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Abstract. Motivated by the training of Generative Adversarial Networks (GANs), we study methods for solving minimax4
problems with additional nonsmooth regularizers. We do so by employing monotone operator theory, in particu-5
lar the Forward-Backward-Forward (FBF) method, which avoids the known issue of limit cycling by correcting6
each update by a second gradient evaluation and does so requiring less projection steps compared to the Ex-7
tragradient method in the presence of constraints. Furthermore, we propose a seemingly new scheme which8
recycles old gradients to mitigate the additional computational cost. In doing so we rediscover a known method,9
related to Optimistic Gradient Descent Ascent (OGDA). For both schemes we prove novel convergence rates for10
convex-concave minimax problems via a unifying approach. The derived error bounds are in terms of the gap11
function for the ergodic iterates. For the deterministic and the stochastic problem we show a convergence rate of12
O(1/k) and O(1/

√
k), respectively. We complement our theoretical results with empirical improvements in the13

training of Wasserstein GANs on the CIFAR10 dataset.14
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1. Introduction. Generative Adversarial Networks (GANs) [19] have proven to be a powerful17

class of generative models, producing for example unseen realistic images. Two neural networks,18

called generator and discriminator, compete against each other in a game. In the special case of a zero19

sum game this task can be formulated as a minimax (aka saddle point) problem.20

Conventionally, GANs are trained using variants of (stochastic) Gradient Descent Ascent (GDA)21

which are known to exhibit oscillatory behavior [39] and thus fail to converge even for simple bilinear22

saddle point problems, see [18]. We therefore propose the use of methods with provable convergence23

guarantees for (stochastic) convex-concave minimax problems, even though GANs are well known to24

not warrant these properties. Along similar considerations an adaptation of the Extragradient method25

(EG) [29] for the training of GANs was suggested in [15], whereas [11, 12, 31] studied Optimistic26

Gradient Descent Ascent (OGDA) based on optimistic mirror descent [48, 49]. We however investigate27

the Forward-Backward-Forward (FBF) method [55] from monotone operator theory, which uses two28

gradient evaluations per update, similar to EG, in order to circumvent the aforementioned issues but29

requires less projection/proximal steps per iteration.30

Instead of trying to improve GAN performance with new architectures, loss functions, etc., we31

want to improve their training by contributing to the study of minimax problems. While the landscape32

of GAN training is far from matching the rigorous setting of monotonicity, the nonconvex-nonconcave33

setting remains either intractable in its full generality [13] or other simplifying assumption or other34

simplifying assumptions have to be made, for example the existence of Minty solutions [37, 32], which35
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2 A. BÖHM, M. SEDLMAYER, E. R. CSETNEK AND R. I. BOŢ

are again related to monotonicity.36

We also want to point out that while extrapolation / optimistic steps are able to combat some of the37

oscillatory behaviour of minimax problems, another set of problems arises from the stochastic noise38

of the gradient evaluations which can be dealt with variance reduction techniques [8, 26] or reducing39

the stepsize (as we do). Other considerations have proposed to use the same sample in the for the two40

gradient evaluations leading to improved empirical performance [40]. Another approach was explored41

in [25] to use very different stepsizes for the descent and ascent steps respectively (something that has42

been observed to be very beneficial in practice as well). Known methods were outfitted with negative43

momentum to improve stability in [16]. An additional technique proposed to deal with the oscillatory44

behaviour of minimax problems called crossing-the-curl was suggested in [14], whose authors used45

second order information to take a step perpendicular to the direction of rotation.46

While our convergence results are stated in terms of the averaged iterates, a technique which can47

prove beneficial in practice [9, 15], having guarantees on the last iterate would be more in the spirit48

of nonconvex methods. Such results have been obtained in [11] and [8], but are for bilinear and49

strongly-convex-strongly-concave problems, respectively, which are known to allow for the derivation50

of better convergence rates. On the other hand the works [17, 33, 20] have been able to guarantee51

rates of convergence for the last iterate for convex-concave problems, but all of them only in the52

unconstrained setting. Furthermore [17] uses additional smoothness assumptions, [33] employs a53

second-order method and [20] uses the norm of the gradient as the measure of optimality.54

Contribution. Establishing the connection between GAN training and monotone inclusions moti-55

vates to use the FBF method, originally designed to solve this type of problems. This approach allows56

to naturally extend the constrained setting to a regularized one making use of the proximal operator.57

We also propose a variant of FBF reusing previous gradients to reduce the computational cost per58

iteration, which turns out to be a known method, related to OGDA. By developing a unifying scheme59

that captures FBF and a generalization of OGDA, we reveal a hitherto unknown connection. Using60

this approach we prove novel nonasymptotic convergence statements in terms of the minimax gap61

for both methods in the context of saddle point problems. In the deterministic and stochastic setting62

we obtain rates of O(1/k) and O(1/
√
k), respectively. Concluding, we highlight the relevance of our63

proposed method as well as the role of regularizers by showing empirical improvements in the training64

of Wasserstein GANs on the CIFAR10 dataset.65

Organization. This paper is structured as follows. In section 2 we highlight the connection of66

GAN training and monotone inclusions and give an extensive review of methods with convergence67

guarantees for the latter. The main results as well as a precise definition of the measure of optimality68

are discussed in section 3. Concluding, section 4 illustrates the empirical performance in the training69

of GANs as well as solving bilinear problems.70

2. GAN training as monotone inclusion. The GAN objective was originally cast as a two-71

player zero-sum game between the discriminator Dy and the generator Gx [19] given by72

min
x

max
y

Eρ∼q[log(Dy(ρ))] + Eζ∼p[log(1−Dy(Gx(ζ)))],73

exhibiting the aforementioned minimax structure. Due to problems with vanishing gradients in the74

training of such models, a successful alternative formulation called Wasserstein GAN (WGAN) [1] has75

been proposed. In this case the minimization tries to reduce the Wasserstein distance between the true76

This manuscript is for review purposes only.



GAN TRAINING WITH TSENG’S METHOD 3

distribution q and the one learned by the generator. Reformulating this distance via the Kantorovich77

Rubinstein duality leads to an inner maximization over 1-Lipschitz functions which are approximated78

via neural networks, yielding the saddle point problem79

min
x

max
y:‖Dy‖Lip≤1

Eρ∼q[Dy(ρ)]− Eζ∼p[Dy(Gx(ζ))].80

2.1. Convex-concave minimax problems. Due to the observations made in the previous81

paragraph we study the following abstract minimax problem82

(2.1) min
x∈Rd

max
y∈Rn

Ψ(x, y) := f(x) + Eξ∼Q [Φ(x, y; ξ)]− h(y),83

where the convex-concave coupling function Φ(x, y) := Eξ∼Q [Φ(x, y; ξ)], which hides the stochas-84

ticity for ease of notation, is differentiable with L-Lipschitz continuous gradient. The proper, convex85

and lower semicontinuous functions f : Rd → R∪ {+∞} and h : Rn → R∪ {+∞} act as regulariz-86

ers. A solution of (2.1) is given by a so-called saddle point (x∗, y∗) fulfilling for all x and y87

