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Abstract. We consider the minimization of a convex objective function subject to the set of minima
of another convex function, under the assumption that both functions are twice continuously differ-
entiable. We approach this optimization problem from a continuous perspective by means of a second
order dynamical system with Hessian-driven damping and a penalty term corresponding to the con-
strained function. By constructing appropriate energy functionals, we prove weak convergence of the
trajectories generated by this differential equation to a minimizer of the optimization problem as well
as convergence for the objective function values along the trajectories. The performed investigations
rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case
the objective function is strongly convex, we can even show strong convergence of the trajectories.
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1 Introduction

The Newton-like dynamical system{
ẍ(t) + γẋ(t) + λ∇2Φ(x(t))(ẋ(t)) +∇Φ(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(1)

has been investigated by Alvarez, Attouch, Bolte and Redont in [5] in connection with the optimization
problem

inf
x∈H

Φ(x). (2)

Here, H is a real Hilbert space endowed with inner product 〈·, ·〉 and associated norm ‖ · ‖=
√
〈·, ·〉,

u0, v0 ∈ H are the initial data, λ, γ > 0, while ∇Φ and ∇2Φ denote the gradient and Hessian of the
function Φ : H → R, respectively. A particular feature of this dynamical system is the presence of the
geometric damping that acts on the velocity through the Hessian of the function Φ.
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As underlined in [5], the dynamical system (1) can be seen as a mixture of the continuous Newton
method

∇2Φ(x(t))(ẋ(t)) +∇Φ(x(t)) = 0, (3)

investigated by Alvarez and Pérez in [6], with the heavy ball with friction system

ẍ(t) + γẋ(t) +∇Φ(x(t)) = 0, (4)

studied for the first time in Polyak [35] and Antipin [7]. Thus the dynamical system (1) possesses
most of the advantages of the systems (3) and (4). We refer the reader to [5, 6, 9, 18–20] for more
insights on Newton-type dynamics and their motivations coming from mechanics and control theory.

The aim of this paper is to associate a second order Newton-type dynamical system to the opti-
mization problem

inf
x∈argmin Ψ

Φ(x), (5)

where Φ,Ψ : H → R are convex and twice differentiable functions.
Let us notice that solving (5) can be formulated as a variational inequality of the form

find x ∈ argmin Ψ such that 〈∇Φ(x), y − x〉 ≥ 0 ∀y ∈ argmin Ψ, (6)

where argmin Ψ denotes the set of minimizers of Ψ over H.
In [12], Attouch and Czarnecki have assigned to (5) the nonautonomous first order dynamical

system
ẋ(t) +∇Φ(x(t)) + β(t)∇Ψ(x(t)) = 0, (7)

where β : [0,+∞) → (0,+∞) is a function of time assumed to tend to +∞ as t → +∞, which
penalizes the constrained function. Several convergence results for the trajectories generated by (7)
to the solution set of (5) have been reported in [12] under the key assumption

∀p ∈ ranNargmin Ψ

∫ +∞

0
β(t)

[
Ψ∗
(

p

β(t)

)
− σargmin Ψ

(
p

β(t)

)]
dt < +∞, (8)

where Ψ∗ : H → R ∪ {+∞} is the Fenchel-Legendre transformation of Ψ:

Ψ∗(p) = sup
x∈H
{〈p, x〉 −Ψ(x)} ∀p ∈ H;

σargmin Ψ : H → R ∪ {+∞} is the support function of the set argmin Ψ:

σargmin Ψ(p) = sup
x∈argmin Ψ

〈p, x〉 ∀p ∈ H;

and Nargmin Ψ is the normal cone to the set argmin Ψ, defined by

Nargmin Ψ(x) = {p ∈ H : 〈p, y − x〉 ≤ 0 ∀y ∈ argmin Ψ}

for x ∈ argmin Ψ and Nargmin Ψ(x) = ∅ for x 6∈ argmin Ψ. Finally, ranNargmin Ψ denotes the range
of the normal cone Nargmin Ψ, that is, p ∈ ranNargmin Ψ if and only if there exists x ∈ argmin Ψ such
that p ∈ Nargmin Ψ(x). Let us notice that for x ∈ argmin Ψ one has p ∈ Nargmin Ψ(x) if and only if
σargmin Ψ(p) = 〈p, x〉.

