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1. Introduction. We consider the following nonsmooth and nonconcave frac-
tional maximization problem

(P) max
x=(x1,...,xm)∈S:=S1×···×Sm

F (x) := h(x1, . . . , xm) +

m∑
i=1

fi(xi)

gi(xi)
,

where, for each i ∈ {1, . . . ,m}, Hi is a finite-dimensional real Hilbert space, Si is a
nonempty closed subset of Hi, h : H1 × · · · × Hm → [−∞,+∞] is a (possibly) non-
smooth and nonconcave function, and fi, gi : Hi → R are locally Lipschitz functions
such that, for all xi ∈ Si,

(1.1) fi(xi) ≥ 0 and gi(xi) > 0.

The model problem (P) covers various important optimization problems arising in
diverse areas, such as the energy efficiency maximization problem and the sparse
generalized eigenvalue problem [30, 32]. On the other hand, it belongs to the class of
so-called sum-of-ratios optimization problems which are known as the most difficult
problems in the fractional programming literature. Obviously, there is an alternative
formulation for (P) which is obtained by replacing the maximum with minimum.
Although these two formulations are in general independent (due to the nonnegativity
assumption (1.1)), the corresponding algorithmic development can be easily modified
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to suit the other formulation. Therefore, in this paper, we will focus on the maximum
formulation. Below, we present a few explicit motivating examples for the model
problem (P).

Example 1.1 (penalization formulation for general sum-of-ratios optimization prob-
lem). Consider the classical sum-of-ratios optimization problem

(1.2) max
z∈C

m∑
i=1

fi(z)

gi(z)
,

where C is a bounded polyhedron in Rd and, for each i ∈ {1, . . . ,m}, fi and gi are
continuously differentiable functions on Rd such that, for all z ∈ C, fi(z) ≥ 0 and
gi(z) > 0. This, for example, covers the energy efficiency maximization problem
discussed in [32], where C = {z ∈ Rd+ : ∀i ∈ {1, . . . ,m}, zmin

i ≤ zi ≤ zmax
i and v>z ≤

r} with 0 < zmin
i ≤ zmax

i , v ∈ Rd+, r > 0 and, for each i ∈ {1, . . . ,m}, fi(z) =
log(1 + u>i z + ri) with ui ∈ Rd+ r {0} and ri ≥ 0, and gi is an affine function with
positive values on C. Note that (1.2) can be equivalently rewritten as

max
x1,...,xm∈C

m∑
i=1

fi(xi)

gi(xi)
s.t. x1 = · · · = xm.

Therefore, a plausible alternative optimization formulation for (1.2) becomes

(1.3) max
x1,...,xm∈C

−γ
m∑
i=2

‖x1 − xi‖2 +

m∑
i=1

fi(xi)

gi(xi)
,

where γ > 0 is a parameter. Direct verification shows that this is a particular case
of our model problem (P) with h(x1, . . . , xm) = −γ

∑m
i=2 ‖x1 − xi‖2, and S = S1 ×

· · · × Sm with Si = C, i = 1, . . . ,m.

Example 1.2 (sparse generalized eigenvalue problem). The generalized eigen-
value problem, which searches for the most dominant eigenvalues (or principal eigen-
values) and corresponding eigenvector, can be written as an optimization problem

maxx∈Rd{x
>Ax

x>Bx
: ‖x‖ = 1}. In numerical analysis, one seeks an eigenvector with least

number of nonzero entries, so that the information can be easily stored, explained
and identified. This leads to a sparse generalized eigenvalue problem which can be
formulated as

max
x∈Rd

x>Ax

x>Bx
− λφ(x) s.t. ‖x‖ = 1.

Here, A,B are symmetric matrices with A positive semidefinite and B positive defi-
nite, and φ is a regularization function which induces sparsity of the solution. Typ-
ical choices of φ include the `0 regularization (or cardinality) function given by

‖x‖0 = {number of i : xi 6= 0}, the `1-norm given by ‖x‖1 =
∑d
i=1 |xi|, and the

indicator function of the sparsity set Cr = {x ∈ Rd : ‖x‖0 ≤ r} with r > 0. For
example, in a recent study [30], the authors examined the sparse generalized eigen-
value problem with φ(x) = δCr (x), where they proposed a truncated Rayleigh flow
method (TRFM) and demonstrated the efficiency of this model problem on classifi-
cation, correlation analysis and regression. Direct verification shows that the sparse
generalized eigenvalue problem is a particular case of our model problem (P) with
m = 1, h(x) = −λφ(x), f1(x) = x>Ax, g1(x) = x>Bx, and S = {x ∈ Rd : ‖x‖ = 1}.
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Example 1.3 (maximizing the sum of a quadratic function and the Rayleigh quo-
tient over the unit sphere). We consider the problem of maximizing the sum of a
quadratic function and Rayleigh quotient over the unit sphere

max
x∈Rd

x>Wx +
x>Ax

x>Bx
s.t. ‖x‖ = 1,

where A,B are positive definite matrices and W is a symmetric matrix. This problem
arises in sparse Fisher discriminant analysis, in the context of which it is usually
solved iteratively [33]. In particular, x is the desired discriminating vector in cluster

analysis, the term x>Ax
x>Bx

is known as the Rayleigh quotient (or Fisher information in

information science), and the quadratic term x>Wx serves as a local approximation
for the sparse penalty term. Direct verification shows that this is a particular case
of our model problem (P) for m = 1, h(x) = x>Wx, f1(x) = x>Ax, g1(x) = x>Bx
and S = {x ∈ Rd : ‖x‖ = 1}.

In the case where m = 1 and h ≡ 0, problem (P) is known as the single ratio

fractional programming problem maxx∈S
f1(x)
g1(x) . A classical approach for solving the

latter problem is Dinkelbach’s method and its variants (see [10, 12]). In this approach,
one typically constructs an iterative scheme which requires finding an optimal solution
xn+1 of the optimization problem

(1.4) max
x∈S
{f1(x)− θng1(x)}

in each iteration n, while θn is updated by θn+1 := f1(xn+1)
g1(xn+1) . For details of this

approach, we refer the readers to [10, 12, 14, 27]. However, solving in each iteration
an optimization problem of type (1.4) may be as expensive and difficult as solving the
original problem in general. Recently, proximal type methods based on Dinkelbach’s
approach have been proposed to tackle single ratio fractional programs [8, 9, 21], where
each subproblem is much easier to solve and sometimes has closed form solutions.

Unfortunately, in the case of sum-of-ratios fractional programs, that is either
m > 1 or h 6≡ 0, Dinkelbach’s approach cannot be directly applied anymore. One
naive approach is to convert the sum-of-ratios into single ratio’s cases and to apply
Dinkelbach’s method. This approach increases the complexity of the function dramat-
ically and leads to numerical methods with poor performance. For example, through
this approach, a sum of three linear fractional functions becomes a fractional function
whose numerator and denominator are degree 3 nonconvex polynomials, and so, the
nice linearity structure is completely lost. Some important steps towards solving sum-
of-ratios fractional programs are mainly limited to sum-of-ratios of linear or quadratic
fractional programs, and rely on integer programming techniques such as branch and
bound and convex relaxation methods, see for example [6, 22, 33]. These approaches,
although highly appealing, are much less scalable than the proximal type methods,
and cannot directly deal with settings in which nonsmooth functions are involved.

Despite this important progress, it is still no clear whether one can develop proxi-
mal methods for solving nonsmooth and nonconcave sum-of-ratios fractional programs
(P) in the line of [8, 9] for single ratio cases. This forms the basic motivation of our
work. Specifically, the contributions of this paper are as follows:

(1) In Section 3, we propose an inertial proximal subgradient method for solving
the model problem (P). We then show that the iterative sequence gener-
ated by the proposed method is bounded and any of its limit points is a
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stationary point of problem (P) in a suitable sense. This new method can
be interpreted as a proximal block coordinate method of Gauss–Seidel type
applied to a related non-fractional reformulated problem. We also establish
the convergence of the full sequence under the assumption that a suitable
merit function satisfies the Kurdyka– Lojasiewicz (KL) property.

(2) In Section 4, we analyze several structured sum-of-ratios fractional programs
and obtain the explicit KL exponents of the corresponding desingularization
functions in the KL property: sum-of-ratios fractional quadratic programs
with spherical constraint, generalized eigenvalue problems with cardinality
regularization and generalized eigenvalue problems with sparsity constraints.
In particular, we establish that, for the last two classes of fractional programs,
the KL exponents are 1/2. As a consequence, we obtain that the proposed nu-
merical method exhibits linear convergence for these two classes of fractional
programs.

(3) Finally, we illustrate the proposed method via both analytical and simulated
numerical examples in Section 5.

2. Preliminaries. In this section, we recall some basic notations and prelimi-
nary results which will be used in this paper. We assume throughout that H, H1, . . . ,
Hm are finite-dimensional real Hilbert spaces with inner product 〈·, ·〉 and induced
norm ‖ · ‖. The product space H1 × · · · × Hm is also a real Hilbert space endowed
with the inner product given by 〈(x1, . . . , xm), (y1, . . . , ym)〉 =

∑m
i=1〈xi, yi〉. The set

of nonnegative integers is denoted by N, the set of real numbers by R, the set of
nonnegative real numbers by R+, and the set of the positive real numbers by R++.

The indicator function of a set C is defined by δC(x) := 0 if x ∈ C, and
δC(x) := +∞ otherwise. Given an extended-real-valued function f : H → [−∞,+∞],
its domain is defined by dom f := {x ∈ H : f(x) < +∞}. The function f is proper if
dom f 6= ∅ and it never equals −∞. We say that f is lower semicontinuous if, for all
x ∈ H, f(x) ≤ lim infy→x f(y), and convex if its epigraph {(x, ρ) ∈ H×R : f(x) ≤ ρ}
is a convex subset of H×R. The function f is said to be weakly convex (on H) if there
exists α ≥ 0 such that f + α

2 ‖ · ‖
2 is a convex function. The smallest constant α such

that f + α
2 ‖ · ‖

2 is convex is called the modulus of weak convexity. More generally,
f is said to be weakly convex on S ⊆ H with modulus α if f + δS is weakly convex
with modulus α. Weakly convex functions form a broad class of functions which
covers quadratic functions, convex functions, differentiable functions whose gradient
is Lipschitz continuous, and the composition of a convex and Lipschitz continuous
function with a C1-smooth mapping whose Jacobian is Lipschitz continuous (see [13,
Lemma 4.2]).

Let f : H → [−∞,+∞] and x ∈ H with |f(x)| < +∞. The Fréchet subdifferential
of f at x is given by

∂̂f(x) :=

{
u ∈ H : lim inf

z→x

f(z)− f(x)− 〈u, z− x〉
‖z− x‖

≥ 0

}
,

the limiting subdifferential of f at x is given by

∂Lf(x) :=
{

u ∈ H : ∃xn
f→ x, un → u with un ∈ ∂̂f(xn)

}
,

and the horizon subdifferential of f at x is given by

∂∞f(x) :=
{

u ∈ H : ∃xn
f→ x, λn ↓ 0, λnun → u with un ∈ ∂̂f(xn)

}
.
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Here, the notation z
f→ x means z→ x with f(z)→ f(x). It follows from the above

definition that the limiting subdifferential has the following robustness property

∂Lf(x) =
{

u ∈ H : ∃xn
f→ x, un → u with un ∈ ∂Lf(xn)

}
.

The domain of ∂Lf is dom ∂Lf := {x ∈ H : ∂Lf(x) 6= ∅}. If f is Lipschitz continuous
around x, then ∂Lf(x) is bounded and ∂∞f(x) = {0} (see [24, Corollary 1.81]). If f

is strictly differentiable1 at x, then ∂̂f and ∂Lf reduce to the derivative of f , denoted
by ∇f (see [24, Corollary 1.82]). If f is convex, then both Fréchet and limiting
subdifferentials at x reduce to the classical subdifferential in convex analysis (see [24,
Theorem 1.93])

∂f(x) := {u ∈ H : ∀z ∈ H, 〈u, z− x〉 ≤ f(z)− f(x)} .

We say that f is regular2 at x ∈ H if ∂̂f(x) = ∂Lf(x), and that f is regular on C ⊆ H
if it is regular at any x ∈ C. For a proper lower semicontinuous function f , it is
clear that if f is convex around x or strictly differentiable at x, then it is regular at
x. A nonempty set S in H is regular at x ∈ S if δS is regular at x. We say that S
is regular if it is regular at all of its points. From the definition, it can be verified
that C is regular if C is a closed and convex set or C is a smooth manifold given by
C = {x ∈ H : gi(x) = 0, i = 1, . . . ,m}, where gi are smooth functions satisfying the
so-called linear independent constraint qualification (that is, {∇gi(x) : i = 1, . . . ,m}
are linearly independent for all x ∈ C).

Next, we collect some subdifferential rules and calculations which will be of use
in our analysis and whose proofs are given in Appendix A.