(2.2) Ψ(x∗, y) ≤ Ψ(x∗, y∗) ≤ Ψ(x, y∗).88

In the context of two-player games this corresponds to a pair of strategies, where no player can be89

better off by changing just their own strategy.90

For the purpose of this motivating section, we will restrict ourselves for now to the special case of91

the deterministic constrained version of (2.1), given by92

(2.3) min
x∈X

max
y∈Y

Φ(x, y),93

where f and h are given by indicator functions of closed convex sets X and Y , respectively. The94

indicator function δC of a set C is defined as δC(z) = 0 for z ∈ C and δC(z) = +∞ otherwise.95

2.2. Minimax problems as monotone inclusions. If the coupling function Φ is convex-96

concave and differentiable then solving (2.1) is equivalent to solving the first order optimality condi-97

tions which can be written as a so-called monotone inclusion with w = (x, y) ∈ Rm and m = d+ n,98

given by99

(2.4) 0 ∈ F (w) +NΩ(w).100

The entities involved are101

(2.5) F (x, y) := (∇xΦ(x, y),−∇yΦ(x, y)),102

and the normal cone NΩ of the convex set Ω := X × Y . The normal cone mapping is given by103

(2.6) NΩ(w) = {v ∈ Rm : 〈v, w′ − w〉 ≤ 0 ∀w′ ∈ Ω},104

for w ∈ Ω and NΩ(w) = ∅ for w /∈ Ω. Here, the operators F and NΩ satisfy well known properties105

from convex analysis [4], in particular the first one is monotone (and Lipschitz if ∇Φ is so) whereas106
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4 A. BÖHM, M. SEDLMAYER, E. R. CSETNEK AND R. I. BOŢ

the latter one is maximal monotone. We call a, possibly set-valued, operator A from Rm to itself107

monotone if108

(2.7) 〈u− u′, z − z′〉 ≥ 0 ∀u ∈ A(z), u′ ∈ A(z′).109

We say A is maximal monotone, if there exists no monotone operator A′ such that the graph of A is110

properly contained in the graph of A′.111

Problems of type (2.4) have been studied thoroughly in convex optimization, with the most estab-112

lished solution methods being Extragradient [29] and Forward-Backward-Forward [55]. Both meth-113

ods are known to generate sequences of iterates converging to a solution of (2.4). Note that in the114

unconstrained setting (i.e. if Ω is the entire space) both of these algorithms even produce the same115

iterates.116

2.3. Solving monotone inclusions. The connection between monotone inclusions and sad-117

dle point problems is of course not new. The application of Extragradient (EG) to minimax problems118

has been studied in the seminal paper [43] under the name of Mirror Prox and a convergence rate of119

O(1/k) in terms of the function values has been proven. Even a stochastic version of the Mirror Prox120

algorithm has been studied in [27] with a convergence rate ofO(1/
√
k). Applied to problem (2.4), with121

PΩ being the projection onto Ω, it iterates122

(2.8) EG:
⌊
wk = PΩ[zk − αkF (zk)]
zk+1 = PΩ[zk − αkF (wk)].

123

The Forward-Backward-Forward (FBF) method, introduced and convergence of the iterates estab-124

lished in [55], has not been studied rigorously for minimax problems in terms of function values yet,125

despite promising applications in [7] and its advantage of it only requiring one projection, whereas126

EG needs two. It is given by127

(2.9) FBF:
⌊
wk = PΩ[zk − αkF (zk)]
zk+1 = wk + αk(F (zk)− F (wk)).

128

Both, EG and FBF, have the “disadvantage” of needing two gradient evaluations per iteration. A129

possible remedy — suggested in [15] for EG under the name of extrapolation from the past — is to130

reuse previous gradients. In a similar fashion we consider131

(2.10) FBFp:
⌊
wk = PΩ[zk − αkF (wk−1)]
zk+1 = wk + αk(F (wk−1)− F (wk)),

132

where we replaced F (zk) by F (wk−1) twice in (2.9). As a matter of fact, the above method can be133

written exclusively in terms of the first variable wk by incrementing the index k in the first update and134

then substituting in the second line. This results in135

(2.11) wk+1 = PΩ

[
wk − αk+1F (wk) + αk(F (wk−1)− F (wk))

]
.136

This way we rediscover a known method which was studied in [36] and convergence of the iterates137

established for general monotone inclusions under the name of forward-reflected-backward. It reduces138

to optimistic mirror descent [48, 49] in the unconstrained case with constant step size αk = α, giving139

(2.12) wk+1 = wk − α(2F (wk)− F (wk−1))140
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which has been proposed for the training of GANs under the name of Optimistic Gradient Descent141

Ascent (OGDA), see [11, 12, 31]. Only recently a method very related to (2.11) was proposed in [10]142

and is characterized by applying the correction term after the projection143

(2.13) wk+1 = PΩ

[
wk − αF (wk)

]
− α(F (wk)− F (wk−1)).144

Evidently, in the unconstrained case and for constant stepsize the methods (2.10), (2.11), (2.12)145

and (2.13) are all equivalent.146

All of the above methods and extensions rely solely on the monotone operator formulation of the147

saddle point problem where the two components x and y play a symmetric role. Taking the special148

minimax structure into consideration, [22] showed convergence of a method that uses an optimistic149

step (2.12) in one component and a regular gradient step in the other, thus requiring less storing of past150

gradients in comparison to (2.11).151

On the downside, however, by reducing the number of required gradient evaluations per iteration,152

the largest possible step size is reduced from 1/L (see [29] or section 3) to 1/2L (see [15, 36, 35] or153

section 3). To summarize, the number of required gradient evaluations is halved, but so is the step154

size, resulting in no clear net gain.155

2.4. Regularizers. The role of regularizers is well studied in many fields such as statistics [54],156

signal processing [45] or inverse problems [52]. They serve different purposes such as inducing spar-157

sity in the solution or conditioning of the problem. In the context of deep learning this has been158

explored from different perspectives, e.g. in incremental convex neural networks where neurons with159

zero weights are removed from the network and new ones are inserted according to different poli-160

cies, see [2, 5, 51, 46]. Other examples include the box-constraints for WGANs with weight clipping161

(see [1]) or spectral normalization (see [41]) which has so far rather been considered as part of the162

architecture, but could at the same time be seen as a regularization step or as a projection onto the set163

of matrices with spectral norm less than 1 (again not rigorously).164

In the framework of monotone operator theory the optimality condition of the regularized minimax165

problem (2.1) can be written as166

(2.14) 0 ∈ F (w) + ∂r(w),167

where r is given by (x, y) 7→ f(x) + h(y). The possibly set-valued operator ∂r denotes the subdiffer-168

ential of r and is given by169

(2.15) ∂r(w) := {v ∈ Rm : 〈v, w′ − w〉+ r(w) ≤ r(w′) ∀w′ ∈ Rm}.170

The monotone inclusion (2.14) generalizes (2.4) in a natural way, since NΩ = ∂δΩ. Similarly, the171

projection constitutes a special case of the so-called proximal mapping which for the function r and172