We present a situation where the above condition (8) is fulfilled. According to [12], if we take

ψ(x) =
1

2
inf
y∈C
‖x− y‖2,

2



for a nonempty, convex and closed set C ⊆ H, then the condition (8) is fulfilled if and only if∫ +∞

0

1

β(t)
dt < +∞,

which is trivially satisfied for β(t) = (1 + t)α with α > 1.
The paper of Attouch and Czarnecki [12] was the starting point of a considerable number of research

articles devoted to this subject, including those addressing generalizations to variational inequalities
formulated with maximal monotone operators (see [10,12,14,15,17,22,24,27–29,33,34]). We refer also
to the above-listed references for more general formulations of the key assumption (8) and for further
examples for which these conditions are satisfied.

The optimization problem (5) was approached in [24] through the the second order nonautonomous
dynamical system

ẍ(t) + γẋ(t) +∇Φ(x(t)) + β(t)∇Ψ(x(t)) = 0, (9)

where γ > 0 and β : [0,+∞) → (0,+∞) is a function of time. Under assumption (8) and for β
assuming to converge to +∞ as t → +∞, we proved weak convergence of the generated trajectories
to a minimizer of (5) as well as convergence for the objective function values along the trajectories.
We refer to [13] for another variant of this system, where the objective function is penalized instead
of the constraint function.

Our purpose is to combine Newton-like dynamics with systems of the form (9) in order to approach
from a continuous perspective the solving of the optimization problem (5). To this end, we propose
to investigate the asymptotic behavior of the dynamical system

ẍ(t)+γẋ(t)+λ∇2Φ(x(t))(ẋ(t))+λβ(t)∇2Ψ(x(t))(ẋ(t))+∇Φ(x(t))+(β(t)+λβ̇(t))∇Ψ(x(t)) = 0. (10)

The advantages of a dynamical system which combines the continuous Newton dynamic with a heavy
ball with friction system are emphasized in [5]. Condition (8) will be again crucial in the analysis
performed. By using Lyapunov analysis in combination with the continuous version of the Opial
Lemma, we prove weak convergence of the trajectories to a minimizer of the optimization problem (5)
as well as convergence for the objective function values along the trajectories. In case the objective
function is strongly convex, we can even show strong convergence of the trajectories.

2 Preliminaries

In this section we will introduce preliminary notions and results that will be useful throughout the
paper.

The following statement can be interpreted as the continuous counterpart of the convergence result
of quasi-Fejér monotone sequences. For its proofs we refer the reader to [1, Lemma 5.1].

Lemma 1 Suppose that F : [0,+∞)→ R is locally absolutely continuous and bounded from below and
that there exists G ∈ L1([0,+∞)) such that for almost every t ∈ [0,+∞)

Ḟ (t) ≤ G(t).

Then there exists limt→+∞ F (t) ∈ R.

We will focus our investigations on the following second order dynamical system{
ẍ(t) + γẋ(t) +λ∇2Φ(x(t))(ẋ(t)) +λβ(t)∇2Ψ(x(t))(ẋ(t)) +∇Φ(x(t)) + (β(t) + λβ̇(t))∇Ψ(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(11)
where γ, λ > 0, u0, v0 ∈ H, provided that the following assumptions are satisfied:
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(HΨ) Ψ : H → [0,+∞) is convex, twice differentiable such that ∇Ψ and ∇2Ψ

are Lipschitz continuous and argmin Ψ = Ψ−1(0) 6= ∅;
(HΦ) Φ : H → R is convex, twice differentiable, bounded from below, such that ∇Φ and ∇2Φ

are Lipschitz continuous and S := {z ∈ argmin Ψ : Φ(z) ≤ Φ(x) ∀x ∈ argmin Ψ} 6= ∅;
(Hβ) β : [0,+∞)→ (0,+∞) is a C1-function with lim

t→+∞
β(t) = +∞ and it satisfies the growth

condition 0 ≤ β̇ ≤ kβ, where 0 < k <
θ

1 + λγ
min

{
2γ

3
,

2

λ

}
for θ ∈ (0, 1).