Lemma 2.1 (calculus rules). Let f, g : H → (−∞,+∞] be proper lower semicon-
tinuous functions and let x ∈ dom f . Then the following statements hold:

(i) (Separable sum rule) If f(x) =
∑m
i=1 fi(xi) with x = (x1, . . . , xm), then

∂Lf(x) = ∂Lf1(x1) × · · · × ∂Lfm(xm) and f is regular at x when each fi
regular at xi.

(ii) (Sum rule) If ∂∞f(x) ∩ (−∂∞g(x)) = {0}, then ∂L(f + g)(x) ⊆ ∂Lf(x) +
∂Lg(x), where the equality holds when both f and g are regular at x, in which
case f + g is also regular at x. Moreover, if g is strictly differentiable at x,
then ∂L(f + g)(x) = ∂Lf(x) +∇g(x).

(iii) (Sign rule) If f is Lipschitz continuous around x and ∂̂f is nonempty-valued
around x, then ∂L(−f)(x) ⊆ −∂Lf(x).

(iv) (Quotient rule) Suppose that f and g are Lipschitz continuous around x, and

g(x) 6= 0. If ∂̂f is nonempty-valued around x, then

∂L

(
−f
g

)
(x) ⊆ −g(x)∂Lf(x) + ∂L(f(x)g)(x)

g(x)2
.

If f is strictly differentiable at x, then

∂L

(
−f
g

)
(x) =

−g(x)∇f(x) + ∂L(f(x)g)(x)

g(x)2

1A function f is strictly differentiable at x if there exists u ∈ H such that

limy,z→x
f(y)−f(z)−〈u,y−z〉

‖y−z‖ = 0. Clearly, if f is continuously differentiable at x, then it is strictly

differentiable at x.
2This is also referred as lower regular in [24, 25].
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and, consequently, −f/g is regular at x if and only if f(x)g is regular at x.
(v) (Chain rule and square root rule) If f is Lipschitz continuous around x and

θ : R → R is continuously differentiable around f(x), then ∂L(θ ◦ f)(x) =
∂L(θ′(f(x))f)(x). In particular, if f is Lipschitz continuous around x and
f(x) > 0, then

∂L

(√
f
)

(x) =
∂Lf(x)

2
√
f(x)

and ∂L

(
−
√
f
)

(x) =
∂L(−f)(x)

2
√
f(x)

.

Lemma 2.2. Let Λ := {x ∈ Rd : ‖x‖ = 1} and Cr := {x ∈ Rd : ‖x‖0 ≤ r}. Given
x = (x1, . . . , xd) ∈ Rd, set supp(x) := {j : xj 6= 0}. Then the following statements
hold:

(i) ∀x ∈ Rd, ∂̂(‖ · ‖0)(x) = ∂L(‖ · ‖0)(x) = ∂∞L (‖ · ‖0)(x) = {v : vj = 0 if j ∈
supp(x)}.

(ii) ∀x ∈ Λ, ∂̂δΛ(x) = ∂LδΛ(x) = ∂∞L δΛ(x) = {tx : t ∈ R}.
(iii) If ‖x‖0 = r, then ∂∞L δCr (x) = ∂LδCr (x) = {v : vj = 0 if j ∈ supp(x)}. If

‖x‖0 < r, then

∂∞L δCr (x) = ∂LδCr (x) = {v : ∃Ĵ ⊆ {1, . . . , d}rsupp(x) with |Ĵ | = r−‖x‖0,

vj = 0 if j ∈ (supp(x) ∪ Ĵ)}.

(iv) ∀x ∈ Λ, ∂L(‖ · ‖0 + δΛ)(x) = ∂L(‖ · ‖0)(x) + ∂LδΛ(x).
(v) ∀x ∈ Λ ∩ Cr, ∂L(δCr + δΛ)(x) ⊆ ∂LδCr (x) + ∂LδΛ(x).

We also need the following two notions of stationary points for problem (P).

Definition 2.3 (stationary points). We say that x = (x1, . . . , xm) ∈ S is a
stationary point for (P) if 0 ∈ ∂L(−F+δS)(x), and a lifted coordinate-wise stationary
point for (P) if, for each i ∈ {1, . . . ,m},

0 ∈ ∂xiL (−h+ δS)(x) +
−gi(xi)∂Lfi(xi) + fi(xi)∂Lgi(xi)

gi(xi)2
,

where ∂xiL denotes the subdifferential with respect to the xi-variable.

The following lemma whose proof is given in Appendix A provides the relationship
between a stationary point and a lifted coordinate-wise stationary point for (P).

Lemma 2.4 (stationary vs. lifted coordinate-wise stationary points). Let x =
(x1, . . . , xm) ∈ H1 × · · · ×Hm. Suppose that −h is proper lower semicontinuous, that
either m = 1 or h is strictly differentiable at x, and that, for each i ∈ {1, . . . ,m},
fi and gi are Lipschitz continuous around xi, fi(xi) ≥ 0, and gi(xi) 6= 0. Then the
following statements hold:

(i) If for each i ∈ {1, . . . ,m}, ∂̂fi is nonempty-valued around xi, then x is a lifted
coordinate-wise stationary point for (P) whenever it is a stationary point for
(P).

(ii) If for each i ∈ {1, . . . ,m}, fi is strictly differentiable at xi and either (a) gi
is strictly differentiable at xi or (b) gi is regular at xi and −h+ δS is regular
at x, then x is a lifted coordinate-wise stationary point for (P) if and only if
it is a stationary point for (P).

3. Inertial proximal subgradient method. In this section, we propose an
inertial proximal subgradient method for solving the sum-of-ratios optimization prob-



PROXIMAL METHOD FOR SUM-OF-RATIOS PROBLEMS 7

lem (P) and establish the convergence analysis for the proposed method. From now
on, we will work under the following assumption.

Assumption 3.1. For problem (P), S is a (not necessarily convex) closed set, −h
is a proper lower semicontinuous function, and, for each i ∈ {1, . . . ,m}, the functions
fi and gi are locally Lipschitz functions on an open set containing Si. Moreover,

(a) For each i ∈ {1, . . . ,m}, fi is nonnegative on an open set containing Si and
there exists αi ≥ 0 such that, for all xi, zi ∈ Si and all u ∈ ∂Lfi(xi),〈

u

2
√
fi(xi)

, zi − xi

〉
≤
√
fi(zi)−

√
fi(xi) +

αi
2
‖zi − xi‖2,

whenever fi(xi) > 0.
(b) For each i ∈ {1, . . . ,m}, gi is positive on Si and there exists βi ≥ 0 such that,

for all xi, zi ∈ Si and all v ∈ ∂Lgi(xi),

〈v, zi − xi〉 ≥ gi(zi)− gi(xi)−
βi
2
‖zi − xi‖2.

Remark 3.2 (comments for the standing assumption). We note that standing As-
sumption 3.1 is quite general and, in particular, are satisfied for our motivating ex-
amples.

(i) Assumption 3.1(a) is fulfilled if, for each i ∈ {1, . . . ,m}, fi takes nonnegative
values on an open set Oi containing Si and

√
fi is weakly convex on Oi with

modulus αi. Clearly, this condition is true if fi(xi) = x>i Aixi for a positive
semi-definite matrix Ai (as in the motivating Example 1.3 and Example 1.2)

because
√
fi(xi) = ‖A1/2

i xi‖ which is convex, where A
1/2
i is a symmetric

matrix such that A
1/2
i A

1/2
i = Ai.

Assumption 3.1(a) also holds if, for each i ∈ {1, . . . ,m}, Si is compact, fi
takes positive values on an open set Oi containing Si and fi is a differ-
entiable function whose gradient is Lipschitz continuous on Oi with mod-
ulus Li. Indeed, in this case, letting ri := minxi∈Si fi(xi) > 0, a direct
verification shows that

√
f i is weakly convex with modulus αi = Li

2
√
ri

+

1
4r
−3
2
i maxxi∈Si ‖∇fi(xi)‖2. This covers, in particular, the alternative op-

timization formulation for the energy maximization problem mentioned in
the motivating Example 1.1, where fi(xi) = log(1 + u>i xi + ri) with ui ∈
Rdi+ r {0} and ri ≥ 0 and, for i ∈ {1, . . . ,m}, Si = {x ∈ Rd+ : xmin

i ≤ xi ≤
xmax
i and v>x ≤ r} with 0 < xmin

i ≤ xmax
i , v ∈ Rd+ and r > 0.

Similarly, Assumption 3.1(b) is satisfied if, for each i ∈ {1, . . . ,m}, gi is
positive on Si and it is a differentiable function whose gradient is Lipschitz
continuous with modulus βi. Thus, combining these observations, we see As-
sumption 3.1 are satisfied for the important motivating examples mentioned
in the introduction.

(ii) We also notice that the first condition in Assumption 3.1(a) ensures that, if
xi ∈ Si and fi(xi) = 0, then 0 ∈ ∂Lfi(xi) for i ∈ {1, . . . ,m}.

We now propose our inertial proximal subgradient method for (P). As we will see
later on, this method can be seen as a proximal block coordinate method of Gauss–
Seidel type applied to an equivalent non-fractional formulation. It is also worthwhile
noting that, even when applied to the single-ratio case (m = 1 and h ≡ 0), our method
here is totally different from the proximal type methods in [8, 9] which are based on
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Dinkelbach’s approach.

Algorithm 3.3 (Inertial proximal subgradient method for problem (P)).

. Step 1. Choose x−1 = x0 = (x1,0, . . . , xm,0) ∈ S and set n = 0. Let δ ∈ R++ and
ν ∈ [0, δ/2).

. Step 2. Set yn = (y1,n, . . . , ym,n) with yi,n =

√
fi(xi,n)

gi(xi,n) . Choose τn ∈ R such that

τn ≥ δ + max1≤i≤m{ 1
2 (2yi,nαi + y2

i,nβi)}, where αi and βi are defined in Assump-
tion 3.1. Let νn ∈ [0, ν/τn]. For each i ∈ {1, . . . ,m}, let zi,n = xi,n+νn(xi,n−xi,n−1),
ui,n ∈ ∂Lfi(xi,n), vi,n ∈ ∂Lgi(xi,n), and set

wi,n =

{
yi,n

ui,n√
fi(xi,n)

− y2
i,nvi,n if fi(xi,n) > 0,

0 if fi(xi,n) = 0.

Denote hi,n+1(xi) := h(x1,n+1, . . . , xi−1,n+1, xi, xi+1,n, . . . , xm,n) and compute

xi,n+1 = argmax
xi∈Si

{
hi,n+1(xi)− τn

∥∥∥∥xi − zi,n − 1

2τn
wi,n

∥∥∥∥2
}
.

Update xn+1 = (x1,n+1, . . . , xm,n+1).

. Step 3. If a termination criterion is not met, set n = n+ 1 and go to Step 2.

Remark 3.4 (discussion on the computational costs). The major computation cost
lies in the update of xn+1 in Step 2. The update, for each i ∈ {1, . . . ,m},

xi,n+1 = argmax
xi∈Si

{
hi,n+1(xi)− τn

∥∥∥∥xi − (zi,n +
1

2τn
wi,n

)∥∥∥∥2
}

is equivalent to computing the proximal operator3 of 1
2τn

(−hi,n+1 + δSi) at the point

zi,n + 1
2τn

wi,n. This can be done efficiently in many situations, for example, in the
following cases:

(i) if h ≡ 0, then this reduces to the projection onto the set Si which, in many
cases, has closed forms. This is the case when Si is a box, Si is a sphere or
a ball, Si = {x : ‖x‖0 ≤ r} for r > 0, Si = {x : ‖x‖ = 1 and ‖x‖0 ≤ r} (as
in the motivation Example 1.2 of the sparse generalized eigenvalue problem
with φ(x) being the indicator function of the sparsity set) and Si = {X ∈
Rp×d : X>X = Id}.

(ii) if m = 1, h(x) = −λ‖x‖0 or h(x) = −λ‖x‖1 with λ ≥ 0, and S = {x : ‖x‖ =
1} (as in the motivating Example 1.2 of sparse generalized eigenvalue problem
with φ(x) being the cardinality regularization or `1-regularization), then the
resulting proximal operator can be simplified to argminx∈Rd{‖x+a‖2−τh(x) :
‖x‖ = 1} for some a ∈ Rd and τ ≥ 0. This can be further rewritten as
argminx∈Rd{〈2a,x〉− τh(x) : ‖x‖ = 1}, which has a closed form solution (see
[29, Proposition 6] and [23]).

(iii) if h is a (possibly) nonconvex quadratic function and Si = {x : ‖x‖ = 1} (as
in the motivating Example 1.3), then the resulting problem is a nonconvex
quadratic programming problem with norm constraint which is known as the

3The proximal operator of a function ϕ at x is defined by Proxϕ(x) =
argminy

{
ϕ(y) + 1

2
‖y − x‖2

}
.
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trust region problem. In this case, this problem can be solved efficiently, for
example, by solving a related single generalized eigenvalue problem (see [1]).

