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Abstract

In the framework of real Hilbert spaces we study continuous in time dynamics as well as
numerical algorithms for the problem of approaching the set of zeros of a single-valued monotone
and continuous operator V . The starting point of our investigations is a second order dynamical
system that combines a vanishing damping term with the time derivative of V along the trajectory,
which can be seen as an analogous of the Hessian-driven damping in case the operator is originating

from a potential. Our method exhibits fast convergence rates of order o
´

1
tβptq

¯

for }V pzptqq},

where zp¨q denotes the generated trajectory and βp¨q is a positive nondecreasing function satisfiyng
a growth condition, and also for the restricted gap function, which is a measure of optimality for
variational inequalities. We also prove the weak convergence of the trajectory to a zero of V .

Temporal discretizations of the dynamical system generate implicit and explicit numerical algo-
rithms, which can be both seen as accelerated versions of the Optimistic Gradient Descent Ascent
(OGDA) method for monotone operators, for which we prove that the generated sequence of iter-
ates pzkqkě0 shares the asymptotic features of the continuous dynamics. In particular we show for

the implicit numerical algorithm convergence rates of order o
´

1
kβk

¯

for }V pzkq} and the restricted

gap function, where pβkqkě0 is a positive nondecreasing sequence satisfying a growth condition. For
the explicit numerical algorithm we show by additionally assuming that the operator V is Lipschitz
continuous convergence rates of order o

`

1
k

˘

for }V pzkq} and the restricted gap function. All con-
vergence rate statements are last iterate convergence results; in addition to these we prove for both
algorithms the convergence of the iterates to a zero of V . To our knowledge, our study exhibits
the best known convergence rate results for monotone equations. Numerical experiments indicate
the overwhelming superiority of our explicit numerical algorithm over other methods designed to
solve monotone equations governed by monotone and Lipschitz continuous operators.

Key Words. monotone equation, variational inequality, Optimistic Gradient Descent Ascent (OGDA)
method, extragradient method, Nesterov’s accelerated gradient method, Lyapunov analysis, conver-
gence rates, convergence of trajectories, convergence of iterates
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1 Introduction

Let H be a real Hilbert space and V : HÑ H a monotone and continuous operator. We are interested
in developing fast converging methods aimed to find a zero of V , or in other words, to solve the
monotone equation

V pzq “ 0, (1)
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for which assume that it has a nonempty solution set Z. The monotonicity and the continuity of V
imply that z˚ is a solution of (1) if and only if it is a solution of the following variational inequality

xz ´ z˚, V pzqy ě 0 @z P H. (2)

One of the main motivations to study (1) comes from minimax problems. More precisely, consider
the problem

min
xPX

max
yPY

Φ px, yq , (3)

where X and Y are real Hilbert spaces and Φ: X ˆY Ñ R is a continuously differentiable and convex-
concave function, i.e., Φ p¨, yq is convex for every y P Y and Φ px, ¨q is convex for every x P X . A
solution of (3) is a saddle point px˚, y˚q P X ˆ Y of Φ, which means that it fulfills

Φ px˚, yq ď Φ px˚, y˚q ď Φ px, y˚q @ px, yq P X ˆ Y

or, equivalently,
#

∇xΦ px˚, y˚q “ 0

´∇yΦ px˚, y˚q “ 0.
(4)

Taking into account that the mapping

px, yq ÞÑ
´

∇xΦ px, yq ,´∇yΦ px, yq
¯

(5)

is monotone ([43]), it means that the problem of finding a saddle point of Φ eventually brings us back
to the problem (1).

Both (1) and (3) are fundamental models in various fields such as optimization, economics, game
theory, and partial differential equations. They have recently regained significant attention, in partic-
ular in the machine learning and data science community, due to the fundamental role they play, for
instance, in multi agent reinforcement learning [37], robust adversarial learning [32] and generative
adversarial networks (GANs) [24, 18].

In this paper we develop fast continuous in time dynamics as well as numerical algorithms for
solving (1) and investigate their asymptotic/convergence properties. First we formulate a second
order dynamical system that combines a vanishing damping term with the time derivative of V
along the trajectory, which can be seen as an analogous of the Hessian-driven damping in case the
operator is originating from a potential. A continuously differentiable and nondecreasing function
β : rt0,`8q Ñ p0,`8q, which appears in the system, plays an important role in the analysis. If β
satisfies a specific growth condition, which is for instance satisfied by polynomials including constant

functions, then the method exhibits convergence rates of order o
´

1
tβptq

¯

for }V pzptqq}, where zptq

denotes the generated trajectory, and for the restricted gap function associated with (2). In addition,
zptq converges asymptotically weakly to a solution of (1).

By considering a temporal discretization of the dynamical system we obtain an implicit numerical

algorithm which exhibits convergence rates of order o
´

1
kβk

¯

for }V pzkq} and the restricted gap function

associated with (2), where pβkqkě0 is a nondecreasing sequence and pzkqkě0 is the generated sequence
of iterates. For the latter we also prove that it converges weakly to a solution of (1).

By a further more involved discretization of the dynamical system we obtain an explicit numerical
algorithm, which, under the additional assumption that V is Lipschitz continuous, exhibits conver-
gence rates of order o

`

1
k

˘

for }V pzkq} and the restricted gap function associated with (2), where
pzkqkě0 is the generated sequence of iterates, which is also to converge weakly to a solution of (1).

The resulting numerical schemes can be seen as accelerated versions of the Optimistic Gradient
Descent Ascent (OGDA) method ([33, 42]) formulated in terms of a general monotone operator V . It
should be also emphasized that the convergence rate statements for both the implicit and the explicit
numerical algorithm are last iterate convergence results and are, to our knowledge, the best known
convergence rate results for monotone equations.
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1.1 Related works

In the following we discuss some discrete and continuous methods from the literature designed to
solve equations governed by monotone and (Lipschitz) continuous, and not necessarily cocoercive
operators. It has been recognized that the simplest scheme one can think of, namely the forward
algorithm, which, for a starting point z0 P H and a given step size s ą 0, reads for k ě 0

zk`1 :“ zk ´ sV
´

zk
¯

,

and mimics the classical gradient descent algorithm, does not converge. Unless for the trivial case, the
operator in (5), which arises in connection with minimax problems, is only monotone and Lipschitz
continuous but not cocoercive. Therefore, it was early recognized that explicit numerical methods for
monotone equations require an operator corrector term.

In case V is monotone and L-Lipschitz continuous, for L ą 0, Korpelevich [30] and Antipin [2]
proposed to solve (1) the nowadays very popular Extragradient (EG) method, which reads for k ě 0

szk :“ zk ´ sV
´

zk
¯

zk`1 :“ zk ´ sV
´

szk
¯

,
(6)

and converges for a starting point z0 P H and 0 ă s ă 1
L to a zero of V . The last iterate convergence

rate for the extragradient method was only recently derived by Gorbuno-Loizou-Gidel in [25]. For
sz P H and δ ą 0 we denote B psz; δq :“ tu P H : ‖sz ´ u‖ ď δu. For z˚ P Z and δ

`

z0
˘

:“
∥∥z˚ ´ z0∥∥, the

restricted gap function associated with the variational inequality (2) is defined as (see [36])

Gap pzq :“ sup
uPBpz˚;δpz0qq

xz ´ u, V puqy ě 0.