λ > 0 is given by173

(2.16) proxλr (w) := arg min
w′∈Rm

{
r(w′) +

1

2λ
‖w′ − w‖2

}
.174

In particular, the proximal mapping of the indicator δΩ yields the projection onto the set Ω, i.e.175

proxλδΩ = PΩ.176
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3. Main results. Motivated by the considerations above we study the inclusion problem177

(3.1) 0 ∈ F (w) + ∂r(w),178

where F : Rm → Rm is a monotone and Lipschitz operator and r : Rm → R ∪ {+∞} is a proper179

convex lower semicontinuous function.180

3.1. Measure of optimality. There are two common quantities measuring the quality of a point181

with respect to the monotone inclusion (2.14). The most natural one is the distance to the solution set182

for which typically only asymptotic convergence can be proved. If F arises from a saddle point183

problem (2.1) meaning that F has the form (2.5), we want to use a more problem specific measure,184

the minimax gap, which for a point w = (u, v) ∈ Rd × Rn is given by185

(3.2) sup
y∈Rn

Ψ(u, y)− inf
x∈Rd

Ψ(x, v)
(

= sup
x∈Rd,y∈Rn

Ψ(u, y)−Ψ(x, v)
)
.186

This minimax gap can be interpreted from a game theoretic standpoint as the sum of the maximal187

payoffs achievable by the two players by playing their respective best responses, given the current188

strategy of the opponent. In the more general monotone inclusion setting where no function values are189

available, an appropriate generalization of (3.2) is given for any w ∈ Rm by190

(3.3) sup
z∈Rm

〈F (z), w − z〉+ r(w)− r(z).191

If r is the indicator δΩ of the compact and convex set Ω it is clear that the supremum is only taken over192

z ∈ Ω and will thus be finite.193

The restricted gap. Since the problem (3.1) is in general unconstrained and the supremum can be194

infinite we consider instead, as done for example in [44], the restricted gap where the above supremum195

is taken over an auxiliary compact set B ⊂ Rm instead of the entire space. Note that the restricted gap196

is in general only a reasonable measure of optimality for elements of B. It is nonnegative on B and197

zero for points of B which solve (3.1). Additionally we want to be able to conclude that if a point w∗198

has zero gap it solves (3.1). This is for example the case if w∗ is in the interior of B, which can always199

be ensured if B is chosen large enough.200

In order to capture both at the same time we define the following unifying gap201

(3.4) GB(w) :=

{
sup(x,y)∈B Ψ(u, y)−Ψ(x, v) if F and r come from (2.1)
supz∈B 〈F (z), w − z〉+ r(w)− r(z) otherwise.

202

3.2. Methods. We now present a novel unifying scheme for solving problem (3.1), which gen-203

eralizes FBF (2.9) and in addition recovers the method motivated in (2.10) as FBFp. Let us point out204

again that the latter algorithm was already introduced in [36] and corresponds to OGDA [48, 11, 12]205

if F stems from the minimax setting (2.5).206

Algorithm 3.1 (generalized FBF). For a starting point z0 ∈ Rm and step sizes αk > 0 we207

consider for all k ≥ 0208

(3.5)
⌊
wk = proxαkr

(zk − αkF (♦k))
zk+1 = wk + αk(F (♦k)− F (wk)).

209

For ♦k = zk this reduces to the well known FBF method, whereas ♦k = wk−1, with the additional210

initial condition w−1 = z0, recycles previous gradients (FBFp).211
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Consider the scenario where F is given as an expectation Eξ[F (· ; ξ)], e.g. coming from (2.1), and only212

a stochastic estimator F (· ; ξ) is accessible instead of F itself. In this case we adapt Algorithm 3.1 in213

the following way.214

Algorithm 3.2 (generalized stochastic FBF). For a starting point z0 ∈ Rm and step sizes215

αk > 0 we consider for all k ≥ 0216  ξk ∼ Q (optionally ηk ∼ Q)
wk = proxαkr

(zk − αkF (♦k;4k))
zk+1 = wk + αk(F (♦k;4k)− F (wk; ξk)).

217

For ♦k = zk and4k = ηk this results in a stochastic version of FBF, whereas ♦k = wk−1 and4k =218

ξk−1 recycles previous gradients (stochastic FBFp) with the additional initial condition w−1 = z0 and219

ξ−1 = η0.220

Even though both methods encompassed by the unifying scheme Algorithm 3.1 have been studied221

in the deterministic setting before, the stated convergence results are new. Note that while the rate222

for FBF is completely new our result for FBFp provides only a generalization of the known rate for223

OGDA, see [42]. Similarly, the stochastic version of FBF has been considered before in [6] and rates224

have been obtained, but only in terms of the fixed point residual and not the function values. However,225

we want to point out that the stochastic version of FBFp has not been considered prior to this work.226

3.3. Convergence. Let in the following B ⊂ Rm be the compact set of the restricted (unify-227

ing) gap function (3.4) with D := supw,z∈B ‖z − w‖ denoting its diameter. For convenience in the228

estimation we assume that the starting point z0 of the discussed methods is in B. Recall that L ≥ 0229

denotes the Lipschitz constant of the operator F .230

Theorem 3.3 (deterministic). Let (wk)k≥0 be the sequence generated by Algorithm 3.1. If231

(i) FBF, i.e. ♦k = zk, with step size αk = α ≤ 1/L, or232

(ii) FBFp, i.e. ♦k = wk−1, with step size αk = α ≤ 1/2L233

is chosen, then for all K ≥ 1 the averaged iterates w̄K := 1
K

∑K−1
k=0 wk fulfill234

(3.6) GB(w̄K) ≤ D2

2αK
,235

where GB is the restricted gap defined in (3.4).236

The proof of the theorem relies on standard techniques making use of the monotinicity of the operator237

F where we are able to show that the distance to the solution set decreases in every iteration up to an238

additive error of239

(3.7) − ‖zk − wk‖2 + α2
kL

2‖♦k − wk‖.240

Depending on which iterate we use for ♦k we choose the stepsize α2
k such that the two terms cancel241

and obtain the desired result.242

In order to derive similar convergence statements for the stochastic algorithm we need to assume243

(standard) properties of the gradient estimator F (· ; ξ).244

Assumption 3.4. Unbiasedness: Eξ[F (w; ξ)] = F (w)∀w ∈ Rm.245
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Assumption 3.5. Bounded variance: Eξ[‖F (w; ξ)− F (w)‖2] ≤ σ2 ∀w ∈ Rm.246

We want to point out that the latter assumption is weaker than the commonly used bounded247

(sub)gradient hypothesis (Eξ[‖F (w; ξ)‖2] ≤ σ2), which is known to conflict with properties like248

strong monotonicity, see [34].249

In particular we actually only need the above assumption to hold for all iterates wk. Such an250

hypothesis is in practice difficult to check, but could be exploited in special cases where additional251

properties of the variance and boundedness of the iterates are known a priori.252

