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Abstract. Minimax problems of the form minx maxy Ψ(x, y) have attracted increased interest
largely due to advances in machine learning, in particular generative adversarial networks and ad-
versarial learning. These are typically trained using variants of stochastic gradient descent for the
two players. Although convex-concave problems are well understood with many efficient solution
methods to choose from, theoretical guarantees outside of this setting are sometimes lacking even for
the simplest algorithms. In particular, this is the case for alternating gradient descent ascent, where
the two agents take turns updating their strategies. To partially close this gap in the literature we
prove a novel global convergence rate for the stochastic version of this method for finding a critical
point of ψ(·) := maxy Ψ(·, y) in a setting which is not convex-concave.

Key words. Minimax, Saddle point, Nonconvex-concave, Complexity, Prox-gradient method,
Stochastic gradient descent

AMS subject classifications. 90C47, 90C15, 90C25

1. Introduction. We investigate the alternating variant of gradient descent as-
cent (GDA) with proximal steps for weakly convex-(strongly) concave saddle point
problems, given by

(1.1) min
x∈Rd

max
y∈Rn

{
Ψ(x, y) := f(x) + Φ(x, y)− h(y)

}
for a weakly convex-concave coupling function Φ : Rd × Rn → R and proper, convex
and lower semicontinuous (l.s.c.) regularizers h and f , see Assumption 3, 5 and 7 for
details.

Nonconvex-concave saddle point problems have received a great deal of attention
recently due to their application in adversarial learning [47], learning with nondecom-
posable losses [15, 53], learning with uncertain data [9] and generative adversarial
imitation learning of linear quadratic regulators [23]. Additionally, albeit typically
resulting in nonconvex-nonconcave objectives, the large interest in generative adver-
sarial networks (GANs) [19, 2] has led to the studying of saddle point problems under
different simplifying assumptions [3, 16, 6, 10, 30].

In the nonconvex-concave setting inner loop methods have received much of the
attention [40, 49, 30, 25, 44] with them obtaining the best complexity results in this
class, see Table 1. Despite superior theoretical performance these methods have not
been as popular in practice, especially in the training of GANs where single loop
methods are still state-of-the-art [16, 3, 10, 19, 17, 23, 32]. The simplest approach is
given by simultaneous GDA, which, for a smooth coupling function Φ and stepsizes
ηx, ηy > 0, reads as:

(simultaneous)

⌊
x+ = x− ηx∇xΦ(x, y)
y+ = y + ηy∇yΦ(x, y).
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After the first step of this method, however, more information is already available,
which can be used in the update of the second variable, resulting in

(alternating)

⌊
x+ = x− ηx∇xΦ(x, y)
y+ = y + ηy∇yΦ(x+, y).

It has been widely known that the alternating version of GDA has many favorable
convergence properties of the simultaneous one [3, 17, 52, 54]. It has been long known
that for bilinear problems the iterates of simultaneous GDA may diverge while those
of the alternating version at least remain bounded. Furthermore, [17] showed that
the alternating version can be made convergent for this simple setting if negative
momentum is used, while the same is false for simultaneous GDA. In another special
setting [54] was able to show better local dependence on the condition number for
strongly convex-strongly-concave quadratic problems. We are naturally interested in
— and will give an affirmative answer to the question:

Does stochastic alternating GDA have nonasymptotic convergence
guarantees for nonconvex minimax problems?

This might seem surprising as it has been sufficiently demonstrated [18, 16, 36, 6] that
both versions of GDA fail to converge for simple bilinear problems if equal stepsizes are
used. We therefore want to point out the importance of the two-time-scale approach
which was also emphasized in [30, 22]. However, this alone is also not enough as
shown in [17]. The seeming contradiction is resolved through the observation that
our convergence guarantees only concern the x-component of the objective function.

Optimality. For convex-concave minimax problems, the notion of solution is sim-
ple. We aim to find a so-called saddle point (x∗, y∗) ∈ Rd × Rn satisfying

Ψ(x∗, y) ≤ Ψ(x∗, y∗) ≤ Ψ(x, y∗) ∀(x, y) ∈ Rd × Rn.

For convex-concave problems this is equivalent to the first order optimality condition

(1.2)

(
0
0

)
∈
(
∇xΦ(x∗, y∗)
−∇yΦ(x∗, y∗)

)
+

(
∂f(x∗)
∂h(y∗)

)
.

Similarly to the nonconvex single objective optimization where one cannot expect
to find global minima, if the minimax problem is not convex-concave the notion of
saddle point is too strong. So one natural approach is to focus on conditions such
as (1.2), as done in [52, 43, 33]. However, treating the two components in such a
symmetric fashion might not seem fitting since in contrast to the convex-concave
problem minx maxy 6= maxy minx. Instead we will focus, in the spirit of [30, 49, 46],
on the stationarity of what we will refer to as the max function given by

(1.3) ϕ(x) := max
y∈Rn

Φ(x, y)− h(y), where ϕ : Rd → R.

This makes sense from the point of view of many practical applications. Problems
arising from adversarial learning can be formulated as minimax, but typically only x,
which corresponds to the classifier is relevant as y is adversarial noise. Similarly, for
GANs, one is typically only interested in the generator and not the discriminator. See
Table 1 for a comparison of other methods using the same notion of optimality. Note
that it is possible to move from one notion of optimality to the other [30], but as both
directions are typically associated with additional computational effort a comparison
is not trivial and out of scope of this work.
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Table 1: The gradient complexity of algorithms for nonconvex-(strongly) concave
minimax problems for computing ε-stationary points of the max function. κ > 0 is
the condition number. The notation Õ hides logarithmic terms.

Noncvx-Strongly Concave Noncvx-Concave single

det. stoch. det. stoch. loop

[46] Õ(κ2ε−2) Õ(κ3ε−4) Õ(ε−6) Õ(ε−6) 7

[55, 49] – – Õ(ε−3) – 7

[29, 44] Õ(
√
κε−2) – Õ(ε−3) – 7

[30] O(κ2ε−2) O(κ3ε−4) O(ε−6) O(ε−8)∗ X

this work O(κ2ε−2) O(κ3ε−4) O(ε−6) O(ε−8)∗ X

Contributions. We prove novel convergence rates for alternating prox-gradient
descent ascent for nonconvex-(strongly) concave minimax problems in a deterministic
and stochastic setting. For deterministic problems, [52] has proved convergence rates
for alternating GDA in terms of the criticality of Φ while we use the max function
ϕ, see (1.3), instead. Our results are also more general than e.g. [29, 55, 30] in
the sense that they require Φ to be smooth in the first component wheres we only
require weak convexity, similar to [46]. Furthermore, we allow for our method to
include possibly nonsmooth regularizers, similar to [55, 46], by passing from a regular
projected-gradient to more the more general proximal-gradient steps which captures
and extends the common constraint setting, necessitating us to prove a more general
version of Danskins theorem in the process.

Roadmap. In the remainder of this section we discuss related literature and some
real-world applications resulting in nonconvex-concave problems. In Section 2 we
discuss the mathematical preliminaries as well as our main assumptions about the
involved functions. Section 3 and Section 4 are devoted to the setting where the
objective function is assumed to be convex and strongly convex, respectively. Both
times we treat the deterministic problem first and then the scenario where we are
only given a stochastic gradient oracle. Finally, in Section 5 we discussed numerical
experiments in adversarial learning. For the interested reader we highlighted the
improvements in the analysis of alternating GDA over its simultaneous counterpart
in Sections 3.5 and 4.4.

1.1. Related literature. For the purpose of this paper we separate the quan-
titative study of minimax problems into the following domains.

Convex-concave. For convex-concave problems historically the extra-gradient and
the forward-backward-forward method have been known to converge. For the former
even a rate of O(ε−1) has been proven in [41] under the name of mirror-prox. Both
of these methods suffer from the drawback of requiring two gradient evaluations per
iteration. This has led to the development of methods such as optimistic GDA [10, 11]
or [21, 6, 16, 35] which use past gradients to reduce the need of gradient evaluations
to one per iteration. In all of these cases, however, convergence guarantees typically
do not go beyond the convex-concave setting. Nevertheless, these methods have been
employed successfully in the GAN setting [16, 6, 10].

∗ using large batchsizes of order O(ε−2)
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Nonconvex-concave with inner loops. Approximating the max function by running
multiple iterations of a solver on the second component or convexifying the problem
by adding a quadratic term and then solving the convex-concave problem constitute
natural approaches [49, 29, 55, 46, 43]. Such methods achieve the best known rates [49,
29, 55, 44] in this class. However, they are usually quite involved and have for the
most part not been used in deep learning applications.

Nonconvex-concave with single loop. While these methods have received some
attention in the training of GANs [10, 16, 6] most of the theoretical statement are
for convex-concave problems. In the nonconvex setting only two methods have been
studied. Previous research, see [30, 33], has focused on the simultaneous version of the
gradient descent ascent algorithm where both components are updated at the same
time. The only other work which focuses on alternating GDA is [52]. Their results are
in terms of stationarity of Φ and they do not treat the stochastic case. Note that our
work is most similar to [30] where the same notion of optimality is used and similar
rates to our are obtained for simultaneous GDA.

Others. Clearly the above categories do not cover the entire field. However,
other settings have not received as much attention. Only [52] treats (strongly)
convex-nonconcave problems and proves convergence rates similar to the nonconvex-
(strongly) concave setting. In [51] a special stochastic nonconvex-linear problem with
regularizers is solved via a variance reduced single loop method with a significantly
improved rate over the general nonconvex-concave problem.

The most general setting out of all the aforementioned ones is discussed in [31, 32,
48], namely the weakly convex-weakly concave setting. They use however, a weaker
notion of optimality related to the Minty variational inequality formulation. We
also only mentioned (sub)gradient methods, but the restrictive assumption that the
proximal operator of a component can be evaluated has been considered as well [25].