For u0, v0 ∈ H we look for solutions x ∈ C2([0,+∞);H) of (11) satisfying the initial conditions
x(0) = u0 and ẋ(0) = v0. The dynamical system ca be equivalently written as

Ẋ(t) = F (t,X(t)),

where
X(t) = (x(t), ẋ(t))

and

F (t, u, v) = (v,−γv − λ∇2Φ(u)(v)− λβ(t)∇2Ψ(u)(v)−∇Φ(u)− (β(t) + λβ̇(t))∇Ψ(u)).

Due to the Lipschitz continuity of∇Ψ,∇2Ψ and∇Φ,∇2Φ, assumed in (HΨ) and (HΦ), respectively, the
existence and uniqueness of global solutions of (11) follows by using similar arguments as in [5, Theorem
2.1(i)] and by making use of the estimation obtained in (27).

Remark 2 (a) In case Ψ = 0, the dynamical system (11) becomes{
ẍ(t) + γẋ(t) + λ∇2Φ(x(t))(ẋ(t)) +∇Φ(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(12)

the convergence of which has been investigated in [5] in connection with the minimization of the
function Φ over H.

(b) The time discretization of second order dynamical systems leads to iterative algorithms involving
inertial terms, which basically means that every new iterate is constructed in terms of the
previous two iterates (see for example [3, 4]). The explicit time discretization of (11) with step
size hk > 0, penalty parameter βk > 0 and initial points x0 = u0 and x1 = u1 yields for every
k ≥ 0

xk+2 − 2xk+1 + xk

h2
k

+ γ
xk+1 − xk

hk
+ λ∇2Φ(xk)

(
xk+1 − xk

hk

)
+ λβk∇2Ψ(xk)

(
xk+1 − xk

hk

)
+∇Φ(xk) + (βk + λ(βk+1 − βk))∇Ψ(xk) = 0.

For hk = 1 one obtains the iterative scheme

xk+2 = xk+1 + (1− γ)(xk+1 − xk)− λ∇2 (Φ + βkΨ) (xk)(xk+1 − xk)
−∇(Φ + βkΨ)(xk)− λ(βk+1 − βk)∇Ψ(xk) ∀k ≥ 0,

which one may investigate in connection to the solving of the optimization problem (5). The
asymptotic behaviour of the trajectory of (11), that we will address in the next section, suggests
that one can expect the convergence of the sequence of generated iterates (xk)k∈N to a global
minimum of (5).
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3 Convergence of the trajectories and of the objective function val-
ues

This section is devoted to the asymptotic analysis of the trajectory generated by the dynamical
system (11). We show weak convergence of the trajectory x(·) to an optimal solution of (5) as well
as convergence for the objective function values along the trajectory as t→ +∞, under the following
assumption:

(H) ∀p ∈ ranNargmin Ψ

∫ +∞
0 β(t)

[
Ψ∗
(

p
β(t)

)
− σargmin Ψ

(
p
β(t)

)]
dt < +∞.

Remark 3 (a) Let δargmin Ψ : H → R ∪ {+∞} be the indicator function of argmin Ψ, which is the
function that takes the value 0 on the set argmin Ψ and +∞, otherwise. Due to Ψ ≤ δargmin Ψ

(see (HΨ)), we have
Ψ∗ ≥ δ∗argmin Ψ = σargmin Ψ.

(b) Considering the case when Ψ = 0 (see Remark 2(a)), we have Nargmin Ψ(x) = {0} for every
x ∈ argmin Ψ = H, Ψ∗ = σargmin Ψ = δ{0} and (H) trivially holds.

For δ > 0, we considere the following energy functional that will play an important role in the
analysis below:

Eδ(t) = δ
(
Φ(x(t)) + β(t)Ψ(x(t))

)
+

1

2
‖ẋ(t) + λ∇Φ(x(t)) + λβ(t)∇Ψ(x(t))‖2 ∀t > 0. (13)

For its derivative we have for every t ∈ [0,+∞)