In [25] it was shown that∥∥∥V ´

zk
¯
∥∥∥ “ O

ˆ

1
?
k

˙

and Gap
´

zk
¯

“ O
ˆ

1
?
k

˙

as k Ñ `8.

In the same setting, Popov introduced in [42] for minmax problems and the operator in (5) the
following algorithm which, when formulated for (1), reads for k ě 1

zk`1 :“ zk ´ 2sV
´

zk
¯

` sV
´

zk´1
¯

, (7)

and converges for starting points z0, z1 P H and step size 0 ă s ă 1
2L to a zero of V . This algorithm is

usually known as the Optimistic Gradient Descent Ascent (OGDA) method, a name which we adopt
also for the general formulation in (7). Recently, Chavdarova-Jordan-Zampetakis proved in [19] that
for 0 ă s ă 1

16L the scheme exhibits the following best-iterate convergence rate

min
1ďiďk

∥∥V `

zi
˘∥∥ “ O

ˆ

1
?
k

˙

as k Ñ `8.

We notice also that, according to Golowich-Pattathil-Daskalakis-Ozdaglar (see [22, 23]), the lower-

bound for the restricted gap function for the algorithms (6) and (7) is of O
´

1{
?
k
¯

as k Ñ `8.

The solving of equation (1) can be also addressed in the general framework of continuous and
discrete time methods for finding the zeros of a maximally monotone operator. Attouch-Svaiter intro-
duced in [14] (see also [20]) a first order evolution equation linked to the Newton and the Levenberg-
Marquardt methods, which when applied to (1) reads

9z ptq ` λptq
d

dt
V pzptqq ` λptqV pzptqq “ 0, (8)
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where t ÞÑ λptq is a continuous mapping, and for which they proved that its trajectories converge
weakly to a zero of V . Attouch-Peypouquet studied in [12] the following second-order differential
equation with vanishing damping

:z ptq `
α

t
9z ptq `Aγptq pz ptqq “ 0, (9)

where A : H Ñ H is a possibly set-valued maximally monotone operator,

Aγ :“
1

γ
pId´ JγAq

stands for the Yosida approximation of A of index γ ą 0, and JγA “ pId ` γAq´1 : H Ñ H for
the resolvent of γA. The dynamical system (9) gives rise via implicit discretization to the following
so-called Regularized Inertial Proximal Algorithm, which for every k ě 1 reads

szk :“ zk `
´

1´
α

k

¯´

zk ´ zk´1
¯

zk`1 :“
γk

γk ` s
szk `

s

γk ` s
Jpγk`sqA

´

szk
¯

,

z0, z1 P H are the starting points, α ą 2, s ą 0 and γk “ p1 ` εq s
α2k

2 for every k ě 1, with ε ą 0
fixed. In [12] it was shown that the discrete velocity zk`1 ´ zk vanishes with a rate of convergence of
O p1{kq as k Ñ `8 and that the sequence of iterates converges weakly to a zero of A. The continuous
time approach in (9) has been extended by Attouch-László in [9] by adding a Newton-like correction
term ξ ddt

`

Aγptq pz ptqq
˘

, with ξ ě 0, whereas the discrete counterpart of this scheme was proposed and
investigated in [10].

For an inertial evolution equation with asymptotically vanishing damping terms approaching the
set of primal-dual solutions of a smooth convex optimization problem with linear equality constraints,
that can also be seen as the solution set of a monotone operator equation, and exhibiting fast conver-
gence rates expressed in terms of the value functions, the feasibilty measure and the primal-dual gap
we refer to the recent works [6, 17].

We also want to mention the implicit method for finding the zeros of a maximally monotone
operator proposed by Kim in [29], which relies on the performance estimation problem approach and
makes use of computer-assisted tools.

In the case when V is monotone and L-Lipschitz continuous, for L ą 0, Yoon-Ryu recently
proposed in [49] an accelerated algorithm for solving (1), called Extra Anchored Gradient (EAG)
algorithm, designed by using anchor variables, a technique that can be traced back to Halpern’s
algorithm (see [28]). The iterative scheme of the EAG algorithm reads for every k ě 0

szk :“ zk `
1

k ` 2

´

z0 ´ zk
¯

´ skV
´

zk
¯

zk`1 :“ zk `
1

k ` 2

´

z0 ´ zk
¯

´ skV
´

szk
¯

,

(10)

where z0 P H is the starting point and the sequence of step sizes pskqkě0 is either chosen to be equal
to a constant in the interval

`

0, 1
8L

‰

or such that

sk`1 :“ sk

ˆ

1´
1

pk ` 1q pk ` 3q

s2kL
2

1´ s2kL
2

˙

@k ě 0, (11)

where s0 P
`

0, 34L
˘

. This iterative scheme exhibits in both cases the convergence rate of∥∥∥V ´

zk
¯
∥∥∥ “ O

ˆ

1

k

˙

as k Ñ `8.

Later, Lee-Kim proposed in [31] an algorithm formulated in the same spirit for the problem of finding
the saddle points of a smooth nonconvex-nonconcave function.

Further variants of the anchoring based method have been proposed by Tran-Dinh in [47] and
together with Luo in [48], which all exhibit the same convergence rate for }V pzkq} as EAG. Tran-Dinh
in [47] and Park-Ryu in [40] pointed out the existence of some connections between the anchoring
approach and Nesterov’s acceleration technique used for the minimization of smooth and convex
functions ([34, 35]).
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1.2 Our contributions

The starting point of our investigations is a second order evolution equation associated with problem
(1) that combines a vanishing damping term with the time derivative of V along the trajectory,
which will then lead via temporal discretizations to the implicit and the explicit algorithms. In [19]
several dynamical systems of EG and OGDA type were proposed, mainly in the spirit of the heavy ball
method, that is, with a constant damping term, exhibiting a convergence rate of }V pzptqq} “ O

`

1{
?
t
˘

as tÑ `8 and, in case V is bilinear, weak convergence of the trajectory zptq to a zero of the operator.
One of the main discoveries of the last decade was that asymptotically vanishing damping terms

(see [46, 4, 13]) lead to the acceleration of the convergence of the value functions along the trajectories
of a inertial gradient systems. Moreover, when enhancing the evolution equations also with Hessian-
driven damping terms, the rate of convergence of the gradient along the trajectories can be accelerated,
too ([13, 45]). It is natural to ask whether asymptomatically vanishing damping terms have the same
accelerating impact on the values of the norm of the governing operator along the trajectories of
inertial dynamical systems associated with monotone (not necessarily potential) operators.

The dynamical system which we associate to (1) reads

$

&

%

:z ptq `
α

t
9z ptq ` β ptq

d

dt
V pz ptqq `

1

2

´

9β ptq `
α

t
β ptq

¯

V pz ptqq “ 0

z pt0q “ z0 and 9z pt0q “ 9z0

where t0 ą 0, α ě 2,
`

z0, 9z0
˘

P H ˆ H, β : rt0,`8q Ñ p0,`8q is a continuously differentiable
and nondecreasing which satisfies the following growth condition

0 ď sup
tět0

t 9β ptq

β ptq
ď α´ 2,

and t ÞÑ V pzptqq is assumed to be differentiable on rt0,`8q.

