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Abstract. We investigate the convergence of a forward-backward-forward proximal-type algorithm

with inertial and memory effects when minimizing the sum of a nonsmooth function with a smooth

one in the absence of convexity. The convergence is obtained provided an appropriate regularization

of the objective satisfies the Kurdyka- Lojasiewicz inequality, which is for instance fulfilled for semi-

algebraic functions.

Key Words. nonsmooth optimization, limiting subdifferential, Kurdyka- Lojasiewicz inequality,

Bregman distance, inertial proximal algorithm, Tseng’s type proximal algorithm

AMS subject classification. 90C26, 90C30, 65K10

1 Introduction

In this work we deal with nonconvex minimization problems, where the objective to be minimized

is the sum of a lower semicontinuous function and a differentiable one with Lipschitz continuous

gradient (see Section 3 below for the precise formulation of the problem).
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In the full convex setting, namely when both of the functions are convex, a plenty of proximal-

type splitting numerical schemes for solving (P ) is available. We mention here the forward-backward

algorithm (see for example [1]), the forward-backward-forward algorithm [2, 3] and also the very

popular FISTA [4], which is an accelerated version of forward-backward algorithm under the use of

step sizes considered in the sense of Nesterov.

Splitting algorithms share in this context the property that the functions are evaluated in the

iterative scheme separately. More precisely, a forward step means an evaluation of the smooth

part through the gradient, while a backward step is nothing else than evaluating the nonsmooth

counterpart via its proximal operator. The above mentioned algorithms have been applied when

solving different real-life problems arising, for instance, in areas like image processing, multifacility

location, average consensus in network coloring, support vector machines classification, clustering,

etc. To the majority of these splitting methods inertial and memory effects have been induced,

giving rise to so-called inertial proximal point algorithms. These iterative schemes have their origins

in the time discretization of some differential inclusions of second order type (see [5, 6]) and share

the feature that the new iterate is defined by using the previous two iterates. The increasing interest

in this class of algorithms is emphasized by a considerable number of papers written in the last

fifteen years on this topic, see [5–16].

The generalization of the convergence of proximal-type algorithms to the nonconvex setting is

a challenging ongoing research topic. By assuming that the functions in the objective share some

analytic features and by making consequently use of a generalization to the nonsmooth setting of

the Kurdyka- Lojasiewicz property known for smooth functions, the proximal-point algorithm for

minimizing a proper and lower semicontinuous function and the forward-backward scheme have

proved to possess good convergence properties also in the nonconvex case, see [17–22]. This par-

ticular class of functions, called KL functions, include semi-algebraic functions, real sub-analytic

functions, semi-convex functions, uniformly convex functions, etc. (see also [23–25]). The interest of

having convergence properties in the nonconvex setting is motivated among others by applications

in connection to sparse nonnegative matrix factorization, hard constrained feasibility, compressive
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sensing, etc. In what regards the latter, they give rise to the solving of optimization problems where

the counting norm is used as regularization functional. Due to the fact that the counting norm is

a semi-algebraic function, algorithms for solving nonsmooth optimization problems involving KL

functions represent a serious option in this sense, see also [19, Example 5.4].

In this paper we investigate the convergence properties of the forward-backward-forward algo-

rithm in the full nonconvex setting. For the backward step we use a generalization of the proximal

operator, not only by considering it to be, as it is natural in the nonconvex setting, a set-valued

mapping, but also by replacing in its standard formulation the squared-norm by the Bregman dis-

tance of a strongly convex and differentiable function with Lipschitz-continuous gradient. In the

iterative scheme we also make use of an inertial term which assumes employing in the definition

of a new iterate the previous two iterates. The techniques for proving the convergence of the

numerical scheme use the same three main ingredients, as other algorithms for nonconvex opti-

mization problems involving KL functions. More precisely, we show a sufficient decrease property

for the iterates, the existence of a subgradient lower bound for the iterates gap and, finally, we use

some analytic features of the objective function in order to obtain convergence, see [19, 20]. The

limiting (Mordukhovich) subdifferential and its properties play an important role in the analysis.

The main result of this paper shows that, along some mild assumptions, provided an appropriate

regularization of the objective satisfies the Kurdyka- Lojasiewicz property, the convergence of the

forward-backward-forward algorithm is guaranteed. As a particular instance, we also treat the case

when the objective function is semi-algebraic and present the convergence properties of the algo-

rithm. This makes it suitable fo solving nonsmooth optimization problems involving semi-algebraic

functions which occur in real-life applications, as mentioned above.

