂H(xn, xn−1) such that ‖wn‖ ≤ N(‖xn−xn−1‖+‖xn−1−xn−2‖)
for all n ≥ 2. Then obviously dist((0, 0), ∂H(xn, xn−1)) ≤ ‖wn‖, hence

ϕ(H(xn, xn−1)−H(x, x))− ϕ(H(xn+1, xn)−H(x, x)) ≥
H(xn, xn−1)−H(xn+1, xn)

‖wn‖
≥

H(xn, xn−1)−H(xn+1, xn)

N(‖xn − xn−1‖+ ‖xn−1 − xn−2‖)
∀n ≥ n.

On the other hand, from Lemma 11(H1) we obtain that

H(xn, xn−1)−H(xn+1, xn) ≥M‖xn+1 − xn‖2 ∀n ≥ 1.

Hence, one has

ϕ(H(xn, xn−1)−H(x, x))− ϕ(H(xn+1, xn)−H(x, x)) ≥
M‖xn+1 − xn‖2

N(‖xn − xn−1‖+ ‖xn−1 − xn−2‖)
∀n ≥ n.

For all n ≥ 1, let us denote N
M (ϕ(H(xn, xn−1)−H(x, x))−ϕ(H(xn+1, xn)−H(x, x))) = εn

and ‖xn − xn−1‖ = an. Then the last inequality becomes

εn ≥
a2n+1

an + an−1
∀n ≥ n. (19)

Obviously, since ϕ ≥ 0, for S ≥ 1 we have

S∑
n=1

εn =
N

M
(ϕ(H(x1, x0)−H(x, x))− ϕ(H(xS+1, xS)−H(x, x)))

≤N
M

(ϕ(H(x1, x0)−H(x, x))),

hence
∑

n≥1 εn < +∞.

12



On the other hand, from (19) we derive

an+1 =
√
εn(an + an−1) ≤

1

4
(an + an−1) + εn ∀n ≥ n.

Hence, according to Lemma 3,
∑

n≥1 an < +∞, that is
∑

n∈N ‖xn − xn+1‖ < +∞.
(b) It follows from (a) that (xn)n∈N is a Cauchy sequence, hence it is convergent.

Applying Lemma 10, there exists x ∈ crit(f + g) such that limn→+∞ xn = x. �

Remark 14 As kindly pointed out by an anonymous reviewer, a similar conclusion to the
one of Theorem 13 can be obtained by applying [6, Theorem 2.9] in Rm × Rm endowed
with the Euclidean product topology for the function H̃ : Rm × Rm → R, H̃(x, y) =
(f + g)(x) + 1

2(M1 +M2)‖x− y‖2. Indeed, from Lemma 6 it yields

H̃(xn+1, xn) +
1

2
(M1 −M2)(‖xn+1 − xn‖2 + ‖xn − xn−1‖2) ≤ H̃(xn, xn−1) ∀n ≥ 1,

which shows that H1 in [6] is fulfilled. The assumptions H2 and H3 in the above-named
article are direct consequences of (H2) and, respectively, (H3) in Lemma 11. Under these
premises, provided that H̃ is a KL function, one obtains via [6, Theorem 2.9] the same
conclusion as in Theorem 13.

However, the hypothesis that H is a KL function, as assumed in Theorem 13, is in
our opinion in this context the most natural one, at least in what concerns the way in
which it approaches the non-inertial case. Indeed, if β is equal to zero, then M2 is equal
to zero, too, and the conclusion of Theorem 13 follows by only assuming that f + g is
a KL function. On the other hand, in order to apply [6, Theorem 2.9], one would ask
that (x, y) 7→ (f + g)(x) + 1

2M1‖x − y‖2 is a KL function, which is in general a stronger
assumption.

Since the class of semi-algebraic functions is closed under addition (see for example [14])
and (x, y) 7→ c‖x − y‖2 is semi-algebraic for c > 0, we obtain also the following direct
consequence.

