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Abstract. We propose two forward-backward proximal point type algorithms with iner-
tial/memory effects for determining weakly efficient solutions to a vector optimization problem
consisting in vector-minimizing with respect to a given closed convex pointed cone the sum of
a proper cone-convex vector function with a cone-convex differentiable one, both mapping from
a Hilbert space to a Banach one. Inexact versions of the algorithms, more suitable for imple-
mentation, are provided as well, while as a byproduct one can also derive a forward-backward
method for solving the mentioned problem. Numerical experiments with the proposed methods
are carried out in the context of solving a portfolio optimization problem.
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1 Introduction and preliminaries

With this paper we propose the first, to the best of our knowledge, iterative methods for deter-
mining weakly efficient solutions to vector optimization problems consisting in vector-minimizing
with respect to a convex cone the sum of two vector functions. The numerical methods we pro-
pose rely on the classical proximal point algorithm due to Martinet extended for vector optimiza-
tion problems by Bonnel, Iusem and Svaiter. In order to treat the involved functions separately,
we propose a forward-backward splitting scheme, to which inertial/memory effects are added.
The inertial methods with memory effects were inspired from heavy ball with friction dynamical
systems and have as a characteristic feature the fact that an iteration variable depends on the
previous two elements of the same sequence, not only on its predecessor as it is usually the case
for many algorithmic approaches. The first inertial proximal point type algorithm has been
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proposed by Alvarez and Attouch (cf. [2,3]) for the minimization of a proper, convex and lower
semicontinuous function. To the best of our knowledge the only other inertial type proximal
method for solving vector optimization problems proposed so far in the literature is the one
in [11], which follows a different path than our contribution as it is employed for determining
ideally efficient solutions. The vector optimization problems we solve with our methods consist
in vector-minimizing with respect to a given closed convex pointed cone the sum of a proper
cone-convex vector function, evaluated in a backward step, with a cone-convex differentiable
one that is evaluated in a forward step, both mapping from a Hilbert space to a Banach one.
The usual way to approach vector optimization problems is by scalarizing them, but this can
often lead to unbounded problems (see, for instance [7, Remark 1]), hence the need to address
the vector optimization problems directly, especially when it comes to numerically solving them.
One can find some results on the choice of scalarizing parameters in order to guarantee the
existence of optimal solutions of the scalarized problems in the literature, but the imposed con-
ditions are quite restrictive (see [18, 19]) and their verification may prove to be too expensive
from a computational point of view. This has motivated research on iterative methods for di-
rectly solving multiobjective or vector optimization problems consisting in vector-minimizing a
vector function, sometimes subject to geometric constraints, and in the recent literature several
contributions in this sense can be found in both smooth (cf. [13, 17]) and convex nonsmooth
(cf. [7, 22]) cases. Different to these works, in this paper we vector-minimize with respect to a
convex cone the sum of two cone-convex vector functions, that are handled separately in each
iteration via a forward-backward scheme, covering thus a larger category of problems than in
the existing literature. Moreover, we added inertial/memory effects to the proposed scheme that
have a positive contribution to its robustness and speed. The proximal point scheme proposed
in [7] is recovered as a special case of our method when the inertial steps and the smooth ob-
jective term are removed. Moreover, unlike the mentioned papers where iterative methods for
solving vector optimization problems were proposed, but their implementation was left for later
due to the difficulty of solving the employed subproblems, we present a concrete application as
well that is solved in Matlab.

For implementation purposes we provide also versions of the inertial forward-backward algo-
rithms which do not scalarize the original problem, but some approximations of it, another one
at each iteration, as done for instance also in [7, 22]. We have opted for the linear scalarization
of the intermediate vector optimization problems instead of other existing alternatives (see, for
instance, [9, Section 4.4]) for both simplicity and computational reasons. The construction of
the algorithms guarantees the existence of an optimal solution to each of the considered (lin-
early) scalarized optimization problems, a feature usually mentioned as an advantage of other
scalarization techniques in comparison to the linear one. Moreover, the linear scalarization is
more flexible than its counterparts, allowing modifications of its parameters at each iteration.

Let X be a Hilbert space and Y a separable Banach space that is partially ordered by a
pointed closed convex cone C ⊆ Y . The partial ordering induced by C on Y is denoted by “5C”
(i.e. it holds x 5C y when y − x ∈ C, where x, y ∈ Y ) and we write x ≤C y if x 5C y and
x 6= y. A greatest element with respect to “5C” denoted by ∞C which does not belong to Y is
attached to this space, and let Y • = Y ∪ {∞C}. Then for any y ∈ Y one has y ≤C ∞C and we
consider on Y • the operations y +∞C = ∞C + y = ∞C for all y ∈ Y • and t · ∞C = ∞C for
all t ≥ 0. By 〈y∗, y〉 we denote the value at y ∈ Y of the linear continuous functional y∗ ∈ Y ∗
and by convention we take 〈y∗,∞C〉 = +∞ for all y∗ ∈ C∗, where C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0
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∀y ∈ C} is the dual cone to C. Given a subset U of X, by clU , intU and δU we denote its
closure, interior and indicator function, respectively.

When f : X → R = R ∪ {±∞} is proper (i.e. is nowhere equal to −∞ and has at least a
real value) and ε ≥ 0, if f(x) ∈ R the (convex) ε-subdifferential of f at x is ∂εf(x) = {x∗ ∈ X∗ :
f(y)− f(x) ≥ 〈x∗, y − x〉 − ε ∀y ∈ X}, while if f(x) = +∞ we take by convention ∂εf(x) = ∅.
The ε-subdifferential of f becomes in case ε = 0 its classical (convex) subdifferential denoted by
∂f . Then x̄ ∈ X is a minimum of f if and only if 0 ∈ ∂f(x̄). Denote also by [t]+ = max{t, 0}
for any t ∈ R.

A vector function F : X → Y • = Y ∪ {∞C} is said to be proper if its domain domF =
{x ∈ X : F (x) ∈ Y } is nonempty, C-convex if F (tx + (1 − t)y) 5C tF (x) + (1 − t)F (y) for
all x, y ∈ X and all t ∈ [0, 1] and positively C-lower semicontinuous (in the literature also star
C-lower semicontinuous) when the function x 7→ 〈z∗, F (x)〉, further denoted by (z∗F ) : X → R,
is lower semicontinuous for all z∗ ∈ C∗ \ {0}.