1.2. Nonconvex-concave applications.

1.2.1. Adversarial learning. Such problems often use an attack model [34]
that allows for every pixel to be perturbed up to given threshold ε:

min
θ

max
‖z−z0‖∞≤ε

`(θ, z),

where z0 denotes the “true” training examples, and z the adversarial attack. How-
ever, this typically leads to nonconvex-nonconcave formulation. So [40] proposed a
distributionally robust model, making use of the Wasserstein distance W

min
θ

max
P :W (P,P0)≤ρ

EP [`(θ, Z)],

where Z ∼ P0, which they reformulated via a Lagrangian penalty approach to

(1.4) min
θ

max
z

`(θ, z)− γ‖z − z0‖2.

While a larger γ corresponds to smaller robustness ρ, the model can be made nonconvex-
strongly-concave if it is set big enough.

1.2.2. Generative adversarial imitation learning of linear quadratic reg-
ulators. In imitation learning the objective is to learn from an expert’s demonstration
of performing a given task. In this case the minimization is performed over the policies
with the goal of reducing the discrepancy between the reward of the expert’s policy
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and the proposed one. The maximization is over the parameters of the reward func-
tion, see [23]. If the underlying dynamic and the reward function come from a linear
quadratic regulator, see [8], this can be expressed as a nonconvex-strongly-concave
minimax problem

(1.5) min
K

max
θ

m(K, θ),

where K represents the choice of policy and θ the parameters of the dynamic and
reward functions.

1.2.3. Fair learning. The work [38] observed that a logistic regression model
trained on the Fashion-MNIST dataset (comprised of n = 10 classes) can lead to a
bias against certain classes. In order to remove this bias, they proposed to minimize
the maximal loss of the different categories, i.e.

(1.6) min
θ

max
1≤i≤n

`i(θ),

where `i denotes the loss incurred by all examples of class i. A similar approach
was taken in [43], but for a more sophisticated CNN model. For the purpose of
implementation (1.6) can be rewritten as

(1.7) min
θ

max
(t1,...,tn)∈∆

n∑
i=1

ti`i(θ)

where ∆ := {(t1, . . . , tn) : ti ≥ 0,
∑n
i=1 ti = 1} denotes the unit simplex. Due to the

linearity of (1.7) in the second variable (t1, . . . , tn), the inner maximization problem
is in particular concave.

2. Preliminaries. As mentioned in the earlier we will consider optimality in
terms of the max function for any x ∈ Rd given by ϕ(x) := maxy∈Rn Φ(x, y)− h(y).
Similarly, we also need the regularized max function

ψ := ϕ+ f, where ψ : Rd → R ∪ {+∞}.

In the remainder of the section we will focus on the necessary preliminaries connected
to the weak convexity of the max function in the nonconvex-concave setting, see
Section 3.

2.1. Weak convexity. In the nonconvex-concave setting of Section 3 the max
function ϕ will in general be nonsmooth, which makes it nonobvious how to define
near stationarity. The max function ϕ will, however, turn out to be weakly convex,
see Proposition 3.1. For some ρ ≥ 0, we say that

ψ : Rd → R ∪ {+∞} is ρ-weakly convex if ψ + (ρ/2)‖·‖2 is convex.

An example of a weakly convex function is one which is differentiable and the gradient
is uniformly Lipschitz continuous with constant L (we call such a function L-smooth).
In this case, the weak convexity parameter ρ is given by the Lipschitz constant.

Following [12, 49, 14, 7], we make use of a smooth approximation of ψ known
as the Moreau envelope ψλ, parametrized λ > 0. For a proper, ρ-weakly convex and
l.s.c. function ψ : Rd → R ∪ {+∞}, the Moreau envelope of ψ with the parameter
λ ∈ (0, ρ−1) is the function from Rd to R defined by

ψλ(x) := inf
z∈Rd

{
ψ(z) +

1

2λ
‖z − x‖2

}
.
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The proximal operator of the function λψ is the arg min of the right-hand side in this
definition, that is,

(2.1) proxλψ (x) := arg min
z∈Rd

{
ψ(z) +

1

2λ
‖z − x‖2

}
.

Note that proxλψ (x) is uniquely defined by (2.1) because the function being minimized

is proper, l.s.c. and strongly convex. For a function ψ : Rd → R ∪ {+∞} and a point
x̄ such that ψ(x̄) is finite, the Fréchet subdifferential of ψ at x̄, denoted by ∂ψ(x̄), is
the set of all vectors v ∈ Rd such that

ψ(x) ≥ ψ(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖) as x→ x̄.

For weakly convex function the Fréchet subdifferential can simply be expressed in
terms of the convex subdifferential of the (convex) function ψ + (ρ/2)‖·‖2.

While the next result is standard for the gradient and convex subgradients we
explicitly mention the general case.

Lemma 2.1 (see [39, Theorem 3.52]). For an Lψ-Lipschitz continuous function
ψ : Rd → R every Fréchet subgradient is bounded in norm by Lψ.

Now, we provide a useful characterization of the gradient of the Moreau envelope.

Lemma 2.2 (see [13, Lemma 2.2]). Let ψ : Rd → R ∪ {+∞} be a proper, ρ-
weakly convex, and l.s.c. function, and let λ ∈ (0, ρ−1). Then the Moreau envelope
ψλ is continuously differentiable on Rd with gradient

∇ψλ(x) =
1

λ

(
x− proxλψ (x)

)
for all x ∈ Rd,

and this gradient is Lipschitz continuous.

In particular, a gradient step with respect to the Moreau envelope corresponds to a
proximal step, that is,

(2.2) x− λ∇ψλ(x) = proxλψ (x) for all x ∈ Rd.

Stationarity. The Moreau envelope allows us to naturally define a notion of near
stationarity even for nonsmooth and ρ-weakly convex functions. We say that for an
ε > 0 and a λ ∈ (0, ρ−1)

(2.3) a point x is ε-stationary for ψ if ‖∇ψλ(x)‖≤ ε.

Canonically, we call a point stationary if the above holds for ε = 0. This notion of
near stationarity can also be expressed in terms the original function ψ.

Lemma 2.3. Let x be ε-stationary for the proper, ρ-weakly convex and l.s.c. func-
tion ψ, i.e. ‖∇ψλ(x)‖≤ ε with λ ∈ (0, ρ−1). Then there exist a point x̂ such that
‖x− x̂‖≤ ελ and dist(0, ∂ψ(x̂)) ≤ ε.

Proof. From the definition of the Moreau envelope, we have that

0 ∈ ∂ψ(proxλψ (x)) +
1

λ
(proxλψ (x)− x),

from which ∇ψλ(x) ∈ ∂ψ(proxλψ (x)) follows by using (2.2). It is easy to see that
x̂ = proxλψ (x) fulfills the required conditions.
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2.2. About the stochastic setting. We discuss the stochastic version of prob-
lem (1.1) where the coupling function Φ is actually given as an expectation,

Φ(x, y) = Eξ∼D [Φ(x, y; ξ)] ∀(x, y) ∈ Rd × Rn

and we can only access independent samples of the gradient ∇xΦ(x, y; ξ) (or sub-
gradient) and ∇yΦ(x, y; ζ), where ξ and ζ are drawn from the (in general unknown)
distribution D.

We require the following standard assumption with respect to these stochastic
gradient estimators.

Assumption 1 (unbiased). The stochastic gradient estimator is unbiased, i.e.

E[∇Φ(x, y; ξ)] = ∇Φ(x, y) ∀(x, y) ∈ Rd × Rn,

or in the case of subgradients

E
[
gξ
]
∈ ∂[Φ(·, y)](x), where gξ ∈ ∂[Φ(·, y; ξ)](x).

Assumption 2 (bounded variance). The variance of the estimator is uniformly
bounded, i.e. for all (x, y) ∈ Rd × Rn and a variance σ2 ≥ 0 we have

(2.4) E
[
‖∇Φ(x, y; ξ)−∇Φ(x, y)‖2

]
≤ σ2.

In the setting of Section 3 where Φ is not necessarily smooth in the first component,
we make the analogous assumption for subgradients, i.e.

(2.5) E
[∥∥gξ − E

[
gξ
]∥∥2
]
≤ σ2,

for a stochastic subgradient gξ ∈ ∂[Φ(·, y; ξ)](x).

2.3. The algorithm. Since we cover different settings such as smooth or not,
deterministic and stochastic we try to formulate a unifying scheme.

Algorithm 1 (proximal alternating GDA). Let (x0, y0) ∈ Rd×Rn and stepsizes
ηx, ηy > 0. Consider the following iterative scheme

(∀k ≥ 0)

⌊
xk+1 = proxηxf (xk − ηxGx(xk, yk))

yk+1 = proxηyh (yk + ηyGy(xk+1, yk)) ,

where Gx and Gy will be replaced by the appropriate (sub)gradient and its estimator
in the deterministic and stochastic setting, respectively.

2.4. Notation. We collect different symbols used through this manuscript.

Object Definition

Coupling function Φ(x, y)

Objective function Ψ(x, y) := f(x) + Φ(x, y)− h(y)

Regularized coupling function Γ(x, y) := Φ(x, y)− h(y)

Max function ϕ(x) := maxy Φ(x, y)− h(y)

Regularized max function ψ(x) := f(x) + ϕ(x)
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Note that the regularized coupling function Γ is only needed in proofs and some
technical lemmata. The remaining functions confirm to the logic that small letters
denote functions maximized in the second component (and thus only depend on x).
On the other hand (no matter if capital or not) the letter psi indicates the presence
of regularizers and phi their absence.

3. Nonconvex-concave objective. In this section we treat the case where the
objective function is weakly convex and Lipschitz in x, but not necessarily smooth,
and concave and smooth in y. This will result in a weakly convex and Lipschitz max
function whose Moreau envelope we will study for criticality, see (2.3).

3.1. Assumptions. While the first assumption concerns general setting of this
section, i.e. weakly convex-concave, the latter ones are more of a technical nature.