Corollary 15 In the setting of Problem 1, choose α, α, β satisfying (11) and M1,M2 sat-
isfying (10). Assume that f + g is coercive and semi-algebraic. Let (xn)n∈N be a sequence
generated by Algorithm 1. Then the following statements are true:

(a)
∑

n∈N ‖xn+1 − xn‖ < +∞;

(b) there exists x ∈ crit(f + g) such that limn→+∞ xn = x.

Remark 16 As one can notice by taking a closer look at the proof of Lemma 10, the
conclusion of this statement as the ones of Lemma 11, Lemma 12, Theorem 13 and Corollary
15 remain true, if instead of imposing that f + g is coercive, we assume that f + g is
bounded from below and the sequence (xn)n∈N generated by Algorithm 1 is bounded. This
observation is useful when dealing with optimization problems as the ones considered in
Subsection 4.2.

4 Numerical experiments

This section is devoted to the presentation of two numerical experiments which illustrate
the applicability of the algorithm proposed in this work. In both numerical experiments
we considered F = 1

2‖ · ‖
2 and set σ = 1.
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4.1 Detecting minimizers of nonconvex optimization problems

As emphasized in [34, Section 5.1] and [10, Exercise 1.3.9] one of the aspects which makes
algorithms with inertial/memory effects useful is given by the fact that they are able to
detect optimal solutions of minimization problems which cannot be found by their non-
inertial variants. In this subsection we show that this phenomenon arises even when solving
problems of type (20), where the nonsmooth function f is nonconvex. A similar situation
has been addressed in [34], however, by assuming that f is convex.

Consider the optimization problem

inf
(x1,x2)∈R2

|x1| − |x2|+ x21 − log(1 + x21) + x22. (20)

The function
f : R2 → R, f(x1, x2) = |x1| − |x2|,

is nonconvex and continuous, the function

g : R2 → R, g(x1, x2) = x21 − log(1 + x21) + x22,

is continuously differentiable with Lipschitz continuous gradient with Lipschitz constant
L∇g = 9/4 and one can easily prove that f + g is coercive. Furthermore, combining [5,
the remarks after Definition 4.1], [12, Remark 5(iii)] and [14, Section 5: Example 4 and
Theorem 3], one can easily conclude that H in Theorem 13 is a KL function. By considering
the first order optimality conditions

−∇g(x1, x2) ∈ ∂f(x1, x2) = ∂(| · |)(x1)× ∂(−| · |)(x2)

and by noticing that for all x ∈ R we have

∂(| · |)(x) =


1, if x > 0
−1, if x < 0
[-1,1], if x = 0

and ∂(−| · |)(x) =


−1, if x > 0,
1, if x < 0,
{−1, 1}, if x = 0,

(for the latter, see for example [31]), one can easily determine the two critical points (0, 1/2)
and (0,−1/2) of (20), which are actually both optimal solutions of this minimization
problem. In Figure 2 the level sets and the graph of the objective function in (20) are
represented.

For γ > 0 and x = (x1, x2) ∈ R2 we have (see Remark 4)

proxγf (x) = argmin
u∈R2

{
‖u− x‖2

2γ
+ f(u)

}
= proxγ|·|(x1)× proxγ(−|·|)(x2),

where in the first component one has the well-known shrinkage operator

proxγ|·|(x1) = x1 − sgn(x1) ·min{|x1|, γ},

while for the proximal operator in the second component the following formula can be
proven

proxγ(−|·|)(x2) =


x2 + γ, if x2 > 0
x2 − γ, if x2 < 0
{−γ, γ}, if x2 = 0.
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(a) x0 = (−8,−8), β = 0
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(b) x0 = (−8,−8), β = 1.99
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(c) x0 = (−8,−8), β = 2.99
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(d) x0 = (−8, 8), β = 0
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(e) x0 = (−8, 8), β = 1.99
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(f) x0 = (−8, 8), β = 2.99
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(g) x0 = (8,−8), β = 0
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(h) x0 = (8,−8), β = 1.99
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(i) x0 = (8,−8), β = 2.99
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(j) x0 = (8, 8), β = 0
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(k) x0 = (8, 8), β = 1.99
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(l) x0 = (8, 8), β = 2.99
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Figure 1: Algorithm 1 after 100 iterations and with starting points (−8,−8), (−8, 8), (8,−8) and
(8, 8), respectively: the first column shows the iterates of the non-inertial version (βn = β = 0 for
all n ≥ 1), the second column the ones of the inertial version with βn = β = 1.99 for all n ≥ 1 and
the third column the ones of the inertial version with βn = β = 2.99 for all n ≥ 1.