Let us mention that an inertial version of the forward-backward algorithm for solving nonconvex

nonsmooth minimization problems has been proposed in [26], by assuming that a regularization

of the objective function is a KL function and that the nonsmooth function is convex. Later, it

has been proved in [27] that under appropriate conditions, the convergence is obtained also in case

the convexity of the nonsmooth part is removed. However, having a forward-backward-forward
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method also in the nonsmooth nonconvex setting can have considerable theoretical advantages, as

emphasized by recent developments in the convex case. Motivated by real-life applications, the big

challenge in nonsmooth optimization is to formulate implementable schemes for solving complexly

structured problems involving, for instance, sums of compositions of nonsmooth functions with

linear continuous operators, which should provide a full splitting. This problem has been solved in

the convex case and the forward-backward-forward method played an essential role in this context,

see [28, 29]. We are confident that a similar development is possible in the nonconvex nonsmooth

case, as well, and believe that Tseng’s type proximal algorithm can be the starting point for these

investigations.

2 Preliminaries

Let us recall some notions and results which are needed in the following, see for example [30]. Let

N = {0, 1, 2, ...} be the set of nonnegative integers. For m ≥ 1, the Euclidean scalar product and

the induced norm on Rm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Notice that all the finite-

dimensional spaces considered in the manuscript are endowed with the topology induced by the

Euclidean norm.

The domain of the function f : Rm →]−∞,+∞] is defined by dom f = {x ∈ Rm : f(x) < +∞}.

We say that f is proper if dom f 6= ∅. Further we recall some generalized subdifferential notions

and the basic properties which are needed in the paper, see [30, 31]. Let f : Rm →] − ∞,+∞]

be a proper and lower semicontinuous function. If x ∈ dom f , we consider the Fréchet (viscosity)

subdifferential of f at x as the set

∂̂f(x) =

{
v ∈ Rm : lim inf

y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖

≥ 0

}
.

For x /∈ dom f we set ∂̂f(x) := ∅. The limiting (Mordukhovich) subdifferential is defined at a point

x ∈ dom f by

∂f(x) = {v ∈ Rm : ∃xn → x, f(xn)→ f(x) and ∃vn ∈ ∂̂f(xn), vn → v as n→ +∞},
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while for x /∈ dom f , one takes ∂f(x) := ∅.

Notice that in case f is convex, these notions coincide with the convex subdifferential, which

means that ∂̂f(x) = ∂f(x) = {v ∈ Rm : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ Rm} for all x ∈ dom f .

Notice the inclusion ∂̂f(x) ⊆ ∂f(x) for each x ∈ Rm. We will use the following closedness

criteria concerning the graph of the limiting subdifferential: if (xn)n∈N and (vn)n∈N are sequences

in Rm such that vn ∈ ∂f(xn) for all n ∈ N, (xn, vn)→ (x, v) and f(xn)→ f(x) as n→ +∞, then

v ∈ ∂f(x).

The Fermat rule reads in this nonsmooth setting as: if x ∈ Rm is a local minimizer of f , then

0 ∈ ∂f(x). Notice that in case f is continuously differentiable at x ∈ Rm we have ∂f(x) = {∇f(x)}.

Let us denote by

crit(f) = {x ∈ Rm : 0 ∈ ∂f(x)}

the set of (limiting)-critical points of f . Let us mention also the following subdifferential rule:

if f : Rm →] − ∞,+∞] is proper and lower semicontinuous and h : Rm → R is a continuously

differentiable function, then ∂(f + h)(x) = ∂f(x) +∇h(x) for all x ∈ Rm.

We turn now our attention to functions satisfying the Kurdyka- Lojasiewicz property. This class

of functions will play a crucial role in the convergence results of the proposed algorithm. For

η ∈]0,+∞], we denote by Θη the class of concave and continuous functions ϕ : [0, η[→ [0,+∞[

such that ϕ(0) = 0, ϕ is continuously differentiable on ]0, η[, continuous at 0 and ϕ′(s) > 0 for all

s ∈]0, η[. In the following definition (see [18,20]) we use also the distance function to a set, defined

for A ⊆ Rm as dist(x,A) = infy∈A ‖x− y‖ for all x ∈ Rm.

Definition 2.1 (Kurdyka- Lojasiewicz property) Let f : Rm →] − ∞,+∞] be a proper and

lower semicontinuous function. We say that f satisfies the Kurdyka- Lojasiewicz (KL) property at

x ∈ dom ∂f = {x ∈ Rm : ∂f(x) 6= ∅} if there exists η ∈]0,+∞], a neighborhood U of x and a

function ϕ ∈ Θη such that for all x in the intersection

U ∩ {x ∈ Rm : f(x) < f(x) < f(x) + η}
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the following inequality holds

ϕ′(f(x)− f(x)) dist(0, ∂f(x)) ≥ 1.

If f satisfies the KL property at each point in dom ∂f , then f is called a KL function.