For z˚ P Z and the dynamics generated by this dynamical system we will prove that

xz ptq ´ z˚, V pz ptqqy “ O
ˆ

1

tβ ptq

˙

and ‖V pz ptqq‖ “ O
ˆ

1

tβ ptq

˙

.

Further, by assuming that

0 ď sup
tět0

t 9β ptq

β ptq
ă α´ 2,

we will prove that the trajectory z ptq converges weakly to a solution of (1) as tÑ `8 and it holds

‖ 9z ptq‖ “ o

ˆ

1

t

˙

as tÑ `8,

and

xz ptq ´ z˚, V pz ptqqy “ o

ˆ

1

tβ ptq

˙

and ‖V pz ptqq‖ “ o

ˆ

1

tβ ptq

˙

as tÑ `8.

Polynomial parameter functions βptq “ β0t
ρ, for β0 ą 0 and ρ ě 0, satisfy the two growth

conditions for α ě ρ` 2 and α ą ρ` 2, respectively.
To the main contributions of this work belongs not only the improvement of the convergence rates

in [19] in both continuous and discrete time, but in particular the surprising discovery that this can
be achieved by means of asymptotically vanishing damping, respectively, as we will see below, of
Nesterov momentum. This shows that the accelerating effect of inertial methods with asymptotically
vanishing damping/Nesterov momentum goes beyond convex optimization and opens the gate towards
new unexpected research perspectives.
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Remark 1. (restricted gap function) The convergence rates for t ÞÑ xz ptq ´ z˚, V pz ptqqy and
t ÞÑ ‖V pz ptqq‖ can be easily transferred to the restricted gap function associated with the variational
inequality (2). Indeed, for z˚ P Z, let δpz0q :“

∥∥z0 ´ z˚∥∥, u P B
`

z˚; δpz
0q
˘

and t ě t0. It holds

0 ď xz ptq ´ u, V puqy ď xz ptq ´ u, V pz ptqqy “ xz ptq ´ z˚, V pz ptqqy ` xz˚ ´ u, V pz ptqqy

ď xz ptq ´ z˚, V pz ptqqy ` ‖u´ z˚‖ ‖V pz ptqq‖ ,

which implies that for every t ě t0

0 ď Gap pz ptqq “ sup
uPBpz˚;δpz0qq

xz ptq ´ u, V puqy ď xz ptq ´ z˚, V pz ptqqy ` δpz
0q ‖V pz ptqq‖ ,

which proofs our claim. The same remark can be obviously made in the discrete case.

Further we provide two temporal discretizations of the dynamical system, one of implicit and one
of explicit type.

Implicit Fast OGDA: Let α ą 2, z0, z1 P H, s ą 0, and pβkqkě1 a positive and nondecreasing
sequence which satisfies

0 ď sup
kě1

k pβk ´ βk´1q

βk
ă α´ 2.

For every k ě 1 we set

zk`1 :“ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
s pαβk ` k pβk ´ βk´1qq

2 pk ` αq
V
´

zk`1
¯

´
skβk´1
k ` α

´

V
´

zk`1
¯

´ V
´

zk
¯¯

.

We will prove that, for z˚ P Z, it holds∥∥∥zk ´ zk´1∥∥∥ “ o

ˆ

1

k

˙

as k Ñ `8,

and
A

zk ´ z˚, V
´

zk
¯E

“ o

ˆ

1

kβk

˙

and
∥∥∥V ´

zk
¯∥∥∥ “ o

ˆ

1

kβk

˙

as k Ñ `8,

and that the sequence
`

zk
˘

kě0
converges weakly to a solution in Z.

The constant sequence βk ” 1 obviously satisfies the growth condition required in the implicit
numerical scheme and for this choice the generated sequence

`

zk
˘

kě0
fulfills for every k ě 1

zk`1 “ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
sα

2 pk ` αq
V
´

zk`1
¯

´
sk

k ` α

´

V
´

zk`1
¯

´ V
´

zk
¯¯

.

From the general statement we have that∥∥∥zk ´ zk´1∥∥∥ “ o

ˆ

1

k

˙

,
A

zk ´ z˚, V
´

zk
¯E

“ o

ˆ

1

k

˙

and
∥∥∥V ´

zk
¯∥∥∥ “ o

ˆ

1

k

˙

as k Ñ `8,

and
`

zk
˘

kě0
converges weakly to a solution in Z.

A further contribution of this work is therefore this numerical algorithm with Nesterov momentum
for solving (1), obtained by implicit temporal discretization of the inertial evolution equation and
which reproduces all its convergence properties in discrete time.

Only for the explicit discrete scheme we will additionally assume that the operator V is L-Lipschitz
continuous, with L ą 0.
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Explicit Fast OGDA: Let α ą 2, z0, z1, sz0 P H, and 0 ă s ă 1
2L . For every k ě 1 we set

szk :“ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
αs

2 pk ` αq
V
´

szk´1
¯

zk`1 :“ szk ´
s

2

ˆ

1`
k

k ` α

˙

´

V
´

szk
¯

´ V
´

szk´1
¯¯

.

When taking a closer look at its equivalent formulation, which reads for every k ě 1

szk :“ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
αs

2 pk ` αq
V
´

szk´1
¯

zk`1 :“ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
αs

2 pk ` αq
V
´

szk
¯

´
sk

k ` α

´

V
´

szk
¯

´ V
´

szk´1
¯¯

,

one can notice that the iterative scheme can be seen as an accelerated version of the OGDA method.
An important feature of the explicit Fast OGDA method is that it requires the evaluation of V only
at the elements of the sequence

`

szk
˘

kě0
, while the Extragradient method (6) and the Extra Anchored

Gradient method (10) require the evaluation of V at both sequences
`

zk
˘

kě0
and

`

szk
˘

kě0
.

We will show that, for z˚ P Z, it holds∥∥∥zk ´ zk´1∥∥∥ “ o

ˆ

1

k

˙

,
A

zk ´ z˚, V
´

zk
¯E

“ o

ˆ

1

k

˙

,∥∥∥V ´

zk
¯∥∥∥ “ o

ˆ

1

k

˙

and
∥∥∥V ´

szk
¯∥∥∥ “ o

ˆ

1

k

˙

as k Ñ `8,

and that also for this algorithm the generated sequence
`

zk
˘

kě0
converges weakly to a solution in Z.

Another main contribution of this work is the explicit Fast OGDA method with Nesterov momen-
tum and operator correction terms, for which we show the best convergence rate results known in the
literature of explicit algorithms for monotone inclusions and the convergence of the iterates to a zero
of the operator. We illustrate the theoretical findings with numerical experiments, which show the
overwhelming superiority of our method over other numerical algorithms designed to solve monotone
equations governed by monotone and Lipschitz continuous operators. These include the algorithms
designed by using “anchoring” techniques, for which the tracing of the iterates back to the starting
value seems to have a slowing effect on the convergence performances.