Ėδ(t) = δ〈∇Φ(x(t)), ẋ(t)〉+ δβ(t)〈∇Ψ(x(t)), ẋ(t)〉+ δβ̇(t)Ψ(x(t))+

〈ẍ(t) +λ∇2Φ(x(t))(ẋ(t))+λβ(t)∇2Ψ(x(t))(ẋ(t)) +λβ̇(t)∇Ψ(x(t)), ẋ(t) +λ∇Φ(x(t)) +λβ(t)∇Ψ(x(t))〉
= δ〈∇Φ(x(t)), ẋ(t)〉+ δβ(t)〈∇Ψ(x(t)), ẋ(t)〉+ δβ̇(t)Ψ(x(t))+

〈−γẋ(t)−∇Φ(x(t))− β(t)∇Ψ(x(t)), ẋ(t) + λ∇Φ(x(t)) + λβ(t)∇Ψ(x(t))〉
= δ〈∇Φ(x(t)), ẋ(t)〉+ δβ(t)〈∇Ψ(x(t)), ẋ(t)〉+ δβ̇(t)Ψ(x(t))− γ‖ẋ(t)‖2−

(1 + γλ)〈∇Φ(x(t)), ẋ(t)〉 − (1 + γλ)β(t)〈∇Ψ(x(t)), ẋ(t)〉 − λ‖∇Φ(x(t))‖2−
λβ2(t)‖∇Ψ(x(t))‖2 − 2λβ(t)〈∇Φ(x(t)),∇Ψ(x(t))〉

= (δ − γλ− 1)〈∇Φ(x(t)), ẋ(t)〉+ β(t)(δ − γλ− 1)〈∇Ψ(x(t)), ẋ(t)〉+ δβ̇(t)Ψ(x(t))−
γ‖ẋ(t)‖2 − λ‖∇Φ(x(t))‖2 − λβ2(t)‖∇Ψ(x(t))‖2 − 2λβ(t)〈∇Φ(x(t)),∇Ψ(x(t))〉.

Finally we obtain for every t ∈ [0,+∞)

Ėδ(t) = (δ − γλ− 1)〈∇Φ(x(t)), ẋ(t)〉+ β(t)(δ − γλ− 1)〈∇Ψ(x(t)), ẋ(t)〉+ δβ̇(t)Ψ(x(t))

− γ‖ẋ(t)‖2 − λ‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2. (14)

Further, for z ∈ S and

ε := θmin

{
2γ

3
,

2

λ

}
(15)

we consider the functional

E(t) =
1

ε
E1+γλ(t) +

γ

2
‖x(t)− z‖2 + 〈ẋ(t) + λ∇Φ(x(t)) + λβ(t)∇Ψ(x(t)), x(t)− z〉 ∀t > 0. (16)
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By using (14) we easily derive for every t ∈ [0,+∞)

Ė(t) =
1 + γλ

ε
β̇(t)Ψ(x(t))− γ

ε
‖ẋ(t)‖2 − λ

ε
‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2

+ γ〈ẋ(t), x(t)− z〉+ 〈−γẋ(t)−∇Φ(x(t))− β(t)∇Ψ(x(t)), x(t)− z〉
+ 〈ẋ(t) + λ∇Φ(x(t)) + λβ(t)∇Ψ(x(t)), ẋ(t)〉

=
1 + γλ

ε
β̇(t)Ψ(x(t))− 〈∇Φ(x(t)) + β(t)∇Ψ(x(t)), x(t)− z〉

−
(γ
ε
− 1
)
‖ẋ(t)‖2 + λ〈∇Φ(x(t)) + β(t)∇Ψ(x(t)), ẋ(t)〉

− λ

ε
‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2

≤ 1 + γλ

ε
β̇(t)Ψ(x(t))− 〈∇Φ(x(t)) + β(t)∇Ψ(x(t)), x(t)− z〉

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1− ελ

2

)
‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2. (17)

The following lemma will play an essential role in the asymptotic analysis of the trajectories.

Lemma 4 Assume that (HΨ), (HΦ), (Hβ) and (H) hold and let x : [0,+∞) → H be the trajectory
generated by the dynamical system (11). Then for every z ∈ S the following statements are true:

(i)
∫ +∞

0 β(t)Ψ(x(t))dt < +∞;

(ii) ∃ limt→+∞
∫ t

0 〈∇Φ(z), x(s)− z〉ds ∈ R;

(iii) ∃ limt→+∞
∫ t

0

(
Φ(x(s))− Φ(z) +

(
1− k(1+γλ)

ε

)
β(s)Ψ(x(s))

)
ds ∈ R;

(iv) ẋ, ∇Φ(x) + β∇Ψ(x) ∈ L2([0,+∞);H).