Assumption 3.6. The samples ξk are independent of the iterates wk, for all k ≥ 0.253

Equipped with these assumptions we are now able to prove the statement.254

Theorem 3.7 (stochastic). Let Assumptions 3.4 to 3.6 hold and let (wk)k≥0 be the sequence255

generated by Algorithm 3.2. If256

(i) stochastic FBF, i.e. ♦k = zk and4k = ηk, with step size αk ≤ α ≤ 1/
√

2L, or257

(ii) stochastic FBFp, i.e. ♦k = wk−1 and4k = ξk−1, with step size αk ≤ α ≤ 1/3L258

is chosen, then for all K ≥ 1 the averaged iterates w̄K :=
∑K−1

k=0 αkwk∑K−1
k=0 αk

fulfill259

(3.8) E[GB(w̄K)] ≤
D2 + 24σ2

∑K−1
k=0 α2

k∑K−1
k=0 αk

,260

where GB is the restricted gap defined in (3.4).261

The above theorem exhibits a classical step size dependence [50], yielding convergence for sequences262

(αk)k≥0 that are square summable
∑∞

k=0 α
2
k < +∞ but not summable

∑∞
k=0 αk = +∞. Addition-263

ally, if in the setting of Theorem 3.7 the step size is chosen to be αk = α/
√
k + 1, a convergence rate264

can be obtained and is given by265

(3.9) E[GB(w̄K)] = O
( 1√

K

)
.266

If the step size does not go to zero, the gap can usually not be expected to vanish either. However,267

we can still show decrease in the gap up to a residual stemming from the variance. In particular, for a268

constant step size αk = α we have269

(3.10) E[GB(w̄K)] ≤ D2

αK
+ 24σ2α.270

Additionally, if the number of iterations K is fixed beforehand, a conclusion similar to (3.9) can be271

obtained by choosing α = 1/
√
K in (3.10).272

4. Experiments. The aim of this section is to show how the use of methods with convergence273

guarantees, albeit only in the monotone setting, can yield better training performance for different274

architectures and objectives. In particular, we demonstrate that FBF can perform at least as good as275

EG although requiring less evaluations of the regularizers.276
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4.1. 2D toy example. Following [18, 38] and others we consider the example minx maxy xy,277

illustrating the cycling behavior of (even bilinear) minimax problems. We augment this approach by278

adding a nonsmooth L1-regularizer for one player, with κ > 0, and constraints for the other, resulting279

in280

(4.1) min
x∈R

max
y∈[−1,1]

κ|x|+ xy.281

The aforementioned issue of GDA (and its proximal extension PGDA) cycling around the solution282

is highlighted in Figure 1. The other methods, for which we display the averaged iterates, however do283

converge to a solution and show a decrease in the restricted gap according to Theorem 3.3. Interest-284

ingly, the two methods using extrapolation from the past seem to exhibit a more monotone decrease285

than FBF or EG.286
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(a) Trajectories converging to solution.
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(b) Restricted gap function.

Figure 1: A comparison of the methods presented in subsection 2.3 applied to problem (4.1) with
κ = 0.01. PGDA denotes (alternating) gradient descent ascent with proximal steps. As mentioned
in the introduction it fails to converge (without averaging of the iterates). EGp denotes the method
presented in [15] as extrapolation from the past. For the restricted gap we use B1 = B2 = [−1, 1].

4.2. WGAN trained on CIFAR10. We now apply the above proposed techniques from mono-287

tone inclusions to the training of Wasserstein GANs employing DCGAN [47] and ResNet [23] archi-288

tectures. All models are trained on the CIFAR10 dataset [30] which consists of 60,000 images in 10289

different classes (with 50,000 training images and 10,000 test images) using an NVIDIA RTX 2080Ti290

GPU.291

For the DCGAN experiments we work with the original WGAN formulation including weight292

clipping, since it includes regularizers innately (the indicator of a box for the weights of the discrim-293

inator). In addition we propose a modification of the WGAN formulation which replaces the box294

constraint on the discriminator’s weights with an L1-regularization, under the name of WGAN-L1.295

This results in a soft thresholding operation instead of the “harsh” clipping.296

For the experiments on ResNet we use the WGAN-GP formulation [21] which penalizes the norm297
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10 A. BÖHM, M. SEDLMAYER, E. R. CSETNEK AND R. I. BOŢ

of the gradient of the discriminator to enforce the Lipschitz constraint, together with spectral normal-298

ization of the weight matrices [41] which can be seen as a projection as argued in subsection 2.4.299

Table 1: The best Inception Score (IS)1 and Fréchet Inception Distance (FID). The column denoted
by WGAN, WGAN-L1 and WGAN-GP refers to the standard formulation with weight clipping, our
regularized implementation using the 1-norm and the formulation with gradient penalty and spectral
normalization, respectively.

WGAN WGAN-L1 WGAN-GP

IS FID IS FID IS FID
Method
AltAdam1 4.12±.06 56.44±.62 4.43±.03 50.86±2.17 6.01±.31 28.11±3.65
Extra Adam 4.07±.05 56.67±.61 4.67±.11 47.24±1.21 6.58±.08 21.40±.58
FBF Adam 4.54±.04 45.85±.35 4.68±.16 46.60±.76 6.57±.10 21.22±1.29
Opt. Adam 4.35±.06 50.41±.46 4.63±.13 47.98±1.49 6.42±.10 23.01±.95

Given the ubiquity and dominance of Adam [28] as an optimizer for many deep learning related300

training tasks, instead of using vanilla SGD we opt for Adam updates. This results in a method we call301

FBF Adam. Analogous approaches have been applied in [15] and [11] resulting in Extra Adam and302

Optimistic Adam, respectively. We compare the aforementioned methods with the status-quo in GAN303

training, namely alternating one Adam step for each network: AltAdam1.304

Our hyperparameter search was limited to the step sizes when using the WGAN-L1 and WGAN-305

GP formulation, while all other parameters were kept the same as in [15, 7]. Note that we still report306

different values for the IS because we used the updated implementation [3]. It seems noteworthy that in307

the case of soft thresholding bigger step sizes performed better with the only exception of AltAdam1.308

The two evaluation metrics used are the Inception Score (IS, higher is better) [53] and the Fréchet309

inception distance (FID, lower is better) [24], both computed on 50,000 samples.310

In Table 1 the best IS1 and FID for each method are reported. FBF Adam performs at least as good311

as all considered competitors with respect to both evaluation metrics. One can also see that WGAN-L1312

using the proximal operator improves the performance of all considered methods. Figure 2 shows the313

training progress regarding IS for each method and both problem formulations. The graphs suggest314

that making use of WGAN-L1 objective has a stabilizing effect during training, leading to a smoother315

and more consistent learning curve — a property that only FBF Adam seems to exhibit for weight316

clipping. Figure 3 as well as Table 1 show that for the WGAN-GP formulation FBF Adam maintains317

the improved performance of EG compared to GDA, while only requiring half the amount of spectral318

normalizations, resulting in time savings of up to 10% as reported in [41]. An even greater improve-319

ment by using FBF can be seen in Table 2 where we additionally consider the averaged iterates using320

an exponential moving average (EMA). As observed by others [15], this can have a very beneficial321

effect.322

5. Conclusion. By highlighting the connection between GAN objectives and monotone inclu-323

sions, we are able to tackle their training via the Forward-Backward-Forward method which is known324

1In the case of the IS we use the updated and corrected implementation from [3], leading to lower reported values.
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Table 2: Fréchet Inception Distance (FID) of regular iterates and averaged iterates using an exponential
moving average (EMA), from training a ResNet with WGAN-GP formulation.