Assume further that intC 6= ∅. Consider the vector optimization problem

(V P ) WMin
x∈X

[
F (x) +G(x)

]
,

where F : X → Y is a Fréchet differentiable vector function with an L-Lipschitz continuous
gradient ∇F and G : X → Y • is a proper vector function. It is the aim of this paper to
provide a proximal inertial forward-backward algorithm for determining the weakly efficient
solutions to (V P ). An element x̄ ∈ domG is said to be an efficient solution to (V P ) if there
is no x ∈ X such that F (x) + G(x) ≤C F (x̄) + G(x̄) and a weakly efficient solution to (V P )
if (F (x̄) + G(x̄) − intC) ∩ (F + G)(domG) = ∅, respectively. We denote by E(V P ) the set of
all efficient solutions to (V P ) and by WE(V P ) the one of all weakly efficient ones. From [9,
Corollary 2.4.26] one has the following characterization of the weakly efficient solutions to (V P )
by means of a linear scalarization.

Lemma 1.1. If F +G is C-convex, then x̄ ∈ WE(V P ) if and only if

∃z∗ ∈ C∗ \ {0} : 〈z∗, F (x̄) +G(x̄)〉 ≤ 〈z∗, F (x) +G(x)〉 ∀x ∈ X.

Remark 1. A sufficient hypothesis for guaranteeing the C-convexity of F +G is to take both
F and G to be C-convex.

Lemma 1.2. For any z∗ ∈ C∗ the function (z∗F ) : Y → R is convex and Fréchet differentiable
with an L‖z∗‖-Lipschitz continuous gradient.

Proof. Let z∗ ∈ C∗. The convexity and continuous differentiability of (z∗F ) were already proven
in the literature, so we focus on the Lipschitz continuity of its gradient, that, by the chain rule,
coincides at any x ∈ X with the functional z∗ ◦ ∇F (x) defined by w ∈ X 7→ 〈z∗,∇F (x)(w)〉.

For x, y ∈ X, one has, keeping in mind the linearity of z∗ and of the gradient,

‖∇(z∗F )(x)−∇(z∗F )(y)‖ = ‖z∗ ◦ ∇F (x)− z∗ ◦ ∇F (y)‖ = ‖z∗ ◦ (∇F (x)−∇F (y))‖
≤ ‖z∗‖‖∇F (x)−∇F (y)‖ ≤ L‖z∗‖‖x− y‖,

therefore the gradient of (z∗F ) is L‖z∗‖-Lipschitz continuous.

A result which is very useful in proving the convergence of numerical algorithms is the
celebrated Opial’s Lemma (cf. [21]).
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Lemma 1.3. Let (xn)n ⊆ X be a sequence and S ⊆ X a nonempty set such that

(a) limn→+∞ ‖xn − x‖ exists for every x ∈ S;

(b) if xnj ⇀ z for a subsequence nj → +∞, then z ∈ S,

where “⇀” denotes the convergence in the weak topology. Then, there exists an x̄ ∈ S such that
xn ⇀ x̄ when n→ +∞.

2 Inertial forward-backward algorithm

We propose below an exact proximal inertial forward-backward iterative method for determining
the weakly efficient solutions to (V P ). It generates a sequence (xn)n ⊆ X that, as seen later,
converges under suitable but not very demanding hypotheses towards a weakly efficient solution
to (V P ).

Algorithm 1. Choose the starting points x0, x1 ∈ X and the sequences (βn)n ⊆ [0, β[, (z∗n)n ∈
C∗ \{0} and (en)n ⊆ intC such that (βn)n is nondecreasing, β < 1/9, ‖z∗n‖ = 1 and 〈z∗n, en〉 = 1
for all n ≥ 1. Consider the following iterative steps

1 let n = 1;

2 if xn ∈ WE(V P ): STOP;

3 find xn+1 ∈ WE
{
G(x) + L

2

∥∥x − (xn + βn(xn − xn−1) − 1
L∇(z∗nF )(xn)

)∥∥2
en : x ∈ Ωn

}
,

where Ωn = {x ∈ X : (F +G)(x) 5C (F +G)(xn)};

4 let n := n+ 1 and go to Step 2.

Remark 2. When F ≡ 0, Algorithm 1 becomes an inertial proximal point method for solving
vector optimization problems, which by additionally taking βn = 0 for all n ≥ 1 collapses into
the proximal point method for vector-minimizing a nonsmooth vector function introduced in [7].
On the other hand, when Y = R and C = R+ (i.e. in the scalar case), Algorithm 1 becomes
the inertial proximal-gradient method for scalar optimization problems, that can be derived
from the algorithm for finding zeros of maximally monotone operators proposed in [20]. When,
furthermore, F ≡ 0, it collapses into the one from [2], while when βn = 0 for all n ≥ 1 it becomes
the celebrated ISTA method from [5], however in a more general framework.

Remark 3. Analyzing Algorithm 1 one can notice that at every iteration a different vector
optimization problem is addressed, each of them having a smaller feasible set than its predecessor.

Before formulating the convergence statement concerning the sequence (xn)n generated by
Algorithm 1, it is necessary to introduce a new notion, considered in most of the papers dealing
with proximal methods for vector optimization problems (see [7, 22]).

Definition 2.1. Given x0 ∈ X, the set F (X) ∩ (F (x0)− C) is said to be C-complete when for
all sequences (an)n ⊆ X with a0 = x0 such that F (an+1) 5C F (an) for all n ≥ 1 there exists an
a ∈ X such that F (a) 5C F (an) for all n ≥ 1.
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Theorem 2.1. Let F be C-convex and G be C-convex and positively C-lower semicontinuous
and assume that (F + G)(X) ∩ (F (x0) + G(x0) − C) is C-complete. If Algorithm 1 does not
stop in finitely many steps, then any sequence (xn)n generated by it converges weakly towards a
weakly efficient solution to (V P ).

Proof. We show first that the algorithm is well-defined, i.e. if the stopping rule is not activated
the next iteration exists. Assuming that we have obtained an xn, where n ≥ 1, we have to secure
the existence of xn+1.

The hypotheses imposed on F and G guarantee that the set Ωn is convex and closed, since
G is C-epi closed and F is Fréchet differentiable. Thus, δΩn is convex and lower semicontinuous.
As the function

x 7→

〈
z∗n, G(x) +

L

2

∥∥∥∥x− xn − βn(xn − xn−1) +
1

L
∇(z∗nF )(xn)

∥∥∥∥2

en

〉
+ δΩn(x)

is lower semicontinuous, being a sum of lower semicontinuous and continuous functions, and
strongly convex, as the sum of some convex functions and a squared norm, it has exactly one
minimum. By Lemma 1.1 this minimum is a weakly efficient solution to the vector optimization
problem in Step 3 of Algorithm 1 and we denote it by xn+1.