Assumption 3. The coupling function Φ is
(i) concave and L∇Φ-smooth in the second component uniformly in x,

‖∇yΦ(x, y)−∇yΦ(x, y′)‖≤ L∇Φ‖y − y′‖ ∀x ∈ Rd ∀y, y′ ∈ Rn.

(ii) ρ-weakly convex in the first component uniformly in the second one, i.e.

Φ(·, y) +
ρ

2
‖·‖2 is convex for all y ∈ Rn.

Assumption 3 is fulfilled if e.g. Φ is L∇Φ-smooth jointly in both components, i.e.

‖∇Φ(x, y)−∇Φ(x′, y′)‖≤ L∇Φ‖(x, y)− (x′, y′)‖ ∀x, x′ ∈ Rd ∀y, y′ ∈ Rn,

in which case (ii) holds with ρ = L∇Φ.
The next assumption is classical in nonconvex optimization.

Assumption 4. The function ψ is lower bounded, i.e. infx∈Rd ψ(x) > −∞.

In Section 3 we will actually need to bound the Moreau envelope ψλ, but these two
conditions are in fact equivalent as for all x ∈ Rd and any λ ∈ (0, ρ−1)

ψ(x) ≥ ψλ(x) ≥ inf
u∈Rd

ψ(u).

We also want to point out that this is weaker than the lower boundedness of Ψ, which
is usually required if stationary points of the type (1.2) are used, see for example [33].

Assumption 5. Φ is L-Lipschitz in the first component uniformly over domh in
the second one, i.e.

‖Φ(x, y)− Φ(x′, y)‖≤ L‖x− x′‖ ∀x, x′ ∈ Rd ∀y ∈ domh.

Assumption 6. The regularizers f and h are proper, l.s.c. and convex
(i) Additionally, f is either Lf -Lipschitz continuous on its domain, which is

assumed to be open, or the indicator of a nonempty, convex and closed set.
Either of those assumptions guarantees for any γ > 0 the bound

(3.1) ‖proxγf (x)− x‖≤ γLf ∀x ∈ dom f.

(ii) Furthermore, h has a bounded domain domh such that the diameter of domh
is bounded by Dh.
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3.2. Properties of the max function. Previous research, when concluding
the weak convexity of the max function, has relied on the compactness of the domain
over which to maximize. This is done so that the classical Danskin Theorem can be
applied. This assumption is e.g. fulfilled in the context of Wasserstein GANs [2] with
weight clipping, but not in other formulations such as [20]. We provide an extension
of the classical Danskin Theorem, which only relies on the concavity and l.s.c. of the
objective in the second component and the boundedness of domh, see Assumption 3
and 6. This implies that for every x ∈ Rd the set

(3.2) Y (x) :=
{
y∗ ∈ Rn : ϕ(x) = Φ(x, y∗)− h(y∗) = max

y∈Rn
{Φ(x, y)− h(y)}

}
is nonempty. For brevity we denote arbitrary elements of Y (xk) by y∗k for all k ≥ 0.

Proposition 3.1 (Subgradient characterization of the max function). Let As-
sumption 3 and 6 hold true. Then, the function ϕ, see (1.3), fulfills

∂[Φ(·, y∗)](x) ⊆ ∂ϕ(x) ∀y∗ ∈ Y (x),∀x ∈ Rd.

In particular, ϕ is ρ-weakly convex.

Proof. From the ρ-weak convexity of Φ(·, y), we have that Φ(·, y)+ ρ
2‖·‖

2 is convex

for all y ∈ Rn. We define Φ̃(x, y) = Φ(x, y) + ρ
2‖x‖

2 and Γ̃(x, y) = Γ(x, y) + ρ
2‖x‖

2 for
(x, y) ∈ Rd × Rn as well as

ϕ̃(x) = max
y∈Rn

Γ̃(x, y) = ϕ(x) +
ρ

2
‖x‖2.

Notice that Γ̃(x, ·) is concave for any x ∈ Rd and Γ̃(·, y) is convex for any y ∈ Rn.
Thus, the function ϕ̃ is convex and dom ϕ̃ = domϕ = Rd. Therefore ϕ is continuous,
which implies that ∂ϕ(x) 6= ∅ for any x ∈ Rd. Let x ∈ Rd, y ∈ Y (x) and v ∈ Rd. For
any α > 0 it holds

ϕ̃(x+ αv)− ϕ̃(x)

α
≥ Γ̃(x+ αv, y)− Γ̃(x, y)

α
=

Φ̃(x+ αv, y)− Φ̃(x, y)

α
,

thus
(3.3)

ϕ̃′(x; v) = inf
α>0

ϕ̃(x+ αv)− ϕ̃(x)

α
≥ inf
α>0

Φ̃(x+ αv, y)− Φ̃(x, y)

α
= [Φ̃(·, y)]′(x; v),

where [Φ(·, y)]′(x; v) denotes the directional derivative of Φ in the first component at
x in the direction v. In conclusion,

(3.4) ϕ̃′(x; v) ≥ sup
y∈Y (x)

[Φ̃(·, y)]′(x; v) ∀v ∈ Rd

and for y ∈ Y (x) we therefore conclude ∂[Φ̃(·, y)](x) ⊆ ∂ϕ̃(x). The first statement is
obtained by subtracting ρx on both sides of the inclusion.

Lemma 3.2 (Lipschitz continuity of the max function). The Lipschitz continuity
of Φ in its first component implies that ϕ is Lipschitz with the same constant.

Proof. Let x, x′ ∈ Rd and y∗ ∈ Y (x). On the one hand

ϕ(x)− ϕ(x′) = Φ(x, y∗)− h(y∗)− ϕ(x′)

≤ Φ(x, y∗)− h(y∗)− Φ(x′, y∗) + h(y∗) ≤ L‖x− x′‖.

The reverse direction ϕ(x′)− ϕ(x) ≤ L‖x− x′‖ follows analogously.
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3.3. Deterministic setting. For initial values (x0, y0) ∈ dom f × domh the
deterministic version of alternating GDA, for gk ∈ ∂[Φ(·, yk)](xk), reads as

(3.5) (∀k ≥ 0)

⌊
xk+1 = proxηxf (xk − ηxgk)

yk+1 = proxηyh (yk + ηy∇yΦ(xk+1, yk)) .

Theorem 3.3. Let Assumption 3, 4, 5 and 6 hold true. For algorithm (3.5) with
the stepsizes

(3.6) ηx = min

{
ε4

L∇Φρ2D2
h(L+ Lf )

2 ,
ε2

ρL2

}
, ηy =

1

L∇Φ
and λ =

1

2ρ

the number of gradient evaluations K required is

O

(
∆∗ρ(L+ Lf )

2

ε4
max

{
1,
ρL∇ΦD

2
h

ε2

}
+
ρ∆0

ε2

)
,

to visit an ε-stationary given by min1≤k≤K‖∇ψλ(xk)‖≤ ε, where ∆∗ := ψ(x0) −
infx∈Rd ψ(x) and ∆0 := ψ(x0)−Ψ(x0, y0).

Similarly to the proofs in [12, 30] and others, the main descent statement makes
use of the quantity proxλψ (xk) for a λ > 0. This is somewhat surprising as this point
does not appear in the algorithm and can in general not be computed.

But first, we need to establish the fact that x̂k := proxλψ (xk) can also be written
as the proximal operator of f evaluated at an auxiliary point.

Lemma 3.4. For any λ ∈ (0, ρ−1) and all k ≥ 0 the point x̂k := proxλg (xk) can
also be written for some vk ∈ ∂ϕ(x̂k) as

x̂k = proxηxf
(
ηxλ
−1xk − ηxvk + (1− ηxλ−1)x̂k

)
.

Proof. Let k ≥ 0 be arbitrary but fixed and recall that g = f + ϕ. By the
definition of x̂k we have that

0 ∈ ∂ψ(x̂k) +
1

λ
(x̂k − xk) = ∂(ϕ+ f)(x̂k) +

1

λ
(x̂k − xk).

We can estimate through the continuity of ϕ and subdifferential calculus

1

λ
(xk − x̂k) ∈ ∂(ϕ+ f)(x̂k) ⊆ ∂ϕ(x̂k) + ∂f(x̂k).

Thus, there exists vk ∈ ∂ϕ(x̂k) such that 1
λ (xk − x̂k) ∈ vk + ∂f(x̂k). Also,

1

λ
(xk − x̂k) ∈ ∂f(x̂k) + vk ⇔

ηx
λ
xk − ηxvk + (1− ηx

λ
)x̂k ∈ x̂k + ηx∂f(x̂k)

⇔ x̂k = proxηxf

(ηx
λ
xk − ηxvk + (1− ηx

λ
)x̂k

)
.

With the previous lemma in place we can now turn our attention to the first step
of the actual convergence proof.

Lemma 3.5. With λ = 1/2ρ and ηx ≥ 0 we have for all k ≥ 0 that

ψλ(xk+1) ≤ ψλ(xk) + 2ρηx∆k −
1

2
ηx‖∇ψλ(xk)‖2+4ρη2

xL
2,

where ∆k := ψ(xk)−Ψ(xk, yk) ≥ 0.
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Proof. Let k ≥ 0 be fixed. As before we denote x̂k = proxλψ (xk). From the
definition of the Moreau envelope we have that

(3.7) ψλ(xk+1) = min
x∈Rd

{
ψ(x) +

1

2λ
‖x− xk+1‖2

}
≤ ψ(x̂k) +

1

2λ
‖x̂k − xk+1‖2.