Remark 2. (the role of the time scaling parameter function β) The function β which appears
in the formulation of the dynamical system can be seen as a time scaling parameter function in the
spirit of recent investigations on this topic (see, for instance, [5, 7]) in the context of the minimization
of a smooth convex function. It was shown that, when used in combination with vanishing damping
(and also with Hessian-driven damping) terms, time scaling functions improve the convergence rates of
the function values and of the gradient. The positive effect of the time scaling on the convergence rates
can be transferred to the numerical schemes obtained via implicit discretization, as it was recently
pointed out by Attouch-Chbani-Riahi in [8], and long time ago by Güler in [26, 27] for the proximal
point algorithm, which may exhibit convergence rates for the objective function values of o p1{kρq
rate, for arbitrary ρ ą 0. On the other hand, this does not hold for numerical schemes obtained via
explicit discretization, as it is the gradient method for which it is known that the convergence rate of
o
`

1{k2
˘

for the objective function values (see [11]) cannot be improved in general ([34, 35]).
This explains why the discretization of the parameter function β appears only in the implicit

numerical scheme and in the corresponding convergence rates, and not in the explicit numerical
scheme.

2 The continuous time approach

In this section we will analyze the continuous time scheme proposed for (1), and which we recall for
convenience in the following.
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For t0 ą 0 we consider on rt0,`8q the dynamical system

$

&

%

:z ptq `
α

t
9z ptq ` β ptq

d

dt
V pz ptqq `

1

2

´

9β ptq `
α

t
β ptq

¯

V pz ptqq “ 0

z pt0q “ z0 and 9z pt0q “ 9z0,
(12)

where α ě 2,
`

z0, 9z0
˘

P H ˆ H, β : rt0,`8q Ñ p0,`8q is a continuously differentiable and
nondecreasing function which satisfies the following growth condition

0 ď sup
tět0

t 9β ptq

β ptq
ď α´ 2, (13)

and t ÞÑ V pzptqq is assumed to be differentiable on rt0,`8q.

Let z˚ P Z and 0 ď λ ď α´1. We consider the following energy function Eλ : rt0,`8q Ñ r0,`8q,

Eλ ptq :“
1

2

∥∥∥2λ pz ptq ´ z˚q ` t
´

2 9z ptq ` β ptqV pz ptqq
¯∥∥∥2 ` 2λ pα´ 1´ λq ‖z ptq ´ z˚‖2

` 2λtβ ptq xz ptq ´ z˚, V pz ptqqy `
1

2
t2β2 ptq ‖V pz ptqq‖2 , (14)

which will play a fundamental role in our analysis. By taking into consideration (2), for every 0 ď
λ ď α´ 1 we have

Eλ ptq ě 0 @t ě t0.

Denote

w : rt0,`8q Ñ R, w ptq :“
1

2

ˆ

pα´ 2q
β ptq

t
´ 9β ptq

˙

. (15)

The growth condition (13) guarantees that wptq ě 0 for every t ě t0.
First we will show that the energy dissipates with time.

Lemma 3. Let z : rt0,`8q Ñ H be a solution of (12), z˚ P Z and 0 ď λ ď α ´ 1. Then for every
t ě t0 it holds

d

dt
Eλ ptq ď ´ 2λtw ptq xz ptq ´ z˚, V pz ptqqy ` tβ ptq

´

pα´ 1´ λqβ ptq ´ 2tw ptq
¯

‖V pz ptqq‖2

´ pα´ 1´ λq t ‖2 9z ptq ´ β ptqV pz ptqq‖2 . (16)

Proof. Let t ě t0 be fixed. From the definition of the dynamical system (12) we have

2t:z ptq ` tβ ptq
d

dt
V pz ptqq “ ´2α 9z ptq ´ tβ ptq

d

dt
V pz ptqq ´

´

t 9β ptq ` αβ ptq
¯

V pz ptqq .

Therefore

d

dt

ˆ

1

2

∥∥∥2λ pz ptq ´ z˚q ` t
´

2 9z ptq ` β ptqV pz ptqq
¯
∥∥∥2˙

“

A

2λ pz ptq ´ z˚q ` t
´

2 9z ptq ` β ptqV pz ptqq
¯

,

2 pλ` 1q 9z ptq `
´

t 9β ptq ` β ptq
¯

V pz ptqq ` 2t:z ptq ` tβ ptq
d

dt
V pz ptqq

F

“ x2λ pz ptq ´ z˚q ` 2t 9z ptq ` tβ ptqV pz ptqq ,

2 pλ` 1´ αq 9z ptq ` p1´ αqβ ptqV pz ptqq ´ tβ ptq
d

dt
V pz ptqq

F

“ 4λ pλ` 1´ αq xz ptq ´ z˚, 9z ptqy ` 2λ p1´ αqβ ptq xz ptq ´ z˚, V pz ptqqy

´ 2λtβ ptq

B

z ptq ´ z˚,
d

dt
V pz ptqq

F

` 4 pλ` 1´ αq t ‖ 9z ptq‖2
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` 2t pλ` 2´ 2αqβ ptq x 9z ptq , V pz ptqqy ´ 2t2β ptq

B

9z ptq ,
d

dt
V pz ptqq

F

` p1´ αq tβ2 ptq ‖V pz ptqq‖2 ´ t2β2 ptq
B

V pz ptqq ,
d

dt
V pz ptqq

F

. (17)

By differentiating the other terms of the energy function it yields

d

dt

ˆ

2λ pα´ 1´ λq ‖z ptq ´ z˚‖2 ` 2λtβ ptq xz ptq ´ z˚, V pz ptqqy `
1

2
t2β2 ptq ‖V pz ptqq‖2

˙

“ 4λ pα´ 1´ λq xz ptq ´ z˚, 9z ptqy ` 2λ
´

β ptq ` t 9β ptq
¯

xz ptq ´ z˚, V pz ptqqy

` 2λtβ ptq x 9z ptq , V pz ptqqy ` 2λtβ ptq

B

z ptq ´ z˚,
d

dt
V pz ptqq

F

` tβ ptq
´

β ptq ` t 9β ptq
¯

‖V pz ptqq‖2 ` t2β2 ptq
B

V pz ptqq ,
d

dt
V pz ptqq

F

. (18)

By summing up (17) and (18), and then using the definition of w in (15), we conclude that

d

dt
Eλ ptq “ ´2λtw ptq xz ptq ´ z˚, V pz ptqqy ` 4 pλ` 1´ αq t ‖ 9z ptq‖2

` 4 pλ` 1´ αq tβ ptq x 9z ptq , V pz ptqqy ´ 2t2β ptq

B

9z ptq ,
d

dt
V pz ptqq

F

´ 2t2β ptqw ptq ‖V pz ptqq‖2 .

Finally, we observe that

4 pλ` 1´ αq t ‖ 9z ptq‖2 ` 4 pλ` 1´ αq tβ ptq x 9z ptq , V pz ptqqy

“ tβ ptq
´

pα´ 1´ λqβ ptq ´ 2tw ptq
¯

‖V pz ptqq‖2 ´ pα´ 1´ λq t ‖2 9z ptq ´ β ptqV pz ptqq‖2 .

This, in combination with
@

9z ptq , ddtV pz ptqq
D

ě 0 for every t ě t0, which is a consequence of the
monotonicity of V , leads to (16).

The following theorem provides first convergence rates which follow as a direct consequence of the
previous lemma. Since β is positive and nondecreasing, we have limtÑ`8 tβ ptq “ `8.