We implemented Algorithm 1 by choosing βn = β = 0 for all n ≥ 1 (which corresponds
to the non-inertial version), βn = β = 0.199 for all n ≥ 1 and βn = β = 0.299 for all n ≥ 1,
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(a) Contour plot
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(b) Graph
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Figure 2: Contour plot and graph of the objective function in (20). The two global optimal
solutions (0, 0.5) and (0,−0.5) are marked on the first image.

respectively, and by setting αn = (0.99999 − 2βn)/L∇g for all n ≥ 1. As starting points
we considered the corners of the box generated by the points (±8,±8). Figure 1 shows
that independently of the four starting points we have the following phenomenon: the
non-inertial version recovers only one of the two optimal solutions, situation which persists
even when changing the value of αn; on the other hand, the inertial version is capable to
find both optimal solutions, namely, one for β = 0.199 and the other one for β = 0.299.

4.2 Restoration of noisy blurred images

The following numerical experiment concerns the restoration of a noisy blurred image by
using a nonconvex misfit functional with nonconvex regularization. For a given matrix
A ∈ Rm×m describing a blur operator and a given vector b ∈ Rm representing the blurred
and noisy image, the task is to estimate the unknown original image x ∈ Rm fulfilling

Ax = b.

To this end we solve the following regularized nonconvex minimization problem

inf
x∈Rm

{
M∑
k=1

N∑
l=1

ϕ
(
(Ax− b)kl

)
+ λ‖Wx‖0

}
, (21)

where ϕ : R → R, ϕ(t) = log(1 + t2), is derived form the Student t distribution, λ > 0
is a regularization parameter, W : Rm → Rm is a discrete Haar wavelet transform with
four levels and ‖y‖0 =

∑m
i=1 |yi|0 (| · |0 = | sgn(·)|) furnishes the number of nonzero entries

of the vector y = (y1, ..., ym) ∈ Rm. In this context, x ∈ Rm represents the vectorized
image X ∈ RM×N , where m = M · N and xi,j denotes the normalized value of the pixel
located in the i-th row and the j-th column, for i = 1, . . . ,M and j = 1, . . . , N . Again,
by combining [5, the remarks after Definition 4.1], [12, Remark 5(iii)] and [14, Section 5:
Example 3, Example 4 and Theorem 3], one can conclude that H in Theorem 13 is a KL
function.
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It is immediate that (21) can be written in the form (3), by defining f(x) = λ‖Wx‖0
and g(x) =

∑M
k=1

∑N
l=1 ϕ

(
(Ax− b)kl

)
for all x ∈ Rm. By using that WW ∗ = W ∗W = Im,

one can prove the following formula concerning the proximal operator of f

proxγf (x) = W ∗ proxλγ‖·‖0(Wx) ∀x ∈ Rm ∀γ > 0,

where for all u = (u1, ..., um) we have (see [6, Example 5.4(a)])

proxλγ‖·‖0(u) = (proxλγ|·|0(u1), ...,proxλγ|·|0(um))

and for all t ∈ R

proxλγ|·|0(t) =


t, if |t| >

√
2λγ,

{0, t}, if |t| =
√

2λγ,
0, otherwise.