Let now vk ∈ ∂ϕ(x̂k) as in Lemma 3.4. We successively deduce for β := 1− ηxλ−1

‖x̂k − xk+1‖2 = ‖proxηxf
(
ηxλ
−1xk − ηxvk + βx̂k

)
− proxηxf (xk − ηxgk) ‖2(3.8)

≤ ‖β(x̂k − xk) + ηx(gk − vk)‖2(3.9)

= β2‖x̂k − xk‖2+2ηxβ〈gk − vk, x̂k − xk〉+ η2
x‖gk − vk‖2

≤ β2‖x̂k − xk‖2+2ηxβ〈gk − vk, x̂k − xk〉+ 4η2
xL

2(3.10)

where (3.8) uses Lemma 3.4 and the definition of xk+1, inequality (3.9) holds because
of the nonexpansiveness of the proximal operator, and (3.10) follows from the Lipschitz
continuity of Φ and ϕ (see Lemma 3.2) and the fact that Lipschitz continuity implies
bounded subgradients. We are left with estimating the inner product in the above
inequality and we do so by splitting it into two: first of all, from the weak convexity
of Φ in x we have that

〈gk, x̂k − xk〉 ≤ Φ(x̂k, yk)− Φ(xk, yk) +
ρ

2
‖x̂k − xk‖2

≤ ϕ(x̂k)− Γ(xk, yk) +
ρ

2
‖x̂k − xk‖2.

Secondly, by the ρ-weak convexity of ϕ

−〈vk, x̂k − xk〉 ≤ ϕ(xk)− ϕ(x̂k) +
ρ

2
‖x̂k − xk‖2.

Combining the last two inequalities we get that

(3.11) 〈gk − vk, x̂k − xk〉 ≤ ϕ(xk)− Γ(xk, yk) + ρ‖x̂k − xk‖2.

Plugging (3.11) into (3.10) we deduce
(3.12)

‖x̂k − xk+1‖2≤ [(1− ηxλ−1)
2

+ 2ηx(1− ηxλ−1)ρ]︸ ︷︷ ︸
=(∗)

‖x̂k − xk‖2+2ηx∆k + 4η2
xL

2,

where we used the fact that 1− β ≤ 1 in the factor of ∆k. Now note that

(3.13)
(∗) = 1− 2ηxλ

−1 + η2
xλ
−2 + 2ηxρ− 2η2

xλ
−1ρ

= 1− 4ηxρ+ 4η2
xρ

2 + 2ηxρ− 4η2
xρ

2 = 1− 2ηxρ.

Combining (3.7), (3.12) and (3.13) we deduce, using λ = 1/2ρ,

ψλ(xk+1) ≤ ψ(x̂k) +
1

2λ

(
‖x̂k − xk‖2+2ηx∆k − 2ηxρ‖x̂k − xk‖2+4η2

xL
2
)

= ψλ(xk) + 2ρηx∆k −
1

2
ηx‖∇ψλ(xk)‖2+4ρη2

xL
2.

Naturally, we want to telescope the inequality established by the previous lemma.
We are left with estimating ∆k, preferably even in a summable way. But first we
need the following technical, yet standard lemma, estimating the amount of increase
obtained by a single iteration of gradient ascent.

11



Lemma 3.6. It holds for all y ∈ Rn and k ≥ 0 that

(3.14) Ψ(xk+1, y)−Ψ(xk+1, yk+1) ≤ 1

2ηy

(
‖y − yk‖2−‖y − yk+1‖2

)
.

Proof. This is a standard estimate on the improvement made by a single prox-
gradient step for a convex (in this case concave) function, see for example [5, Lemma
2.3].

We can now use the previous lemma to estimate ∆k. Recall also that y∗k denotes
a maximizer of Ψ(xk, ·) for all k ≥ 0.

Lemma 3.7. We have that for all 1 ≤ m ≤ k,

(3.15) ∆k ≤ 2ηxL(L+ Lf )(k −m) +
1

2ηy

(
‖yk−1 − y∗m‖2−‖yk − y∗m‖2

)
.

Proof. Plugging y = y∗m into (3.14) we deduce that

(3.16) 0 ≤ Ψ(xk, yk)−Ψ(xk, y
∗
m) +

1

2ηy

(
‖y∗m − yk−1‖2−‖y∗m − yk‖2

)
.

Starting from the definition of ∆k = Ψ(xk, y
∗
k)−Ψ(xk, yk), we add (3.16) to obtain

(3.17) ∆k ≤ Ψ(xk, y
∗
k)−Ψ(xk, y

∗
m) +

1

2ηy

(
‖y∗m − yk−1‖2−‖y∗m − yk‖2

)
.

Due to the Lipschitz continuity of Φ, terms which only differ in their first argument
will be easy to estimate. Therefore, we insert and subtract Φ(xm, y

∗
k) to deduce

(3.18)

Ψ(xk, y
∗
k)−Ψ(xk, y

∗
m)

= Φ(xk, y
∗
k)− Φ(xm, y

∗
k) + Φ(xm, y

∗
k)− h(y∗k)− Φ(xk, y

∗
m) + h(y∗m)

≤ Φ(xk, y
∗
k)− Φ(xm, y

∗
k) + Φ(xm, y

∗
m)− h(y∗m)− Φ(xk, y

∗
m) + h(y∗m)

= Φ(xk, y
∗
k)− Φ(xm, y

∗
k) + Φ(xm, y

∗
m)− Φ(xk, y

∗
m).

We estimate the above expression for k > m by making use of the Lipschitz continuity
of Φ(·, y) and (3.1) deducing

(3.19)

Φ(xk, y
∗
k)− Φ(xm, y

∗
k) ≤ L‖xk − xm‖≤ L

k−1∑
l=m

‖xl+1 − xl‖

≤ L
k−1∑
l=m

(
‖proxηxf (xl − ηxgl)− proxηxf (xl) ‖+‖proxηxf (xl)− xl‖

)
≤ ηxL(L+ Lf )(k −m).

For k = m the inequality follows trivially. Analogously, we deduce

(3.20) Φ(xm, y
∗
m)− Φ(xk, y

∗
m) ≤ ηxL(L+ Lf )(k −m).

Plugging (3.18), (3.19) and (3.20) into (3.17) gives the statement of the lemma.

In order to estimate the summation of ∆k we will use a trick to sum over it in
blocks, where the size B of these blocks will depend on the total number of iterations
K. Note that w.l.o.g. we assume that the block size B ≤ K divides K without
remainder.

12



Lemma 3.8. It holds that for all K ≥ 1

(3.21)
1

K

K−1∑
k=0

∆k ≤ ηxL(L+ Lf )B +
L∇ΦD

2
h

2B
+

∆0

K
.

Proof. By splitting the summation into blocks we get that

(3.22)

K−1∑
k=0

∆k =

K/B−1∑
j=0

(j+1)B−1∑
k=jB

∆k.

By using (3.15) from Lemma 3.7 with j > 0 and m = jB and the fact that
∑B−1
k=1 k ≤

B2
/2 we have

(3.23)

(j+1)B−1∑
k=jB

∆k ≤ ηxL(L+ Lf )B2 +
1

2ηy
‖yjB−1 − y∗jB‖2

where the last term can be bounded by D2
h, which was defined in Assumption 6 and

denotes the diameter of domh. We do the same for the case j = 0 but choose here
m = 1 and have separate out the first summand of

∑B−1
k=0 ∆k as Lemma 3.7 does not

hold for k = 0 and therefore get an extra ∆0 summand. where Dh was defined in
Assumption 6 and denotes the diameter of domh. Plugging (3.23) into (3.22) gives

1

K

K−1∑
k=0

∆k ≤ ηxL(L+ Lf )B +
1

2ηyB
D2
h +

∆0

K
.

The desired statement is obtained by using the stepsize ηy = 1/L∇Φ.

Proof of Theorem 3.3. From Lemma 3.5 we deduce by summing up

ψλ(xK) ≤ ψλ(x0) + 2ηxρ

K−1∑
k=0

∆k −
1

2
ηx

K−1∑
k=0

‖∇ψλ(xk)‖2+4Kρη2
xL

2.

Next, we divide by K and obtain that

1

K

K−1∑
k=0

‖∇ψλ(xk)‖2≤ 2
∆∗

ηxK
+

4ρ

K

K−1∑
k=0

∆k + 8ρηxL
2.

Now, we plug in (3.21) to deduce that

1

K

K−1∑
k=0

‖∇ψλ(xk)‖2≤ 2
∆∗

ηxK
+ 4ρ

(
ηxL(L+ Lf )B +

L∇ΦD
2
h

2B

)
+

4ρ∆0

K
+ 8ηxρL

2.

With B = Dh

L

√
L∇Φ

ηx
, we have that

1

K

K−1∑
k=0

‖∇ψλ(xk)‖2≤ 2
∆∗

ηxK
+ 6ρ

√
L∇ΦηxDh(L+ Lf ) +

4ρ∆0

K
+ 8ηxρL

2.

By plugging in the stepsize described in the statement of the theorem we obtain

1

K

K−1∑
k=0

‖∇ψλ(xk)‖2≤ 2
∆∗

K
max

{
L2ρ

ε2
,
L∇Φρ

2D2
h(L+ Lf )

2

ε4

}
+

4ρ∆0

K
+ 14ε2.
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proving the desired complexity result.

3.4. Stochastic setting. For initial values (x0, y0) ∈ dom f × domh the sto-
chastic version of alternating GDA is given by

(3.24) (∀k ≥ 0)

⌊
xk+1 = proxηxf

(
xk − ηxgξk

)
yk+1 = proxηyh (yk + ηy∇yΦ(xk+1, yk; ζk)) ,

for gξk ∈ ∂[Φ(·, yk; ξk)](xk) for ξk, ζk ∼ D independent from all previous iterates.