Thus one has

0 ∈ ∂

(〈
z∗n, G(·) +

L

2

∥∥∥∥· − xn − βn(xn − xn−1) +
1

L
∇(z∗nF )(xn)

∥∥∥∥2

en

〉
+ δΩn(·)

)
(xn+1),

which, due to the continuity of the norm, turns into (cf. [9, Theorem 3.5.5])

0 ∈ ∂ (〈z∗n, G(·) + δΩn(·)〉) (xn+1)

+ L∂

(
1

2

∥∥∥∥· − xn − βn(xn − xn−1) +
1

L
∇(z∗nF )(xn)

∥∥∥∥2
)

(xn+1).

or, equivalently,

−L
(
xn+1 − xn − βn(xn − xn−1) +

1

L
∇(z∗nF )(xn)

)
∈ ∂(〈z∗n, G(·)〉+ δΩn(·))(xn+1).

Thus, for any x ∈ Ωn, one has

〈z∗n, G(x)−G(xn+1)〉 ≥ 〈L(xn+1 − xn − βn(xn − xn−1)) +∇(z∗nF )(xn), xn+1 − x〉. (1)

The set Ω := ∩k≥1Ωk = {x ∈ Rn : (F +G)(x) 5C (F +G)(xk) ∀k ≥ 1} is nonempty because
of the C-completeness hypothesis. Let x̃ ∈ Ω. Then, using that x̃ ∈ Ωn and z∗n ∈ C∗, (1) yields

0 ≥ 〈z∗n, (F +G)(x̃)− (F +G)(xn+1)〉
≥ 〈L(xn+1 − xn − βn(xn − xn−1)) +∇(z∗nF )(xn), xn+1 − x̃〉+ 〈z∗n, F (x̃)− F (xn+1)〉.

Employing the descent lemma (e.g. [4, Theorem 18.15(iii)]) for 〈z∗n, F 〉, which is convex and
Fréchet differentiable with L‖z∗n‖ = L-Lipschitz continuous gradient, this implies

〈L(xn+1 − xn − βn(xn − xn−1)) +∇(z∗nF )(xn)−∇(z∗nF )(x̃), xn+1 − x̃〉 ≤
L

2
‖x̃− xn+1‖2.
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The 1
L -cocoercivity of ∇(z∗nF ) (cf. [4, Theorem 18.15(v)]) gives

〈∇(z∗nF )(xn)−∇(z∗nF )(x̃), xn+1 − x̃〉
= 〈∇(z∗nF )(xn)−∇(z∗nF )(x̃), xn − x̃〉+ 〈∇(z∗nF )(xn)−∇(z∗nF )(x̃), xn+1 − xn〉

≥ 1

L
‖∇(z∗nF )(xn)−∇(z∗nF )(x̃)‖2 + 〈∇(z∗nF )(xn)−∇(z∗nF )(x̃), xn+1 − xn〉

=
1

L

∥∥∥∥∇(z∗nF )(xn)−∇(z∗nF )(x̃) +
L

2
(xn+1 − xn)

∥∥∥∥2

− L

4
‖xn+1 − xn‖2

≥− L

4
‖xn+1 − xn‖2,

therefore

〈L(xn+1 − xn − βn(xn − xn−1)), xn+1 − x̃〉 −
L

2
‖x̃− xn+1‖2 −

L

4
‖xn+1 − xn‖2 ≤ 0.

For each k ≥ 1 denote ϕk = (1/2)‖xk − x̃‖2. As ϕn − ϕn+1 = 1
2‖xn+1 − xn‖2 + 〈xn+1 − xn −

βn(xn − xn−1), x̃ − xn+1〉 + βn〈xn − xn−1, x̃ − xn+1〉, the previous inequality can be rewritten,
after dividing with L, as

ϕn+1 − ϕn +
1

4
‖xn+1 − xn‖2 −

1

2
‖x̃− xn+1‖2 − βn〈xn − xn−1, xn+1 − x̃〉 ≤ 0,

and, since 〈xn − xn−1, xn+1 − x̃〉 = ϕn − ϕn−1 + (1/2)‖xn − xn−1‖2 + 〈xn − xn−1, xn+1 − xn〉, it
turns into

ϕn+1 − ϕn − βn(ϕn − ϕn−1) ≤ βn
2
‖xn − xn−1‖2 + βn〈xn − xn−1, xn+1 − xn〉 −

1

4
‖xn+1 − xn‖2.

The right-hand side of the above inequality can be rewritten as

βn
2
‖xn − xn−1‖2 + β2

n‖xn − xn−1‖2 −
1

4
‖xn+1 − xn − 2βn(xn − xn−1)‖2,

that, since βn ∈ [0, β[, is less than or equal to

βn‖xn − xn−1‖2 −
1

4
‖xn+1 − xn − 2βn(xn − xn−1)‖2,

and, taking also in consideration that βn < β < 1/9 < 1/8, even to

9

8
βn‖xn − xn−1‖2 −

1

8
‖xn+1 − xn‖2.

Therefore, one gets

ϕn+1 − ϕn − βn(ϕn − ϕn−1) ≤ 9

8
βn‖xn − xn−1‖2 −

1

8
‖xn+1 − xn‖2. (2)

Denoting for all k ≥ 1

µk := ϕk − βkϕk−1 +
9

8
βk‖xk − xk−1‖2,
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it follows that

µk+1 − µk ≤
9β − 1

8
‖xk+1 − xk‖2 ≤ 0, (3)

thus the sequence (µk)k is nonincreasing, as n ≥ 1 was arbitrarily chosen. Then, for all k ≥ 1,

ϕk − βkϕk−1 ≤ µk ≤ µ1,

hence

ϕk ≤ βkϕ0 +
1− βk

1− β
µ1 ≤ βkϕ0 +

1

1− β
µ1,

and one also gets ‖xk+1 − xk‖2 ≤ 8
9β−1(µk+1 − µk). Consequently,

n∑
k=1

‖xk+1 − xk‖2 ≤
8

1− 9β
(µ1 − µn+1) ≤ 8

1− 9β
(µ1 + βϕn)

≤ 8

1− 9β

(
1

1− β
µ1 + βn+1ϕ0

)
< +∞,

in particular
+∞∑
k=1

‖xk+1 − xk‖2 < +∞. (4)

Using the intermediate step towards (2) and denoting τk+1 := xk+1 − xk − 2βk(xk − xk−1),
θk := ϕk − ϕk−1 and δk := βk‖xk − xk−1‖2 for all k ≥ 1, one obtains

θk+1 − βkθk ≤ δk −
1

4
‖τk+1‖2 ≤ δk ∀k ≥ 1. (5)

Then

[θk+1]+ ≤
1

9
[θk]+ + δk ∀k ≥ 1,

which yields

[θn+1]+ ≤
1

9n
[θ1]+ +

n−1∑
k=0

δn−k
9k

.