(iv) if h can be expressed as the maximum of finitely many concave quadratic
functions, that is, h(x) = max1≤r≤p{ 1

2x>Arx + a>r x + αr}, where each Ar
is negative semi-definite (and so, hi,n+1 can also be expressed in this form)
and Si is a polyhedral set, then this is equivalent to the solving of p many
quadratic programming problems with linear inequality constraints, and so,
it can be solved efficiently via quadratic programming solvers. This, in par-
ticular, covers the motivating Example 1.1.

Finally, we also remark that Step 2 also requires the availability of a subgradient of
fi at the current iterate. In general, this requires fi’s to have some specific structure.
On the other hand, in many important applications, fi can be expressed as the max-
imum/minimum of finitely many continuously differentiable functions, in which case,
a subgradient of fi is easily obtained.

3.1. Interpretation of Algorithm 3.3. Next, we see that Algorithm 3.3 can
be interpreted as a proximal block coordinate method of Gauss–Seidel type applied
to the problem

(P1) max
x=(x1,...,xm)∈S
y=(y1,...,ym)∈Rm

h(x) +H(x,y) with H(x,y) :=

m∑
i=1

[
2yi
√
fi(xi)− y2

i gi(xi)
]
.

We say that (x,y) ∈ S × Rm is a lifted coordinate-wise stationary point for (P1) if,
for each i ∈ {1, . . . ,m},

0 ∈ ∂xiL (−h+ δS)(x) + ∂xiL (−H)(x,y) and yi =
√
fi(xi)/gi(xi),

where the latter is equivalent to 0 ∈ ∂yiL (−H)(x,y).
The relationship between lifted coordinate-wise stationary points for (P) and (P1)

is examined in the next lemma with proof in Appendix A. In the case where h ≡ 0,
the following property of global solutions of (P) and (P1) was mentioned in [6, The-
orem 2.2] for problem (1.2) with affine numerators and denominators, and given in
[28, Corollary 1] for problem (1.2) with non-affine numerators and denominators. It
is worth noting that [28] only provides the non-fractional reformulation for the non-
convex problem (1.2) in terms of global solutions, and the numerical algorithms were
given only for concave-convex cases (that is, all the numerators are concave and de-
nominators are convex, see [28, Algorithm 1]). Unfortunately, the methods suggested
therein are not of the form of splitting algorithms, and there is no convergence guar-
antee provided for the general setting in this paper covering the motivation examples
in the introduction.

Lemma 3.5 (fractional vs. non-fractional formulations). Let x = (x1, . . . , xm) ∈
H1 × · · · × Hm and y = (y1, . . . , ym) ∈ Rm with yi =

√
fi(xi)

gi(xi)
. Then the following

statements hold:
(i) x is a global solution for (P) if and only if (x,y) is a global solution for (P1),

in which case, both problems have the same optimal value.
(ii) Suppose that −h is proper lower semicontinuous and finite at x and that, for

each i ∈ {1, . . . ,m}, fi and gi are Lipschitz continuous around xi, fi(xi) > 0,
and gi(xi) > 0. Then

(a) If for each i ∈ {1, . . . ,m}, ∂̂fi is nonempty-valued around xi, then x
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is a lifted coordinate-wise stationary point for (P) whenever (x,y) is a
lifted coordinate-wise stationary point for (P1).

(b) If for each i ∈ {1, . . . ,m}, fi is strictly differentiable at xi, then x is a
lifted coordinate-wise stationary point for (P) if and only if (x,y) is a
lifted coordinate-wise stationary point for (P1).

Remark 3.6 (interpretation of Algorithm 3.3 as a block coordinate inertial prox-
imal algorithm). Suppose that, for each i ∈ {1, . . . ,m}, fi is nonnegative and gi
is continuously differentiable on an open set containing Si. We will show that Al-
gorithm 3.3 can be interpreted as a block coordinate inertial proximal subgradient
algorithm. To see this, we recall that, according to Lemma 3.5, problem (P) is equiv-
alent to (P1). As, for each i ∈ {1, . . . ,m}, yi 7→ Hi(xi, yi) := 2yi

√
fi(xi)− y2

i gi(xi) is
a strongly concave one-variable quadratic function which admits a global maximizer

at

√
fi(xi)

gi(xi)
, one has

yn+1 = argmax
y∈Rm

{h(xn+1) +

m∑
i=1

Hi(xi,n+1, yi)}

= argmax
y∈Rm

{h(xn+1) +H(xn+1,y)}.

Let i ∈ {1, . . . ,m}. We see that, if fi(xi,n) > 0, then

wi,n = yi,n
ui,n√
fi(xi,n)

− y2
i,nvi,n ∈

yi,n∂Lfi(xi,n)√
fi(xi,n)

− y2
i,n∇gi(xi,n) = ∂xLHi(xi,n, yi,n).

If fi(xi,n) = 0, then yi,n = 0, wi,n = 0, and, since
√
fi(xi) ≥ 0 on an open set

containing Si and xi,n ∈ Si, one has 0 ∈ ∂L(
√
fi)(xi,n), which implies that

wi,n = 0 ∈ yi,n∂L(
√
f i)(xi,n)− y2

i,n∇gi(xi,n) = ∂xLHi(xi,n, yi,n).

So, the update for xn+1 = (x1,n+1, . . . , xm,n+1) involves, for i ∈ {1, . . . ,m},

xi,n+1 = argmax
xi∈Si

{
hi,n+1(xi)− τn

∥∥∥∥xi − (zi,n +
1

2τn
wi,n

)∥∥∥∥2
}

with wi,n ∈ ∂xLHi(xi,n, yi,n).

Combining the above observations, one sees that Algorithm 3.3 can be regarded as
a block coordinate inertial proximal subgradient algorithm applied to problem (P1),
where proximal subgradient steps are applied cyclically to the x-variable and a direct
maximization step is applied to the y-variable.

3.2. Convergence analysis. In this part, we discuss the convergence analysis
for Algorithm 3.3. Let us first start with the subsequential convergence. To do this,
we shall consider the following assumption.

Assumption 3.7. For problem (P), either one of the following holds:
(a) m = 1, −h + δS and g1 are regular on S, and f1 is strictly differentiable on

an open set containing S;
(b) h is strictly differentiable on an open set containing S, S is regular, and for

each i ∈ {1, . . . ,m}, fi is strictly differentiable on an open set containing Si
and gi is regular on Si;
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(c) h is strictly differentiable on an open set containing S and, for each i ∈
{1, . . . ,m}, fi and gi are strictly differentiable on an open set containing Si.

It is worth noting that Assumption 3.7 is satisfied with all of our motivation
examples. We are now ready to state our first main result as below.

Theorem 3.8 (subsequential convergence). Let (xn)n∈N be the sequence gener-
ated by Algorithm 3.3. Suppose that Assumption 3.1 holds, that F is bounded from
above on S, and that the set {x ∈ S : F (x) ≥ F (x0)} is bounded. Then the following
statements hold:

(i) For all n ∈ N, F (xn)− ν‖xn − xn−1‖2 ≤ F (xn+1)− (δ − ν)‖xn+1 − xn‖2.
(ii) The sequence (F (xn))n∈N is convergent, the sequence (xn)n∈N is bounded,

and
∑+∞
n=0 ‖xn+1 − xn‖2 < +∞.

(iii) Let x be a cluster point of (xn)n∈N and suppose that lim supn→+∞ τn =
τ < +∞ and that either m = 1 or h is continuous on S ∩ domh. Then
limn→+∞ F (xn) = F (x) and x ∈ S is a lifted coordinate-wise stationary
point for (P). If additional Assumption 3.7 holds, then x is a stationary
point for (P).

Proof. (i): Let any i ∈ {1, . . . ,m} and any n ∈ N. From Step 2 of Algorithm 3.3,
we have that xi,n ∈ Si, yi,n ≥ 0, and, for all xi ∈ Si,

hi,n+1(xi)−τn
∥∥∥∥xi − zi,n − 1

2τn
wi,n

∥∥∥∥2

≤ hi,n+1(xi,n+1)−τn
∥∥∥∥xi,n+1 − zi,n −

1

2τn
wi,n

∥∥∥∥2

,

which yields

hi,n+1(xi)− hi,n+1(xi,n+1) ≤ −τn‖xi,n+1 − zi,n‖2 + τn‖xi − zi,n‖2 + 〈wi,n, xi,n+1 − xi〉
= −τn‖xi,n+1 − xi,n‖2 + τn‖xi − xi,n‖2 + 〈wi,n, xi,n+1 − xi〉

+ 2τnνn〈xi,n+1 − xi, xi,n − xi,n−1〉,(3.1)

where the last equality follows from the fact that zi,n = xi,n + νn(xi,n − xi,n−1). By
letting xi = xi,n,

hi,n+1(xi,n)− hi,n+1(xi,n+1) ≤ −τn‖xi,n+1 − xi,n‖2 + 〈wi,n, xi,n+1 − xi,n〉
+ 2τnνn〈xi,n+1 − xi,n, xi,n − xi,n−1〉.

Since i is arbitrary and 2 〈xi,n+1 − xi,n, xi,n − xi,n−1〉 ≤ ‖xi,n+1 − xi,n‖2 + ‖xi,n −
xi,n−1‖2, we deduce that

h(xn)− h(xn+1) =

m∑
i=1

(hi,n+1(xi,n)− hi,n+1(xi,n+1))

≤ −(τn − τnνn)‖xn+1 − xn‖2 + τnνn‖xn − xn−1‖2

+

m∑
i=1

〈wi,n, xi,n+1 − xi,n〉 ,(3.2)

where the first equality follows from the definition of hi,n+1.
Next, we show that

〈wi,n, xi,n+1 − xi,n〉 ≤
fi(xi,n+1)

gi(xi,n+1)
− fi(xi,n)

gi(xi,n)
+ (τn − δ)‖xi,n+1 − xi,n‖2.
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To see this, let us first consider the case when fi(xi,n) > 0. Then wi,n = 2yi,n
ui,n

2
√
fi(xi,n)

−

y2
i,nvi,n. Since ui,n ∈ ∂Lfi(xi,n), the assumption on

√
fi gives

(3.3)

〈
ui,n

2
√
fi(xi,n)

, xi,n+1 − xi,n

〉
≤
√
fi(xi,n+1)−

√
fi(xi,n) +

αi
2
‖xi,n+1−xi,n‖2.

Since vi,n ∈ ∂Lgi(xi,n), the assumption on gi gives

(3.4) 〈vi,n, xi,n+1 − xi,n〉 ≥ gi(xi,n+1)− gi(xi,n)− βi
2
‖xi,n+1 − xi,n‖2.

Multiplying (3.3) by 2yi,n ≥ 0 and (3.4) by −y2
i,n ≤ 0 and then adding them we obtain

that

(3.5) 〈wi,n, xi,n+1 − xi,n〉 ≤ Hi(xi,n+1, yi,n)−Hi(xi,n, yi,n)

+
1

2
(2yi,nαi + y2

i,nβi)‖xi,n+1 − xi,n‖2,

where Hi(xi, yi) := 2yi
√
fi(xi) − y2

i gi(xi). On the other hand, if fi(xi,n) = 0, then
yi,n = 0 and wi,n = 0, hence (3.5) still holds. In turn, from (3.5) and the fact that
yi,n+1 is the maximizer of Hi(xi,n+1, ·), we derive that

〈wi,n, xi,n+1 − xi,n〉 ≤ Hi(xi,n+1, yi,n+1)−Hi(xi,n, yi,n)

+
1

2
(2yi,nαi + y2

i,nβi)‖xi,n+1 − xi,n‖2

≤ fi(xi,n+1)

gi(xi,n+1)
− fi(xi,n)

gi(xi,n)
+ (τn − δ)‖xi,n+1 − xi,n‖2,

where the last inequality follows by our choice of τn. By combining this with (3.2),

(δ − τnνn)‖xn+1 − xn‖2 − τnνn‖xn − xn−1‖2

≤

[
h(xn+1) +

m∑
i=1

fi(xi,n+1)

gi(xi,n+1)

]
−

[
h(xn) +

m∑
i=1

fi(xi,n)

gi(xi,n)

]
.

Since νn ≤ ν/τn, we get the claimed inequality.
(ii): For all n ∈ N, set θn := F (xn)− ν‖xn − xn−1‖2. It follows from ν ∈ [0, δ/2)

that δ − 2ν > 0. According to (i), for all n ∈ N,

(3.6) θn ≤ θn+1 − (δ − 2ν)‖xn+1 − xn‖2,

and hence (θn)n∈N is nondecreasing. As F is bounded from above on S, there exists
M > 0 such that supn∈N F (xn) ≤ M . Then supn∈N θn ≤ M , and so θn → θ∗ as
n→ +∞. Let k ∈ N. Summing (3.6) from n = 0 to k, we have

(δ − 2ν)

k∑
n=0

‖xn+1 − xn‖2 ≤ θk+1 − θ0.