For the experiments we used the 256× 256 boat test image which we first blurred by using
a Gaussian blur operator of size 9× 9 and standard deviation 4 and to which we afterward
added a zero-mean white Gaussian noise with standard deviation 10−6. In the first row
of Figure 3 the original boat test image and the blurred and noisy one are represented,
while in the second row one has the reconstructed images by means of the non-inertial
(for βn = β = 0 for all n ≥ 1) and inertial versions (for βn = β = 10−7 for all n ≥ 1)
of Algorithm 1, respectively. We took as regularization parameter λ = 10−5 and set
αn = (0.999999 − 2βn)/L∇g for all n ≥ 1, whereby the Lipschitz constant of the gradient
of the smooth misfit function is L∇g = 2.

original image blurred & noisy image

noninertial reconstruction inertial reconstruction

Figure 3: The first row shows the original 256 × 256 boat test image and the blurred and noisy
one and the second row the reconstructed images after 300 iterations.
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β 0.4 0.2 0.01 0.0001 10−7 0

ISNR(300) 2.081946 3.101028 3.492989 3.499428 3.511135 3.511134

Table 1: The ISNR values after 300 iterations for different choices of β.

We compared the quality of the recovered images for βn = β for all n ≥ 1 and different
values of β by making use of the improvement in signal-to-noise ratio (ISNR), which is
defined as

ISNR(n) = 10 log10

(
‖x− b‖2

‖x− xn‖2

)
,

where x, b and xn denote the original, observed and estimated image at iteration n, re-
spectively.

In Table 1 we list the values of the ISNR-function after 300 iterations, whereby the case
β = 0 corresponds to the non-inertial version of the algorithm. One can notice that for β
taking very small values, the inertial version is competitive with the non-inertial one.

5 Concluding remarks

In this paper we propose a forward-backward proximal-type algorithm with inertial/mem-
ory effects for minimizing the sum of a nonsmooth with a smooth function in the nonconvex
setting. Every sequence of iterates generated by the algorithm is proved to converge to a
critical point of the objective function, whenever an appropriate regularization of the latter
satisfies the Kurdyka- Lojasiewicz inequality. In this way we extend to the full nonconvex
setting the inertial forward-backward type algorithm proposed in [34] for minimizing the
sum of a nonsmooth convex with a smooth (not necessarily convex) function.

As it is the case for the particular instances considered in Section 4, very tight bounds
for the parameters used in the iterative scheme are needed. More than that, for these
particular instances, there is a minimal difference between the inertial and non-inertial
schemes.

In the context of proving convergence for algorithms designed to solve nonsmooth opti-
mization problems with KL functions two approaches can be found in the literature. One
of them is the approach proposed in [14], which we also follow in our manuscript, while
the second one was used in [6]. As explained in Remark 14, the two approaches mainly
differ in the way the regularization of the objective is constructed. Opting for the approach
in [6], one could come to the conclusion by using in a straightforward way the statements
of Lemma 11. However, different to [6], the inertial and non-inertial schemes are treated
with our choice of H in an unitary way. Furthermore, in the inertial case, working with H
does not assume to have any information about L∇g, a constant which explicitly appears
in the definition of M1 (see Remark 14). On the other hand, for the choice of α, α and β
and, consequently, for the defintion of M2, the Lipschitz constant L∇g can be unknown if
an upper bound L > L∇g is available.

Acknowledgements. The authors are thankful to two anonymous reviewers for per-
tinent comments and remarks which improved the quality of the paper.
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[30] P.-E. Maingé, A. Moudafi, Convergence of new inertial proximal methods for dc pro-
gramming, SIAM Journal on Optimization 19(1), 397–413, 2008

[31] B. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic The-
ory, II: Applications, Springer-Verlag, Berlin, 2006.

[32] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for mono-
tone operators, Journal of Computational and Applied Mathematics 155, 447–454,
2003

[33] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer
Academic Publishers, Dordrecht, 2004

[34] P. Ochs, Y. Chen, T. Brox, T. Pock, iPiano: Inertial proximal algorithm for non-
convex optimization, SIAM Journal on Imaging Sciences 7(2), 1388–1419, 2014

[35] J.-C. Pesquet, N. Pustelnik, A parallel inertial proximal optimization method, Pacific
Journal of Optimization 8(2), 273–306, 2012

[36] R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Fundamental Principles of Math-
ematical Sciences 317, Springer-Verlag, Berlin, 1998

21