Hence
+∞∑
k=0

[θk+1]+ ≤
9

8

(
[θ1]+ +

+∞∑
k=0

δk

)
and, as the right-hand side of this inequality is finite due to (4), so is

∑+∞
k=1[θk]+, too. This yields

that the sequence (wk)k defined as wk = ϕk −
∑k

j=1[θj ]+, for all k ≥ 1, is bounded. Moreover,
wk+1−wk = ϕk+1−ϕk− [ϕk+1−ϕk]+ ≤ 0 for all k ≥ 1, thus (wk)k is convergent. Consequently,
(ϕk)k is convergent. Finally, (‖xk − x̃‖2)k is convergent, too, i.e. (a) in Lemma 1.3 with S = Ω
is fulfilled.

The next step is to show that (xk)k is weakly convergent. The convergence of (ϕk)k implies
that (xk)k is bounded, so it has weak cluster points. Let x̂ ∈ X be one of them and (xkj )j the
subsequence that converges weakly towards it as j → +∞. Then, as F +G is positively C-lower
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semicontinuous and C-convex, it follows that for any z∗ ∈ C∗ \ {0} the function 〈z∗, (F +G)(·)〉
is lower semicontinuous and convex, thus

〈z∗, (F +G)(x̂)〉 ≤ lim inf
j→+∞

〈z∗, (F +G)(xkj )〉 = inf
k≥1
〈z∗, (F +G)(xk)〉, (6)

with the last equality following from the fact that the sequence ((F+G)(xk))k is by construction
C-nonincreasing. Assuming that there exists a k ≥ 1 such that (F + G)(x̂) �C (F + G)(xk),
there exists a z̃ ∈ C∗ \ {0} such that 〈z̃, (F +G)(x̂)− (F +G)(xk)〉 > 0, which contradicts (6),
consequently (F + G)(x̂) 5C (F + G)(xk) for all k ≥ 1, i.e. x̂ ∈ Ω, therefore one can employ
Lemma 1.3 with S = Ω since its hypothesis (b) is fulfilled as well. This guarantees then the
weak convergence of (xk)k to a point x̄ ∈ Ω.

The proof is not complete without showing that x̄ ∈ WE(V P ). Assuming the opposite, there
would exist an x′ ∈ X such that (F + G)(x′) ∈ (F + G)(x̄) − intC. This yields x′ ∈ Ω. Since
‖z∗k‖ = 1 for all k ≥ 1, the sequence (z∗k)k has a weak∗ cluster point, say z̄∗, that is the limit
of a subsequence (z∗kj )j . Because z∗k ∈ C∗ for all k ≥ 1 and C∗ is weakly∗ closed, it follows

that z̄∗ ∈ C∗. Moreover, from [6, Lemma 2.2] it follows that 〈z̄∗, c〉 > 0 for any c ∈ intC, thus
z̄∗ 6= 0. Consequently, 〈z̄∗, (F + G)(x′) − (F + G)(x̄)〉 < 0. For any j ≥ 1 it holds then by (1)
and employing the descent lemma and the 1

L -cocoercivity of ∇(z∗kjF )

〈z∗kj , (F +G)(x′)− (F +G)(x̄)〉 ≥ 〈z∗kj , (F +G)(x′)− (F +G)(xkj+1)〉 ≥

− L
〈
xkj+1 − xkj − βkj (xkj − xkj−1) +

1

L
∇(z∗kjF )(xkj ), x

′ − xkj+1

〉
+ 〈z∗kj , F (x′)− F (xkj+1)〉 ≥

− L‖x′ − xkj+1‖
(
‖xkj+1 − xkj‖+ βkj‖xkj − xkj−1‖

)
+ 〈∇(z∗kjF )(xkj )−∇(z∗kjF )(x′), xkj+1 − x′〉

≥ −L‖x′ − xkj+1‖
(
‖xkj+1 − xkj‖+ βkj‖xkj − xkj−1‖

)
− L

4
‖xkj+1 − xkj‖

2. (7)

Because of (4) (‖xk − xk−1‖)k converges towards 0 for k → +∞ and so does the last expression
in the inequality chain (7) when j → +∞ as well. Letting j converge towards +∞, (7) yields
〈z̄∗, (F +G)(x′)− (F +G)(x̄)〉 ≥ 0, contradicting the inequality obtained above. Consequently,
x̄ ∈ WE(V P ).

Remark 4. The conclusion of Theorem 2.1 remains valid when G is taken to be C-lower
semicontinuous in the sense of [9, Definition 2.2.14] instead of positively C-lower semicontinuous.

Remark 5. As can be seen in the proof of Theorem 2.1, its conclusion remains valid if the
sequence (xn)n generated by Algorithm 1 fulfills the condition

∑+∞
k=1 βk‖xk − xk−1‖2 < +∞

(see (4), mentioned also in the literature, for instance in [2, 20]), in which case (βn)n needs
not necessarily be nondecreasing and one can take β ∈ [0, 1[. However, this dynamic condition
might be more difficult to verify since it involves the generated sequence (xn)n, while the static
hypotheses considered in this paper can simply be imposed while defining the parameters β and
(βn)n, respectively.

Remark 6. In the proof of Theorem 2.1 we have employed some ideas inspired from the ones
of [7, Theorem 3.1], [20, Theorem 2.1] and [2, Theorem 2.1 and Proposition 2.1]. The difficulties
encountered while adapting the techniques from the mentioned statements to our framework
consisted mainly of the fact that here one has to deal, as mentioned in Remark 3, at each
iteration with a different optimization problem, while in [2, 20] the objective function of the
considered problem is not modified as the algorithm advances.
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Remark 7. Different to the inertial proximal methods proposed in the literature for solving
scalar optimization problems or monotone inclusions (see, for instance, [2,20]), in our approach
it is not necessary to assume the existence of a solution of the considered problem, i.e. a weakly
efficient solution to (V P ), in order to prove the convergence of Algorithm 1. The role of such
a hypothesis in showing the convergence of the method has been fully covered in the proof of
Theorem 2.1 by the assumed C-completeness hypothesis. Considering the former instead of the
latter, the role of Ω would be taken byWE(V P ). However, then is the inclusionWE(V P ) ⊆ Ωn

for all n ≥ 1 not guaranteed by construction and should be separately investigated. Note
moreover that assuming the existence of some x̄ ∈ WE(V P ) does not automatically deliver
the corresponding scalarizing parameter z̄∗ that exists according to Lemma 1.1, which would
probably be needed in formulating the algorithm under the mentioned hypothesis.