The origins of this notion go back to the pioneering work of  Lojasiewicz [25], where it is proved

that for a real-analytic function f : Rm → R and a critical point x ∈ Rm (that is ∇f(x) = 0), there

exists θ ∈ [1/2, 1[ such that the function |f − f(x)|‖∇f‖−1 is bounded around x. This corresponds

to the situation when ϕ(s) = s1−θ. The result of  Lojasiewicz allows the interpretation of the KL

property as a reparametrization of the function values in order to avoid flatness around the critical

points. Kurdyka [24] extended this property to differentiable functions definable in an o-minimal

structure. Further extensions to the nonsmooth setting can be found in [18,23,32].

One of the remarkable properties of the KL functions is their ubiquitous in applications, ac-

cording to [20]. To the class of KL functions belong semi-algebraic, real sub-analytic, semicon-

vex, uniformly convex and convex functions satisfying a growth condition. We refer the reader

to [17–20, 23, 32] and the references therein for more details regarding all the classes mentioned

above and illustrating examples.

An important role in our convergence analysis will be played by the following uniformized KL

property given in [20, Lemma 6].

Lemma 2.1 Let Ω ⊆ Rm be a compact set and let f : Rm →]−∞,+∞] be a proper and lower

semicontinuous function. Assume that f is constant on Ω and f satisfies the KL property at each

point of Ω. Then there exist ε, η > 0 and ϕ ∈ Θη such that for all x ∈ Ω and for all x in the

intersection

{x ∈ Rm : dist(x,Ω) < ε} ∩ {x ∈ Rm : f(x) < f(x) < f(x) + η} (1)

the following inequality holds

ϕ′(f(x)− f(x)) dist(0, ∂f(x)) ≥ 1. (2)
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We close this section by presenting two convergence results which will play a determined role in

the proof of the results we provide in the next section. The first one was often used in the literature

in context of Fejér monotonicity techniques for proving convergence results of classical algorithms

for convex optimization problems or more generally for monotone inclusion problems (see [1]). The

second one is probably also known, however we include some details of its proof for the sake of

completeness.

Lemma 2.2 Let (an)n∈N and (bn)n∈N be real sequences such that bn ≥ 0 for all n ∈ N, (an)n∈N

is bounded below and an+1 + bn ≤ an for all n ∈ N. Then (an)n∈N is a monotonically decreasing

and convergent sequence and
∑
n∈N bn < +∞.

Lemma 2.3 Let (ξn)n∈N and (εn)n∈N be sequences in [0,+∞[ such that
∑
n∈N εn < +∞ and

ξn+1 ≤ aξn + bξn−1 + εn for all n ≥ 1, where a ∈ R, b ≥ 0 and a+ b < 1. Then
∑
n∈N ξn < +∞.

Proof. Fix k ≥ 1 a positive integer. Summing up the inequality from the hypotheses for

n = 1, ..., k, we obtain
∑k
n=0 ξn + ξk+1 − ξ0 − ξ1 ≤ a

∑k
n=0 ξn + b

∑k
n=0 ξn − aξ0 − bξk +

∑k
n=1 εn.

Since ξn ≥ 0 for all n ∈ N and b ≥ 0, we get (1 − a − b)
∑k
n=0 ξn ≤ (1 − a)ξ0 + ξ1 +

∑k
n=1 εn and

the conclusion follows. �

3 An Inertial Forward-Backward-Forward Algorithm

We investigate in this section the convergence properties of the inertial Tseng’s type algorithm for

solving nonsmooth and nonconvex optimization problems. We consider the following setting.

Problem 3.1 Let m ≥ 1 by a positive integer, f : Rm →]−∞,+∞] be a proper, lower semicontin-

uous function which is bounded from below and h : Rm → R a Fréchet differentiable function such

that ∇h is L∇h-Lipschitz continuous with L∇h ≥ 0. We aim to solve the optimization problem

(P ) inf
x∈Rm

[f(x) + h(x)] (3)

by approximating the set of critical points of the objective function through a sequence generated

via a forward-backward-forward algorithm of inertial-type.

More precisely, we propose the following iterative scheme.
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Algorithm 3.1 Chose x0, x1 ∈ Rm, λ, λ > 0, α ≥ 0 and the sequences (λn)n≥1, (αn)n≥1 fulfilling

0 ≤ αn ≤ α ∀n ≥ 1

and

0 < λ ≤ λn ≤ λ ∀n ≥ 1.

Consider the iterative scheme

(∀n ≥ 1)


pn ∈ argminx∈Rm

[
f(x) + 1

λn
Du(x, xn) + 〈x,∇h(xn)〉+ αn

λn
〈x, xn−1 − xn〉

]
xn+1 = pn + λn[∇h(xn)−∇h(pn)].

(4)

Here,

Du : Rm × Rm → R, Du(x, y) = u(x)− u(y)− 〈∇u(y), x− y〉 ,

denotes the Bregman distance of a function u : Rm → R assumed to be σ-strongly convex with

parameter σ > 0 (that is u − σ
2 ‖ · ‖

2 is a convex function), differentiable and such that ∇u is

L∇u-Lipschitz continuous with L∇u > 0.