Theorem 3.9. Let in addition to the assumptions of Theorem 3.3 also Assump-
tion 1 and 2 hold true. For algorithm (3.24) with stepsizes

ηx = min

{
ε2

ρ(L2 + σ2)
,

ε4

ρ2L(L+ Lf + σ)D2
hL∇Φ

,
ε6

ρ3L(L+ Lf + σ)σ2D2
h

}
,

ηy = min{ 1
2L∇Φ

, ε2

ρσ2 } and λ = 1
2ρ the number of stochastic gradient evaluations K

required is

O

(
∆∗(L2 + L2

f + σ2)ρ

ε4
max

{
1,
ρL∇ΦLD

2
h

ε2
,
ρ2D2

hσ
2

ε4

}
+

∆0ρ

ε2

)
,

where ∆∗ = ψ(x0)− infx∈Rd ψ(x) and ∆0 = ψ(x0)−Ψ(x0, y0), to visit an ε-stationary
point in expectation such that min1≤k≤K E[‖∇ψλ(xk)‖] ≤ ε.

The proof proceeds along the same lines of the deterministic case. Similarly we
show an adapted version of Lemma 3.5.

Lemma 3.10. With λ = 1/2ρ we have for all k ≥ 0 that

E[ψλ(xk+1)] ≤ E[ψλ(xk)] + 2ρηx∆̂k −
ηx
2
E
[
‖∇ψλ(xk)‖2

]
+ 4ρη2

x(L2 + σ2)

where ∆̂k := E[ψ(xk)−Ψ(xk, yk)].

Proof. Let k ≥ 0 be arbitrary but fixed. It follows easily from (2.5) that

(3.25) E
[
‖gξk‖

2
]
≤ E

[
‖gk‖2

]
+ σ2 ≤ L2 + σ2,

where E
[
gξk

]
= gk ∈ ∂xΦ(xk, yk). The definition of the Moreau envelope yields

(3.26) E[gλ(xk+1)] ≤ E[ψ(x̂k)] +
1

2λ
E
[
‖x̂k − xk+1‖2

]
.

Similarly to Lemma 3.5 we deduce that for vk ∈ ∂ϕ(x̂k) (as given in Lemma 3.4) and
β = 1− ηxλ−1

‖x̂k − xk+1‖2 = β2‖x̂k − xk‖2+2ηxβ〈gξk − vk, x̂k − xk〉+ η2
x‖g

ξ
k − vk‖

2.

By applying the conditional expectation E[· |xk, yk], then the unconditional one and
using (3.25), we get that

E
[
‖x̂k − xk+1‖2

]
≤ E

[
‖x̂k − xk‖2+2ηx(1− ηx

λ
)〈gk − vk, x̂k − xk〉

]
+ 4η2

x(L2 + σ2).
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where gk = E
[
gξk

]
. Lastly, we combine the above inequality with (3.26) and the

estimate for the inner product (3.11) as in Lemma 3.5 to deduce the statement of the
lemma.

Next, we discuss the stochastic version of Lemma 3.6. It is clear that we cannot
expect the same amount of function value increase by a single iteration of gradient
ascent if we do not use the exact gradient.

Lemma 3.11. With ηy ≤ 1/2L∇Φ we have for all k ≥ 0 and all y ∈ Rn
(3.27)

E[Ψ(xk+1, y)−Ψ(xk+1, yk+1)] ≤ 1

2ηy

(
E
[
‖y∗m − yk‖2−‖y∗m − yk+1‖2

])
+ ηyσ

2.

Proof. Let k ≥ 0 and y ∈ Rn be arbitrary but fixed. As in Lemma 3.6, we deduce

h(yk+1)− 〈∇yΦ(xk+1, yk; ζk), yk+1 − yk〉+
1

2ηy

(
‖yk+1 − yk‖2+‖y − yk+1‖2

)
≤ h(y)− 〈∇yΦ(xk+1, yk; ζk), y − yk〉+

1

2ηy
‖y − yk‖2.

The term 〈∇yΦ(xk+1, yk; ζk), yk+1 − yk〉 is problematic, because the right hand side
of the inner product is not measurable with respect to the sigma algebra gener-
ated by past iterates Fk := σ{xk+1, . . . , x1, yk, . . . , y1}, so we insert and subtract
〈∇yΦ(xk+1, yk), yk+1 − yk〉 Now, using Young’s inequality we estimate the resulting
inner product

〈∇yΦ(xk+1, yk; ζk)−∇yΦ(xk+1, yk), yk+1 − yk〉

≤ ηy‖∇yΦ(xk+1, yk; ζk)−∇yΦ(xk+1, yk)‖2+
1

4ηy
‖yk+1 − yk‖2.

Combining the above two inequalities for y = y∗m with 1 ≤ m ≤ k and taking the
expectation together with the bounded variance assumption (2.4) gives

(3.28)

E[E[〈∇yΦ(xk+1, yk; ξk), y∗m − yk〉 | Fk]] + E
[
h(yk+1) +

1

2ηy
‖y∗m − yk+1‖2

]
≤ E

[
〈∇yΦ(xk+1, yk), yk+1 − yk〉 −

1

4ηy
‖yk+1 − yk‖2

]
+ ηyσ

2 + E
[
h(y∗m) +

1

2ηy
‖y∗m − yk‖2

]
.

From the descent lemma (in ascent form) and the fact that ηy ≤ 1/2L∇Φ we have

Φ(xk+1, yk) + 〈yk+1 − yk,∇yΦ(xk+1, yk)〉 − 1

4ηy
‖yk+1 − yk‖2≤ Φ(xk+1, yk+1).

We plug the above inequality into (3.28), make use of the concavity and add f(xk+1)
on both sides to deduce the statement of the lemma.

We can now use the previous lemma to estimate ∆̂k.

Lemma 3.12. For all 1 ≤ m ≤ k, we have that
(3.29)

∆̂k ≤ 2ηxL(Lf + L+ σ)(k −m) +
1

2ηy
E
[
‖yk−1 − y∗m‖2−‖yk − y∗m‖2

]
+ ηyσ

2.
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Proof. Let the numbers 1 ≤ m ≤ k be fixed. Starting from the definition of ∆̂k,
we add (3.27) to obtain

(3.30)

∆̂k = E[ψ(xk)−Ψ(xk, yk)]

≤ E[ψ(xk)−Ψ(xk, y
∗
m)] +

1

2ηy

(
E
[
‖y∗m − yk−1‖2−‖y∗m − yk‖2

])
+ ηyσ

2.

As in (3.18) we deduce that

Ψ(xk, y
∗
k)−Ψ(xk, y

∗
m) ≤ Φ(xk, y

∗
k)− Φ(xm, y

∗
k) + Φ(xm, y

∗
m)− Φ(xk, y

∗
m).

Together with the L-Lipschitz continuity of Φ(·, y) and (3.1) we estimate for k ≥ m

as in (3.19), but using E
[
‖gξl ‖

]
≤ L+ σ,

E[Φ(xk, y
∗
k)− Φ(xm, y

∗
k)] ≤ ηxL

(
Lf +

√
L2 + σ2

)
(k −m).

Plugging all of these into (3.30) gives the statement of the lemma.

In order to estimate the summation of ∆̂k we will use the same trick as in the
deterministic setting and sum over it in blocks, where the size B of these blocks will
divide the total number of iterations K.

Lemma 3.13. We have that for all K ≥ 1

(3.31)
1

K

K−1∑
k=0

∆̂k ≤ ηxL(L+ Lf + σ)B +
D2
h

2ηyB
+ ηyσ

2 +
∆0

K
.

Proof. We proceed as in Lemma 3.8. By using Lemma 3.12 we obtain j > 0 and
m = jB we have that

(3.32)

(j+1)B−1∑
k=jB

∆̂k ≤ ηxL(L+ Lf + σ)B2 +
1

2ηy
D2
h +Bηyσ

2.

For j = 0 we use m = 1 and do not estimate ∆0 but leave it there. Plugging (3.32)
into (3.22) gives the statement of the lemma.

Now we can prove the convergence result for the stochastic algorithm.

Proof of Theorem 3.9. We sum up the inequality of Lemma 3.10 to deduce that

E[ψλ(xK)] ≤ ψλ(x0) + 2ηxρ

K−1∑
k=0

∆̂k −
ηx
2

K−1∑
k=0

E
[
‖∇ψλ(xk)‖2

]
+ 4Kρη2

x(L2 + σ2).

Thus, by dividing by K and ηx yields

1

K

K−1∑
k=0

E
[
‖∇ψλ(xk)‖2

]
≤ 2∆∗

ηxK
+

4ρ

K

K−1∑
k=0

∆̂k + 8ρηx(L2 + σ2).

Now we plug in (3.31) to obtain

1

K

K−1∑
k=0

E
[
‖∇ψλ(xk)‖2

]
≤ 2∆∗

ηxK
+ 4ρ

(
ηxL(L+ Lf + σ)B +

D2
h

2ηyB
+ ηyσ

2
)

+ 4ρ
∆0

K
+ 8ρηx(L2 + σ2).
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With the block size B = Dh

√
1/(ηxηyL(L+ Lf + σ)) we have that

ηxL(L+ Lf + σ)B +
D2
h

2ηyB
+ ηyσ

2 =

√
ηx
ηy

√
L(L+ Lf + σ)Dh + ηyσ

2

Via the stepsize choice presented in the theorem we obtain the desired complexity.

3.5. Alternating vs simultaneous. Although we are not able to show im-
proved rates for the alternating version of GDA in this setting, we would still like to
point out some improvements in the constants which otherwise might go unnoticed
since the statements are quite technical.

In the nonconvex-concave setting the main descent type property we focus on can
be seen in Lemma 3.5 and is given by

gλ(xk+1) ≤ gλ(xk) + 2ρηx∆k −
1

2
ηx‖∇gλ(xk)‖2+4ρη2

xL
2,

From this it clear the only troublesome part is the estimation of ∆k = ψ(xk) −
Ψ(xk, yk) (to be precise we, we need to estimate the sum of ∆k after telescoping).
While we obtain

∆k ≤ Φ(xk, yk)−Φ(xm, y
∗
k) + Φ(xm, y

∗
m)−Φ(xk, y

∗
m) +

1

2ηy
(‖y − yk−1‖2−‖y − yk‖2)

in [30] the same estimate is obtained for simultaneous GDA plus an additional term

Φ(xk, yk)− Φ(xk−1, yk−1),

see [30, Lemma D.4]. While we do not have information about the sign of this term
it is clear that its absence is preferable as it needs to be estimated after telescoping
and averaging via

1

K
(Φ(xK , yK)− Φ(x0, y0)) ≤ ηxL2 + ∆0.