Remark 8. Any z∗ ∈ C∗ \ {0} provides a suitable scalarization functional (whose existence
is guaranteed by Lemma 1.1) for the vector optimization problems in Step 3 of Algorithm 1.
This endows our method with additional flexibility properties that may prove to be useful when
implementing it. Moreover, even if the function

x 7→

〈
z∗, G(x) +

L

2

∥∥∥∥x− xn − βn(xn − xn−1) +
1

L
∇(z∗nF )(xn)

∥∥∥∥2

en

〉
+ δΩn(x)

has, because it is lower semicontinuous and strongly convex, exactly one minimum that is xn+1,
the sequence (xn)n is not uniquely determined because for each choice of z∗ ∈ C∗ \{0} one deals
with a different such function. Note also that the sequence (z∗n)n can be taken even constant,
situation in which the intermediate vector optimization problems differ despite having the same
objective vector function because their feasible sets become smaller at each iteration. This
does not mean that the vector optimization problem (V P ) is a priori scalarized by means of
a linear continuous functional, because this scalarization is applied to the intermediate vector
optimization problems not to (V P ).

Remark 9. For determining the optimal solutions of the scalarized optimization problems
attached to the vector optimization problems in Step 3 of Algorithm 1 one can employ for
instance a splitting type algorithm designed for finding the optimal solutions of optimization
problems consisting in minimizing sums of convex functions, like the ones proposed in [8, 10].
However, the processing of the functions δΩn , n ≥ 1, may prove to be quite difficult, due to the
special structure of the sets Ωn, n ≥ 1. A way to go round this nuisance is, as seen later in
Section 4, by employing some other approaches for solving the intermediate scalar optimization
problems, for instance one based on interior point methods.

Remark 10. Similarly to [7, Section 4], it can be shown that under additional hypotheses (for
instance ∃δ > 0 : {z∗ ∈ Y ∗ : 〈z∗, y〉 ≥ δ‖y‖‖z∗‖ for all y ∈ C} 6= ∅) Algorithm 1 can deliver
efficient solutions to (V P ) instead of weakly efficient. One can also modify Algorithm 1 in order
to deliver properly efficient solutions to (V P ) with respect to linear scalarization that are defined
as those x̄ ∈ domG for which there exists a z∗ ∈ C∗0 = {y∗ ∈ C∗ : 〈y∗, y〉 > 0 ∀y ∈ C \ {0}}
for which 〈z∗, F (x̄) +G(x̄)〉 ≤ 〈z∗, F (x) +G(x)〉 for all x ∈ X. For this, the interior of C needs
not necessarily be nonempty and the sequence (en)n should lie in C \ {0}, while in Steps 2 and
3 of the algorithm one should consider properly efficient instead of weakly efficient solutions to
(V P ).
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Remark 11. Vector optimization problems with the ordering cones of the image spaces having
empty interiors, but nonempty generalized interiors can be found in finance mathematics (see,
for instance, [1, 14]) and other research fields. Motivated by them, the definition of the weakly
efficient solutions to (V P ) has been extended in some recent contributions (such as [14–16]) for
the case when intC = ∅ by replacing this with the quasi interior of C (i.e. the set of all y ∈ Y
such that cl(cone(V − y)) = Y , where “cone” denotes the conical hull of the corresponding
set). In order to characterize these more general weakly efficient solutions to (V P ) one can
use [16, Corollary 9] instead of Lemma 1.1. The proof of the algorithm convergence statement
Theorem 2.1 can be almost entirely adapted to the new framework, but, since [6, Lemma 2.2]
does not hold in case intC = ∅, an alternative approach for guaranteeing that z̄∗ 6= 0 is necessary.
A way to do this would be by taking the sequence (z∗n)n constant with z∗n = z̄∗ 6= 0. On the other
hand, in finitely dimensional spaces so-called relatively weakly efficient solutions can be defined
when C has an empty interior but a nonempty relative interior and characterized by means of
linear scalarization (cf. [15]), while z̄∗ 6= 0 because of the coincidence of the corresponding weak
and strong topologies.

One can simplify Algorithm 1 in order to become a “pure” (i.e. non-inertial) forward-
backward method, as follows.

Algorithm 2. Choose the starting point x0 ∈ X and the sequences (z∗n)n ∈ C∗ \ {0} and
(en)n ⊆ intC such that ‖z∗n‖ = 1 and 〈z∗n, en〉 = 1 for all n ≥ 1. Consider the following iterative
steps

1 let n = 1;

2 if xn ∈ WE(V P ): STOP;

3 find xn+1 ∈ WE
{
G(x) + L

2

∥∥x − (xn − 1
L∇(z∗nF )(xn)

)∥∥2
en : x ∈ Ωn

}
, where Ωn = {x ∈

X : (F +G)(x) 5C (F +G)(xn)};

4 let n := n+ 1 and go to 2.

This algorithm is interesting not only per se, but also because one can derive rates for its
convergence, by employing some ideas from [5], when the sequence (z∗n)n is constant. In order to
prove the corresponding statement, an additional result is necessary (following [5, Lemma 2.3]).

Lemma 2.1. Let F be C-convex and G be C-convex and positively C-lower semicontinuous and
denote, for fixed z∗ ∈ C∗, e ∈ intC with 〈z∗, e〉 = 1 and y ∈ X,

zy := argmin
x∈Ωy

〈
z∗, G(x) +

L

2

∥∥∥∥x− y +
1

L
∇(z∗F )(y)

∥∥∥∥2

e

〉
,

where Ωy = {x ∈ X : (F +G)(x) 5C (F +G)(y)}. One has

〈z∗, F (x) +G(x)− F (zy)−G(zy)〉+ δΩy(x) ≥ L

2
‖zy − y‖2 + L〈zy − y, y − x〉 ∀x ∈ X. (8)

Proof. For a y ∈ X, by the definition of zy one gets, taking into consideration the continuity of
the norm (like in the proof of Theorem 2.1) and that zy ∈ Ωy,

〈z∗, G(x)−G(zy)〉+ δΩy(x) ≥ 〈∇(z∗F )(y) + L(zy − y), zy − x〉 ∀x ∈ X.
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Using also that 〈z∗, F (x)− F (y)〉 ≥ 〈∇(z∗F )(y), x− y〉 for all x ∈ X, one gets

〈z∗, F (x) +G(x)− F (y)−G(zy)〉+ δΩy(x) ≥ 〈∇(z∗F )(y)− L(x− zy), zy − y〉 ∀x ∈ X.