Notice that the properties of the function u guarantees the following inequality (see for example

[1])

σ

2
‖x− y‖2 ≤ Du(x, y) ≤ L∇u

2
‖x− y‖2 ∀(x, y) ∈ Rm × Rm. (5)

Further, since f is proper, lower semicontinuous and bounded from below and Du is coercive

in its first argument (that is lim‖x‖→+∞Du(x, y) = +∞ for all y ∈ Rm), the iterative scheme is

well-defined, meaning that the existence of pn is guaranteed for each n ≥ 1, since the objective

function in the minimization problem to be solved at each iteration is coercive.

Before we proceed with the convergence analysis, we discuss the relation of our scheme to other

algorithms from the literature. Let us take first u(x) = 1
2‖x‖

2 for all x ∈ Rm. In this case

Du(x, y) = 1
2‖x− y‖

2 for all (x, y) ∈ Rm × Rm and σ = L∇u = 1. The iterative scheme becomes

(∀n ≥ 1)


pn ∈ argminx∈Rm

[
f(x) + 1

2λn
‖x− xn + λn∇h(xn)− αn(xn − xn−1)‖2

]
xn+1 = pn + λn[∇h(xn)−∇h(pn)].

(6)

The convergence of this inertial Tseng’s type algorithm has been analyzed in [9] in the full convex

setting, which means that f and h are convex functions, in which case pn is uniquely determined and
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can be expressed via the proximal operator of f (let us notice that in contrast to [9], we do not impose

here (αn)n≥1 to be nondecreasing). Let us mention that inertial-type algorithms in the nonconvex

setting have been proposed in [26], where the inertial forward-backward algorithm from [15] has

been extended from the convex setting to KL functions, however, by imposing convexity for f .

If we take, in addition, on the one hand, α = 0, which enforces αn = 0 for all n ≥ 1, then (6)

becomes

(∀n ≥ 1)


pn ∈ argminx∈Rm

[
f(x) + 1

2λn
‖x− xn + λn∇h(xn)‖2

]
xn+1 = pn + λn[∇h(xn)−∇h(pn)],

(7)

which is an extension to the nonconvex setting of the classical Tseng’s type algorithm [3]. The

convergence of (7) has been considered in [3,28] in the full convex setting. Let us also mention that

a forward-backward algorithm with variable metric for KL functions has been recently introduced

and investigated in [22].

On the other hand, if we take h(x) = 0 for all x ∈ Rm, the iterative scheme in (6) becomes

(∀n ≥ 1) xn+1 ∈ argmin
x∈Rm

[
f(x) +

1

2λn
‖x− xn − αn(xn − xn−1)‖2

]
, (8)

which is a proximal point algorithm with inertial and memory effects formulated in the nonconvex

setting designed for finding the critical points of f . The iterative scheme without the inertial term,

that is when α = 0 and, so, αn = 0 for all n ≥ 1, has been considered in the context of KL functions

in [17].

We proceed now with the convergence analysis of our algorithm. The following descent lemma

(see for example [33, Lemma 1.2.3]) will be useful in the sequel.

Lemma 3.1 Let h : Rm → R be a Fréchet differentiable function with L∇h-Lipschitz continuous

gradient. Then we have

h(y) ≤ h(x) + 〈∇h(x), y − x〉+
L∇h

2
‖y − x‖2 ∀(x, y) ∈ Rm × Rm.

Lemma 3.2 In the setting of Problem 3.1, consider the sequences generated by Algorithm 3.1.
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Then for every ν, µ > 0 the following inequality holds

(f + h)(pn) +M1‖xn − pn‖2 ≤ (f + h)(pn−1) +M2‖xn−1 − pn−1‖2 ∀n ≥ 2, (9)

where

M1 :=
σ

2λ
− L∇h − ν −

α

λ
µ (10)

and

M2 := λ
2
L2
∇h

(
L2
∇h
2ν

+ ν + L∇h +
L∇u
2λ

)
+
α

λ

(
µλ

2
L2
∇h +

(1 + λL∇h)2

2µ

)
. (11)

Proof. Let us chose ν, µ > 0 arbitrary and fix n ≥ 2. The rule given in (4) yields the inequality

f(pn) +
1

λn
Du(pn, xn) + 〈pn,∇h(xn)〉+

αn
λn
〈pn, xn−1 − xn〉

≤ f(pn−1) +
1

λn
Du(pn−1, xn) + 〈pn−1,∇h(xn)〉+

αn
λn
〈pn−1, xn−1 − xn〉 ,

which combined with (5) and

h(pn) ≤ h(pn−1) + 〈∇h(pn−1), pn − pn−1〉+
L∇h

2
‖pn − pn−1‖2

gives

(f + h)(pn) +
σ

2λn
‖pn − xn‖2 ≤ (f + h)(pn−1) +

L∇u
2λn
‖xn − pn−1‖2 +

L∇h
2
‖pn − pn−1‖2

+ 〈∇h(pn−1)−∇h(xn), pn − pn−1〉

+
αn
λn
〈pn − pn−1, xn − xn−1〉 . (12)