Letting k → +∞, we see that
∑∞
n=0 ‖xn+1 − xn‖2 < +∞. In particular, ‖xn+1 −

xn‖ → 0 as n→ +∞. Thus, F (xn) = θn + ν‖xn − xn−1‖2 → θ∗ as n→ +∞.
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Next, to see the boundedness of (xn)n∈N, we observe from the nondecreasing
property of (θn)n∈N that F (xn) ≥ θn ≥ θ0 = F (x0) − ν‖x0 − x−1‖2 = F (x0), where
the last equality follows as x−1 = x0. So, (xn)n∈N ⊆ {x ∈ S : F (x) ≥ F (x0)}, and
hence (xn)n∈N is bounded.

(iii): Let x = (x1, . . . , xm) be any cluster point of (xn)n∈N and let (xkn)n∈N be
a subsequence of (xn)n∈N such that xkn → x as n → +∞. Then x ∈ S and, by the
asymptotic regularity, xkn+1 → x as n→ +∞. Fix any i ∈ {1, . . . ,m}. By the local
Lipschitz continuity of fi and gi, we have that fi(xi,kn)→ fi(xi), gi(xi,kn)→ gi(xi) >
0, and, by [24, Corollary 1.81], (ui,kn)n∈N and (vi,kn)n∈N are bounded. Noting also
that

wi,kn =

{
gi(xi,kn )ui,kn−fi(xi,kn )vi,kn

(gi(xi,kn ))2 if fi(xi,kn) > 0,

0 if fi(xi,kn) = 0

∈ gi(xi,kn)∂Lfi(xi,kn)− fi(xi,kn)∂Lgi(xi,kn)

(gi(xi,kn))2
,

one sees (wi,kn)n∈N is bounded. Passing to a subsequence if necessary, we can assume
that

wi,kn → wi ∈
gi(xi)∂Lfi(xi)− fi(xi)∂Lgi(xi)

gi(xi)2
as n→ +∞.

Now, replacing n by kn in (3.1), we have, for all xi ∈ Si and all n ∈ N, that

hi,kn+1(xi)− hi,kn+1(xi,kn+1)(3.7)

≤ −τkn‖xi,kn+1 − xi,kn‖2 + τkn‖xi − xi,kn‖2 + 〈wi,kn , xi,kn+1 − xi〉
+ 2τknνkn〈xi,kn+1 − xi, xi,kn − xi,kn−1〉.

We shall split the proof in two following cases.
Case 1: h is continuous on S ∩ domh. Then limn→+∞ h(xkn) = h(x), and so

limn→+∞ F (xn) = limn→+∞ F (xkn) = F (x). Letting n → +∞ in (3.7), we derive
that, for all xi ∈ Si,

h(x1, . . . , xi−1, xi, xi+1, . . . , xm)− h(x) ≤ τ‖xi − xi‖2 + 〈wi, xi − xi〉,

which means

xi ∈ argmin
xi∈Si

{−h(x1, . . . , xi−1, xi, xi+1, . . . , xm) + τ‖xi − xi‖2 − 〈wi, xi〉}

= argmin
xi∈Hi

{(−h+ δS)(x1, . . . , xi−1, xi, xi+1, . . . , xm) + τ‖xi − xi‖2 − 〈wi, xi〉}.

It follows that

0 ∈ ∂xiL (−h+ δS)(x)− wi ⊆ ∂xiL (−h+ δS)(x) +
−gi(xi)∂Lfi(xi) + fi(xi)∂Lgi(xi)

gi(xi)2
.

As this inclusion holds for any i ∈ {1, . . . ,m}, x is a lifted coordinate-wise stationary
point for (P).

Case 2: m = 1. Then (3.7) reduces to, for all x ∈ S and all n ∈ N,

h(x)− h(xkn+1) ≤ −τkn‖xkn+1 − xkn‖2 + τkn‖x− xkn‖2 + 〈wkn ,xkn+1 − x〉
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+ 2τknνkn〈xkn+1 − x,xkn − xkn−1〉,

where wkn → w ∈ g1(x)∂Lf1(x)−f1(x)∂Lg1(x)
g1(x)2 as n→ +∞. Letting x = x and n→ +∞,

one has lim infn→+∞ h(xkn+1) ≥ h(x), which yields limn→+∞ h(xkn+1) = h(x) due to
the lower semicontinuity of −h. By arguing as in Case 1, x is a lifted coordinate-wise
stationary point of (P).

Finally, if Assumption 3.7 holds, then Lemma 2.4 implies that x is a stationary
point for (P).

We now comment on the assumptions imposed on the previous theorem. In
particular, we see that they are quite general, and are all satisfied by our motivating
examples.

Remark 3.9 (comments on the assumptions). In addition to Assumption 3.1, we
also assume in Theorem 3.8 that the objective function F is bounded from above on
the feasible set S and that {x ∈ S : F (x) ≥ F (x0)} is bounded. These assumptions
are trivially satisfied in the case when S is a compact set (as in our three motivating
examples). More generally, they are also satisfied in the case when −F is a coercive
function on the set S (noting that we are considering a maximization formulation),
which is a standard assumption in the optimization literature.

Finally, in order to obtain that every cluster point is a stationary point, we also
assume that lim supn→∞ τn = τ < +∞ and Assumption 3.7 holds. When S is com-
pact, the first assumption can be easily satisfied with τn = δ+max1≤i≤m{ 1

2 (2yi,nαi+

y2
i,nβi)} and τ = δ + max1≤i≤m{

√
Mi

mi
αi + Mi

2m2
i
βi}, where Mi := maxxi∈Si fi(xi) and

mi := minx∈Si gi(xi). Also, it can be directly verified that Assumption 3.7 is satisfied
by our three motivation examples in the introduction.

Remark 3.10 (convergence to stronger stationary points). A close inspection of
the proof shows that one can obtain a stronger conclusion in Theorem 3.8 for the
cluster point x = (x1, . . . , xm). Indeed, the cluster point x satisfies the following
stronger stationarity notion: for each i ∈ {1, . . . ,m},

(3.8) xi ∈ argmin
xi∈Si

{−h(x1, . . . , xi−1, xi, xi+1, . . . , xm) + τ‖xi − xi‖2 − 〈wi, xi〉}

for some wi ∈ gi(xi)∂Lfi(xi)−fi(xi)∂Lgi(xi)
gi(xi)2

. This relation implies that x is a lifted

coordinate-wise stationary point for (P). Moreover, in the case when m = 1, and
f1, g1 are continuously differentiable, (3.8) reduces to

x ∈ Prox 1
2τ (−h+δS)

(
x +

1

2τ
∇
(
f1

g1

)
(x)

)
,

which corresponds to the notion of a L-stationary point with L = 2τ [5, Definition 4.8],
a stronger notion than the usual one of a stationary point.

We now consider the global convergence of the full sequence generated by Algo-
rithm 3.3. Recall that a proper lower semicontinuous function f : H → (−∞,+∞] is
said to satisfy the KL property [16, 19] at x ∈ dom ∂Lf if there exist a neighborhood
U of x, η ∈ (0,+∞], and a continuous concave function ϕ : [0, η) → R+ such that
ϕ(0) = 0, ϕ is continuously differentiable with ϕ′ > 0 on (0, η), and, for all x ∈ U
with f(x) < f(x) < f(x) + η,

ϕ′(f(x)− f(x)) dist(0, ∂Lf(x)) ≥ 1.
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If f satisfies the KL property at any x ∈ dom ∂Lf , then it is called a KL function.
We say that f has the KL property at x ∈ dom ∂Lf with exponent α if it satisfies
the KL property at x ∈ dom ∂Lf and the corresponding function ϕ (often referred
as desingularization function) can be chosen as ϕ(s) = γs1−α for some γ ∈ R++ and
α ∈ [0, 1). If f is a KL function and has the same exponent α at any x ∈ dom ∂Lf ,
then it is called a KL function with exponent α.

Theorem 3.11 (global convergence). Let (xn)n∈N be the sequence generated by
Algorithm 3.3. Suppose that Assumption 3.1 holds, that F is bounded from above on S,
that the set {x ∈ S : F (x) ≥ F (x0)} is bounded, that, for each i ∈ {1, . . . ,m}, fi and
gi are continuously differentiable on an open set containing Si, and that G(x,u) :=
−F (x)+δS(x)+ν‖x−u‖2 satisfies the KL property at (x,x) for all x ∈ dom ∂L(−F+
δS). Suppose further that lim supn→+∞ τn = τ < +∞, that either m = 1 or h
is a differentiable function on an open set containing S whose gradient is Lipschitz
continuous on S, and that there exist ε, ` ∈ R++ satisfying

for all i ∈ {1, . . . ,m}, for all x, x′ ∈ Si,

‖x− x′‖ ≤ ε =⇒
∥∥∥∥∇(figi

)
(x)−∇

(
fi
gi

)
(x′)

∥∥∥∥ ≤ `‖x− x′‖.
Then

+∞∑
n=0

‖xn+1 − xn‖ < +∞ and the sequence (xn)n∈N converges to a stationary

point x∗ for (P).
Moreover, if G satisfies the KL property with exponent α ∈ [0, 1) at (x,x) for all
x ∈ dom ∂L(−F + δS), then exactly one of the following alternatives holds:

(i) (Finite convergence) α = 0 and there exists n0 ∈ N such that, for all n ≥ n0,
xn = x∗.

(ii) (Linear convergence) α ∈ (0, 1
2 ] and there exist γ ∈ R++ and ρ ∈ (0, 1) such

that, for all n ∈ N, ‖xn − x∗‖ ≤ γρn2 and |F (xn)− F (x∗)| ≤ γρn.
(iii) (Sublinear convergence) α ∈ ( 1

2 , 1) and there exists γ ∈ R++ such that, for

all n ∈ N, ‖xn − x∗‖ ≤ γn−
1−α
2α−1 and |F (xn)− F (x∗)| ≤ γn−

2−2α
2α−1 .

Proof. Let zn := (xn+1,xn) for n ∈ N and Ω be the set of cluster points of
(zn)n∈N. We derive from Theorem 3.8 that the sequence (zn)n∈N in S×S is bounded,
that, for all n ∈ N,

(3.9) G(zn+1) + α‖xn+2 − xn+1‖2 ≤ G(zn) with α := δ − 2ν > 0,

and that, for all z ∈ Ω, one has z = (x,x) with x ∈ S being a stationary point
for (P) and F (xn) → F (x) as n → +∞. Therefore, x ∈ dom ∂L(−F + δS) and
G(zn) = G(xn+1,xn) = −F (xn+1) + ν‖xn+1 − xn‖2 → −F (x) as n→ +∞.

Now, for all n ∈ N, since ∂LG(zn) = (∂L(−F+δS)(xn+1)+2ν(xn+1−xn), 2ν(xn−
xn+1))>,

dist(0, ∂LG(zn))(3.10)

=

√
dist (0, ∂L(−F + δS)(xn+1) + 2ν(xn+1 − xn))

2
+ (2ν)2‖xn+1 − xn‖2

≤ dist (0, ∂L(−F + δS)(xn+1) + 2ν(xn+1 − xn)) + 2ν‖xn+1 − xn‖
≤ dist(0, ∂L(−F + δS)(xn+1)) + 4ν‖xn+1 − xn‖.
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We shall estimate dist(0, ∂L(−F + δS)(xn+1)). From Step 2 of Algorithm 3.3 and
noting that fi, gi are continuously differentiable on an open set that contains Si, we
have, for all i ∈ {1, . . . ,m} and all n ∈ N, that

0 ∈ ∂L(−hi,n+1 + δSi)(xi,n+1) + 2τn(xi,n+1 − zi,n)− wi,n

= ∂L

(
−hi,n+1 −

fi
gi

+ δSi

)
(xi,n+1) + 2τn(xi,n+1 − zi,n) + (wi,n+1 − wi,n),(3.11)

where wi,n =
gi(xi,n)∇fi(xi,n)−fi(xi,n)∇gi(xi,n)

(gi(xi,n))2 = ∇
(
fi
gi

)
(xi,n). Since lim supn→+∞ τn =

τ < +∞ and, for each i ∈ {1, . . . ,m}, limn→+∞ ‖xi,n+1 − xi,n‖ = 0 (by Theo-
rem 3.8(ii)), there exists n0 ≥ 0 such that, for all n ≥ n0,

τn ≤ 2τ and ‖xi,n+1 − xi,n‖ ≤ ε.

Then, for all i ∈ {1, . . . ,m} and all n ≥ n0, we derive from νn ≤ ν/τn that

‖2τn(xi,n+1 − zi,n)‖ = ‖2τn(xi,n+1 − xi,n)− 2τnνn(xi,n − xi,n−1)‖
≤ 4τ‖xi,n+1 − xi,n‖+ 2ν‖xi,n − xi,n−1‖(3.12)

and from the assumption on ∇( figi ) that

(3.13) ‖wi,n+1 − wi,n‖ =

∥∥∥∥∇(figi
)

(xi,n+1)−∇
(
fi
gi

)
(xi,n)

∥∥∥∥ ≤ `‖xi,n+1 − xi,n‖.