Employing the descent lemma, the above inequality yields

〈z∗, F (x) +G(x)− F (zy)−G(zy)〉+ δΩy(x) ≥ −L
2
‖zy − y‖2 − L〈x− zy, zy − y〉 ∀x ∈ X,

and the right-hand side can be rewritten in order to deliver (8).

Theorem 2.2. Let F be C-convex and G be C-convex and positively C-lower semicontinuous
and assume that (F +G)(X)∩ (F (x0) +G(x0)−C) is C-complete. Consider the sequence (xn)n
generated by Algorithm 2, where one takes z∗n = z∗ ∈ C∗ \ {0}, n ≥ 1. Then for any n ≥ 1 and
x̃ ∈ Ω one has

〈z∗, F (xn) +G(xn)− F (x̃)−G(x̃)〉 ≤ L‖x̃− x0‖2

2n
. (9)

Proof. In order to prove the statement one can follow the steps from the proof of [5, Theorem
3.1] by employing twice Lemma 2.1 for the functions (z∗F ) and (z∗G), respectively, first for
x = x̃ and y = xn, then for x = y = xn (for a fixed n ≥ 1), taking also into consideration that
x̃, xn ∈ Ωn.

Remark 12. Note that the assertion of Theorem 2.2 is actually valid for all x̃ ∈ Ω, not only
for the weakly efficient solution to (V P ) obtained from the convergence statement Theorem 2.1.
Moreover, when taking the sequence (z∗n)n constant it is no longer necessary to take ‖z∗n‖ = 1
for all n ≥ 1. However, the constant z∗ cannot be taken arbitrarily large (with respect to the
ordering cone C∗) because it has to fulfill 〈z∗, en〉 = 1 for all n ≥ 1. Moreover, in this case one
can consider the more general framework discussed in Remark 11. Without assuming that the
sequence (z∗n)n is constant, in order to show instead of (9) in a similar manner to the proof of
Theorem 2.2 that

〈z∗n, F (xn) +G(xn)− F (x̃)−G(x̃)〉 ≤ L‖x̃− x0‖2

2n
∀n ≥ 1 ∀x̃ ∈ Ω,

one needs additional assumptions that guarantee certain monotonicity properties for (z∗n)n, for
instance

〈z∗n − z∗n+1, F (xn+1) +G(xn+1)〉 ≥ 0 ≥ 〈z∗n − z∗n+1, F (x̃) +G(x̃)〉.

Remark 13. For implementation purposes one can provide an inexact version of Algorithm 1
as well, where Step 3 is replaced by

3’ find xn+1 ∈ X such that 0 ∈ ∂εn(〈z∗n, G(·)+ L
2 ‖·−xn−βn(xn−xn−1)+ 1

L∇(z∗nF )(xn)‖2en〉+
δΩn(·))(xn+1),

where the additional sequence of tolerable nonnegative errors (εn)n fulfills some hypotheses, such
as the ones considered in [7] or those from [3, 20]. Employing the later, i.e.

∑
n≥1 εn < +∞,

the converge statement obtained by correspondingly modifying Theorem 2.1 remains valid, only
some minor adjustments in the proof (for instance one takes δk = βk‖xk−xk−1‖2 +εk for k ≥ 1)
being necessary.
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3 Alternative inertial forward-backward algorithm

One can modify Algorithm 1 into another inertial forward-backward method, as follows.

Algorithm 3. Choose the starting points x0, x1 ∈ X and the sequences (βn)n ⊆ [0, β[, (z∗n)n ∈
C∗ \{0} and (en)n ⊆ intC such that (βn)n is nondecreasing, β < 1/9, ‖z∗n‖ = 1 and 〈z∗n, en〉 = 1
for all n ≥ 1. Consider the following iterative steps

1 let n = 1;

2 if xn ∈ WE(V P ): STOP;

3 find xn+1 ∈ WE
{
G(x)+ L

2

∥∥x−(xn+βn(xn−xn−1)− 1
L∇(z∗nF )(xn+βn(xn−xn−1))

)∥∥2
en :

x ∈ Ωn

}
;

4 let n := n+ 1 and go to 2.

Remark 14. The difference between Algorithm 1 and Algorithm 3 resides in the point where the
value of ∇(z∗nF ) is calculated, xn versus xn+βn(xn−xn−1). Thus, the comments from Remark 2
for F ≡ 0 remain valid for Algorithm 3 as well. On the other hand, when Y = R and C = R+ (i.e.
in the scalar case), Algorithm 3 becomes a more general version of the celebrated FISTA method
from [5], that can be recovered by taking βn = (tn − 1)/tn+1, where tn+1 = (1 +

√
1 + 4t2n)/2,

n ≥ 1, with t1 = 1, and restricting the framework to finitely dimensional spaces.

The convergence of the sequence (xn)n generated by Algorithm 3 can be investigated in an
analogous manner to Theorem 2.1, hence the proof of the next statement contains only what is
different compared to the mentioned statement.

Theorem 3.1. Let F be C-convex and G be C-convex and positively C-lower semicontinuous
and assume that (F + G)(X) ∩ (F (x0) + G(x0) − C) is C-complete. If Algorithm 3 does not
stop in finitely many steps, then any sequence (xn)n generated by it converges weakly towards a
weakly efficient solution to (V P ).

Proof. Let be n ≥ 1. Like in the proof of Theorem 2.1 the algorithm is well-defined and one
gets

〈L(xn+1 − xn − βn(xn − xn−1)) +∇(z∗nF )(xn + βn(xn − xn−1))−∇(z∗nF )(x̃), xn+1 − x̃〉 ≤
L

2
‖x̃− xn+1‖2,

which, by employing the 1
L -cocoercivity of ∇(z∗nF ), yields

〈xn+1 − xn − βn(xn − xn−1), xn+1 − x̃〉 −
1

2
‖x̃− xn+1‖2 −

1

4
‖xn+1 − xn − βn(xn − xn−1)‖2 ≤ 0.