According to (4) we have

‖xn − pn−1‖ = λn−1‖h(xn−1)− h(pn−1)‖ ≤ λn−1L∇h‖xn−1 − pn−1‖ (13)

and, from here,

‖xn − xn−1‖ ≤ (1 + λn−1L∇h)‖xn−1 − pn−1‖ (14)

and

‖pn − pn−1‖2 ≤ 2(‖xn − pn‖2 + λ2n−1L
2
∇h‖xn−1 − pn−1‖2). (15)
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Moreover, we have

〈∇h(pn−1)−∇h(xn), pn − pn−1〉 ≤
ν

2
‖pn − pn−1‖2 +

L2
∇h
2ν
‖xn − pn−1‖2 (16)

and

〈pn − pn−1, xn − xn−1〉 ≤
µ

2
‖pn − pn−1‖2 +

1

2µ
‖xn − xn−1‖2. (17)

From (12)-(17) we obtain after rearranging the terms that

(f + h)(pn) +M1,n‖xn − pn‖2 ≤ (f + h)(pn−1) +M2,n‖xn−1 − pn−1‖2, (18)

where

M1,n =
σ

2λn
− L∇h − ν −

αn
λn
µ

and

M2,n = λ2n−1L
2
∇h

(
L2
∇h
2ν

+ ν + L∇h +
L∇u
2λn

)
+
αn
λn

(
µλ2n−1L

2
∇h +

(1 + λn−1L∇h)2

2µ

)
.

Finally, by using the bounds given for the sequences of real numbers involved, we easily derive that

M1,n ≥M1 and M2,n ≤M2 and the conclusion follows from (18). �

Lemma 3.3 In the setting of Problem 3.1, consider arbitrary ν, µ > 0 and chose λ > 0 and

α ≥ 0 such that

2λ(L∇h + ν) + λ2L2
∇h

(
λ
L2
∇h
ν

+ L∇u + 2λ(L∇h + ν)

)
+2α

(
µ+ µλ2L2

∇h +
(1 + λL∇h)2

2µ

)
< σ. (19)

Then there exists λ > λ such that the constants introduced in Lemma 3.2 fulfill M1 > M2.

Proof. Relation (19) can be equivalently written as

2λ

[
L∇h + ν +

α

λ
µ+ λ2L2

∇h

(
L2
∇h
2ν

+
L∇u
2λ

+ ν + L∇h

)
+
α

λ

(
µλ2L2

∇h +
(1 + λL∇h)2

2µ

)]
< σ.

Thus there exists ρ > 0 such that

2(λ+ ρ)

[
L∇h + ν +

α

λ
µ+ (λ+ ρ)2L2

∇h

(
L2
∇h
2ν

+ ν + L∇h +
L∇u
2λ

)
+
α

λ

(
µ(λ+ ρ)2L2

∇h +
(1 + (λ+ ρ)L∇h)2

2µ

)]
< σ. (20)
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We define λ := λ+ρ and from the above inequality the relation M1 > M2 follows straightforwardly.

�

We give now a decrease property which will be useful in the following.

Lemma 3.4 In the setting of Problem 3.1, suppose that f+h is bounded from below and consider

the sequences generated by Algorithm 3.1, where ν, µ, λ, λ and α are chosen as in Lemma 3.3. Then

the following statements are true:

(i)
∑
n≥1 ‖xn − pn‖2 < +∞ and

∑
n∈N ‖xn+1 − xn‖2 < +∞;

(ii) the sequence
(
(f + h)(pn) +M2‖xn − pn‖2

)
n≥1 is monotonically decreasing and convergent;

(iii) the sequence ((f + h)(pn))n≥1 is convergent.

Proof. From Lemma 3.2 we deduce that for every n ≥ 2

(f + h)(pn) +M2‖xn − pn‖2 + (M1 −M2)‖xn − pn‖2 ≤ (f + h)(pn−1) +M2‖xn−1 − pn−1‖2. (21)

The conclusion follows from Lemma 3.3, Lemma 2.2 and relation (14). �

The following lemma provides an estimate for some elements in the limiting subdifferential.

Lemma 3.5 In the setting of Problem 3.1, consider the sequences generated by Algorithm 3.1.

Then we have for every n ≥ 2:

sn ∈ ∂(f + h)(pn), (22)

where

sn =
1

λn

(
∇u(xn)−∇u(pn)

)
+∇h(pn)−∇h(xn) +

αn
λn

(pn−1 − xn−1)

+
αnλn−1
λn

(
∇h(xn−1)−∇h(pn−1)

)
.