Looking at the statement of Lemma 3.7 we see, however, that factors of both of these
terms already appear in the final statement due to other estimations which is why
their appearance gets lost in the big O notation.

4. Nonconvex-strongly concave objective. By requiring in addition to the
assumptions of Section 3 strong convexity in the second component and smoothness of
the coupling function in x, we can drop any assumption about Lipschitz continuity and
will be able to deduce the max function ϕ is smooth with Lipschitz continuous gradient
(making it weakly convex). For the technical details see the following assumptions.

Assumption 7. Let Φ be L∇Φ-smooth uniformly in both components and concave
in the second one. The regularizers f and −h are proper, l.s.c. and convex. Addition-
ally, either Φ is µ-strongly concave in the second component, uniformly in the first
one, or −h is µ-strongly concave.

Notation. In Proposition 4.2 we will show that under the above assumptions
ϕ = maxy∈Rn{Φ(·, y) − h(y)} is L∇ϕ-smooth, with L∇ϕ = (1 + κ)L∇Φ, for κ :=
max{L∇Φ/µ, 1} denoting the condition number. In the setting without regularizers,
where the strong concavity arises from Φ it is well known that µ ≤ L∇Φ and therefore
1 ≤ L∇Φ/µ (the standard definition of the condition number). If the strong concavity
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stems from the regularizers h this is no longer true and L∇Φ/µ might be smaller than 1
which would lead to tedious case distinctions, which is why we adapt the definition of
the condition number in order to provide a unified analysis. Additionally, the solution
set Y (x) defined in (3.2) consists only of a single element which we will denote by
y∗(x). We denote the quantity δk := ‖yk − y∗k‖2, measuring the distance between the
current strategy of the second player and her best response according to the current
strategy of the first player.

4.1. Properties of the max function. In the following we will show the
smoothness of ϕ, as well as the fact that the solution map fulfills a strong Lipschitz
property.

Lemma 4.1 (Lipschitz continuity of the solution mapping). The solution map
y∗ : Rd → Rn which fulfills Γ(x, y∗(x)) = maxy∈Rn Γ(x, y) for all x ∈ Rd is well
defined and κ-Lipschitz where κ = max{L∇Φ/µ, 1}.

Proof. Let x, x′ ∈ Rd be fixed. From the optimality condition we deduce that

∇yΦ(x′, y∗(x′))−∇yΦ(x, y∗(x′)) ∈ ∂h(y∗(x′))−∇yΦ(x, y∗(x′)).

Thus by the strong monotonicity of ∂h−∇yΦ(x, ·) we obtain

µ‖y∗(x)− y∗(x′)‖2 ≤ 〈y∗(x)− y∗(x′),∇yΦ(x, y∗(x′))−∇yΦ(x′, y∗(x′))〉
≤ ‖y∗(x)− y∗(x′)‖L∇Φ‖x− x′‖.

The statement of the lemma follows.

Proposition 4.2 (Smoothness of the max function). Let Assumption 7 hold
true. Then, ϕ is smooth and its gradient is given by

∇ϕ(x) = ∇xΦ(x, y∗(x))

and is therefore L∇Φ(1 + κ)-Lipschitz.

Proof. Following Proposition 3.1, we define the quantities ϕ̃, Φ̃ and Γ̃ as there
using ρ = L∇Φ. Let x, v ∈ Rd, αk ↓ 0 and xk := x + αkv for any k ≥ 0. Further,
let be yk = y∗(xk) for any k ≥ 0. Then, by the Lipschitz continuity of y∗(·), see
Lemma 4.1, limk→∞ yk = y∗(x). In addition, for any v ∈ Rd and all k ≥ 0,

ϕ̃′(x; v) ≤ ϕ̃(xk)− ϕ̃(x)

αk
≤ Γ̃(xk, yk)− Γ̃(x, yk)

αk

=
Φ̃(xk, yk)− Φ̃(x, yk)

αk
≤ [Φ̃(·, yk)]′(x+ αkv; v) = 〈∇xΦ̃(xk, yk), v〉.

Since the gradient of Φ̃ is continuous, this implies by letting k → +∞ that

ϕ̃′(x; v) ≤ 〈∇xΦ̃(x, y∗(x)), v〉, ∀v ∈ Rd,

which, together with (3.4), yields that (16) holds with equality. The fact that the
gradient of ϕ is Lipschitz continuous follows, with y∗ = y∗(x) and ȳ∗ = ȳ∗(x̄), from

‖∇ϕ(x)−∇ϕ(x̄)‖ ≤ ‖∇xΦ(x, y∗)−∇xΦ(x̄, y∗)‖+‖∇xΦ(x̄, y∗)−∇xΦ(x̄, ȳ∗)‖
≤ L∇Φ‖x− x̄‖+L∇Φ‖y∗ − ȳ∗‖≤ (L∇Φ + L∇Φκ)‖x− x̄‖,

together with the claimed constant.
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4.2. Deterministic setting. For this section Algorithm 1 reads as

(4.1) (∀k ≥ 0)

⌊
xk+1 = proxηxf (xk − ηx∇xΦ(xk, yk))

yk+1 = proxηyh (yk + ηy∇yΦ(xk+1, yk)) .

We start with the main convergence result of this section.

Theorem 4.3. Let Assumption 7 and 4 hold. For algorithm 4.1 with stepsize
ηy = 1/L∇Φ and ηx = 1/(3(κ+1)2L∇Φ) the number of gradient evaluations K required,
using the notation ∆∗ = ψ(x0)− infx∈Rd ψ(x), is

O
(
κL∇Φ

ε2
max{κ∆∗, L∇Φ‖y∗(x0)− y0‖2}

)
,

to visit an ε-stationary point such that min1≤k≤K dist (−∇ϕ(xk), ∂f(xk)) ≤ ε.
Before we start with the first lemma, let us recall that δk = ‖yk − y∗k‖2 denotes

for all k ≥ 0 the squared distance between the current iterate yk and the maximizing
argument y∗k = arg maxy Ψ(xk, y).

Lemma 4.4. There exists a sequence (wk)k≥1 such that wk ∈ (∂f +∇ϕ)(xk) and
its norm can be bounded for all k ≥ 0 by

1

2
ηx‖wk+1‖2≤ ψ(xk)− ψ(xk+1) +

1

2

(
L∇ϕ + 2L2

∇ϕηx −
1

ηx

)
‖xk − xk+1‖2+ηxL

2
∇Φδk.

Proof. Let k ≥ 0 be arbitrary but fixed. From the optimality condition of the
proximal operator we deduce by adding ∇ϕ(xk+1) on both sides

wk+1 :=
1

ηx
(xk − xk+1) +∇ϕ(xk+1)−∇xΦ(xk, yk) ∈ ∂f(xk+1) +∇ϕ(xk+1),

as claimed. In order to prove the bound on ‖wk+1‖ we proceed as follows:

(4.2)
‖wk+1‖2 = η−2

x ‖xk − xk+1‖2+2η−1
x 〈xk − xk+1,∇ϕ(xk+1)−∇xΦ(xk, yk)〉

+ ‖∇ϕ(xk+1)−∇xΦ(xk, yk)‖2.

The smoothness of ϕ implies via the descent lemma that

(4.3) ϕ(xk+1) + 〈∇ϕ(xk+1), xk − xk+1〉 −
L∇ϕ

2
‖xk+1 − xk‖2≤ ϕ(xk).

Since the proximal operator minimizes a 1/ηx-strongly convex function we have that

f(xk+1) + 〈∇xΦ(xk, yk), xk+1 − xk〉+
1

ηx
‖xk+1 − xk‖2≤ f(xk)

Adding this inequality to (4.3) we deduce that

(4.4)

〈∇ϕ(xk+1)−∇xΦ(xk, yk), xk − xk+1〉 ≤ ψ(xk)− ψ(xk+1)

+
1

2

(
L∇ϕ −

2

ηx

)
‖xk+1 − xk‖2.

Lastly, by the Young inequality

‖∇ϕ(xk+1)−∇xΦ(xk, yk)‖2 = ‖∇ϕ(xk+1)−∇ϕ(xk) +∇ϕ(xk)−∇xΦ(xk, yk)‖2

≤ 2L2
∇ϕ‖xk+1 − xk‖2+2L2

∇Φδk.

Plugging (4.4) and (4.3) into (4.2) yields the desired statement.
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In the next lemma it remains to bound the gap between the current iterate and
the maximizing argument of the second component δk = ‖y∗k − yk‖2.

Lemma 4.5. We have that for all k ≥ 0, then

δk+1 ≤
(

1− 1

2κ

)
δk + κ3‖xk+1 − xk‖2.

Proof. Let k ≥ 0 be fixed. From the definition of yk+1, see (4.1), and the fact
that y∗k+1 is a fixed point of the proximal-gradient operator, we deduce

δk+1 = ‖proxηyh
(
y∗k+1 + ηy∇yΦ(xk+1, y

∗
k+1)

)
− proxηyh (yk + ηy∇yΦ(xk+1, yk)) ‖2.