Proof. Take an arbitrary z ∈ S. Relying on the convexity of the functions Φ and Ψ, the fact that
z ∈ argmin Ψ (hence Ψ(z) = 0) and the non-negativity of β and Ψ we obtain for every t ∈ [0,+∞)

−〈∇Φ(x(t)) + β(t)∇Ψ(x(t)), x(t)− z〉 ≤ Φ(z)− Φ(x(t))− β(t)Ψ(x(t)). (18)

From here and (17) we derive

Ė(t) ≤ 1 + γλ

ε
β̇(t)Ψ(x(t)) + Φ(z)− Φ(x(t))− β(t)Ψ(x(t))

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1− ελ

2

)
‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2 (19)

for every t ∈ [0,+∞).
By using the growth condition on β we get

Ė(t) ≤
(
k

1 + γλ

ε
− 1

)
β(t)Ψ(x(t)) + Φ(z)− Φ(x(t))

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1− ελ

2

)
‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2

=− β̃(t)Ψ(x(t)) + Φ(z)− Φ(x(t))

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1− ελ

2

)
‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2, (20)
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where

β̃(t) :=

(
1− k1 + γλ

ε

)
β(t) > 0, (21)

due to (Hβ) and (15).
Furthermore,

Φ(z)− Φ(x(t)) ≤ 〈−∇Φ(z), x(t)− z〉, (22)

thus

Ė(t) ≤− β̃(t)Ψ(x(t))− 〈∇Φ(z), x(t)− z〉

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1− ελ

2

)
‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2 (23)

for every t ∈ [0,+∞). Since z is an optimal solution of (5), the first order optimality condition delivers

0 ∈ ∂(Φ + δargmin Ψ)(z) = ∇Φ(z) +Nargmin Ψ(z), (24)

hence
−∇Φ(z) ∈ Nargmin Ψ(z) ⊆ ranNargmin Ψ. (25)

From here and by using the Young-Fenchel inequality we obtain for every t ∈ [0,+∞)

−β̃(t)Ψ(x(t))− 〈∇Φ(z), x(t)− z〉 = β̃(t)

(
−Ψ(x(t))−

〈
∇Φ(z)

β̃(t)
, x(t)− z

〉)

= β̃(t)

(
−Ψ(x(t)) +

〈
−∇Φ(z)

β̃(t)
, x(t)

〉
− σargmin Ψ

(
−∇Φ(z)

β̃(t)

))

≤ β̃(t)

(
Ψ∗

(
−∇Φ(z)

β̃(t)

)
− σargmin Ψ

(
−∇Φ(z)

β̃(t)

))
. (26)

Thus, from (23) and (26) we obtain for every t ∈ [0,+∞)

Ė(t) ≤ β̃(t)

(
Ψ∗

(
−∇Φ(z)

β̃(t)

)
− σargmin Ψ

(
−∇Φ(z)

β̃(t)

))

−
(
γ

ε
− 3

2

)
‖ẋ(t)‖2 − λ

ε

(
1− ελ

2

)
‖∇Φ(x(t)) + β(t)∇Ψ(x(t))‖2 (27)

≤ β̃(t)

(
Ψ∗

(
−∇Φ(z)

β̃(t)

)
− σargmin Ψ

(
−∇Φ(z)

β̃(t)

))
, (28)

where the last inequality follows from (15) and the fact that θ ∈ (0, 1).
By integrating the last inequality from 0 to T (T > 0) and by taking into account (H), (16), (13)

and the fact that Φ and Ψ are bounded from below, it yields that there exists M > 0 such that

γ

2
‖x(T )− z‖2 + 〈ẋ(T ) + λ∇Φ(x(T )) + λβ(T )∇Ψ(x(T )), x(T )− z〉

+
1

2ε
‖ẋ(T ) + λ∇Φ(x(T )) + λβ(T )∇Ψ(x(T ))‖2 ≤M ∀T ≥ 0. (29)