We split the discussion into the following cases.
Case 1: h is a differentiable function on an open set containing S whose gradient

is Lipschitz continuous on S with modulus `h. Then, it follows from (3.11) that, for
all i ∈ {1, . . . ,m} and all n ∈ N,

0 ∈ −∇hi,n+1(xi,n+1)+∂L

(
−fi
gi

+ δSi

)
(xi,n+1)+2τn(xi,n+1−zi,n)+(wi,n+1−wi,n),

which yields

− [∇xih(xn+1)−∇hi,n+1(xi,n+1)]− 2τn(xi,n+1 − zi,n)− (wi,n+1 − wi,n)

∈ ∂xiL (−F + δS)(xn+1).

Combining with (3.12) and (3.13), we deduce that, for all n ≥ n0,

dist(0, ∂L(−F + δS)(xn+1))

≤
m∑
i=1

dist(0, ∂xiL (−F + δS)(xn+1))

≤
m∑
i=1

‖∇xih(xn+1)−∇hi,n+1(xi,n+1)‖+ (4τ + `)

m∑
i=1

‖xi,n+1 − xi,n‖

+ 2ν

m∑
i=1

‖xi,n − xi,n−1‖

≤ m`h‖xn+1 − xn‖+ (4τ + `)
√
m‖xn+1 − xn‖+ 2ν

√
m‖xn − xn−1‖,
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where the last inequality holds due to the assumption that ∇h is Lipschitz continuous
with modulus `h on S. By using (3.10), there exists K ∈ R++ such that, for all
n ≥ n0,

dist(0, ∂LG(zn)) ≤ K (‖xn+1 − xn‖+ ‖xn − xn−1‖) .

The first conclusion then follows by applying [9, Theorem 5.1] (with I = {1, 2},
λ1 = λ2 = 1/2, ∆n = 2K‖xn+2 − xn+1‖, αn ≡ α

4K2 > 0, βn ≡ 1, and εn ≡ 0).
Case 2: m = 1. In this case, we derive from (3.11) that, for all n ∈ N,

−2τn(xn+1 − zn)− (wn+1 −wn) ∈ ∂L(−F + δS)(xn+1).

Thus, (3.12) and (3.13) imply that, for all n ≥ n0,

dist(0, ∂L(−F + δS)(xn+1)) ≤ ‖2τn(xn+1 − zn)‖+ ‖wn+1 −wn‖
≤ (4τ + `)‖xn+1 − xn‖+ 2ν‖xn − xn−1‖.

Proceeding as in Case 1, we also obtain the first conclusion.
As the remaining conclusions are rather standard, we omit the proof here and

refer the readers to [2, 9, 17, 20].

As stated in the preceding theorem, the KL exponent of the merit function for
the model problem completely determines the convergence rate of the proposed algo-
rithm. On the other hand, finding or estimating the KL exponent of a nonsmooth
and nonconvex function is, in general, highly challenging. Some recent progresses in
identifying KL exponents for non-fractional problems can be found in [20, 31]. In the
next section, we will derive KL exponents of the corresponding merit functions for
various classes of structured fractional programming problems.

4. KL exponents for structured fractional programs. In this section, we
derive the KL exponent of the associated merit functions of three classes of struc-
tured fractional programs: sum-of-ratios fractional quadratic programs with spherical
constraints, generalized eigenvalue problems with cardinality regularization and gen-
eralized eigenvalue problems with sparsity constraints. In particular, we establish
that, for the last two classes of fractional programs, the KL exponent is 1/2. As a
consequence, the proposed Algorithm 3.3 exhibits linear convergence for these two
classes of fractional programs.

We first see that the KL exponent for the merit function associated with (P) can
be computed by a merit function associated with the equivalent problem (P1). To do
this, we need the following result from [20].

Lemma 4.1 (cf. [20, Theorem 3.6]). Let f be a proper lower semicontinuous
function. Suppose that f satisfies the KL property at x ∈ dom ∂Lf with exponent
α ∈ [ 1

2 , 1). Then, for all ρ ≥ 0, f̃(x,u) = f(x) + ρ‖x− u‖2 satisfies the KL property
with exponent α at (x,x).

Proposition 4.2. Suppose that Assumption 3.1 holds and that, for each i ∈
{1, . . . ,m}, fi and gi are continuously differentiable on Si. Let P (x,y) = −h(x) −
H(x,y)+δS(x), where H(x,y) =

∑m
i=1

[
2yi
√
fi(xi)− y2

i gi(xi)
]
. Let x = (x1, . . . , xm) ∈

S and y = (y1, . . . , ym) ∈ Rm with yi =

√
fi(xi)

gi(xi)
. Suppose further that h is con-

tinuous around x and that P satisfies the KL property with exponent α ∈ [0, 1) at
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(x,y) ∈ S × Rm. Then

Φ(x) := −h(x)−
m∑
i=1

fi(xi)

gi(xi)
+ δS(x)

satisfies the KL property with exponent α at x. In particular, for all ρ ≥ 0,

G(x,u) := −h(x)−
m∑
i=1

fi(xi)

gi(xi)
+ ρ‖x− u‖2 + δS(x)

satisfies the KL property with exponent α′ = max{α, 1
2} at (x,x).

Proof. As P satisfies the KL property with exponent α ∈ [0, 1) at (x,y) ∈ H×Rm,
there exist δ, η, c > 0 such that, for all (x,y) with ‖(x,y)− (x,y)‖ ≤ δ and P (x,y) <
P (x,y) < P (x,y) + η, one has dist(0, ∂LP (x,y)) ≥ c [P (x,y)− P (x,y)]

α
. It follows

that, for all (x,y) with ‖(x,y)− (x,y)‖ ≤ δ and P (x,y) < P (x,y) + η,

(4.1) [dist(0, ∂LP (x,y))]
1
α ≥ c 1

α [P (x,y)− P (x,y)] .

Here, we drop the condition P (x,y) < P (x,y) because (4.1) trivially holds otherwise.

For each x, let yx = (y1,x, . . . , ym,x) with yi,x =

√
fi(xi)

gi(xi)
for i ∈ {1, . . . ,m}. Then

yx = y. Moreover, by the continuity of H and h, there exists δ1 ∈ (0, δ) such that for
all x ∈ S with ‖x−x‖ ≤ δ1 one has ‖(x,yx)−(x,y)‖ ≤ δ and P (x,yx) < P (x,y)+η.
Therefore, from (4.1) we derive that, for all x ∈ S with ‖x− x‖ ≤ δ1,

[dist(0, ∂LP (x,yx))]
1
α ≥ c 1

α [−h(x)−H(x,yx) + h(x) +H(x,y)]

= c
1
α

[
−h(x)−

m∑
i=1

fi(xi)

gi(xi)
+ h(x) +

m∑
i=1

fi(xi)

gi(xi)

]
.

Now, we notice that ∂LP (x,yx) = (∂L(−h+ δS)(x) + ∂xL(−H)(x,yx), ∂yL(−H)(x,yx))
and that, for each i ∈ {1, . . . ,m},

∂xiL (−Hi)(xi, yi,x) =
−gi(xi)∇fi(xi) + fi(xi)∇gi(xi)

[gi(xi)]2
= ∇

(
fi
gi

)
(xi)

and ∂yiL (−Hi)(xi, yi,x) = 0.

Therefore, ∂LP (x,yx) = (∂LΦ(x), 0), and from here we deduce that, for all x ∈ S
with ‖x− x‖ ≤ δ1,

[dist(0, ∂LΦ(x))]
1
α ≥ c 1

α [Φ(x)− Φ(x)] .

So, Φ satisfies the KL property with exponent α at x, and hence, also with expo-
nent max{α, 1

2}. By using Lemma 4.1, G satisfies the KL property with exponent
max{α, 1

2} at (x,x).

4.1. Sum-of-ratios fractional quadratic programs with spherical con-
straint. We now consider the following sum-of-ratios fractional quadratic program

(FQP) max
x=(x1,...,xm)∈Rd

x>A0x+a>0 x+

m∑
i=1

x>i Aixi
x>i Bixi

s.t. ‖xi‖ = 1, i ∈ {1, . . . ,m},
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where A0 is a symmetric matrix and, for each i ∈ {1, . . . ,m}, Ai and Bi are positive
definite matrices. In the special cases of m = 1 and a0 = 0, this reduces to the problem
of maximizing the sum of a quadratic function and the Rayleigh quotient over the
unit sphere (motivating Example 1.3). For this sum-of-ratios fractional quadratic
program, the corresponding merit function for the proposed Algorithm 3.3 takes the
form

Φ̂FQP (x,u) = −
[
x>A0x + a>0 x

]
−

m∑
i=1

x>i Aixi
x>i Bixi

+ δΛ1×···×Λm(x) + ρ‖x− u‖2,

where Λi = {xi ∈ Rdi : ‖xi‖ = 1}, i ∈ {1, . . . ,m}, and ρ ≥ 0. We shall investigate
the KL exponent of this merit function. To this end, we use a fundamental result
which provides an exponent estimate in the classical  Lojasiewicz gradient inequality
for polynomials.

Lemma 4.3 ( Lojasiewicz gradient inequality [11, Theorem 4.2]). Let f be a
polynomial on Rd with degree p ∈ N. Suppose that f(x) = 0. Then there exist
constants ε, c > 0 such that, for all x ∈ Rd with ‖x− x‖ ≤ ε, we have
(4.2)

‖∇f(x)‖ ≥ c|f(x)|1−τ , where τ = R(d, p)−1 and R(d, p) :=

{
1 if p = 1,

p(3p− 3)d−1 if p ≥ 2.

Theorem 4.4. Let Λ = Λ1 × · · · × Λm, where Λi = {xi ∈ Rdi : ‖xi‖ = 1},
i ∈ {1, . . . ,m}, with

∑m
i=1 di = d. Consider

Φ(x) = −
[
x>A0x + a>0 x

]
−

m∑
i=1

x>i Aixi
x>i Bixi

+ δΛ(x),

where A0 is a symmetric matrix and, for each i ∈ {1, . . . ,m}, Ai and Bi are positive
definite matrices. Then Φ satisfies the KL property with exponent 1 − τ , where τ =
[R(d+ 3m+md, 4)]

−1
. In particular, for all ρ ≥ 0,

Φ̂FQP (x,u) = −
[
x>A0x + a>0 x

]
−

m∑
i=1

x>Aix

x>Bix
+ δΛ(x) + ρ‖x− u‖2

satisfies the KL property with exponent 1− τ at (x,x) for all x ∈ dom ∂LΦ.

Proof. From Proposition 4.2 with S = Λ, h(x) = x>A0x+a>0 x, fi(xi) = x>i Aixi,
and gi(xi) = x>i Bixi, i ∈ {1, . . . ,m}, it suffices to show that

P (x,y) = −
[
x>A0x + a>0 x

]
−

m∑
i=1

[
yi

√
x>i Aixi − y

2
i x
>
i Bixi

]
+ δΛ(x)

satisfies the KL property with exponent 1 − τ at (x,y) ∈ Λ × Rm. To do this, let
(x,y) ∈ Λ × Rm and let δ, η > 0 be such that, for all ‖(x,y) − (x,y)‖ ≤ δ, one has

P (x,y) < P (x,y) < P (x,y) + η. Let Li = A
1/2
i for i ∈ {1, . . . ,m}. We can write P

as

P (x,y) = −
[
x>A0x + a>0 x

]
−

m∑
i=1

[
yi‖Lixi‖ − y2

i x
>
i Bixi

]
+

m∑
i=1

δΛi(xi).



20 R. I. BOŢ, M. N. DAO, AND G. LI

As Ai is positive definite, we have Lixi 6= 0 for all xi ∈ Λi and all i ∈ {1, . . . ,m}. Let
f0(x) = x>A0x + a>0 x. Then, for all i ∈ {1, . . . ,m},

∂xiL P (x,y) =

{
−∇xif0(x)− yi

Aixi√
x>i Aixi

+ 2y2
iBixi + tixi : ti ∈ R

}
(Using Lemma 2.2(ii))

and ∂yiL P (x,y) = −‖Lixi‖+ 2yix
>
i Bixi,

which imply that

dist(0, ∂LP (x,y))2 =

m∑
i=1

inf
ti∈R


∥∥∥∥∥−∇xif0(x)− yi

Aixi√
x>i Aixi

+ 2y2
iBixi + tixi

∥∥∥∥∥
2


+

m∑
i=1

(−‖Lixi‖+ 2yix
>
i Bixi)

2.