Moreover,

‖sn‖ ≤
(
L∇u
λn

+ L∇h

)
‖xn − pn‖+

αn
λn

(1 + λn−1L∇h)‖xn−1 − pn−1‖ ∀n ≥ 2. (23)
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Proof. Take n ≥ 2. By using the formula for the subdifferential of the sum, from (4) it follows

that

0 ∈ ∂f(pn) +
1

λn

(
∇u(pn)−∇u(xn)

)
+∇h(xn) +

αn
λn

(xn−1 − xn),

hence

0 ∈ ∂(f + h)(pn) +
1

λn

(
∇u(pn)−∇u(xn)

)
+∇h(xn)−∇h(pn) +

αn
λn

(xn−1 − xn).

Relation (22) follows from the above identity, by using also that

xn−1 − xn = xn−1 − pn−1 − (xn − pn−1) = xn−1 − pn−1 − λn−1
(
∇h(xn−1)−∇h(pn−1)

)
.

The inequality (23) follows from the definition of the sequence (sn)n≥2. �

In the following we use the notation ω((pn)n≥1) for the set of cluster points of the sequence

(pn)n≥1. Next we will give some properties of this set (see [20]).

Lemma 3.6 In the setting of Problem 3.1, suppose that the function f + h is coercive (that

is lim‖x‖→+∞(f + h)(x) = +∞) and consider the sequences generated in Algorithm 3.1, where

ν, µ, λ, λ and α are chosen as in Lemma 3.3. Then the following statements are true:

(i) ∅ 6= ω((pn)n≥1) ⊆ crit(f + h);

(ii) limn→+∞ dist(pn, ω((pn)n≥1)) = 0;

(iii) ω((pn)n≥1) is a nonempty, compact and connected set;

(iv) f + h is finite and constant on ω((pn)n≥1).

Proof. Since f + h is a proper, lower semicontinuous and coercive function, it follows that

infx∈Rm [f(x) + h(x)] is finite and the infimum is attained (see [30]). Hence f + h is bounded from

below.

(i) According to Lemma 3.4(ii), we have

(f + h)(pn) ≤ (f + h)(pn) +M2‖xn − pn‖2 ≤ (f + h)(p1) +M2‖x1 − p1‖2 ∀n ≥ 1.

Since the function f + h is coercive, its lower level sets are bounded and we conclude that (pn)n≥1

is bounded, hence ω((pn)n≥1) 6= ∅.
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Take an arbitrary p∗ ∈ ω((pn)n≥1). There exists a subsequence (pnk
)k∈N such that pnk

→ p∗

as k → +∞. We show in the following that limk→+∞ f(pnk
) = f(p∗). Notice that the lower

semicontinuity of the function f ensures lim infk→+∞ f(pnk
) ≥ f(p∗). Moreover, from (4) we have

that for every n ≥ 1

f(pn) +
1

λn
Du(pn, xn) + 〈pn,∇h(xn)〉+

αn
λn
〈pn, xn−1 − xn〉

≤f(p∗) +
1

λn
Du(p∗, xn) + 〈p∗,∇h(xn)〉+

αn
λn
〈p∗, xn−1 − xn〉 .

By using Lemma 3.4(i), (5) and by taking into consideration the bounds of the sequences involved,

it follows lim supk→+∞ f(pnk
) ≤ f(p∗), hence limk→+∞ f(pnk

) = f(p∗).

Further, using Lemma 3.5, we have snk
∈ ∂(f + h)(pnk

) for all k ≥ 2. By using (23) and

Lemma 3.4(i), from pnk
→ p∗ it follows that snk

→ 0 as k → +∞. Since we additionally have

that limk→+∞(f +h)(pnk
) = (f +h)(p∗), the closedness of the graph of the limiting subdifferential

operator guarantees that 0 ∈ ∂(f + h)(p∗), thus p∗ ∈ crit(f + h).

The proof of (ii) and (iii) can be done in the lines of [20, Lemma 5], by also taking into

consideration [20, Remark 5], where it is noticed that the properties (ii) and (iii) are generic for

sequences satisfying pn+1 − pn → 0 as n→ +∞.

(iv) By Lemma 3.4(iii), ((f + h)(pn))n≥1 is a convergent sequence. Let us denote by l ∈ R its

limit. Take an arbitrary p∗ ∈ ω((pn)n≥1). There exists a subsequence (pnk
)k∈N such that pnk

→ p∗

as k → +∞. As shown at item (i), one has that limk→+∞(f +h)(pnk
) = (f +h)(p∗). On the other

hand, limk→+∞(f +h)(pnk
) = l, hence (f +h)(p∗) = l. Thus the restriction of f +h to ω((pn)n≥1)

equals l. �

The following result characterizes the set of cluster points of the sequence (pn, xn)n≥1.