WGAN-GP

non avg. EMA best
Method
AltAdam1 28.11±3.65 — —
Extra Adam 21.40±.58 18.29±0.26 17.86
FBF Adam 21.22±1.29 17.58±0.73 16.65
Opt. Adam 23.01±.95 21.00±1.33 19.28

(a) IS for WGAN (weight clipping). (b) IS for WGAN-L1 (proximal operator).

Figure 2: DCGAN performance. (a): Average and best/worst IS1 on the WGAN objective with
weight clipping. (b): Average and best/worst IS on the WGAN-L1 objective using the proximal oper-
ator (soft thresholding); The WGAN-L1 objective improves the IS in comparison to weight clipping
and stabilizes the behavior of all considered methods during the training procedure.

to converge to a solution for convex-concave minimax problems. We extend this theoretical under-325

standing by proving novel convergence rates in terms of the function values and highlighting the326

connection to other known methods like OGDA. We complement these rigorous considerations by327

promising practical results, indicating that application of FBF can lead to improved performance and328

saved computation time (compared to EG).329

Appendix A. Definitions.330

In subsection 2.4 we require the regularizers to be proper, convex and lower semicontinuous which331

are common properties in convex analysis. We call a function r : Rm → R∪{+∞} proper if it is not332

constant +∞, which means that it takes a finite value for at least a single point. In addition, we say333

that r is lower semicontinuous if for all z0 ∈ Rm334

(A.1) lim inf
z→z0

r(z) ≥ r(z0).335

This manuscript is for review purposes only.



12 A. BÖHM, M. SEDLMAYER, E. R. CSETNEK AND R. I. BOŢ

(a) Inception Score. (b) Generator sample. (c) FID.

Figure 3: ResNet performance. Average and best/worst results regarding IS1 and FID, see (a) and (b)
respectively, using ResNet architecture on the WGAN-GP objective including spectral normalization.
(c): Samples from the generator trained with FBF Adam.

It is easy to see that if C ⊂ Rm is nonempty, closed and convex, then the indicator δC of this set, given336

by337

(A.2) δC(z) =

{
0 if z ∈ C
+∞ otherwise

338

fulfills the assumptions of being proper, convex and lower semicontinuous.339

Appendix B. About the gap function.340

Typically in monotone inclusions, the distance to the set of solutions is used as a measure of341

quality of a given point due to the lack of more specific structure in general. Asymptotic convergence342

of the iterates has been established for FBF and FBFp in [4, Proposition 27.13] and [36], respectively.343

Furthermore, no convergence rates can be expected without stronger monotonicity assumptions. We344

want to take into account the special structure of the monotone inclusion coming from the minimax345

problem (2.1). For this reason we use the following (restricted) minimax gap, common for saddle point346

problems, which for a point (u, v) is given by347

(B.1) GB(u, v) = sup
(x,y)∈B

Ψ(u, y)−Ψ(x, v).348

For the general case, i.e. F being an arbitrary monotone and Lipschitz operator this is connected to349

the other measure of optimality we use in (3.4), for w ∈ Rm given by350

(B.2) GB(w) = sup
z∈B
〈F (z), w − z〉+ r(w)− r(z),351

where we interpret the possible occurrence of∞−∞ as +∞. It stems from the field of Variational352

Inequalities where such a function is also known as merit function [44]. The relevance of the above353

two quantities will be made clear by the following statements.354

Theorem B.1. Let Φ : Rd × Rn → R be continuously differentiable and f : Rd → R ∪ {+∞},355

h : Rn → R∪{+∞} be proper, convex and lower semicontinuous andB ⊂ Rd×Rn. A point (x∗, y∗)356

in the interior of B solves the saddle point problem (2.1) if and only if its minimax gap (B.1) is zero,357

GB(x∗, y∗) = 0. For all other elements of B the gap is nonnegative.358
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Proof. A saddle point (x∗, y∗) clearly fulfills that sup(x,y)∈Rd×Rn Ψ(x∗, y) − Ψ(x, y∗) = 0. On359

the other hand let GB(x∗, y∗) = 0. For an arbitrary point (x, y) we can choose α ∈ (0, 1) large360

enough such that (u, v) := α(x∗, y∗) + (1− α)(x, y) is in the interior of B. Therefore,361

(B.3) Ψ(x∗, v)−Ψ(u, y∗) = Ψ(x∗, αy∗ + (1− α)y)−Ψ(αx∗ + (1− α)x, y∗) ≤ 0.362

Using the convex-concave structure of Ψ we deduce that363

(B.4) αΨ(x∗, y∗) + (1− α)Ψ(x∗, y)− αΨ(x∗, y∗)− (1− α)Ψ(x, y∗) ≤ 0,364

which implies that Ψ(x∗, y) ≤ Ψ(x, y∗). Since (x, y) was chosen arbitrary (x∗, y∗) is a saddle point.365

Similarly, an analogous statement can be shown for (B.2). The proof, however is split up into366

multiple lemmas to highlight the connection to Variational Inequalities.367

Theorem B.2. Let F : Rm → Rm be monotone and continuous, r : Rm → R ∪ {+∞} proper,368

convex and lower semicontinuous and B ⊂ Rm. A point w∗ in the interior of B solves the monotone369

inclusion370

(B.5) 0 ∈ F (w) + ∂r(w)371

if and only if its restricted gap (B.2) is zero, GB(w∗) = 0. For all other elements of B the gap is372

nonnegative.373

Let the assumptions of Theorem B.2 hold true for the following lemmas as we break up the proof into374

separate statements. We do so by making use of the associated Variational inequality (VI)375

(B.6) find w such that 〈F (w), z − w〉+ r(z)− r(w) ≥ 0 ∀z ∈ Rm.376

377

Lemma B.3. The monotone inclusion (B.5) is equivalent to the VI (B.6).378

Proof. The equivalence of (B.5) and (B.6) follows immediately from the definition of the subdif-379

ferential of r.380

The formulation (B.6) is typically referred to as the strong form of the VI, whereas381

(B.7) find w such that 〈F (z), z − w〉+ r(z)− r(w) ≥ 0 ∀z ∈ Rm,382

is known as the weak formulation.383

Lemma B.4. Under the given assumptions the notion of weak and strong VI are equivalent.384