For all (x,y) ∈ Λ× Rm and all i ∈ {1, . . . ,m}, one has ‖xi‖ = 1, and so,∥∥∥∥∥−∇xif0(x)− yi
Aixi√
x>i Aixi

+ 2y2
iBixi + tixi

∥∥∥∥∥
2

=

∥∥∥∥∥−∇xif0(x)− yi
Aixi√
x>i Aixi

+ 2y2
iBixi

∥∥∥∥∥
2

+ 2tix
>
i

(
−∇xif0(x)− yi

Aixi√
x>i Aixi

+ 2y2
iBixi

)
+ t2i ,

from which we have

(4.3) dist(0, ∂LP (x,y))2 =

m∑
i=1

∥∥∥∥∥−∇xif0(x)− yi
Aixi√
x>i Aixi

+ 2y2
iBixi + txi,yixi

∥∥∥∥∥
2

+

m∑
i=1

(−‖Lixi‖+ 2yix
>
i Bixi)

2,

where txi,yi := x>i
(
∇xif0(x)

)
+ yi

√
x>i Aixi − 2y2

i x
>
i Bixi.

Now, let us consider f : Rd × Rm × Rmd × Rm × Rm → R defined by

f(x,y,u,λ,µ) = −f0(x)−
m∑
i=1

[
yi(Lixi)

>ui − y2
i x
>
i Bixi

]
+

m∑
i=1

λi(‖ui‖2 − 1) +

m∑
i=1

µi(‖xi‖2 − 1),

and let f̂ = f − r, where r = f(x,y,u,λ,µ) with ui = Lixi
‖Lixi‖ , λi = yi‖Lixi‖

2 and

µi =
txi,yi

2 for all i ∈ {1, . . . ,m}. Clearly, f̂ is a polynomial on Rd+3m+md of degree
4. By Lemma 4.3, there exist δ0 > 0 and c > 0 such that, for all (x,y,u,λ,µ) with
‖(x,y,u,λ,µ)− (x,y,u,λ,µ)‖ ≤ δ0,

‖∇f(x,y,u,λ,µ)‖ = ‖∇f̂(x,y,u,λ,µ)‖ ≥ c|f̂(x,y,u,λ,µ)|1−τ
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= c|f(x,y,u,λ,µ)− f(x,y,u,λ,µ)|1−τ ,

where τ = [R(d+ 3m+md, 4)]
−1

. Let ux = (u1,x, . . . , um,x), λx,y = (λ1,x,y, . . . , λm,x,y),
and µx,y = (µ1,x,y, . . . , µm,x,y) with, for all i ∈ {1, . . . ,m},

ui,x =
Lixi
‖Lixi‖

, λi,x,y =
yi‖Lixi‖

2
, and µi,x,y =

txi,yi
2

.

Shrinking δ > 0 if necessary, we can assume that, for all (x,y) ∈ Λ × Rm with
‖(x,y)− (x,y)‖ ≤ δ,

‖(x,y,ux,λx,y,µx,y)− (x,y,u,λ,µ)‖ ≤ δ0,

which implies ‖∇f(x,y,ux,λx,y,µx,y)‖2 ≥ c2|f(x,y,ux,λx,y,µx,y)−f(x,y,u,λ,µ)|2(1−τ).
Note that, for all i ∈ {1, . . . ,m},

∇xif(x,y,u,λ,µ) = −∇xif0(x)− (yiL
>
i ui − 2y2

iBixi) + 2µixi,

∇yif(x,y,u,λ,µ) = −(Lixi)
>ui + 2yix

>
i Bixi,

∇uif(x,y,u,λ,µ) = −yiLixi + 2λiui,

∇λif(x,y,u,λ,µ) = ‖ui‖2 − 1,

∇µif(x,y,u,λ,µ) = ‖xi‖2 − 1.

Direct verification shows that, for all (x,y) ∈ Λ× Rm with ‖(x,y)− (x,y)‖ ≤ δ and
all i ∈ {1, . . . ,m}, one has

∇xif(x,y,ux,λx,y,µx,y) = −∇xif(x)−
(
yi

Aixi√
x>i Aixi

− 2y2
iBixi

)
+ txi,yixi,

∇yif(x,y,ux,λx,y,µx,y) = −‖Lixi‖+ 2yix
>
i Bixi,

∇uif(x,y,ux,λx,y,µx,y) = 0,

∇λif(x,y,ux,λx,y,µx,y) = 0,

∇µif(x,y,ux,λx,y,µx,y) = 0

and also

f(x,y,ux,λx,y,µx,y) = P (x,y) and f(x,y,u,λ,µ) = P (x,y).

These together with (4.3) imply that, for all (x,y) ∈ Λ×Rm with ‖(x,y)−(x,y)‖ ≤ δ
and P (x,y) < P (x,y) < P (x,y) + η,

dist(0, ∂LP (x,y)) ≥ c |P (x,y)− P (x,y)|1−τ = c [P (x,y)− P (x,y)]
1−τ

.

Thus, P satisfies the KL property with exponent 1− τ , and the conclusion follows.

4.2. Generalized eigenvalue problem with cardinality regularization.
Consider the generalized eigenvalue problem with cardinality regularization

(GEP) max
x∈Rd

x>A1x

x>B1x
− λ‖x‖0 s.t. ‖x‖ = 1,

where A1, B1 are symmetric matrices such that A1 is positive semidefinite and B1 is
positive definite, and λ > 0. For this generalized eigenvalue problem with cardinality
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regularization the corresponding merit function for the proposed Algorithm 3.3 takes
the form

Φ̂GEP (x,u) =
x>Ax

x>Bx
+ λ‖x‖0 + δΛ(x) + ρ‖x− u‖2,

with A = −A1 a symmetric matrix, B = B1 is a positive definite matrix, Λ = {x ∈
Rd : ‖x‖ = 1}, and ρ ≥ 0. Below, we derive the KL exponent of the merit function

Φ̂GEP . To this end, we will use the following lemma from [20]. Here we provide an
alternative short proof for it.

Lemma 4.5. Let Q be a symmetric d × d matrix. Then there exists c > 0 such
that, for all x ∈ Rd, ‖Qx‖2 ≥ c (x>Qx).

Proof. LetQ = U>ΣU where U is an orthonormal matrix and Σ = diag(λ1, . . . , λn)
is a diagonal matrix whose diagonal elements are the eigenvalues of Q with λ1 ≤ λ2 ≤
· · · ≤ λn. Let x ∈ Rd, y := Ux, and I0 = {j : λj 6= 0}. Then x>Qx =

∑N
j=1 λjy

2
j =∑

j∈I0 λjy
2
j and

‖Qx‖2 = x>(Q>Q)x = (Ux)>Σ2(Ux) =

N∑
j=1

λ2
jy

2
j =

∑
j∈I0

λ2
jy

2
j .

Setting c := min{|λj | : j ∈ I0}, we see that

c (x>Qx) =
∑
j∈I0

cλjy
2
j ≤

∑
j∈I0

c|λj |y2
j ≤

∑
j∈I0

|λj |2y2
j = ‖Qx‖2,

which completes the proof.

Next we prove that the KL exponent of the merit function Φ̂GEP is 1
2 . To do

this, for an index set J = {j1, . . . , jk} ⊆ {1, . . . , d} with k ≤ d, we denote xJ :=
(xj1 , . . . , xjk). Moreover, for two index sets I, J , we denote AIJ = (Aij)i∈I,j∈J .

Theorem 4.6. Consider the function Φ(x) = x>Ax
x>Bx

+ λ‖x‖0 + δΛ(x), where Λ =
{x : ‖x‖ = 1}, A,B are symmetric matrices with B positive definite, and λ > 0. Then
Φ is a KL function with exponent 1

2 . In particular, for all ρ ≥ 0,

Φ̂GEP (x,u) =
x>Ax

x>Bx
+ λ‖x‖0 + δΛ(x) + ρ‖x− u‖2

satisfies the KL property with exponent 1
2 at (x,x) for all x ∈ dom ∂LΦ .

Proof. Take any x ∈ dom ∂LΦ. Then x ∈ Λ. Let J = supp(x) and use |J | to
denote the cardinality of J . Choose η ∈ (0, 1) such that, for all ‖x− x‖ < η,∣∣∣∣ x>Ax

x>Bx
− x>Ax

x>Bx

∣∣∣∣ ≤ λ

4
and η <

λ

4
.

Let x with ‖x− x‖ < η and Φ(x) < Φ(x) < Φ(x) + η. We first see that, by shrinking
η if necessary, one can assume that

J = supp(x) = supp(x).

Indeed, by continuity and by shrinking η if necessary, one has supp(x) ⊆ supp(x).
Suppose that supp(x) ( supp(x). Then ‖x‖0 > ‖x‖0, and so, ‖x‖0 ≥ ‖x‖0 + 1. From



PROXIMAL METHOD FOR SUM-OF-RATIOS PROBLEMS 23

our choice of x, one has x ∈ Λ and

x>Ax

x>Bx
+ λ‖x‖0 <

x>Ax

x>Bx
+ λ‖x‖0 <

x>Ax

x>Bx
+ λ‖x‖0 + η.

This shows that ‖x‖0 < 1
2 + ‖x‖0, which is impossible.

Using Lemma 2.2 and noting that J = supp(x), we derive that

∂LΦ(x) ⊆

{
2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2
+ λv + tx : t ∈ R,

vj = 0 if j ∈ J, and vj ∈ R if j /∈ J

}
.

Denoting [a]J = (aj)j∈J ∈ R|J|, this implies that

dist(0, ∂LΦ(x)) ≥ inf
t∈R

∥∥∥∥[2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2

]
J

+ txJ

∥∥∥∥ .
A direct verification shows that

x>
(

2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2

)
= 0,

which, together with J = supp(x), implies that

(xJ)>
([

2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2

]
J

)
= 0.

Therefore,

dist(0, ∂LΦ(x)) ≥
∥∥∥∥[2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2

]
J

∥∥∥∥ =
2

x>Bx

∥∥∥∥[Ax]J −
x>Ax

x>Bx
[Bx]J

∥∥∥∥ .
Using J = supp(x) again, we have that

[Ax]J = AJJxJ , x>Ax = (xJ)>AJJxJ , [Bx]J = BJJxJ , and x>Bx = (xJ)>BJJxJ ,

and hence dist(0, ∂LΦ(x)) ≥ 2
x>Bx

∥∥∥AJJxJ − x>Ax
x>Bx

BJJxJ

∥∥∥.

Now, let q(z) = z>AJJz− x>Ax
x>Bx

z>BJJz for z ∈ R|J|. Then

dist(0, ∂LΦ(x)) ≥ 2

x>Bx

∥∥∥∥AJJxJ −
x>Ax

x>Bx
BJJxJ

∥∥∥∥
≥ 2

x>Bx

(∥∥∥∥AJJxJ −
x>Ax

x>Bx
BJJxJ

∥∥∥∥− ∣∣∣∣x>Ax

x>Bx
− x>Ax

x>Bx

∣∣∣∣ ‖BJJxJ‖
)

=
1

x>Bx
‖∇q(xJ)‖ − 2

x>Bx
|Φ(x)− Φ(x)| ‖BJJxJ‖,

where the second inequality follows from the triangle inequality and the last equality
holds as x,x ∈ Λ and J = supp(x) = supp(x) (and so, ‖x‖0 = ‖x‖0).
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From Lemma 4.5, there exists c > 0 such that, for all z, ‖∇q(z)‖2 ≥ c q(z). Indeed,

one can set c := min1≤j≤|J|

{
4|λj(AJJ − x>Ax

x>Bx
BJJ)| : λj(AJJ − x>Ax

x>Bx
BJJ) 6= 0

}
, where

λj(Q) are the eigenvalues of a matrix Q. Noting that

q(xJ)

x>Bx
=

[
(xJ)>AJJ(xJ)− x>Ax

x>Bx
(xJ)>BJJ(xJ)

]
1

x>Bx

=

[
x>Ax− x>Ax

x>Bx
x>Bx

]
1

x>Bx

=
x>Ax

x>Bx
− x>Ax

x>Bx
= Φ(x)− Φ(x) > 0,

one has

dist(0, ∂LΦ(x)) ≥
√
cq(xJ)1/2

x>Bx
− 2|Φ(x)− Φ(x)| ‖BJJxJ‖

x>Bx

= [Φ(x)− Φ(x)]1/2
( √

c√
x>Bx

− 2[Φ(x)− Φ(x)]1/2
‖BJJxJ‖

x>Bx

)
.

Let c1 := min{
√

x>Bx : x ∈ Λ} and c2 := max{
√

x>Bx : x ∈ Λ}. By shrinking η if
necessary, we can assume that η ∈ (0, 1) and

2[Φ(x)− Φ(x)]1/2
‖BJJxJ‖

x>Bx
≤ 2η1/2 ‖BJJxJ‖

c1
≤
√
c

2c2
,

where the first inequality follows by the fact Φ(x) < Φ(x) < Φ(x) + η. Then, we see
that

dist(0, ∂LΦ(x)) ≥ [Φ(x)− Φ(x)]1/2
(√

c

c2
−
√
c

2c2

)
=

√
c

2c2
[Φ(x)− Φ(x)]1/2.