Combining this with (18) and the fact that Φ and Ψ are bounded from below, one can easily see that
there exists M ′ > 0 such that

d

dT

(
1

2
‖x(T )− z‖2

)
+ γ

(
1

2
‖x(T )− z‖2

)
≤M ′ ∀T ≥ 0.
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A direct application of the Gronwall Lemma implies that

x is bounded. (30)

Further, this yields via (29) that

ẋ+ λ∇Φ(x) + λβ∇Ψ(x) is bounded. (31)

From (30), (31), (16) and(13) we conclude that

E is bounded from below. (32)

Moreover, from (20), (26) and (22) we obtain for every t ∈ [0,+∞)

Ė(t) + β̃(t)

(
−Ψ∗

(
−∇Φ(z)

β̃(t)

)
+ σargmin Ψ

(
−∇Φ(z)

β̃(t)

))
≤ Ė(t) + β̃(t)Ψ(x(t)) + 〈∇Φ(z), x(t)− z〉

≤ Ė(t) + Φ(x(t))− Φ(z) + β̃(t)Ψ(x(t))

≤ 0. (33)

(i) Consider the function F : [0,+∞)→ R defined by

F (t) =

∫ t

0

(
−β̃(s)Ψ(x(s))− 〈∇Φ(z), x(s)− z〉

)
ds ∀t ≥ 0.

Making again use of (see (33))

−β̃(s)Ψ(x(s))− 〈∇Φ(z), x(s)− z〉 ≥ Ė(s) ∀s ∈ [0,+∞)

and (32), we easily derive that F is bounded from below. Moreover, from (26) it follows that for every
t ∈ [0,+∞)

Ḟ (t) ≤ β̃(t)

(
Ψ∗

(
−∇Φ(z)

β̃(t)

)
− σargmin Ψ

(
−∇Φ(z)

β̃(t)

))
.

Notice that according to (H), the function on the right-hand side of this inequality is L1-integrable on
[0,+∞), hence a direct application of Lemma 1 yields that limt→+∞ F (t) exists and is a real number.
Thus

∃ lim
t→+∞

∫ t

0

(
β̃(s)Ψ(s) + 〈∇Φ(z), x(s)− z〉

)
ds ∈ R. (34)

Since Ψ ≥ 0, we obtain for every t ∈ [0,+∞)

β̃(t)Ψ(x(t)) + 〈∇Φ(z), x(t)− z〉 ≥ β̃(t)

2
Ψ(x(t)) + 〈∇Φ(z), x(t)− z〉

and from here, similarly to (26),

− β̃(t)

2
Ψ(x(t))− 〈∇Φ(z), x(t)− z〉 ≤ β̃(t)

2

(
Ψ∗

(
−2∇Φ(z)

β̃(t)

)
− σargmin Ψ

(
−2∇Φ(z)

β̃(t)

))
.

Thus, for every t ∈ [0,+∞) it holds

Ė(t) +
β̃(t)

2

(
−Ψ∗

(
−2∇Φ(z)

β̃(t)

)
+ σargmin Ψ

(
−2∇Φ(z)

β̃(t)

))

≤ Ė(t) +
β̃(t)

2
Ψ(x(t)) + 〈∇Φ(z), x(t)− z〉

≤ Ė(t) + β̃(t)Ψ(x(t)) + 〈∇Φ(z), x(t)− z〉
≤ 0.
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Following the same technique as in the proof of (34), it yields that

∃ lim
t→+∞

∫ t

0

(
β̃(s)

2
Ψ(s) + 〈∇Φ(z), x(s)− z〉

)
ds ∈ R. (35)

Finally, from (34), (35) and (21) we obtain (i).
(ii) Follows from (i), (34) and (21).
(iii) Follows from (33) and (26), by following the same arguments as for proving statement (34).
(iv) Follows by integrating (27), by taking into account (H), (32), (15) and the fact that θ ∈ (0, 1).

�

Remark 5 The assumption limt→+∞ β(t) = +∞ has not bee used in the above proof. However, it
will play an important role in the arguments used below.

For the asymptotic analysis of the trajectories generated by the dynamical system (11), the con-
tinuous version of the Opial Lemma that we state as follows will be crucial.

Lemma 6 Let S∞ be a nonempty subset of the real Hilbert space H and x : [0,+∞) → H a given
function. Assume that

(i) limt→+∞ ‖x(t)− z‖ exists for every z ∈ S∞;

(ii) every weak limit point of x belongs to S∞.