Lemma 3.7 In the setting of Problem 3.1, suppose that the function f +h is coercive, consider

the sequences generated in Algorithm 3.1, where ν, µ, λ, λ and α are chosen as in Lemma 3.3, and

the constants M1 and M2 as in Lemma 3.2. We introduce the function H : Rm × Rm → R defined

by

H(x, y) = (f + h)(x) +M2‖x− y‖2 ∀(x, y) ∈ Rm × Rm. (24)
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Then the following statements are true:

(i) ∅ 6= ω((pn, xn)n≥1) ⊆ crit(H) = {(x, x) ∈ Rm × Rm : x ∈ crit(f + h)};

(ii) limn→+∞ dist((pn, xn), ω((pn, xn)n≥1)) = 0;

(iii) ω((pn, xn)n≥1) is a nonempty, compact and connected set;

(iv) H is finite and constant on ω((pn, xn)n≥1).

Proof. The proof is similar to the one of Lemma 3.6 by noticing that for every n ≥ 2 (see (21))

H(pn, xn) + (M1 −M2)‖xn − pn‖2 ≤ H(pn−1, xn−1) (25)

and

(sn + 2M2(pn − xn), 2M2(xn − pn)) ∈ ∂H(pn, xn), (26)

where (sn)n≥2 is the sequence introduced in Lemma 3.5. Relation (26) follows from

∂H(x, y) =
(
∂(f + h)(x) + 2M2(x− y)

)
× {2M2(y − x)} ∀(x, y) ∈ Rm × Rm.

�

We are now in position to prove the convergence of the Tseng’s type algorithm provided that

H is a KL function.

Theorem 3.1 In the setting of Problem 3.1, suppose that the function f+h is coercive, consider

the sequences generated in Algorithm 3.1, where ν, µ, λ, λ and α are chosen as in Lemma 3.3, and

the constants M1 and M2 as in Lemma 3.2. We assume that

H : Rm × Rm → R, H(x, y) = (f + h)(x) +M2‖x− y‖2 ∀(x, y) ∈ Rm × Rm,

is a KL function. Then the following statements are true:

(i)
∑
n≥1 ‖xn − pn‖ < +∞ and

∑
n∈N ‖xn+1 − xn‖ < +∞;

(ii) there exists x ∈ crit(f + h) such that limn→+∞ xn = limn→+∞ pn = x.
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Proof. (i) According to Lemma 3.7(i) we can consider an element p∗ ∈ crit(f + h) such

that (p∗, p∗) ∈ ω((pn, xn)n≥1). In analogy to the proof of Lemma 3.6 one can easily show that

limn→+∞H(pn, xn) = H(p∗, p∗). We consider two cases.

I. There exists n ∈ N such that H(pn, xn) = H(p∗, p∗). The decrease property in (25) implies

H(pn, xn) = H(p∗, p∗) for every n ≥ n. One can show inductively that the sequence (pn, xn)n≥n is

constant and the conclusion follows.

II. For all n ≥ 1 we have H(pn, xn) > H(p∗, p∗). Take Ω := ω((pn, xn)n≥1). Since H is a KL

function, from Lemma 3.7(iii)-(iv) and Lemma 2.1, there exist ε, η > 0 and ϕ ∈ Θη such that for

all (x, y) in the intersection

{(x, y) ∈ Rm × Rm : dist((x, y),Ω) < ε}

∩{(x, y) ∈ Rm × Rm : H(p∗, p∗) < H(x, y) < H(p∗, p∗) + η} (27)

the following inequality holds

ϕ′(H(x, y)−H(p∗, p∗)) dist((0, 0), ∂H(x, y)) ≥ 1. (28)

Let be n1 ≥ 1 such that H(pn, xn) < H(p∗, p∗) + η for every n ≥ n1. Moreover, from Lemma

3.7(ii), there exists n2 ∈ N such that dist((pn, xn),Ω) < ε for every n ≥ n2. Thus the sequence

(pn, xn)n≥N belongs to the intersection in (27), where N = max{n1, n2}. From (28), we have

ϕ′(H(pn, xn)−H(p∗, p∗)) dist((0, 0), ∂H(pn, xn)) ≥ 1 ∀n ≥ N. (29)

Further, since ϕ is a concave function, we get for every n ≥ 1 the following inequality:

ϕ
(
H(pn, xn)−H(p∗, p∗)

)
− ϕ

(
H(pn+1, xn+1)−H(p∗, p∗)

)
≥

ϕ′
(
H(pn, xn)−H(p∗, p∗)

)
·
(
H(pn, xn)−H(pn+1, xn+1)

)
. (30)

Moreover, from (29) and (26) we have

ϕ′
(
H(pn, xn)−H(p∗, p∗)

)
≥ 1

‖(sn + 2M2(pn − xn), 2M2(xn − pn))‖
∀n ≥ N. (31)

By using for every n ≥ 1 the notation

∆n,n+1 := ϕ
(
H(pn, xn)−H(p∗, p∗)

)
− ϕ

(
H(pn+1, xn+1)−H(p∗, p∗)

)
,
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from (30), (31) and (25) we deduce