Thus, Φ satisfies the KL property with exponent 1
2 . This shows that, according

to Lemma 4.1, Φ̂GEP satisfies the KL property with exponent 1
2 at x for all x ∈

dom ∂LΦ.

4.3. Generalized eigenvalue problem with sparsity constraint. Consider
the generalized eigenvalue problem with sparsity constraint

(GEPS) max
x∈Rd

x>A1x

x>B1x
s.t. ‖x‖ = 1, ‖x‖0 ≤ r,

where A1, B1 are symmetric matrices such that A1 is positive semidefinite and B is
positive definite, and r > 0. For this generalized eigenvalue problem with sparsity
constraint, the corresponding merit function for the proposed Algorithm 3.3 takes the
form

Φ̂GEPS(x,u) =
x>Ax

x>Bx
+ δΛ∩Cr (x) + ρ‖x− u‖2,

where A = −A1 is a symmetric matrix, B = B1 is a positive definite matrix, Λ =
{x ∈ Rd : ‖x‖ = 1}, Cr = {x ∈ Rd : ‖x‖0 ≤ r} with r > 0, and ρ ≥ 0. Below, we
investigate the KL exponent for this merit function.
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Theorem 4.7. Consider the function Φ(x) = x>Ax
x>Bx

+ δΛ∩Cr (x), where Λ = {x ∈
Rd : ‖x‖ = 1}, Cr = {x ∈ Rd : ‖x‖0 ≤ r} and A,B are symmetric matrices with
B positive definite. Then Φ is a KL function with exponent 1

2 . In particular, for all
ρ ≥ 0,

Φ̂GEPS(x,u) =
x>Ax

x>Bx
+ δΛ∩Cr (x) + ρ‖x− u‖2

satisfies the KL property with exponent 1
2 at (x,x) for all x ∈ dom ∂LΦ.

Proof. Take any x ∈ Λ ∩ Cr. We split the proof into two cases: ‖x‖0 = r and
‖x‖0 < r.

Case 1: ‖x‖0 = r. Let δ > 0 and take any x ∈ Λ ∩ Cr with ‖x − x‖ ≤ δ. By
shrinking δ if necessary, we have supp(x) ⊆ supp(x). So, ‖x‖0 ≥ ‖x‖0 = r. As
x ∈ Cr, we see that ‖x‖0 = ‖x‖0 = r and so, supp(x) = supp(x). Then, a similar line
of argument as in Theorem 4.6 gives the desired conclusion.

Case 2: ‖x‖0 < r. Let I = {I ⊆ {1, . . . , n} : supp(x) ⊆ I}. Clearly, |I| < +∞.
Let δ > 0 and take any x ∈ Λ ∩ Cr with ‖x − x‖ ≤ δ. By shrinking δ if necessary,
we have supp(x) ⊆ supp(x), and so, Jx := supp(x) ∈ I. Let x with ‖x − x‖ < η
and Φ(x) < Φ(x) < Φ(x) + η. From our choice of x, one has x ∈ Λ. Moreover, using
Lemma 2.2, a direct computation gives us that

∂LΦ(x) ⊆

{
2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2
+ λv + tx : t ∈ R, Ĵ ⊆ {1, . . . , n}r Jx,

|Ĵ | = r − |Jx|, vi = 0 if i ∈ Jx ∪ Ĵ , and vi ∈ R if i /∈ supp(x) ∪ Ĵ

}
.

It follows from x>
(

2Ax(x>Bx)−2Bx(x>Ax)
(x>Bx)2

)
= 0 that

x>
Jx∪Ĵ

([
2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2

]
Jx∪Ĵ

)
= 0.

Thus,

dist(0, ∂LΦ(x)) ≥ inf
t∈R,Ĵ⊆{1,...,n}rJx, |Ĵ|=r−Jx

∥∥∥∥∥
[

2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2
+ tx

]
Jx∪Ĵ

∥∥∥∥∥
= inf
Ĵ⊆{1,...,n}rJx, |Ĵ|=r−Jx

∥∥∥∥∥
[

2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2

]
Jx∪Ĵ

∥∥∥∥∥
= inf
J⊇Jx,|J|=r

∥∥∥∥[2Ax(x>Bx)− 2Bx(x>Ax)

(x>Bx)2

]
J

∥∥∥∥ .
Using a similar line of argument as in Theorem 4.6, one has

dist(0, ∂LΦ(x)) ≥ inf
J⊇Jx,|J|=r

{
1

x>Bx
‖∇qJ(xJ)‖ − 2

x>Bx
|Φ(x)− Φ(x)| ‖BJJxJ‖

}
,

where qJ(z) = z>AJJz− x>Ax
x>Bx

z>BJJz for z ∈ R|J|. By Lemma 4.5, for each J ⊇ Jx
with |J | = r, there exists cJ > 0 such that ‖∇qJ(z)‖2 ≥ cJ qJ(z). Note that {J :
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J ⊇ Jx with |J | = r} ⊆ I := {J : J ⊇ Jx with |J | = r} (as supp(x) ⊆ supp(x)) and
|I| < +∞. So, c := minJ∈I cJ > 0. Noting from Φ(x) − Φ(x) > 0, for each J ⊇ Jx
with |J | = r, one has

q(xJ)

x>Bx
=

[
(xJ)>AJJ(xJ)− x>Ax

x>Bx
(xJ)>BJJ(xJ)

]
1

x>Bx

=

[
x>Ax− x>Ax

x>Bx
x>Bx

]
1

x>Bx

=
x>Ax

x>Bx
− x>Ax

x>Bx
= Φ(x)− Φ(x) > 0.

Therefore,

dist(0, ∂LΦ(x)) ≥ inf
J⊇Jx,|J|=r

{√
cqJ(xJ)1/2

x>Bx
− 2|Φ(x)− Φ(x)| ‖BJJxJ‖

x>Bx

}
= [Φ(x)− Φ(x)]1/2 inf

J⊇Jx,|J|=r

{
c√

x>Bx
− 2[Φ(x)− Φ(x)]1/2

‖BJJxJ‖
x>Bx

}
.

Following a similar line or arguments as in Theorem 4.6, we get the desired conclu-
sion.

Remark 4.8 (linear convergence of Algorithm 3.3). In view of Theorem 3.11,
Theorem 4.6, and Theorem 4.7, we see that Algorithm 3.3 exhibits linear convergence
when applied to generalized eigenvalue problems with cardinality regularization and
generalized eigenvalue problems with sparsity constraints.

5. Numerical examples. In the section, we illustrate our proposed method via
numerical examples. We first start with an explicit analytic example and use it to
demonstrate the behavior of Algorithm 3.3 as well as the effect of the inertial param-
eters. Then, we examine the performance of the algorithm for the sparse eigenvalue
optimization model. All the numerical tests are conducted on a computer with a 2.8
GHz Intel Core i7 and 8 GB RAM, equipped with MATLAB R2015a.

5.1. Analytic examples. Consider the problem

(EP) max
x∈Rm

(
m+ 1−

m∑
i=1

xi

)
m∏
i=1

xi + γ

m∑
i=1

xi + 1

x2
i + 2xi + 5

s.t. 0 ≤ x ≤ 10,

where γ > 0. We first note that, for all i ∈ {1, . . . ,m}, x2
i + 2xi+ 5 = (xi+ 1)2 + 22 ≥

4(xi + 1) and that if m + 1 −
∑m
i=1 xi < 0, then (m + 1 −

∑m
i=1 xi)

∏m
i=1 xi ≤ 0;

otherwise, applying the Arithmetic Mean Geometric Mean (AM-GM) inequality to
(m+1) numbers (m+1−

∑m
i=1 xi), x1, . . . , xm yields (m+1−

∑m
i=1 xi)

∏m
i=1 xi ≤ 1.

Direct verification shows that x = (1, . . . , 1) is the global solution of this problem.
This example satisfies Assumption 3.1 with fi(xi) = γ(xi + 1), gi(xi) = x2

i + 2xi + 5,
αi = 1

4 , and βi = 2 for all i ∈ {1, . . . ,m}. Let γ = 10, x0 = x−1, δ = 1, and, for all

n ∈ N, νn = 0, τn = δ + max1≤i≤m{yi,nαi + 1
2y

2
i,nβi} ≤ τ := δ + max1≤i≤m{αi

√
Mi

mi
+

1
2βi

Mi

m2
i
}, where Mi = max0≤xi≤10 fi(xi) = 110 and mi = min0≤xi≤10 gi(xi) = 5,

i ∈ {1, . . . ,m}. Then, for all n ∈ N and all i ∈ {1, . . . ,m}, zi,n = xi,n + νn(xi,n −
xi,n−1) = xi,n and wi,n =

γ(−x2
i,n−2xi,n+3)

(x2
i,n+2xi,n+5)2

, and

xi,n+1 = argmax
0≤xi≤10

{
xi (m+ 1− xi − si,n) pi,n − τn

(
xi − zi,n −

1

2τn
wi,n

)2
}
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= P[0,10]

2τn

(
zi,n + 1

2τn
wi,n

)
+ (m+ 1− si,n)pi,n

2τn + 2pi,n

 ,

where si,n :=
∑i−1
j=1 xj,n+1 +

∑m
j=i+1 xj,n, pi,n :=

∏i−1
j=1 xj,n+1

∏m
j=i+1 xj,n, and PC

denotes the Euclidean projection onto C.
We randomly generate initial points in [0, 10]m and perform Algorithm 3.3. For

all the initial points, the algorithm produces a sequence (xn)n∈N converging to the
global maximizer. Figure 1 depicts the convergence behavior for the case m = 2
and γ = 10, with initial points (0, 0), (0, 1), (1, 0), and (10, 10) by plotting out the
Euclidean distance to the solution (1, 1) per iteration.

Fig. 1. Euclidean distance between the solution and the sequence generated by Algorithm 3.3
for (EP)

Effect of the inertial parameters. We now illustrate the behavior of Algo-
rithm 3.3 by varying the inertial parameters. To do this, we fix m = 2 and γ = 10 and
an α ∈ (0, 1). We set νn = α δ

2τn
< δ

2τn
. Starting with the initialization x0 = (10, 10),

we then run Algorithm 3.3 with different values for α ∈ [0, 1). Figure 2 depicts the
distance, in the log scale, between the sequence of iterates (xn)n∈N and the solution
x = (1, 1), for α ∈ {0, 0.3, 0.6, 0.9}. As one can see from the figure, as α increases and
approaches 1, the algorithm tends to converge faster.

Fig. 2. Illustration for different inertial parameters in solving (EP) via Algorithm 3.3

5.2. Sparse generalized eigenvalue problems. As another illustration of our
algorithm, following [30], we consider a sparse generalized eigenvalue problem that
arises from binary classification using sparse Fisher discriminant analysis. Consider
p observations z1, . . . , zp with zi ∈ Rd, i ∈ {1, . . . , p}, each of which belongs to one
of two distinct classes. Let Ik ⊆ {1, . . . , p} contain the indices of the observations in
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class k, with pk = |Ik|, k = 1, 2, and p1 + p2 = p. Let µ̂k = 1
pk

∑
i∈Ik zi, for k = 1, 2.

The so-called within-class and between-class covariance matrices are given by

Vw =
1

p

2∑
k=1

∑
i∈Ik

(zi − µ̂k)(zi − µ̂k)> and Vb =
1

p

2∑
k=1

pkµ̂kµ̂
>
k .

The classification problem using sparse Fisher discriminant analysis (SFDA) then
seeks a low dimensional projection of the observations such that the between-class
variance is large relative to the within-class variance. Mathematically, it solves

(SFDA) max
x∈Rd

x>Vbx

x>Vwx
− λφ(x) s.t. ‖x‖ = 1,

where φ is a regularization function inducing sparsity, and λ > 0. This is a sparse
generalized eigenvalue problems with A = Vb and B = Vw. Here, we consider two
specific sparse regularization functions: φ(x) = ‖x‖0, and φ(x) = δCr (x) with Cr =
{x ∈ Rd : ‖x‖0 ≤ r} and r > 0.

In the case where φ(x) = δCr (x), [30] proposed a truncated Rayleigh flow method
(TRFM) for solving the above sparse generalized eigenvalue problem and showed the
linear convergence of this method when the initial point x0 is close enough to a global
solution. We note that, in general, it is hard to theoretically guarantee whether an
initial point x0 is chosen to be close enough to a global solution, in order to ensure
the convergence of the algorithm. On the other hand, Algorithm 3.3 can be applied
to (SFDA) with both φ(x) = ‖x‖0 and φ(x) = δCr (x), and Remark 4.8 shows that
Algorithm 3.3 converges linearly regardless of the choice of the initial points.