Then there exists x∞ ∈ S∞ such that x(t) converges weakly to x∞ as t→ +∞.

We state now the main theorem of the paper.

Theorem 7 Assume that (HΨ), (HΦ), (Hβ) and (H) hold and let x : [0,+∞)→ H be the trajectory
generated by the dynamical system (11). Then the following statements are true:

(i) Φ(x(t)) converges to the optimal objective value of (5) as t→ +∞;

(ii) limt→+∞ β(t)Ψ(x(t)) = limt→+∞Ψ(x(t)) = 0;

(iii)
∫ +∞

0 β(t)Ψ(x(t))dt < +∞;

(iv) ẋ, ∇Φ(x) + β∇Ψ(x) ∈ L2([0,+∞);H);

(v) limt→+∞
(
ẋ(t) +∇Φ(x(t)) + β(t)∇Ψ(x(t))

)
= 0;

(vi) there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t→ +∞.

Proof. Fix an arbitrary z ∈ S and consider the energy functional defined in (13) for

δ1 = (1 +
√
λγ)2 = 1 + λγ + 2

√
λγ.

A simple computation (see (14)) shows that

Ėδ1(t) = (1 +
√
λγ)2β̇(t)Ψ(x(t))−

∥∥∥√γẋ(t)−
√
λ(∇Φ(x(t)) + β(t)∇Ψ(x(t))

∥∥∥2

Taking into account the growth condition on β, Lemma 4(i) and the fact that Eδ1 is bounded from
below, we obtain from Lemma 1 that

∃ lim
t→+∞

Eδ1(t) ∈ R. (36)
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Similarly, consider
δ2 = (1−

√
λγ)2 = 1 + λγ − 2

√
λγ.

We have

Ėδ2(t) = (1−
√
λγ)2β̇(t)Ψ(x(t))−

∥∥∥√γẋ(t) +
√
λ(∇Φ(x(t)) + β(t)∇Ψ(x(t))

∥∥∥2

and
∃ lim
t→+∞

Eδ2(t) ∈ R. (37)

From (36) and (37) we get
∃ lim
t→+∞

(
Eδ1(t)− Eδ2(t)

)
∈ R.

This implies by the definition of the energy functional that

∃ lim
t→+∞

(
Φ(x(t)) + β(t)Ψ(x(t))

)
∈ R. (38)

From here we deduce
lim

t→+∞
Ψ(x(t)) = 0. (39)

Indeed, since Φ is bounded from below and, by taking into account the inequality

Φ(x(t)) ≤ Φ(z) + 〈∇Φ(x(t)), x(t)− z〉,

the fact that x is bounded and limt→+∞ β(t) = +∞, we have

lim
t→+∞

Φ(x(t))

β(t)
= 0.

The statement (39) follows now from the last relation and (38).
In the following we appeal to [12, Lemma 3.4] for the inequality

lim inf
t→+∞

Φ(x(t)) ≥ Φ(z). (40)

Indeed, this was obtained in [12, Lemma 3.4] for a first order dynamical system. However, the
statement remains true for (11) too, since a careful look at the proof of Lemma 3.4 in [12] reveals that
the main arguments used to obtain this conclusion are the statements in Lemma 4(ii), the fact that
the trajectory x is bounded, the weak lower semicontinuity of Ψ, equation (39), the inequality (22)
and relation (25).

From (40) and (38) we have limt→+∞
(
Φ(x(t)) + β(t)Ψ(x(t))

)
≥ Φ(z). We claim that

lim
t→+∞

(
Φ(x(t)) + β(t)Ψ(x(t))

)
= Φ(z). (41)

Let us assume that limt→+∞
(
Φ(x(t)) + β(t)Ψ(x(t))

)
> Φ(z). Then there exist η > 0 and t0 ≥ 0

such that for every t ≥ t0 we have

Φ(x(t)) + β(t)Ψ(x(t)) > Φ(z) + η. (42)

Hence, for every t ≥ t0

η < Φ(x(t))− Φ(z) +

(
1− k(1 + γλ)

ε

)
β(t)Ψ(x(t)) +

k(1 + γλ)

ε
β(t)Ψ(x(t)). (43)

Integrating the last inequality and taking into account Lemma 4(i) and (iii) we obtain a contradiction.
In conclusion, (41) holds.
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Since Φ(x(t)) ≤ Φ(x(t)) + β(t)Ψ(x(t)) for every t ∈ [0,+∞), according to (41) it follows that
lim supt→+∞Φ(x(t)) ≤ Φ(z), which combined with (40) imply (i).