Proof. For the monotone operator F it is clear that if w∗ is a solution to the strong formula-385

tion (B.6), it is also a solution to the weak formulation (B.7). In fact, if F is continuous the reverse im-386

plication also holds true. To see this, letw∗ be a solution to the weak VI (B.7) and z = αw∗+(1−α)u387

for an arbitrary u ∈ Rm and α ∈ (0, 1), then388

(B.8) 〈F (αw∗ + (1− α)u), (1− α)(u− w∗)〉+ r(αw∗ + (1− α)u)− r(w∗) ≥ 0.389

This implies by the convexity of r that390

(B.9) (1− α)〈F (αw∗ + (1− α)u), (u− w∗)〉+ (1− α)(r(u)− r(w∗)) ≥ 0.391

By dividing by (1 − α) and then taking the limit α → 1 we obtain that w∗ is a solution of the strong392

form (B.6).393
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With the notion of VIs in mind, the above defined gap (B.2) becomes natural as it measures how much394

the statement of (B.7) is violated.395

Lemma B.5. GB is nonnegative on B and zero for solutions of the weak VI.396

Proof. It is clear that GB(w) ≥ 0 for w ∈ B as z = w can be chosen in the supremum. On the397

other hand if w∗ ∈ B is a solution to the weak VI (B.7) then GB(w∗) = 0. This follows from the fact398

that for a solution of (B.7) for all z ∈ B399

(B.10) 〈F (z), w∗ − z〉+ r(w∗)− r(z) ≤ 0.400

Therefore the supremum over the above expression in z is also less than zero, but clearly zero is401

obtained for z = w∗.402

For the reverse implication to hold true, we may not use points on the boundary of B.403

Lemma B.6. If a point w∗ in the interior ofB exhibits zero gapGB(w∗) = 0, then it is a solution404

to the weak VI (B.7).405

Proof. Since w∗ is in the interior of B we can, for an arbitrary w ∈ Rm, choose α ∈ (0, 1) large406

enough such that z := αw∗+ (1−α)w ∈ B. Using this z in the supremum of the gap we deduce that407

(B.11) 〈F (αw∗ + (1− α)w), w∗ − αw∗ − (1− α)w〉+ r(w∗)− r(αw∗ + (1− α)w) ≤ 0.408

This implies that409

(B.12) (1− α)〈F (αw∗ + (1− α)w), w − w∗〉+ (1− α)(r(w)− r(w∗)) ≥ 0.410

By dividing by (1− α) and then taking the limit α → 1 we deduce that w∗ solves the strong form of411

the VI (B.6).412

Now, we can turn to proving the theorem.413

Proof of Theorem B.2. Combine Lemmas B.3 to B.6.414

Appendix C. Refined theorems. Recall that restricted (unifying) gap function GB defined415

in (3.4) is computed with respect to a setB ⊂ Rm whereD := supw,z∈B ‖z−w‖ denotes its diameter416

and it is assumed that z0 ∈ B. Furthermore, the averaged iterates w̄K for K ≥ 1 are given by417

(C.1) w̄K :=

∑K−1
k=0 αkwk∑K−1
k=0 αk

.418

C.1. Deterministic statements. The convergence statement of Theorem 3.3 actually holds419

true not just for a constant step size as presented in section 3, but for variable step sizes as well.420

Theorem C.1. Let (wk)k≥0 be the sequence generated by Algorithm 3.1. If421

(i) FBF, i.e. ♦k = zk, with step size 0 < αk ≤ α ≤ 1/L, or422

(ii) FBFp, i.e. ♦k = wk−1, with step size 0 < αk ≤ α ≤ 1/2L423

is chosen, then for all K ≥ 1424

(C.2) GB(w̄K) ≤ D2

2
∑K−1

k=0 αk
.425
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C.2. Stochastic statements. We actually prove a slightly more general version of Theo-426

rem 3.7. In particular the step size can be chosen larger than initially claimed, however, at the cost of427

a worse constant.428

Theorem C.2. Let Assumptions 3.4 to 3.6 hold and let (wk)k≥0 be the sequence generated by429

FBF, i.e. Algorithm 3.2 with ♦k = zk and4k = ηk. Let the step size αk ≤ α < 1
L , then430

(C.3) E[GB(w̄K)] ≤
D2 + 4(1− α2L2)

−1
σ2
∑K−1

k=0 α2
k

2
∑K−1

k=0 αk
,431

for all K ≥ 1.432

Theorem 3.7 (i) can be deduced from the above statement by using α = 1/
√

2L which yields that433

(1− α2L2)
−1

= 2.434

Theorem C.3. Let Assumptions 3.4 to 3.6 hold and let (wk)k≥0 be the sequence generated by435

FBFp, i.e. Algorithm 3.2 with ♦k = wk−1 and4k = ξk−1. Let the step size αk ≤ α < 1
2
√

2L
, then436

(C.4) E[GB(w̄K)] ≤
D2 + 6

(
1 + 4α2L2

1−8α2L2

)
σ2
∑K−1

k=0 α2
k∑K−1

k=0 αk
,437

for all K ≥ 1.438

Theorem 3.7 (ii) is obtained from the above theorem by using the particular step size bound of439

α = 1/3L, which yields that440

(C.5)
4α2L2

1− 8α2L2
= 4.441

Although, the step size in the refined statements Theorems C.2 and C.3 can be chosen arbitrarily442

close to 1/L and 1/(2
√

2L) for stochastic FBF and stochastic FBFp, respectively. This does not mean it443

should be — since the constant in the convergence rate deteriorates when the step size is close to its444

allowed upper bound.445

Appendix D. Proofs.446

D.1. Preparations. We introduce the notation connected to the strong formulation of the VI (B.6)447

associated to the monotone inclusion (3.1), given by448

(D.1) g(w, z) := 〈F (w), w − z〉+ r(w)− r(z),449

for g : Rm × Rm → R ∪ {+∞}. Next we will establish the fact that this function can be used to450

bound the (restricted) unifying gap function, which we remind, is defined as451

(D.2) GB(w) =

{
sup(x,y)∈B Ψ(u, y)−Ψ(x, v) if F is (2.5)
supz∈B 〈F (z), w − z〉+ r(w)− r(z) otherwise,

452

where in the first case (u, v) ∈ Rd×Rn is identified with w ∈ Rm. In particular the dimensions fulfill453

d+ n = m, and r(w) is given by f(u) + h(v).454
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Lemma D.1. It holds that for all K ≥ 1455

(D.3) sup
z∈B

{
1∑K−1

k=0 αk

K−1∑
k=0

αkg(wk, z)

}
≥ GB(w̄K).456

Proof. First we will prove the case if F is derived from a saddle point problem. Note that from457

the convex-concave structure of Φ we get that458

(D.4) Φ(u, y) ≤ Φ(u, v) + 〈∇yΦ(u, v), y − v〉459

and460

(D.5) Φ(u, v) + 〈∇xΦ(u, v), x− u〉 ≤ Φ(x, v).461

By summing the two up we obtain462

(D.6) Φ(u, y)− Φ(x, v) ≤
〈
−∇xΦ(u, v), x− u
∇yΦ(u, v), y − v

〉
.463

We can reformulate the above inequality in terms of g to see that for z = (x, y) ∈ Rd × Rn464