5.2.1. Sparsity constrained case. In this subsection, we consider the general-
ized eigenvalue problem with sparsity constraints, that is, (SFDA) with φ(x) = δCr (x).
In this setting, Algorithm 3.3 reads as

xn+1 ∈ PΛ∩Cr

(
zn +

1

2τn

x>n Vbxn
(x>n Vwxn)2

[
x>n Vwxn
x>n Vbxn

Vbxn − Vwxn

])
with zn = xn + νn(xn − xn−1).

It is known that, for all a = (a1, . . . , ad) ∈ Rd, (PCr (a))i = ai for the r largest
components in absolute value of a, and (PCr (a))i = 0 otherwise. Then

PΛ∩Cr (a) =

{{
v
‖v‖ : v ∈ PCr (a)

}
if a 6= 0,

Λ ∩ Cr if a = 0.

This can be seen, for example, by noting that PΛ∩Cr (a) = argmin{ 1
2‖x − a‖2 : x ∈

Λ ∩ Cr} = argmin{〈a,x〉 : x ∈ Λ ∩ Cr}, and applying [23, Proposition 13].
In our simulation, we adopt the same setting as in [30]: we set µ1 = 0, µ2 =

(µ2,1, . . . , µ2,d)
> with µ2,j = 0.5 for j ∈ {2, 4, . . . , 40} and µ2,j = 0 otherwise. Let Σ

be a block diagonal covariance matrix with five blocks, each of dimension (d/5×d/5).
The (j, j′)-th element of each block takes the value 0.8|j−j

′|. As explained in [30], this
covariance structure is intended to mimic the covariance structure of gene expression
data. The observation data are simulated as zi ∼ N(µk,Σ) for i ∈ Ik, k = 1, 2.

We use our proposed inertial proximal subgradient method (Algorithm 3.3) and
the truncated Rayleigh flow method (TRFM) for solving (SFDA) with φ(x) = δCr (x),
where we set r = 50, p1 = p2 = 500, p = p1 + p2 = 1000, and d = 2000.
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• For Algorithm 3.3, we use the initial point x0 = (1/
√
r, . . . , 1/

√
r︸ ︷︷ ︸

r

, 0, . . . , 0) ∈

Rd. Direct verification shows that Assumption 3.1 is satisfied with α1 = 0
and β1 = 2λmax(Vw). So, by Remark 3.9, we can set δ = 1, τn = 1 +

x>n Vbxn
(x>n Vwxn)2

λmax(Vw), ν = 0.4999 < δ
2 and νn = ν

τn
. We stop the algorithm

when either the iterations reach the maximum iteration number 6000 or the
quantity ‖xn+1 − xn‖ is less than 10−6.

• For (TRFM), we use the same initial point x0 as in Algorithm 3.3. We also
use the same termination criteria as in Algorithm 3.3.

We run TRFM and Algorithm 3.3 for 50 trials. Table 1 summarizes the output
of the two methods by listing the average value for

(i) the objective value of the computed solution;
(ii) the CPU time measured in seconds;
(iii) the number of iterations used (round to the nearest integer).

Table 1
Computation results for (SFDA) with sparsity constraint

Objective value of Number of
computed solution CPU time iterations

TRFM 12.2932 6.9976 1083
Algorithm 3.3 12.5461 4.8148 555

From Table 1, one can see that Algorithm 3.3 is competitive with the TRFM
method and produces a solution with better quality in terms of the final objective
value (note that (SFDA) is a maximization problem). Moreover, Algorithm 3.3 also
uses less CPU time and number of iterations. As an illustration, we also plot ‖xn−x∗‖
against the number of iterations n, in logarithmic scale, where x∗ is the approximated
solution produced by the corresponding algorithm. Figure 3 supports the theoretical
finding that Algorithm 3.3 exhibits linear convergence in this case.

Fig. 3. Euclidean distance between xn and x∗ in every iteration

5.2.2. Sparse generalized eigenvalue problem with cardinality regular-
ization. In this subsection, we consider the generalized eigenvalue problem with
cardinality regularization, that is, (SFDA) with φ(x) = ‖x‖0. In this setting, Al-



30 R. I. BOŢ, M. N. DAO, AND G. LI

gorithm 3.3 reads as

xn+1 = argmax
‖x‖=1

{
−λ‖x‖0 − τn

∥∥∥∥x− zn −
1

2τn
wn

∥∥∥∥2
}

= argmax
‖x‖=1

{−λ‖x‖0 + 〈2τnzn + wn,x〉}

with λ > 0, zn = xn + νn(xn − xn−1), and

wn =
x>n Vbxn

(x>n Vwxn)2

[
x>n Vwxn
x>n Vbxn

Vbxn − Vwxn

]
.

We note that, for each a ∈ Rd, the optimization problem argmax‖x‖=1{−λ‖x‖0 +
〈a,x〉} has a closed form solution [29, Proposition 6]. In our numerical experiment,
we set λ = 0.035. We also generate the data as in the previous subsection, using
the same initial point, parameters τn, νn and δ, and employing the same termination
criteria.

We run Algorithm 3.3 for 50 trials. Table 2 summarizes the output of the method
where the meanings of the items are the same as in the previous subsection.

Table 2
Computation results for (SFDA) with cardinality regularization

Objective value of Number of
computed solution CPU time iterations

13.7196 3.1013 1074

We also plot out Euclidean distance between xn and x∗ per iteration in log scale
(Figure 4), which supports the theoretical finding that Algorithm 3.3 exhibits linear
convergence for this problem.

Fig. 4. Euclidean distance between xn and x∗ in every iteration

Appendix A. Proof of Lemmas 2.1, 2.2, 2.4, and 3.5.

Proof of Lemma 2.1. (i): This is given in [26, Proposition 10.5].
(ii): This follows from [26, Corollary 10.9].
(iii): This is an application of [25, Corollary 3.4] with ϕ1 ≡ 0 and ϕ2 = f .
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(iv): We first have from [24, Proposition 1.111(ii)] and (ii) that

(A.1) ∂L

(
−f
g

)
(x) =

∂L(−g(x)f + f(x)g)(x)

g(x)2
⊆ ∂L(−g(x)f)(x) + ∂L(f(x)g)(x)

g(x)2
.

Assume that ∂̂f is nonempty-valued around x. Then, if g(x) > 0, ∂L(−g(x)f)(x) =
g(x)∂L(−f)(x) ⊆ −g(x)∂Lf(x) due to (iii). If g(x) < 0, then −g(x) > 0 and
∂L(−g(x)f)(x) = −g(x)∂Lf(x). Thus, we obtain the desired inclusion.

Now, assume that f is strictly differentiable at x. Then, by combining (A.1) with

the last assertion in (ii), ∂L

(
−f
g

)
(x) = −g(x)∇f(x)+∂L(f(x)g)(x)

g(x)2 . On the other hand,

we have from [15, Corollaries 1.12.2 and 1.14.2] that ∂̂
(
−f
g

)
(x) = −g(x)∇f(x)+∂̂(f(x)g)(x)

g(x)2 .

The remaining conclusion follows from these two equalities.
(v): The chain rule is given in [24, Theorem 1.110(ii)]. The two square root rules

follow by letting θ(t) =
√
t and θ(t) = −

√
t, respectively.

Proof of Lemma 2.2. (i): The formula for Fréchet and limiting subdifferentials of
‖ · ‖0 can be found in [18, Section 3]. The formula for the horizon subdifferential can
be verified directly.

(ii): This follows by a direct verification.
(iii): The limiting subdifferential formula for δCr can be found in [4, Theorem 3.9].

The formula for the horizon subdifferential can be verified directly.
(iv)&(v): We deduce from (i), (ii), and (iii) that, for all x ∈ Λ, ‖ · ‖0 and δΛ are

regular at x and (−∂∞L (‖ · ‖0)(x)) ∩ ∂∞L δΛ(x) = {0}, and that, for all x ∈ Λ ∩ Cr,
(−∂∞L δCr (x)) ∩ ∂∞L δΛ(x) = {0}. The conclusions then follow from Lemma 2.1(ii).

Proof of Lemma 2.4. Let us first consider the case when h is strictly differentiable
at x. By Lemma 2.1(ii), ∂L(−h+δS)(x) = −∇h(x)+∂LδS(x). Since δS(x) = δS1(x1)+
· · ·+δSm(xm), we learn from Lemma 2.1(i) that ∂LδS(x) = ∂x1

L δS(x)×· · ·×∂xmL δS(x),
and so

∂L(−h+ δS)(x) = ∂x1

L (−h+ δS)(x)× · · · × ∂xmL (−h+ δS)(x).

This equality is obvious in the case whenm = 1. Next, since F (x) = h(x)+
∑m
i=1

fi(xi)
gi(xi)

with each fi
gi

Lipschitz continuous around xi, again using Lemma 2.1(i)&(ii), we have
that

∂L(−F + δS)(x) ⊆ ∂L(−h+ δS)(x) + ∂L

(
−

m∑
i=1

fi
gi

)
(x)

(A.2)

= ∂x1

L (−h+ δS)(x)× · · · × ∂xmL (−h+ δS)(x) + ∂L

(
−f1

g1

)
(x1)× · · · × ∂L

(
−fm
gm

)
(x1).

(i): Assume that, for each i ∈ {1, . . . ,m}, ∂̂fi is nonempty-valued around xi.
Then, by Lemma 2.1(iv), for each i ∈ {1, . . . ,m},

(A.3) ∂L

(
−fi
gi

)
(xi) ⊆

−gi(xi)∂Lfi(xi) + fi(xi)∂Lgi(xi)

gi(xi)2
.

In view of (A.2) and (A.3), if x is a stationary point for (P), then it is a lifted
coordinate-wise stationary point for (P).

(ii): By Lemma 2.1(i),(ii)&(iv), the inclusions in (A.2) and (A.3) can be replaced
by equalities. The conclusion then follows.
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Proof of Lemma 3.5. For each i ∈ {1, . . . ,m}, set Hi(xi, yi) := 2yi
√
fi(xi) −

y2
i gi(xi).

(i): This follows from the observation that

max
y∈Rm

H(x,y) =

m∑
i=1

max
yi∈R

Hi(xi, yi) =

m∑
i=1

Hi

(
xi,

√
fi(xi)

gi(xi)

)
=

m∑
i=1

fi(xi)

gi(xi)
.

(ii): Assume that, for each i ∈ {1, . . . ,m}, ∂̂fi is nonempty-valued around xi.
Then, since fi(xi) > 0 and yi ≥ 0, we have from Lemma 2.1(ii), Lemma 2.1(v), and
then Lemma 2.1(iii) that

∂xiL (−H)(x,y) = ∂xiL (−Hi)(xi, yi) ⊆
yi ∂L(−fi)(xi)√

fi(xi)
+ y2

i ∂Lgi(xi)

⊆ −yi ∂Lfi(xi)√
fi(xi)

+ y2
i ∂Lgi(xi) =

−gi(x) ∂Lfi(xi) + fi(xi)∂Lgi(xi)

gi(xi)2
.(A.4)

As a result, if (x,y) is a lifted coordinate-wise stationary point for (P1), then x is a
lifted coordinate-wise stationary point for (P).

Now, assume that, for each i ∈ {1, . . . ,m}, fi is strictly differentiable at xi. Then
the inclusions in (A.4) become equalities, and the conclusion follows.

Acknowledgment. The authors would like to thank the anonymous referees for
various constructive comments and suggestions that helped improve the manuscript.
The authors are also grateful for Dr. Qia Li for the help and discussions for the
applications of sparse Fisher discriminant analysis.

REFERENCES

[1] S. Adachi, S. Iwata, Y. Nakatsukasa and A. Takeda, Solving the trust-region subproblem
by a generalized eigenvalue problem, SIAM J. Optim., 27(1), 269–291 (2017).

[2] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth
functions involving analytic features, Math. Program. Ser. B, 116(1–2), 5–16 (2009).

[3] H. Attouch, J. Bolte, and B.F. Svaiter, Convergence of descent methods for semi-algebraic
and tame problems: Proximal algorithms, forward-backward splitting, and regularized
Gauss-Seidel methods, Math. Program. Ser. A, 137(1–2), 91–129 (2013).

[4] H.H. Bauschke, D.R. Luke, H.M. Phan, and X. Wang, Restricted normal cones and sparsity
optimization with affine constraints, Found. Comput. Math., 14(1), 63–83 (2014).

[5] A. Beck and N. Hallak, Proximal mapping for symmetric penalty and sparsity, SIAM J.
Optim., 28(1), 496–527 (2018).

[6] H.P. Benson, On the global optimization of sums of linear fractional functions over a convex
set, J. Optim. Theory Appl., 121(1), 19–39 (2004).

[7] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for
nonconvex and nonsmooth problems, Math. Program. Ser. A, 146(1–2), 459–494 (2014).

[8] R.I. Boţ and E.R. Csetnek, Proximal-gradient algorithms for fractional programming, Opti-
mization, 66(8), 1383–1396 (2017).
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