(ii) Follows from (39), (41) and the fact that limt→+∞Φ(x(t)) = Φ(z).
(iii)-(iv) The statements have been proved in Lemma 4.
(v) From (14), Lemma 4(i) and Lemma 1, we derive that

∃ lim
t→+∞

E1+λγ(t) ∈ R. (44)

Combining this with (13) and (38), we obtain that

∃ lim
t→+∞

‖ẋ(t) +∇Φ(x(t)) + β(t)∇Ψ(x(t))‖ ∈ R.

The statement follows now from (iv).
(vi) This will be a consequence of the Opial Lemma.
Let us check the first statement in Lemma 6. From (28), (H), (32) and Lemma 1 we obtain

∃ lim
t→+∞

E(t) ∈ R. (45)

Further, by using (16), (45), (44), (30) and (v) we conclude that

∃ lim
t→+∞

‖x(t)− z‖ ∈ R. (46)

Since z ∈ S was arbitrary chosen, the first statement of the Opial Lemma is true.
We prove now that the second condition in Lemma 6 is fulfilled, too. Let (tn)n∈N be a sequence

of positive numbers such that limn→+∞ tn = +∞ and x(tn) converges weakly to x∞ as n→ +∞. By
using the weak lower semicontinuity of Ψ and (ii) we obtain

0 ≤ Ψ(x∞) ≤ lim inf
n→+∞

Ψ(x(tn)) = 0,

hence x∞ ∈ argmin Ψ. Moreover, the weak lower semicontinuity of Φ and (i) yield

Φ(x∞) ≤ lim inf
n→+∞

Φ(x(tn)) = Φ(z),

thus x∞ ∈ S. Therefore, both conditions of Lemma 6 are fulfilled and the conclusion follows. �

Finally, we consider the situation when the objective function of (5) is strongly convex. In this
case, the trajectory generated by (11) converges strongly to the unique optimal solution of (5).

Theorem 8 Assume that (HΨ), (HΦ), (Hβ) and (H) hold and let x : [0,+∞)→ H be the trajectory
generated by the dynamical system (11). If Φ is strongly convex, then x(t) converges strongly to the
unique optimal solution of (5) as t→ +∞.

Proof. Let µ > 0 be such that Φ is µ-strongly convex. In this case the optimization problem (5) has
a unique optimal solution, which we denote by z.

We replace (22) with the stronger inequality

µ

2
‖x(t)− z‖2 + Φ(z)− Φ(x(t)) ≤ 〈−∇Φ(z), x(t)− z〉 ∀t ∈ [0,+∞) (47)

and obtain (see the proof of Lemma 4 and (33)) for every t ∈ [0,+∞)

Ė(t) +
µ

2
‖x(t)− z‖2 + β̃(t)

(
−Ψ∗

(
−∇Φ(z)

β̃(t)

)
+ σargmin Ψ

(
−∇Φ(z)

β̃(t)

))
≤ Ė(t) +

µ

2
‖x(t)− z‖2 + +β̃(t)Ψ(x(t)) + 〈∇Φ(z), x(t)− z〉

≤ Ė(t) + Φ(x(t))− Φ(z) + β̃(t)Ψ(x(t))

≤ 0. (48)
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Taking into account (H) and that E is bounded from below (see (32)), by integration of the above
inequality we obtain that there exists a constant C > 0 such that

µ

2

∫ T

0
‖x(t)− z‖2dt ≤ C ∀T ≥ 0.

According to (46), limt→+∞ ‖x(t)− z‖ exists, thus ‖x(t)− z‖ converges to 0 as t→ +∞ and the proof
is complete. �
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[24] R.I. Boţ, E.R. Csetnek, Second order dynamical systems associated to variational inequalities,
Applicable Analysis 96(5), 799–809, 2017
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