(D.7) 〈F (w), w − z〉 ≥ Φ(u, y)− Φ(x, v).465

The statement of the first case is obtained by adding r(w)− r(z) on both sides and using the fact that466

Ψ is convex-concave.467

If F is a general monotone operator, then we use its monotonicity to deduce that468

(D.8) 〈F (w), w − z〉 ≥ 〈F (z), w − z〉.469

The desired result follows from using the linearity of the inner product.470

Notation. We denote the error of the stochastic estimator via471

(D.9) Zk := F (♦k;4k)− F (♦k) and Wk := F (wk; ξk)− F (wk).472

Furthermore, we will denote via E[ · |U ], the conditional expectation with respect to the random vari-473

able U .474

We will also need the following lemma.475

Lemma D.2. Let (pk)k≥0 ∈ Rd be a given sequence and (vk)k≥0 recursively defined for all476

k ≥ 0 by vk+1 := vk − pk for some v0 ∈ Rd, then477

(D.10)
K−1∑
k=0

〈pk, vk − u〉 ≤
1

2
‖v0 − u‖2 +

1

2

K−1∑
k=0

‖pk‖2.478

Proof. From the three point identity it follows immediately that479

(D.11) 〈pk, vk − u〉 = 〈vk − vk+1, vk − u〉 =
1

2

(
‖vk − u‖2 − ‖vk+1 − u‖2 + ‖vk+1 − vk‖2

)
480

from which the statement of the lemma follows.481
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D.2. A unified decrease result. We will start with a unifying proposition which covers the482

common parts of all convergence proofs.483

Proposition D.3. For a γ > 0 we have that for all k ≥ 0 and z ∈ Rm484

(D.12)

αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
‖zk − wk‖2 +

1

2
(1 + γ)α2

kL
2‖♦k − wk‖2

+ αk 〈Wk, z − wk〉+ (1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).

485

Proof. Let k ≥ 0 and z ∈ Rm be arbitrary. Using the decomposition (D.9) it follows that486

(D.13) 〈αkF (wk; ξk), wk − z〉 = αk〈Wk, wk − z〉+ αk〈F (wk), wk − z〉.487

Since proxαkr
= (Id + αk∂r)

−1 we deduce that488

(D.14) 〈z − wk, wk − zk + αkF (♦k;4k)〉 ≥ αk(r(wk)− r(z)).489

Adding (D.13) and (D.14) gives that490

(D.15) 〈αk(F (wk; ξk)− F (♦k;4k)) + zk − wk, wk − z〉 ≥ αk 〈Wk, wk − z〉+ αkg(wk, z),491

which, using the definition of zk+1, is equivalent to492

(D.16) 〈z − wk, zk+1 − zk〉 ≥ αk〈Wk, wk − z〉+ αkg(wk, z).493

We estimate the inner product on the left side of the inequality by inserting and subtracting zk and494

using the three point identity twice to deduce495

(D.17)
〈z − wk, zk+1 − zk〉 = 〈z − zk + zk − wk, zk+1 − zk〉

=
1

2

(
‖z − zk‖2 − ‖zk+1 − z‖2 + ‖zk+1 − wk‖2 − ‖zk − wk‖2

)
.

496

The first two summands are fine as they will telescope, so we are left with estimating ‖zk+1 − wk‖2.497

By the definition of zk+1 we have that498

(D.18)

‖zk+1 − wk‖2 = α2
k‖F (♦k;4k)− F (wk; ξk)‖2

= α2
k‖F (♦k)− F (wk) + Zk −Wk‖2

≤ (1 + γ)α2
k‖F (♦k)− F (wk)‖2 + (1 + γ−1)α2

k‖Zk −Wk‖2

≤ (1 + γ)α2
kL

2‖♦k − wk‖2 + 2(1 + γ−1)α2
k(‖Zk‖2 + ‖Wk‖2),

499

where we inserted and subtracted F (♦k) and F (wk) and applied Young’s inequality to deduce the500

result. Adding (D.18), (D.17) and (D.16) we conclude that501

(D.19)

αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
‖zk − wk‖2 +

1

2
(1 + γ)α2

kL
2‖♦k − wk‖2

+ αk 〈Wk, z − wk〉+ (1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).

502
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D.3. Forward-Backward-Forward.503

Proof for deterministic FBF, Theorem C.1 (i). We start off by plugging ♦k = zk into (D.12).504

Since Wk = Zk = 0 we can use γ → 0 to deduce that for all k ≥ 0505

(D.20) αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
(1− α2

kL
2)‖zk − wk‖2.506

From this it is clear that the step size is constrained by α ≤ 1/L as stated in the theorem. By summing507

up from k = 0 to K − 1 and dividing by
∑K−1

k=0 αk we obtain508

(D.21)
1∑K−1

k=0 αk

K−1∑
k=0

αkg(wk, z) ≤
‖z0 − z‖2

2
∑K−1

k=0 αk
.509

The claimed statement is then derived by taking the supremum in z overB and applying Lemma D.1.510

Proof for stochastic FBF, Theorem C.2. Plugging ♦k = zk and4k = ηk into (D.12) gives for all511

k ≥ 0512

(D.22)

αkg(wk, z) +
1

2
‖zk+1 − z‖2

≤ 1

2
‖zk − z‖2 −

1

2
(1− (1 + γ)α2

kL
2)‖zk − wk‖2 + αk 〈Wk, z − vk〉

+ αk 〈Wk, vk − wk〉+ (1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).

513

By summing this inequality up and applying Lemma D.2 with v0 = z0, pk = −αkWk and vk+1 :=514

vk − pk we deduce that515

(D.23)
K−1∑
k=0

〈−αkWk, vk − z〉 ≤
1

2
‖z0 − z‖2 +

1

2

K−1∑
k=0

α2
k‖Wk‖2,516

and therefore517

(D.24)
K−1∑
k=0

αkg(wk, z) ≤ ‖z0 − z‖2 +
K∑
k=0

αk 〈Wk, vk − wk〉+ 2(1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).518

By choosing γ such that α = (
√

1 + γL)
−1 we deduce that 1 + γ−1 = 1/(1− α2L2). Next, we take519

the supremum over z ∈ B and the expectation to obtain520

(D.25) E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]
≤ D2 + 4(1− α2L2)

−1
σ2

K−1∑
k=0

α2
k,521

where we used that522

(D.26)
E[〈Wk, vk − wk〉] = E

[
E
[
〈Wk, vk − wk〉

∣∣w[k], ξ[k−1]

]]
= E

[〈
E
[
Wk

∣∣w[k], ξ[k−1]

]
, vk − wk

〉]
= 0,

523

with ξ[k−1] = (ξ0, . . . , ξk−1) and w[k] = (w0, . . . , wk). The final statement follows by dividing by524 ∑K−1
k=0 αk and applying Lemma D.1.525
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D.4. Forward-Backward-Forward-past.526

Proof for deterministic FBFp, Theorem C.1 (ii). We start off by plugging ♦k = zk into (D.12).527