∆n,n+1 ≥ (M1 −M2) · ‖xn+1 − pn+1‖2√
‖sn + 2M2(pn − xn)‖2 + 4M2

2 ‖xn − pn‖2
∀n ≥ N. (32)

From here we obtain

‖xn+1 − pn+1‖ ≤
δ

2

√
‖sn + 2M2(pn − xn)‖2 + 4M2

2 ‖xn − pn‖2 +
∆n,n+1

2δ(M1 −M2)
∀n ≥ N, (33)

where δ > 0 is chosen such that the following inequality holds:

δ
√

2

2

√(L∇u
λ

+ L∇h + 2M2

)2

+ 4M2
2 +

α

λ

(
1 + λL∇h

) < 1. (34)

Moreover, we have for every n ≥ 1 (see (23))

√
‖sn + 2M2(pn − xn)‖2 + 4M2

2 ‖xn − pn‖2

≤

√√√√[2

(
L∇u
λn

+ L∇h + 2M2

)2

+ 4M2
2

]
‖xn − pn‖2 + 2

α2
n

λ2n

(
1 + λn−1L∇h

)2
‖xn−1 − pn−1‖2

≤

√√√√[2

(
L∇u
λn

+ L∇h + 2M2

)2

+ 4M2
2

]
‖xn − pn‖+

√
2
αn
λn

(
1 + λn−1L∇h

)
‖xn−1 − pn−1‖

≤

√√√√[2

(
L∇u
λ

+ L∇h + 2M2

)2

+ 4M2
2

]
‖xn − pn‖+

√
2
α

λ

(
1 + λL∇h

)
‖xn−1 − pn−1‖.

We derive from (33) that

‖xn+1 − pn+1‖ ≤ a‖xn − pn‖+ b‖xn−1 − pn−1‖+
∆n,n+1

2δ(M1 −M2)
∀n ≥ N, (35)

where

a :=
δ
√

2

2

√(L∇u
λ

+ L∇h + 2M2

)2

+ 4M2
2

 and b :=
δ
√

2

2

α

λ

(
1 + λL∇h

)
.

Notice that due to (34) we have a + b < 1. Now, for a fixed k ≥ 1 we have (since ϕ takes only

non-negative values)

k∑
n=1

∆n,n+1 = ϕ
(
H(p1, x1)−H(p∗, p∗)

)
− ϕ

(
H(pk+1, xk+1)−H(p∗, p∗)

)
≤ ϕ

(
H(p1, x1)−H(p∗, p∗)

)
,

hence ∑
n≥1

∆n,n+1

2δ(M1 −M2)
< +∞.
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From (35) and Lemma 2.3 we conclude that
∑
n≥1 ‖xn − pn‖ < +∞. Further, from (14) we obtain∑

n∈N ‖xn+1 − xn‖ < +∞.

(ii) It follows from (i) that (xn)n∈N is a Cauchy sequence, hence it is convergent. Since we have

that xn − pn → 0 (as n→ +∞), the conclusion follows from Lemma 3.7(i). �

Remark 3.1 A similar condition to the one imposed in the previous theorem on the function

H has been used in [26], for an appropriate choice of the parameter M2, in order to prove the

convergence of an inertial forward-backward algorithm for solving the problem (3) in case f is a

convex function.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.1 In the setting of Problem 3.1, suppose that the function f + h is coercive and

semi-algebraic, consider the sequences generated in Algorithm 3.1, where ν, µ, λ, λ and α are chosen

as in Lemma 3.3. Then the following statements are true:

(i)
∑
n≥1 ‖xn − pn‖ < +∞ and

∑
n∈N ‖xn+1 − xn‖ < +∞;

(ii) there exists x ∈ crit(f + h) such that limn→+∞ xn = limn→+∞ pn = x.

Proof. The function (x, y) 7→M2‖x−y‖2 is semi-algebraic, where M2 is considered as in Lemma

3.2. Since the class of semi-algebraic functions is stable under finite sums (see [20]), it follows that

H : Rm × Rm → R, H(x, y) = (f + h)(x) + M2‖x − y‖2 is semi-algebraic as well. The conclusion

follows from Theorem 3.1. �

4 Conclusions

In this paper we presented in the finite dimensional setting a Tseng’s type numerical scheme for

solving a nonconvex optimization problem, the objective to be minimized being the sum of a lower

semicontinuous function and a Frechét differentiable one with Lipschitz continuous gradient. We

showed that if an appropriate regularization of the objective satisfies the Kurdyka- Lojasiewicz

inequality, we obtain convergence of the algorithm to a critical point, which is a zero of the Mor-

dukhovich subdifferential of the objective function. The algorithm uses an inertial term in its
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formulation and the generalized proximity operator is replaced by Bregman distances, for the sake

of generality. As further research directions, we mention here the possibility of investigating al-

gorithms for solving more general nonconvex optimization problems where also compositions with

linear operators are involved.
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