Theorem 4. Let z : rt0,`8q Ñ H be a solution of (12) and z˚ P Z. For every t ě t0 it holds

0 ď ‖V pz ptqq‖ ď
a

2Eα´1 pt0q ¨
1

tβ ptq
, (19a)

0 ď xz ptq ´ z˚, V pz ptqqy ď
Eα´1 pt0q
2 pα´ 1q

¨
1

tβ ptq
, (19b)

and the following statements are true
ż `8

t0

tw ptq xz ptq ´ z˚, V pz ptqqy dt ă `8, (20a)

ż `8

t0

t2β ptqw ptq ‖V pz ptqq‖2 dt ă `8. (20b)

If we assume in addition that

0 ď sup
tět0

t 9β ptq

β ptq
ă α´ 2, (21)

then the trajectory t ÞÑ z ptq is bounded, it holds

ż `8

t0

t ‖ 9z ptq‖2 ă `8, (22)

and the limit limtÑ`8 Eλ ptq P R exists for every λ satisfying 0 ď λ ď α´ 1.
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Proof. First we choose λ :“ α´ 1. Then inequality (16) reduces to

d

dt
Eα´1 ptq ď ´2 pα´ 1q tw ptq xz ptq ´ z˚, V pz ptqqy ´ 2t2β ptqw ptq ‖V pz ptqq‖2 ď 0 @t ě t0. (23)

This means that t ÞÑ Eα´1 ptq is nonincreasing on rt0,`8q and, thus ,the inequalities (19) follow from
the definition of the energy function. In addition, after integration of (23), we obtain the statements
in (20).

Now we suppose that (21) holds. Then there exists 0 ď ε ă α´ 2 such that

sup
tět0

t 9β ptq

β ptq
“ α´ 2´ ε ă α´ 2.

This means that

w ptq “ ´
1

2
9β ptq `

1

2
pα´ 2q

β ptq

t
ě
ε

2

β ptq

t
ą 0 @t ě t0. (24)

Hence
t2β ptqw ptq ě

ε

2
tβ2 ptq @t ě t0, (25)

which, due to (20b), gives
ż `8

t0

tβ2 ptq ‖V pz ptqq‖2 dt ă `8. (26)

In order to prove the last statements of the theorem, we notice that the estimate (16) gives for
every 0 ď λ ď α´ 1 and every t ě t0

d

dt
Eλ ptq ď pα´ 1´ λq tβ2 ptq ‖V pz ptqq‖2 ´ pα´ 1´ λq t ‖2 9z ptq ´ β ptqV pz ptqq‖2

ď 2 pα´ 1´ λq tβ2 ptq ‖V pz ptqq‖2 ´ 2 pα´ 1´ λq t ‖ 9z ptq‖2 (27a)

ď 2 pα´ 1´ λq tβ2 ptq ‖V pz ptqq‖2 . (27b)

The assertion (22) follows by integration of (27a) for λ :“ 0 and by using then (26). Finally, as
t ÞÑ tβ2 ptq ‖V pz ptqq‖2 P L1 prt0,`8qq, we can apply Lemma A.1 to (27b) in order to obtain the
existence of the limit limtÑ`8 Eλ ptq P R for every 0 ď λ ď α´ 1.

The existence and uniqueness of solutions for (12) can be guaranteed in a very general setting,
which includes the one of continuously differentiable operators defined on finite-dimensional spaces,
that are obviously Lipschitz continuous in bounded sets. The proof of Theorem 5 is provided in the
Appendix and it relies on showing that the maximal solution given by the Cauchy-Lipschitz Theorem
is a global solution.

Theorem 5. Let α ą 2 and assume that V : H Ñ H is continuously differentiable, β : rt0,`8q Ñ
p0,`8q is a continuously differentiable and nondecreasing function which satisfies condition (21) and
that V and 9β are Lipschitz continuous on bounded sets. Then for every initial condition z pt0q “ z0 P
H and 9z pt0q “ 9z0 P H the dynamical system (12) has a unique global twice continuously differentiable
solution z : rt0,`8q Ñ H.

Further we prove that, under the slightly stronger growth condition (21), the trajectories of the
dynamical system (12) converge to a zero of V . This phenomenon is also present at inertial gradient
systems with asymptotically vanishing damping terms, where it concerns the coefficient α, too.

Theorem 6. Let α ą 2 and z : rt0,`8q Ñ H be a solution of (12) and assume that β : rt0,`8q Ñ
p0,`8q satisfies the growth condition (21), in other words

0 ď sup
tět0

t 9β ptq

β ptq
ă α´ 2.

Then z ptq converges weakly to a solution of (1) as tÑ `8.
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Proof. Let z˚ P Z and 0 ď λ1 ă λ2 ď α ´ 1 be fixed. Then by the definition of the energy function
in (14) we have for every t ě t0

Eλ2 ptq ´ Eλ1 ptq “ 2 pλ2 ´ λ1q t xz ptq ´ z˚, 2 9z ptq ` β ptqV pz ptqqy

` 2 pλ2 ´ λ1qλβ ptq xz ptq ´ z˚, V pz ptqqy ` 2 pλ2 ´ λ1q pα´ 1q ‖z ptq ´ z˚‖2

“ 4 pλ2 ´ λ1q

ˆ

t xz ptq ´ z˚, 9z ptq ` β ptqV pz ptqqy `
1

2
pα´ 1q ‖z ptq ´ z˚‖2

˙

.

For every t ě t0 we define

p ptq :“ t xz ptq ´ z˚, 9z ptq ` β ptqV pz ptqqy `
1

2
pα´ 1q ‖z ptq ´ z˚‖2 , (28)

q ptq :“
1

2
‖z ptq ´ z˚‖2 `

ż t

t0

β psq xz psq ´ z˚, V pz psqqy ds. (29)

One can easily see that for every t ě t0

9q ptq “ xz ptq ´ z˚, 9z ptq ` β ptq xz ptq ´ z˚, V pz ptqqyy “ xz ptq ´ z˚, 9z ptq ` β ptqV pz ptqqy ,

and thus

pα´ 1q q ptq ` t 9q ptq “ p ptq ` pα´ 1q

ż t

t0

β psq xz psq ´ z˚, V pz psqqy ds.

Since 0 ď λ1 ă λ2 ď α ´ 1, Theorem 4 guarantees that limtÑ`8 tEλ2 ptq ´ Eλ1 ptqu P R exists,
hence, by (28),

lim
tÑ`8

p ptq P R exists. (30)

Furthermore, the quantity
şt
t0
β psq xz psq ´ z˚, V pz psqqy ds is nondecreasing with respect to t, and

according to (24) for every t ě t0 it holds

ε

2

ż t

t0

β psq xz psq ´ z˚, V pz psqqy ds ď

ż t

t0

sw psq xz psq ´ z˚, V pz psqqy ds.

As a consequence, we conclude from (20a) that

lim
tÑ`8

ż t

t0

β psq xz psq ´ z˚, V pz psqqy ds P R. (31)

Combining (30) and (31), it yields that the limit limtÑ`8 tpα´ 1q q ptq ` t 9q ptqu P R exists, which,
according to Lemma A.4, guarantees that limtÑ`8 q ptq P R. Using the definition of q in (29) and
once again the statement (31), we see that limtÑ`8 ‖z ptq ´ z˚‖ P R. This proves the hypothesis piq
of Opial’s Lemma (see Lemma A.2).