Since Wk = Zk = 0 we can use γ → 0 to conclude that for all k ≥ 0528

(D.27) αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
‖zk − wk‖2 +

1

2
α2
kL

2‖wk−1 − wk‖2.529

Now we need to bound the term ‖wk−1 − wk‖2 by ‖zk − wk‖2. Since530

(D.28) 2‖zk − wk‖2 + 2‖zk − wk−1‖2 ≥ ‖wk − wk−1‖2531

we have for all k ≥ 1532

(D.29)
‖zk − wk‖2 ≥ −‖zk − wk−1‖2 +

1

2
‖wk−1 − wk‖2

≥ −α2
k−1L

2‖wk−1 − wk−2‖2 +
1

2
‖wk−1 − wk‖2

533

whereas for k = 0, since w−1 = z0, we have that534

(D.30) ‖z0 − w0‖2 = ‖w−1 − w0‖2.535

Plugging (D.30) into (D.27) for k = 0 we get that536

(D.31) α0g(w0, z) +
1

2
‖z1 − z‖2 +

1

2
(1− α2

0L
2)‖w0 − w−1‖2 ≤

1

2
‖z0 − z‖2.537

Plugging (D.29) into (D.27) we get that for all k ≥ 1538

(D.32)
αkg(wk, z) +

1

2
‖zk+1 − z‖2 +

1

2

(
1

2
− α2

kL
2

)
‖wk − wk−1‖2

≤1

2
‖zk − z‖2 +

1

2
α2
k−1L

2‖wk−1 − wk−2‖2.
539

In order to be able to telescope we need to ensure that for all k ≥ 0540

(D.33)
(

1

2
− α2

kL
2

)
≥ α2

kL
2.541

This is equivalent to the condition αk ≤ 1/2L which was required in the statement of the theorem. Now542

we sum up (D.32) from k = 1 to K − 1 which yields543

(D.34)

K−1∑
k=1

αkg(wk, z) +
1

2
‖zK − z‖2 +

1

2

(
1

2
− α2

K−1L
2

)
‖wK−1 − wK−2‖2

≤ 1

2
‖z1 − z‖2 +

1

2
α2

0L
2‖w0 − w−1‖2.

544

Adding (D.34) and (D.31) and dividing by
∑K−1

k=0 αk to deduce545

(D.35)
1∑K−1

k=0 αk

K−1∑
k=0

αkg(wk, z) ≤
‖z0 − z‖2

2
∑K−1

k=0 αk
,546

where we used that 1 − α2
0L

2 ≥ α2
0L

2 to get rid of ‖w0 − w−1‖2. The final statement follows by547

taking the supremum in z over B and applying Lemma D.1.548
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Proof for stochastic FBFp, Theorem C.3. By using ♦k = wk−1 we deduce from (D.12) for all549

k ≥ 0 that550

(D.36)

αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
‖zk − wk‖2 +

1

2
(1 + γ)α2

kL
2‖wk−1 − wk‖2

+ αk 〈Wk, z − wk〉+ 2(1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).

551

As in (D.23) we can split 〈αkWk, z−wk〉 into 〈αkWk, z−vk〉+〈αkWk, vk−wk〉 and use Lemma D.2552

to deduce553

(D.37)

K−1∑
k=0

αkg(wk, z) ≤ ‖z0 − z‖2 −
K−1∑
k=0

(1

2
‖zk − wk‖2 +

1

2
(1 + γ)α2

kL
2‖wk−1 − wk‖2

+ 〈αkWk, vk − wk〉+ 3(1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2)

)
.

554

Taking now the supremum over z ∈ B and then the expectation we conclude that the inequality555

(D.38)

E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]
≤ D2 − 1

2

K−1∑
k=0

(
‖zk − wk‖2 − (1 + γ)α2

kL
2‖wk−1 − wk‖2

)
+ 3(1 + γ−1)σ2

K−1∑
k=0

α2
k

556

holds. Let from now on k ≥ 1 as we will treat the case k = 0 separately. Using (D.28) we deduce that557

(D.39)
‖zk − wk‖2 ≥ −‖zk − wk−1‖2 +

1

2
‖wk−1 − wk‖2

≥ −α2
k−1‖F (wk−1; ξk−1)− F (wk−2; ξk−2)‖2 +

1

2
‖wk−1 − wk‖2.

558

Now we bound the difference of the two estimators by inserting ±F (wk−1), ±F (wk−2) and applying559

the inequality ‖a+ b+ c‖2 ≤ 3(‖a‖2 + ‖b‖2 + ‖c‖2) which yields560

(D.40)
‖F (wk−1; ξk−1)− F (wk−2; ξk−2)‖2 ≤ 3‖Wk−1‖2 + 3‖Wk−2‖2 + 3‖F (wk−2)− F (wk−1)‖2.561

We conclude that562

(D.41) E
[
‖F (wk−1; ξk−1)− F (wk−2; ξk−2)‖2

]
≤ 6σ2 + 3L2E‖wk−1 − wk−2‖2.563

Using (D.41) in (D.39) we deduce that564

(D.42) E‖zk − wk‖2 ≥ −α2
k−1(6σ2 + 3L2E‖wk−1 − wk−2‖2) +

1

2
E‖wk−1 − wk‖2,565
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whereas for k = 0 we have (D.30). Now we plug (D.42) into (D.38) to conclude that566

(D.43)

E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]

≤ D2 − 1

2

K−1∑
k=1

(
−3α2

k−1L
2E‖wk−1 − wk−2‖2 +

(1

2
− (1 + γ)α2

kL
2
)
‖wk−1 − wk‖2

)

+
1

2
((1 + γ)α2

0L
2 − 1)‖w−1 − w0‖2 + 6(1 + γ−1)σ2

K−1∑
k=0

α2
k

567

From this we conclude that in order to be able to telescope we need to enforce568

(D.44)
(

1

2
− (1 + γ)α2

kL
2

)
≥ 3α2

kL
2569

which is equivalent to570

(D.45)
1

2(4 + γ)
≥ α2

kL
2.571

Since αk ≤ α, we can ensure this by choosing γ such that572

(D.46)
1

2(4 + γ)
= α2L2.573

With (D.46) in place conclude from (D.43) that the inequality574

(D.47)

E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]

≤ D2 +
1

2
((4 + γ)α2

0L
2 − 1)‖w−1 − w0‖2 + 6(1 + γ−1)σ2

K−1∑
k=0

α2
k

575

Using the fact that 3α2
0L

2 ≤ 1− (1 + γ)α2
0L

2 from (D.46) to discard the ‖w0 − w−1‖2 term, yields576

(D.48) E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]
≤ D2 + 6(1 + γ−1)σ2

K−1∑
k=0

α2
k577

Through (D.46), we can estimate578

(D.49)
1

γ
=

2α2L2

1− 8α2L2
.579

Plugging (D.49) into (D.48), dividing by
∑K−1

k=0 αk and applying Lemma D.1, deduces the final state-580

ment.581
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