Denoting ϕk = (1/2)‖xk − x̃‖2, for k ≥ 1, one gets, like in the proof of Theorem 2.1,

ϕn+1 − ϕn − βn(ϕn − ϕn−1) ≤ βn
2
‖xn − xn−1‖2 + βn〈xn − xn−1, xn+1 − xn〉

− 1

4
‖xn+1 − xn − βn(xn − xn−1)‖2.
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The right-hand side of the above inequality can be rewritten, taking into consideration that
‖xn+1−xn−βn(xn−xn−1)‖2 = ‖xn+1−xn‖2 +β2

k‖xn−xn−1‖2− 2βn〈xn+1−xn, xn−xn−1〉, as

βn
2
‖xn − xn−1‖2 −

β2
n

4
‖xn − xn−1‖2 −

1

4
‖xn+1 − xn‖2 +

3

2
βn〈xn+1 − xn, xn − xn−1〉,

being further equal to(
βn
2

+ 2β2
n

)
‖xn − xn−1‖2 −

1

4
‖xn+1 − xn − 3βn(xn − xn−1)‖2.

Therefore, ϕn+1 − ϕn − βn(ϕn − ϕn−1) is less than or equal to

βn
2

(1 + 2βn)‖xn − xn−1‖2 −
1

4
‖xn+1 − xn − 3βn(xn − xn−1)‖2.

From

−1

4
‖xn+1 − xn − 3βn(xn − xn−1)‖2 ≤ 9

4
β2
n‖xn − xn−1‖2 −

1

8
‖xn+1 − xn‖2,

one gets

ϕn+1 − ϕn − βn(ϕn − ϕn−1) ≤ βn
(1

2
+

17

4
βn

)
‖xn − xn−1‖2 −

1

8
‖xn+1 − xn‖2,

that, since βn < 1/8, yields (2).
The rest of the proof follows analogously to the one of Theorem 2.1.

Remark 15. Making use of Lemma 2.1, one can provide, following [5, Theorem 4.4], a con-
vergence rate statement for Algorithm 3 for a special choice of the parameters βn, n ≥ 1, and
when the sequence (z∗n)n is constant, that improves the assertion in the non-inertial case from
Theorem 2.2.

As discussed for instance also in [7], one can consider in the presented algorithms a stopping
rule that is easier to check than the original one. The following statement shows that if three
consecutive iterations of the sequence (xn)n generated by the inertial type algorithms we pro-
posed coincide, they represent a weakly efficient solution to (V P ), i.e. Step 2 of Algorithm 1 or
Algorithm 3 can be replaced with

2’ if xn+1 = xn = xn−1: STOP.

Proposition 3.1. Let F and G be C-convex and consider a sequence (xk)k generated by Algo-
rithm 1. If for some n ≥ 1 one has

xn−1 = xn ∈ argmin
x∈Ωn

〈
z∗n, G(x) +

L

2

∥∥∥∥x− (xn + βn(xn − xn−1)− 1

L
∇(z∗nF )(xn))

∥∥∥∥2

en

〉
,

then xn ∈ WE(V P ).

Proof. Assuming that xn /∈ WE(V P ), there exist x̃ ∈ X and c ∈ intC such that F (x̃) +G(x̃) =
F (xn) +G(xn)− c. Then x̃ ∈ Ωn. Denoting, for t ∈ [0, 1[, xt := txn + (1− t)x̃, the C-convexity
of F +G yields F (xt) +G(xt) ≤C F (xn) +G(xn) + (t− 1)c, therefore xt ∈ Ωn as well.
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Since

xn ∈ argmin
x∈Ωn

〈
z∗n, G(x) +

L

2

∥∥∥∥x− (xn + βn(xn − xn−1)− 1

L
∇(z∗nF )(xn))

∥∥∥∥2

en

〉
,

one gets then

0 ≤ 〈z∗n, G(xt)−G(xn)〉+
L

2

∥∥∥∥xt − (xn + βn(xn − xn−1)− 1

L
∇(z∗nF )(xn))

∥∥∥∥2

− L

2

∥∥∥∥xn − (xn + βn(xn − xn−1)− 1

L
∇(z∗nF )(xn))

∥∥∥∥2

,

which, employing the definition of xt and the hypothesis xn−1 = xn, yields

0 ≤ 〈z∗n, G(xt)−G(xn)〉+
L

2

∥∥∥∥(1− t)(x̃− xn) +
1

L
∇(z∗nF )(xn))

∥∥∥∥2

− 1

2L
‖∇(z∗nF )(xn))‖2. (10)

As G is C-convex, one has 〈z∗n, G(xt)−G(xn)〉 ≤ (1− t)〈z∗n, G(x̃)−G(xn)〉, while∥∥∥∥(1− t)(x̃− xn) +
1

L
∇(z∗nF )(xn))

∥∥∥∥2

=(1− t)2‖(x̃− xn)‖2 +
1

L2
‖∇(z∗nF )(xn))‖2

+ (1− t) 2

L
〈x̃− xn,∇(z∗nF )(xn)〉,

consequently, (10) yields

0 ≤ (1− t)〈z∗n, G(x̃)−G(xn)〉+
L

2
(1− t)2‖(x̃− xn)‖2 + (1− t)〈x̃− xn,∇(z∗nF )(xn)〉.

Dividing with 1− t and using the convexity of (z∗nF ), one gets

0 ≤ 〈z∗n, G(x̃)−G(xn)〉+
L

2
(1− t)‖(x̃− xn)‖2 + 〈z∗n, F (x̃)− F (xn)〉,

followed by 〈z∗n, c〉 ≤ L
2 (1− t)‖(x̃− xn)‖2.

Letting t tend towards 1 and using that z∗n ∈ C∗ \ {0} and c ∈ intC, the last inequality
yields 0 < 〈z∗n, c〉 ≤ 0, which is a contradiction, consequently, xn ∈ WE(V P ).

Remark 16. Note that xn−1 = xn does not necessarily imply that xn+1 coincides with them,
too, but the fact that it depends only on xn and not on xn−1. This can prove to be useful when
starting the algorithm because one can begin with x0 = x1 without affecting the convergence of
the method.

4 Numerical experiments

In order to verify the proposed methods we present in the following an example where a mul-
tiobjective optimization problem is solved by implementing Algorithm 1 in Matlab (version
9.0.0.341360/R2016a) on a Windows 7-PC with an Intel Core i5 processor with 3.40 GHz and 8
GB of RAM.
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Consider the vector optimization problem

(EP ) WMin
x=(x1,...,xd)∈Rd

+,
d∑

i=1
xi=1

(
−x>u
x>V x

)
,

where u ∈ Rd and V ∈ Rd×d is a symmetric positive semidefinite matrix. Such problems can be
found, for instance, in portfolio optimization, where x can be interpreted as the portfolio vector
for d given assets having the proportions of the assets in the whole portfolio as components where
the short sales are excluded, the first component of the objective vector function represents the
negative of the expected return (that is to be maximized, therefore minimized with a leading
minus), while the second is the variance of the portfolio, expressed by a quadratic function
involving a symmetric positive semidefinite variance-covariance matrix V ∈ Rd×d, that quantifies
the risk associated to the considered portfolio and should be concomitantly minimized.