Finally, let sz be a weak sequential cluster point of the trajectory z ptq as t Ñ `8. This means
that there exists a sequence pz ptnqqně0 such that

z ptnq á sz as nÑ `8,

where á denotes weak convergence. On the other hand, Theorem 4 ensures that

V pz ptnqq Ñ 0 as nÑ `8.

Since V is monotone and continuous, it is maximally monotone (see, for instance, [16, Corollary
20.28]). Therefore, the graph of V is sequentially closed in HweakˆHstrong, which means that V pszq “ 0.
In other words, the hypothesis piiq of Opial’s Lemma also holds, and the proof is complete.

Next we will see that under the growth condition (21) the convergence rates obtained in Theorem
4 can be improved from O to o, which is also a phenomenon known for inertial gradient systems with
asymptotically vanishing damping terms.
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Theorem 7. Let α ą 2 and z : rt0,`8q Ñ H be a solution of (12), z˚ P Z, and assume that
β : rt0,`8q Ñ p0,`8q satisfies the growth condition (21), in other words

0 ď sup
tět0

t 9β ptq

β ptq
ă α´ 2.

Then it holds

‖ 9z ptq‖ “ o

ˆ

1

t

˙

as tÑ `8,

and

xz ptq ´ z˚, V pz ptqqy “ o

ˆ

1

tβ ptq

˙

and ‖V pz ptqq‖ “ o

ˆ

1

tβ ptq

˙

as tÑ `8.

Proof. For every 0 ď λ ď α´ 1 the energy function of the system can be written as

Eλ ptq “
1

2

∥∥∥2λ pz ptq ´ z˚q ` t
´

2 9z ptq ` β ptqV pz ptqq
¯
∥∥∥2 ` 2λ pα´ 1´ λq ‖z ptq ´ z˚‖2

` 2λtβ ptq xz ptq ´ z˚, V pz ptqqy `
1

2
t2β2 ptq ‖V pz ptqq‖2

“ 2λ pα´ 1q ‖z ptq ´ z˚‖2 ` 4λt xz ptq ´ z˚, 9z ptq ` β ptqV pz ptqqy

`
1

2
t2 ‖2 9z ptq ` β ptqV pz ptqq‖2 ` 1

2
t2β2 ptq ‖V pz ptqq‖2

“ 4λp ptq ` t2 ‖ 9z ptq ` β ptqV pz ptqq‖2 ` t2 ‖ 9z ptq‖2 ,

where the last equation comes from the definition of p ptq in (28) and the formula

‖x‖2 ` ‖y‖2 “ 1

2

´

‖x` y‖2 ` ‖x´ y‖2
¯

@x, y P H. (32)

Recalling that as both limits limtÑ`8 Eλ ptq P R and limtÑ`8 p ptq P R exist (see Theorem 4 and
(30)), we conclude that for h : rt0,`8q Ñ R, hptq “ t2 ‖ 9z ptq ` β ptqV pz ptqq‖2 ` t2 ‖ 9z ptq‖2,

lim
tÑ`8

h ptq P r0,`8q exists. (33)

Moreover, from (22) and (26), we see that

ż `8

t0

1

t
h ptq dt ď 3

ż `8

t0

t ‖ 9z ptq‖2 dt` 2

ż `8

t0

tβ2 ptq ‖V pz ptqq‖2 dt ă `8,

which in combination with (33) leads to limtÑ`8 hptq “ 0. Thus

lim
tÑ`8

t ‖ 9z ptq ` β ptqV pz ptqq‖ “ lim
tÑ`8

t ‖ 9z ptq‖ “ 0,

and, consequently,
lim
tÑ`8

tβ ptq ‖V pz ptqq‖ “ 0.

Finally, by Cauchy-Schwarz inequality and the fact that the trajectory t ÞÑ zptq is bounded, we deduce
that

0 ď tβ ptq xz ptq ´ z˚, V pz ptqqy ď tβ ptq ‖z ptq ´ z˚‖ ‖V pz ptqq‖ @t ě t0,

which finishes the proof.

Remark 8. One of the anonymous referees made an excellent observation regarding the asymptotic
behaviour of the trajectories on which we will elaborate in the following. For the first order system
attached to (1)

9u ptq ` V pu ptqq “ 0, (34)

it is known that the solution trajectories converge weakly in ergodic (averaged) sense towards a zero
of V . In other words, there exists z˚ P Z such that z ptq :“ 1

t

şt
0 u psq dsá z˚ P Z as tÑ `8 (see, for

instance, [15, 41]).
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This leads to the natural idea of considering the averaging trajectory z, that fulfills

9z ptq `
1

t
pz ptq ´ u ptqq “ 0, (35)

and to drive the equation of its dynamics from (34). For more details on this very powerful approach
we refer the reader to [3].

From (35) we deduce that 9u ptq “ t:z ptq ` 2 9z ptq, hence equation (34) becomes

t:z ptq ` 2 9z ptq ` V pz ptq ` t 9z ptqq “ 0.

Taking the Taylor expansion

V pz ptq ` t 9z ptqq « V pz ptqq ` t∇V pz ptqq 9z ptq “ V pz ptqq ` t
d

dt
V pz ptqq ,

it leads to the second-order dynamical system with correction term d
dtV pz ptqq

:z ptq `
2

t
9z ptq `

d

dt
pV pz ptqqq `

1

t
V pz ptqq “ 0,

which is of the same type as (12). This approach suggests that one can expect the non-ergodic
convergence of the solution trajectory of (12) to a zero of V .

The function β can be “inserted” into the system through time scaling approaches aimed to speed
up its convergence behaviour (see also [3, 5, 7, 8] for related ideas).

3 An implicit numerical algorithm

In this section we formulate and investigate an implicit type numerical algorithm which follows from
a temporal discretization of the dynamical system (12). We recall that the latter can be equivalently
written as (see the proof of Theorem 5)

$

&

%

9u ptq “

´

t 9β ptq ` p2´ αqβ ptq
¯

V pz ptqq

u ptq “ 2 pα´ 1q z ptq ` 2t 9z ptq ` 2tβ ptqV pz ptqq
, (36)

with the initializations z pt0q “ z0 and 9z pt0q “ 9z0.
We fix a time step s ą 0, set τk :“ s pk ` 1q and σk :“ sk for every k ě 1, and approximate

z pτkq « zk`1, u pτkq « uk`1, and β pσkq « βk. The implicit finite-difference scheme for (36) at time
t :“ τk for pz, uq and at time t :“ σk for β gives for every k ě 1

$

’

&

’

%

uk`1 ´ uk

s
“

´

k pβk ´ βk´1q ` p2´ αqβk

¯

V
´

zk`1
¯

uk`1 “ 2 pα´ 1q zk`1 ` 2 pk ` 1q
´

zk`1 ´ zk
¯

` 2s pk ` 1qβkV
´

zk`1
¯

, (37)

with the initialization u1 :“ z0 and u0 :“ z0 ´ s 9z0. Therefore we have for every k ě 1

uk “ 2 pα´ 1q zk ` 2k
´

zk ´ zk´1
¯

` 2skβk´1V
´

zk
¯

,

and after substraction we get

uk`1 ´ uk “ 2 pk ` αq
´

zk`1 ´ zk
¯

´ 2k
´

zk ´ zk´1
¯

` 2s
´

pk ` 1qβk ´ kβk´1

¯

V
´

zk`1
¯

` 2skβk´1

´

V
´

zk`1
¯

´ V
´

zk
¯¯

“ s
´

k pβk ´ βk´1q ` p2´ αqβk

¯

V
´

zk`1
¯

, (38)
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where the last relation comes from the first equation in (37). From here, we deduce that for every
k ě 1

zk`1 “ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
s pαβk ` k pβk ´ βk´1qq

2 pk ` αq
V
´

zk`1
¯

´
skβk´1
k ` α

´

V
´

zk`1
¯

´ V
´

zk
¯¯

.