If Φ is strongly concave in its second component we can use the nonexpansiveness of
the proximal operator and [42, Theorem 2.1.11], which states
(4.5)
〈∇yΦ(xk+1, y

∗
k+1)−∇yΦ(xk+1, yk), y∗k+1 − yk〉

≤ − µL∇Φ

µ+ L∇Φ
‖y∗k+1 − yk‖2−

1

µ+ L∇Φ
‖∇yΦ(xk+1, y

∗
k+1)−∇yΦ(xk+1, yk)‖2

to conclude

δk+1 ≤ ‖y∗k+1 + ηy∇yΦ(xk+1, y
∗
k+1)− yk − ηy∇yΦ(xk+1, yk)‖2

= ‖y∗k+1 − yk‖2+2ηy〈y∗k+1 − yk,∇yΦ(xk+1, y
∗
k+1)−∇yΦ(xk+1, yk)〉

+ η2
y‖∇yΦ(xk+1, y

∗
k+1)−∇yΦ(xk+1, yk)‖2

(4.5)
≤

(
κ− 1

κ+ 1

)
‖y∗k+1 − yk‖2≤ q‖y∗k+1 − yk‖2

with q :=
(

κ
κ+1

)2

, where we used that ηy = 1/L∇Φ. If on the other hand −h is strongly

concave we can use the fact that the proximal operator (of h) is even a contraction,
see [4, Proposition 25.9 (i)], to deduce that δk+1 ≤ q‖y∗k+1−yk‖2. Therefore, in either
case δk+1 ≤ q‖y∗k+1−yk‖2. Using this, the triangle inequality and Young’s inequality,
we have

δk+1 ≤ q‖y∗k+1 − yk‖2≤ q
(
‖y∗k+1 − y∗k‖+‖y∗k − yk‖

)2

≤ q
(

1 +
3κ2 − 1

2κ3

)
‖y∗k − yk‖2︸ ︷︷ ︸

=δk

+q

(
1 +

2κ3

3κ2 − 1

)
‖y∗k+1 − y∗k‖2

≤
(

1− 1

2κ

)
δk + κ‖y∗k+1 − y∗k‖2.(4.6)

Due to the κ-Lipschitz continuity of y∗(·) we have that ‖y∗k+1 − y∗k‖≤ κ‖xk+1 − xk‖,
which finishes the proof.

Now we can bound the sum of δk.

Lemma 4.6. We have that, for all K ≥ 1

K−1∑
k=0

δk ≤ 2κδ0 + 2κ4
K−1∑
k=0

‖xk+1 − xk‖2.
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Proof. By recursively applying the previous lemma we obtain for k ≥ 1

δk ≤
(

1− 1

2κ

)k
δ0 + κ3

k−1∑
j=0

(
1− 1

2κ

)k−j−1

‖xj+1 − xj‖2.

Now we sum this inequality from k = 1 to K − 1 and add δ0 on both sides to deduce

K−1∑
k=0

δk ≤ 2κδ0 + 2κ4
K−1∑
k=0

‖xk+1 − xk‖2,

where we used that

(4.7)

K−1∑
k=1

k−1∑
j=0

(
1− 1

2κ

)k−1−j

‖xj+1 − xj‖2≤
K−1∑
j=0

(
1− 1

2κ

)j (K−1∑
k=0

‖xk+1 − xk‖2
)
,

and
∑∞
j=0 (1− (2κ)

−1
)
j

= 2κ.

We can now put the pieces together.

Proof of Theorem 4.3. Summing up the inequality of Lemma 4.4 from k = 0 to
K − 1 and applying Lemma 4.6 we deduce that

1

2
ηx

K∑
k=1

‖wk‖2 ≤ ψ(x0)− ψ(xK) + 2L2
∇Φηxκδ0

+
1

2

(
L∇ϕ + 2L2

∇ϕηx −
1

ηx
+ 2κ4L2

∇Φηx

)K−1∑
k=0

‖xk+1 − xk‖2.

With the stepsize ηx = 1/(3(κ+ 1)
2
L∇Φ) it follows that

L∇ϕ + 2L2
∇ϕηx −

1

ηx
+ 2κ4L2

∇Φηx ≤ −
2

3
(κ+ 1)

2
L∇Φ ≤ 0,

which concludes the proof.

4.3. Stochastic setting. For the purpose of this section Algorithm 1 reads

(4.8) (∀k ≥ 0)

⌊
xk+1 = proxηxf (xk − ηxGx)

yk+1 = proxηyh (yk + ηyGy) ,

for the minibatch gradient estimators, given by Gx = 1
M

∑M
i=1∇xΦ(xk, yk; ξik) and

Gy = 1
M

∑M
i=1∇yΦ(xk+1, yk; ζik).

Theorem 4.7. Let in addition to the assumptions of Theorem 4.3 also the two
properties of the gradient estimator Assumption 1 and 2 hold true. For algorithm (4.8)
with stepsize ηy = 1/L∇Φ and ηx = 1/(4(1+κ)2L∇Φ) and batch size M = O(κσ2ε−2) the
number of stochastic gradient evaluations K required is

O
(
σ2κ2L∇Φ

ε4
max{κ∆∗, L∇Φ‖y∗(x0)− y0‖2}

)
,

such that min1≤k≤K E[dist (−∇ϕ(xk), ∂f(xk))] ≤ ε, i.e. to visit an ε-stationary point
in expectation, where ∆∗ = ψ(x0)− infx∈Rd ψ(x).

21



Lemma 4.8. There exists a sequence (wk)k≥1 such that wk ∈ (∂f +∇ϕ)(xk) and
its norm can be bounded for all k ≥ 0 by

1

2
ηxE

[
‖wk+1‖2

]
≤ E[ψ(xk)− ψ(xk+1)] + ηxL

2
∇ΦE[δk] + ηx

σ2

M

+
1

2

(
L∇ϕ + 3L2

∇ϕηx −
1

ηx

)
E
[
‖xk − xk+1‖2

]
.

Proof. Let k ≥ 0. From the proximal operator we deduce that

0 ∈ ∂f(xk+1) +Gx +
1

ηx
(xk+1 − xk).

Thus, we define wk+1 such that we immediately obtain the desired inclusion

wk+1 :=
1

ηx
(xk − xk+1) +∇ϕ(xk+1)−Gx ∈ ∂f(xk+1) +∇ϕ(xk+1).

In order to bound wk+1 we consider

(4.9)

‖wk+1‖2

=
1

η2
x

‖xk − xk+1‖2+
2

ηx
〈xk − xk+1,∇ϕ(xk+1)−Gx〉+ ‖∇ϕ(xk+1)−Gx‖2.

Using the analogous statement to (4.4)

E
[
‖∇ϕ(xk+1)−Gx‖2

]
= E

[
‖∇ϕ(xk+1)−∇xΦ(xk, yk) +∇xΦ(xk, yk)−Gx‖2

]
= E

[
‖∇ϕ(xk+1)−∇ϕ(xk) +∇ϕ(xk)−∇xΦ(xk, yk)‖2

]
+ 2E[〈∇ϕ(xk+1)−∇ϕ(xk),∇xΦ(xk, yk)−Gx〉] + E

[
‖∇xΦ(xk, yk)−Gx‖2

]
+ 2E[〈∇ϕ(xk)−∇xΦ(xk, yk),∇xΦ(xk, yk)−Gx〉]︸ ︷︷ ︸

=0

≤ 3L2
∇ϕE

[
‖xk+1 − xk‖2

]
+ 2L2

∇ΦE[δk] + 2
σ2

M

in (4.9) yields the desired statement.

In the next lemma it remains to bound δk.

Lemma 4.9. We have that for all k ≥ 0

E[δk+1] ≤
(

1− 1

2κ

)
E[δk] + κ3‖xk+1 − xk‖2+

σ2

ML2
∇Φ

.

Proof. Let k ≥ 0 be fixed. We first consider the case where Φ is strongly concave
in its second component from the definition of yk+1 (see (4.8)) we deduce that

δk+1 = ‖proxηyh
(
y∗k+1 + ηy∇yΦ(xk+1, y

∗
k+1)

)
− proxηyh (yk + ηyGy) ‖2

≤ ‖y∗k+1 + ηy∇yΦ(xk+1, y
∗
k+1)− yk − ηyGy‖2
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and
(4.10)
‖y∗k+1 + ηy∇yΦ(xk+1, y

∗
k+1)− yk − ηyGy‖2

= ‖y∗k+1 − yk‖2+2ηy〈y∗k+1 − yk,∇yΦ(xk+1, y
∗
k+1)−∇yΦ(xk+1, yk)〉

+ 2ηy 〈y∗k+1 − yk,∇yΦ(xk+1, yk)−Gy〉︸ ︷︷ ︸
(�)

+ η2
y‖∇yΦ(xk+1, y

∗
k+1)−∇yΦ(xk+1, yk)‖2+η2

y‖∇yΦ(xk+1, yk)−Gy‖2

+ η2
y 〈∇yΦ(xk+1, y

∗
k+1)−∇yΦ(xk+1, yk),∇yΦ(xk+1, yk)−Gy〉︸ ︷︷ ︸

(∗)

.

Some of the terms vanish after taking the expectation such as

E[(∗)] = E[E[(∗) | yk, xk+1]] = E[0] = 0 = E[E[(�) | yk, xk+1]] = E[(�)].

Using furthermore [42, Theorem 2.1.11] which states that

(4.11)

〈∇yΦ(xk+1, yk)−∇yΦ(xk+1, y
∗
k+1), y∗k+1 − yk〉

≥ µL∇Φ

µ+ L∇Φ
‖y∗k+1 − yk‖2+

1

µ+ L∇Φ
‖∇yΦ(xk+1, y

∗
k+1)−∇yΦ(xk+1, yk)‖2

results in

(4.12) E[δk+1] ≤
(
κ− 1

κ+ 1

)
E
[
‖y∗k+1 − yk‖2

]
+

σ2

ML2
∇Φ

≤ qE
[
‖y∗k+1 − yk‖2

]
+

σ2

ML2
∇Φ

,

with q =
(

κ
κ+1

)2

, where we used that ηy = 1/L∇Φ. If h is strongly concave then we

use the fact that the proximal operator is a contraction, see [4, Proposition 23.11], to
deduce that

Eδk+1 = E
[
‖proxηyh

(
y∗k+1 + ηy∇yΦ(xk+1, y

∗
k+1)

)
− proxηyh (yk + ηyGy) ‖2

]
= qE

[
‖y∗k+1 − yk + ηy∇yΦ(xk+1, y

∗
k+1)− ηyGy‖2

]
(4.10)

= qE
[
‖y∗k+1 − yk‖2+2qηy〈y∗k+1 − yk,∇yΦ(xk+1, y

∗
k+1)−∇yΦ(xk+1, yk)〉

+ qη2
y‖∇yΦ(xk+1, y

∗
k+1)−∇yΦ(xk+1, yk)‖2+qη2

y‖∇yΦ(xk+1, yk)−Gy‖2
]
.