The vector optimization problem (EP ) can be recast as a special case of (V P ) by taking
X = Rd, Y = R2, C = R2

+, F (x) = (−x>u, x>V x)> and G(x) = (δRd
+∩T

(x), δRd
+∩T

(x))>, where

T = {x = (x1, . . . , xd) ∈ Rd :
∑d

i=1 x
i = 1}. Note that F is proper, R2

+-convex and Fréchet
differentiable and has a Lipschitz continuous gradient ∇F (x) = (u, V x)> and G is proper,
R2

+-convex and positively R2
+-lower semicontinuous.

For the concrete implementation of the method we use the real data considered in [12] that
contains five stocks IBM, Microsoft, Apple, Quest Diagnostics, and Bank of America, whose
expected return and variance in the portfolio were calculated based on historical stock price and
dividend payment from February 1, 2002 to February 1, 2007. Consider thus the problem (EP )
with d = 5, u = (0.4, 0.513, 4.085, 1.006, 1.236)> and

V =


0.006461 0.002983 0.00235487 0.00235487 0.00096889
0.002983 0.0039 0.00095937 −0.0001987 0.00063459
0.002355 0.000959 0.01267778 0.00135712 0.00134481
0.002355 −0.0002 0.00135712 0.00559836 0.00041942
0.000969 0.000635 0.00134481 0.00041942 0.0016229

 .

Take moreover z∗n = (1/
√

2, 1/
√

2)> and en = (1, 1)> for all n ≥ 1, and as the starting points
of the algorithm x0 = (0.25, 0.25, 0, 0.25, 0.25)> and x1 = (0.15, 0.25, 0.25, 0.2, 0.15)>. Note that
this choice of the scalarization function guarantees, in the light of Remark 10, that the itera-
tively generated sequence actually converges towards a properly efficient solution to (EP ), that
is, consequently, also efficient. In order to obtain only weakly efficient solutions to (EP ), that
are, as pointed by an anonymous reviewer, not quite relevant for the problem in discussion, one
should take some components of z∗n to be 0. The intermediate problems scalarized with the
corresponding z∗n’s become

(SPn) inf
x=(x1,x2,x3,x4,x5)∈R5

+,

x1+x2+x3+x4+x5=1,
u>(x−xn)≤0,

x>V x−x>n V xn≤0

1
2‖x− xn − βn(xn − xn−1) + 1√

2
(u+ V xn)‖2, n ≥ 1

For computational reasons we consider an inexact version of the stopping rule 2′, namely
that ‖xn+1 − xn‖ ≤ ε = 0.00001 ≥ ‖xn − xn−1‖. The intermediate scalar problems (SPn) are
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solved by using the Matlab function fmincon, the existing proximal-point methods being not
employable because of the complicated constraint sets.

In the following tables we present some of the achieved computational results. Taking
the sequence (βn)n constant, the program delivers the approximate properly efficient solution
x̄ = (0.00000015603, 0.0718, 0.3189, 0.1317, 0.4777)> to (EP ) after 15.517354 seconds and 281
iterations when βn = 1/10, n ≥ 1. Although there is no certain rule, one can notice that
when the value of βn decreases the elapsed time and the number of iterations tend to increase.
However, when the inertial step is omitted, i.e. βn = 0 for all n ≥ 1, and the method be-
comes a forward-backward one, the algorithm needs 33.288016 seconds and 625 iterations until
the stopping rule is activated. In all these cases fmincon delivers approximate global optimal
solutions for the intermediate problems. On the other hand, when the sequence (βn)n is nonde-
creasing but not constant, fmincon delivers for the intermediate problems mostly approximate
local optimal solutions, however the elapsed time and the number of iterations decrease dramat-
ically, less than a second being necessary to deliver the approximate properly efficient solution
x̄ = (0.000000046008, 0.00000072695, 0.3050, 0.0878, 0.6072)> to (EP ) after 13 iterations when
βn = 1/30− 1/(n+ 30), n ≥ 1.

βn iterations time (s)

0 625 33.288016
1
10 281 15.517354
1
11 579 31.590278
1
12 707 38.557769
1
15 603 32.456625
1
20 507 28.100981
1
25 507 27.316595
1
30 571 30.952835
1
50 749 40.752453
1

100 813 43.925126
1

300 783 39.746160
1

500 1083 60.644596

βn iterations time (s)
1
10 −

1
10n 13 1.080089

1
10 −

1
n+10 117 11.592547

1
11 −

1
n+11 117 11.784833

1
15 −

1
n+15 117 11.692819

1
20 −

1
n+20 15 1.721906

1
25 −

1
n+25 13 1.038344

1
30 −

1
n+30 13 0.988701

1
50 −

1
n+50 15 1.245741

1
100 −

1
n+100 15 1.989177

1
300 −

1
n+300 15 1.960903

1
500 −

1
n+500 15 1.975370

5 Conclusions and further research

In this paper we propose two forward-backward proximal point type algorithms with iner-
tial/memory effects for determining weakly efficient solutions to a vector optimization problem
consisting in vector-minimizing with respect to a given closed convex pointed cone the sum
of a proper cone-convex vector function with a cone-convex differentiable one, the first ones
with these characteristics in the literature, to the best of our knowledge. Among the ideas we
consider for future work in this research direction we mention first the identification of possi-
ble ways to avoid using the constraint sets Ωn, n ≥ 1, without losing the convergence of the
method. Likewise, we are also interested in finding alternative hypotheses to the C-completeness
of (F + G)(X) ∩ (F (x0) + G(x0) − C) that are weaker than the ones mentioned in [7, Remark
3] as well as in providing convergence rates for our algorithm in more general frameworks than
the one we give in the non-inertial case when the scalarizing sequence is constant. Moreover,
we plan to investigate some ways to modify the proposed algorithms in order to encompass
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as a special case also the projected gradient method proposed in [17] for vector-minimizing a
smooth cone-convex vector function. Extending our investigations by employing Bregman type
distances instead of the classical one like in [22] is another idea worth exploring.
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