For

sk :“
s pαβk ` k pβk ´ βk´1qq

2 pk ` αq
and tk :“

skβk´1
k ` α

,

the algorithm can be further equivalently written as

zk`1 :“ pId` psk ` tkqV q
´1

ˆ

zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

` tkV
´

zk
¯

˙

@k ě 1,

and is therefore well-defined due to the maximal monotonicity of V .
We also want to point out that the discrete version of the growth condition (21) reads

0 ď sup
kě1

k pβk ´ βk´1q

βk
ă α´ 2,

where pβkqkě0 is a positive and nondecreasing sequence. This means that there exists some 0 ď ε ă
α´ 2 such that

k pβk ´ βk´1q

βk
ď α´ 2´ ε or, equivalently, k pβk ´ βk´1q ď pα´ 2´ εqβk @k ě 1. (39)

In addition, for every k ě rαs it holds

βk ď
k

k ` 2` ε´ α
βk´1 ď

α

2` ε
βk´1. (40)

To sum up, the implicit algorithm we propose for solving (1) is formulated below.

Algorithm 1. (Implicit Fast OGDA) Let α ą 2, z0, z1 P H, s ą 0, and pβkqkě0 a positive and
nondecreasing sequence which satisfies

0 ď sup
kě1

k pβk ´ βk´1q

βk
ă α´ 2. (41)

For every k ě 1 we set

zk`1 “ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
s pαβk ` k pβk ´ βk´1qq

2 pk ` αq
V
´

zk`1
¯

´
skβk´1
k ` α

´

V
´

zk`1
¯

´ V
´

zk
¯¯

.

Inspired by the continuous setting, we consider for 0 ď λ ď α ´ 1 the following sequence defined for
every k ě 1

Ekλ :“
1

2

∥∥∥2λ
´

zk ´ z˚

¯

` 2k
´

zk ´ zk´1
¯

` skβk´1V
´

zk
¯∥∥∥2 ` 2λ pα´ 1´ λq

∥∥∥zk ´ z˚∥∥∥2
` 2λskβk´1

A

zk ´ z˚, V
´

zk
¯E

`
1

2
s2 pk ` αq kβkβk´1

∥∥∥V ´

zk
¯∥∥∥2 ě 0,
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which is the discrete version of the energy function considered in the previous section. We have for
every k ě 1

Ekλ “ 2λ pα´ 1q
∥∥∥zk ´ z˚∥∥∥2 ` 4λk

A

zk ´ z˚, z
k ´ zk´1 ` sβk´1V

´

zk
¯E

`
1

2
k2

∥∥∥2
´

zk ´ zk´1
¯

` sβk´1V
´

zk
¯∥∥∥2 ` 1

2
s2 pk ` αq kβkβk´1

∥∥∥V ´

zk
¯∥∥∥2 . (42)

The following lemma shows that the discrete energy dissipates with every iteration of the algorithm.
Its proof can be found in the Appendix. Lemma 9 is the essential ingredient for the derivation of the
convergence rates in Theorem 10.

Lemma 9. Let z˚ P Z and
`

zk
˘

kě0
the sequence generated by Algorithm 1 for pβkqkě0 a positive and

nondecreasing sequence which satisfies (41). Then for every 0 ď λ ď α´ 1 and every k ě rαs it holds

Ek`1λ ´ Ekλ ď 2λs
´

pk ` 2´ αqβk ´ kβk´1

¯A

zk`1 ´ z˚, V
´

zk`1
¯E

` 2 pλ` 1´ αq p2k ` α` 1q
∥∥∥zk`1 ´ zk∥∥∥2

` 2s

ˆ

´

pλ` 1´ αq p2k ` α` 1q ´ λ
¯

βk ´ λk pβk ´ βk´1q

˙

A

zk`1 ´ zk, V
´

zk`1
¯E

´ 2sk pk ` αqβk´1

A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

zk
¯E

`
1

2

´

C ´ ε p2k ` α` 1q
¯

s2β2k

∥∥∥V ´

zk`1
¯∥∥∥2

´
1

2
s2k

´

pk ` αqβk ` kβk´1

¯

βk´1

∥∥∥V ´

zk`1
¯

´ V
´

zk
¯∥∥∥2 , (43)

where
C :“

α

2` ε
pα´ 2´ εq p2α´ 2´ εq ą 0 (44)

and ε is chosen to fulfill (39).

Theorem 10. Let z˚ P Z and
`

zk
˘

kě0
the sequence generated by Algorithm 1 for pβkqkě0 a positive

and nondecreasing sequence which satisfies (41), and 0 ď ε ă α ´ 2 be such that (39) is satisfied.
Then it holds

A

zk ´ z˚, V
´

zk
¯E

“ O
ˆ

1

kβk

˙

and
∥∥∥V ´

zk
¯∥∥∥ “ O

ˆ

1

kβk

˙

as k Ñ `8.

In addition, for every α´ 1´ ε
4 ă λ ă α´ 1, the sequence

`

Ekλ
˘

kě1
converges,

`

zk
˘

kě0
is bounded and

ÿ

kě1

βk

A

zk`1 ´ z˚, V
´

zk`1
¯E

ă `8, (45a)

ÿ

kě1

k
∥∥∥zk`1 ´ zk∥∥∥2 ă `8, (45b)

ÿ

kě1

kβ2k

∥∥∥V ´

zk`1
¯∥∥∥2 ă `8. (45c)

Proof. Let 0 ă α´ 1´ ε
4 ă λ ă α´ 1. First we show that for sufficiently large k it holds

Rk :“pλ` 1´ αq p2k ` α` 1q
∥∥∥zk`1 ´ zk∥∥∥2

` 2s

ˆ

´

pλ` 1´ αq p2k ` α` 1q ´ λ
¯

βk ´ λk pβk ´ βk´1q

˙

A

zk`1 ´ zk, V
´

zk`1
¯E

`
1

4

´

C ´ ε p2k ` α` 1q
¯

s2β2k

∥∥∥V ´

zk`1
¯∥∥∥2 ď 0, (46)
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where C ą 0 is given by (44). By setting Kα :“ 2k ` α` 1 ě 1, for every k ě 0 we have

Rk “pλ` 1´ αqKα

∥∥∥zk`1 ´ zk∥∥∥2 ` 1

4
s2 pC ´ εKαqβ

2
k

∥∥∥V ´

zk`1
¯∥∥∥2

` 2s

ˆ

´

pλ` 1´ αqKα ´ λ
¯

βk ´ λk pβk ´ βk´1q

˙

A

zk`1 ´ zk, V
´

zk`1
¯E

.