Using now (4.11) with µ = 0, i.e. the cocoercivity of the gradient, we deduce that

E[δk+1] = E
[
‖y∗k+1 − yk+1‖2

]
≤ q‖y∗k+1 − yk‖2+q

σ2

ML2
∇Φ

,

meaning that we concluded (4.12) in both cases. Next, using (4.12) and the consid-
erations made in (4.6) we deduce that

E[δk+1] ≤
(

1− 1

2κ

)
E[δk] + κE

[
‖y∗k+1 − y∗k‖2

]
+

σ2

ML2
∇Φ

.

Again, due to the κ-Lipschitz continuity of y∗(·) we have that ‖y∗k+1−y∗k‖≤ κ‖xk+1−
xk‖, which finishes the proof.
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Now we can bound the sum of δk.

Lemma 4.10. We have that, for all K ≥ 1

K−1∑
k=0

E[δk] ≤ 2κδ0 + 2κ4
K−1∑
k=0

E
[
‖xk+1 − xk‖2

]
+ 2K

κσ2

ML2
∇Φ

.

Proof. By recursively applying the previous lemma we obtain for k ≥ 1

E[δk] ≤
(

1− 1

2κ

)k
δ0 +

k−1∑
j=0

(
1− 1

2κ

)k−j−1(
κ3E

[
‖xj+1 − xj‖2

]
+

σ2

ML2
∇Φ

)
.

Now we sum this inequality from k = 1 to K − 1 and add δ0 on both sides to deduce

K−1∑
k=0

E[δk] ≤ 2κδ0 + 2K
κσ2

ML2
∇Φ

+ 2κ4
K−1∑
k=0

E
[
‖xk+1 − xk‖2

]
using the considerations made in (4.7).

We can now put the pieces together.

Proof of Theorem 4.7. We sum up the inequality of Lemma 4.8 from k = 0 to
K − 1 and applying Lemma 4.10 we deduce that

ηx

K∑
k=1

E
[
‖wk‖2

]
≤ 2E[ψ(x0)− ψ(xK)] + 4ηxκL

2
∇Φδ0 + 4ηxκK

σ2

M
+ 2ηxK

σ2

M

+
(
L∇ϕ + 3L2

∇ϕηx −
1

ηx
+ 2κ4L2

∇Φηx

)
︸ ︷︷ ︸

=(∗)

K−1∑
k=0

E
[
‖xk+1 − xk‖2

]
.

Applying the stepsize ηx = 1/(3(1+κ)2L∇Φ) it follows that

(∗) ≤ 2(κ+ 1)L∇Φ − 3(κ+ 1)
2
L∇Φ +

2κ2L∇Φ

3
≤ −1

3
(κ+ 1)

2
L∇Φ ≤ 0

which concludes the proof.

4.4. Alternating vs simultaneous. Similarly to Section 3.5 we want to high-
light here the difference in the analysis between the two versions of GDA. Again,
in this nonconvex-strongly-concave setting the task is to estimate δk := ‖y∗k − yk‖2.
While in the simultaneous version [30] obtains for all k ≥ 0 the following inequality

δk+1 ≤ (1 + ε)‖y∗k − yk+1‖2+(1 + ε−1)‖y∗k+1 − y∗k‖2

≤ q(1 + ε)δk + (1 + ε−1)‖y∗k+1 − y∗k‖2,

where q is the contraction constant derived from the gradient ascent step and is
roughly 1− 1

κ . In the alternating version however, we estimate for all k ≥ 0

δk+1 ≤ q‖y∗k+1 − yk‖2≤ q(1 + ε)δk + q(1 + ε−1)‖y∗k+1 − y∗k‖2.

Evidently, in the alternating version the contraction property is applied before the
triangle inequality, which leads to the second term being multiplied by q < 1 as well,
influencing the final complexity bound favorably, albeit only slightly.
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5. Numerical Experiments. In this section, we present several experiments
outlining the empirical benefits of alternating GDA over its simultaneous counterpart.

5.1. Toy example. The recent paper [54] showed an improved convergence rate
of alternating GDA over the simultaneous version in the strongly convex-strongly
concave quadratic setting from O(κ2) to O(κ). Inspired by these results we study a
nonconvex-strongly-concave toy example

(5.1) min
x∈R

max
y∈R

−1

4
x2 + xy − 1

2
y2,

where the resulting max function happens to be a strongly convex quadratic

(5.2) max
y∈R

{
−1

4
x2 + xy − 1

2
y2

}
=

1

4
x2.

As we can see from Figure 1, alternating GDA outperforms not only its simultaneous
counterpart but also the extra-gradient method (EG) [26] and the multistep method
GDmax [24] (employing 10 ascent steps per descent step). For the Minimax-PPA
method [29] we only counted iterations but did not account for the computational cost
of the double inner procedure which required over 100 solves of a proximally regular-
ized subproblem per iteration. We suspect that for a significantly more ill-conditioned
problem the Minimax-PPA methods might have performed more competitively.

(a) Gradient norm of the max function. (b) Trajectory of the iterates.

Figure 1: Comparison of different methods on the 2-d toy problem (5.1). The starting
point is given by (x0, y0) = (1,−0.5), step sizes for the first 4 methods are given by
ηx = 1/(κL∇Φ), ηy = 1/L∇Φ where µ = 1 and L∇Φ ≈ 1.78 and the unique stationary
point of the max function is x∗ = 0 as evident from (5.2). EG denotes the extra-
gradient method [26], GDmax a simple multistep method [24] employing 10 ascent
steps for each descent step and Minimax-PPA is the method from [29] for which all
parameters chosen according to theory.

In order to account for differences in stepsizes we do a grid search across possible
stepsizes for the two components and plot the number of iteration required to reach
a target accuracy, see Figure 2. Since the Minimax-PPA method has many inner
step sizes and number of inner loop calls to tune it cannot easily be compared here,
so we excluded it. We can see that alternating GDA is not only convergent for
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Figure 2: Gradient oracle calls needed to achieve an iterate gradient norm of the max
function, see (1.3), smaller than 10−4 using different methods.

many different combinations of stepsizes but also consistently outperforms the other
methods in terms of the required gradient oracle calls.

We also want to point out that, it might appear from the convergence behavior
of the different methods that our toy example (5.1) is easier than the more classical
bilinear problem of minx maxy xy, see [17, 16, 37], where neither version of GDA
converges. While for the latter problem the vector field is always perpendicular to
the direction of solution, our new problem exhibits areas where the vector field points
away from the solution (see the upper right corner of the Figure 1 (b)) and thus
exhibits a novel (and challenging behavior) which cannot be captured by bilinear
problems.

5.2. Adversarially robust learning. We now highlight the performance of
alternating GDA for adversarial learning on the MNIST [28], Fashion MNIST [1] and
CIFAR10 [27] datasets respectively. We focus on the adversarial learning formulation
described in (1.4), which originated in [47] and results in a nonconvex-strongly-concave
minimax formulation for large enough γ. We use standard convolutional networks
(CNN) for all three datasets. For MNIST and Fashion-MNIST we use the architecture
proposed by [47] of three convolutional layers followed by a dense layer and softmax
output. For CIFAR10 we follow the default architecture in the tutorial of [45] with
seven convolutional layers where the third, fifth and seventh are followed by an average
pooling operation.

Since the robust training did not significantly impact the performance of the CNNs
on the clean test examples on any of the data sets, we only report the performance
on the adversarial examples.

In contrast to multistep methods, as proposed in [47, 24, 43] which aim to (approx-
imately) solve the inner maximization problem and typically start in every iteration
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(a) MNIST (b) Fashion-MNIST (c) CIFAR10

Figure 3: Test accuracy (percentage of correctly classified) of different adversarial
training methods on multiple datasets averaged over 5 random seeds. ERM denotes
empirical risk minimization and represents a standard network trained purely for clas-
sification without any consideration of the adversarial examples. For the minimization
step we actually used the ADAM optimizer with a learning rate of 0.001 as done in the
code of [47, 45]. For the Fashion-MNIST and CIFAR10 datasets we set the Lagrange
parameter γ to be 1/γ = 0.4, whereas for MNIST we use 1/γ = 1.3.

from either the “clean” training example (or a randomly perturbed point [50]), GDA
can be interpreted as a warm starting procedure which stores the adversarial example
computed in the previous epoch. This also emphasizes the advantage of alternating
GDA (and why it can be considered the more natural approach) as this method uses
computed adversarial examples right away whereas the simultaneous version stores
them to only use them in the next epoch.

Although this is not the main focus this work, we also contrast the single step
methods with a method approximately solving the maximization problem (GDmax,
see [30]) and observe that while the multistep method slightly outperforms alternating
GDA, see Figure 3, this comes at the cost of an ≈ 8 times higher computation time
(based on ≈ 15 gradient ascent steps for the multistep method).

Nevertheless, all results clearly show that alternating GDA consistently outper-
forms simultaneous GDA without any additional computational cost.

6. Conclusion. We show novel complexity results for the alternating gradient
descent ascent method for nonconvex-(strongly) concave minimax problems using sto-
chastic or deterministic gradient evaluations. Since these bounds are only a first step
into the analysis of alternating GDA in this sophisticated setting, they do not explain
theoretically the benefit of the alternating version. However, we provide empirical
evidence that this method is favorable.
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