To guarantee that Rk ď 0 for sufficiently large k, we show that

∆k

s2
:“ 4

ˆ

´

pλ` 1´ αqKα ´ λ
¯

βk ´ λk pβk ´ βk´1q

˙2

´ pλ` 1´ αq pC ´ εKαqKαβ
2
k ď 0

sufficiently large k. Since pβkqkě0 is nondecreasing and λ ă α´ 1, it follows from (39) that for every
k ě 1

0 ě
´

pλ` 1´ αqKα ´ λ
¯

βk ´ λk pβk ´ βk´1q ě
´

pλ` 1´ αqKα ´ λ
¯

βk ´ λ pα´ 2´ εqβk

“

´

pλ` 1´ αqKα ´ λ pα´ 1´ εq
¯

βk,

and thus

∆k

s2β2k
:“

4

β2k

´´

pλ` 1´ αqKα ´ λ
¯

βk ´ λk pβk ´ βk´1q
¯2
´ pλ` 1´ αq pC ´ εKαqKα

ď 4
´

pλ` 1´ αqKα ´ λ pα´ 1´ εq
¯2
´ pλ` 1´ αq pC ´ εKαqKα

“ 4 pλ` 1´ αq2K2
α ´ 8λ pλ` 1´ αq pα´ 1´ εqKα ` 4λ2 pα´ 1´ εq2

´ pλ` 1´ αqCKα ` ε pλ` 1´ αqK2
α

“pλ` 1´ αq
´

4 pλ` 1´ αq ` ε
¯

K2
α ´pλ` 1´ αq

´

8λ pα´ 1´ εq ` C
¯

Kα ` 4λ2 pα´ 1´ εq2 .

Since α´ 1´ ε
4 ă λ ă α´ 1, we have pλ` 1´ αq

´

4 pλ` 1´ αq ` ε
¯

ă 0, hence for sufficiently large

k ě 0 it holds ∆k ď 0 and, consequently, Rk ě 0.
From (39) we deduce that pk ` 2´ αqβk ´ kβk´1 ď ´εβk for every k ě 1. Hence, for every

α´ 1´ ε
4 ă λ ă α´ 1, from Lemma 9 and (46) we have that for sufficiently large k it holds

Ek`1λ ´ Ekλ ď´ ε2λsβk
A

zk`1 ´ z˚, V
´

zk`1
¯E

` pλ` 1´ αq p2k ` α` 1q
∥∥∥zk`1 ´ zk∥∥∥2

´ 2sk pk ` αqβk´1

A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

zk
¯E

`
1

4

´

C ´ ε p2k ` α` 1q
¯

s2β2k

∥∥∥V ´

zk`1
¯∥∥∥2

´
1

2
s2k

´

pk ` αqβk ` kβk´1

¯

βk´1

∥∥∥V ´

zk`1
¯

´ V
´

zk
¯∥∥∥2 ,

which means the sequence
 

Ekλ
(

kě1
is nonincreasing for sufficiently large k, thus it is convergent and

the boundedness of
`

zk
˘

kě0
and the convergence rates follow from the definition of Ekλ and (40). The

remaining assertions follow from Lemma A.6.

Next we prove the weak convergence of the generated sequence of iterates.

Theorem 11. Let z˚ P Z and
`

zk
˘

kě0
the sequence generated by Algorithm 1 for pβkqkě0 a positive

and nondecreasing sequence which satisfies (41). Then the sequence
`

zk
˘

kě0
converges weakly to a

solution of (1).

Proof. Let 0 ď ε ă α´ 2 such that (39) is satisfied and 0 ă α´ 1´ ε
4 ă λ1 ă λ2 ă α´ 1. For every

k ě 1 we set

pk :“
1

2
pα´ 1q

∥∥∥zk ´ z˚∥∥∥2 ` kAzk ´ z˚, zk ´ zk´1 ` sβk´1V ´

zk
¯E

, (47)

qk :“
1

2

∥∥∥zk ´ z˚∥∥∥2 ` s k
ÿ

i“1

βi´1
@

zi ´ z˚, V
`

zi
˘D

, (48)
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and notice that

pα´ 1q qk ` k pqk ´ qk´1q “ pk ` pα´ 1q s
k`1
ÿ

i“1

βi´1
@

zi ´ z˚, V
`

zi
˘D

´
k

2

∥∥∥zk ´ zk´1∥∥∥2 .
We have that

lim
kÑ`8

pk “ lim
kÑ`8

1

4pλ2 ´ λ1q

´

Ekλ2 ´ Ekλ1
¯

P R exists (49)

and, thanks to (45), that the limit limkÑ`8
řk`1
i“1 βi´1

@

zi ´ z˚, V
`

zi
˘D

P R exists and

lim
kÑ`8

k
∥∥∥zk`1 ´ zk∥∥∥2 “ 0.

Consequently,
lim

kÑ`8
ppα´ 1q qk ` k pqk ´ qk´1qq P R exists.

From Theorem 10 we deduce that pqkqkě1 is bounded. This allows us to apply Lemma A.5 and to
conclude from here that limkÑ`8 qk P R also exists. Once again, by the definition of qk and the fact

that the sequence
´

řk
i“1 βi´1

@

zi ´ z˚, V
`

zi
˘D

¯

kě1
converges, it follows that limkÑ`8 ‖zk ´ z˚‖ P R

exists. In other words, the hypothesis piq in Opial’s Lemma (see Lemma A.3) is fulfilled.
Now let sz be a weak sequential cluster point of

`

zk
˘

kě0
, meaning that there exists a subsequence

`

zkn
˘

ně0
such that

zkn á sz as nÑ `8.

From Theorem 10 we have
V
´

zkn
¯

Ñ 0 as nÑ `8.

Since V monotone and continuous, it s maximally monotone [16, Corollary 20.28]. Therefore, the
graph of V is sequentially closed in Hweak ˆ Hstrong, which gives that V pszq “ 0, thus sz P Z. This
shows that hypothesis piiq of Opial’s Lemma is also fulfilled, and completes the proof.

We close the section with a result which improves the convergence rates derived in Theorem 10
for the implicit algorithm.

Theorem 12. Let z˚ P Z and
`

zk
˘

kě0
the sequence generated by Algorithm 1 for pβkqkě0 a positive

and nondecreasing sequence which satisfies (41). Then it holds∥∥∥zk ´ zk´1∥∥∥ “ o

ˆ

1

k

˙

as k Ñ `8

and
A

zk ´ z˚, V
´

zk
¯E

“ o

ˆ

1

kβk

˙

and
∥∥∥V ´

zk
¯
∥∥∥ “ o

ˆ

1

kβk

˙

as k Ñ `8.

Proof. Let 0 ď ε ă α ´ 2 such that (39) is satisfied and 0 ă α ´ 1 ´ ε
4 ă λ ă α ´ 1. In the view of

(47), the discrete energy sequence can be written as

Ekλ “ 4λpk `
1

2
k2

∥∥∥2
´

zk ´ zk´1
¯

` sβk´1V
´

zk
¯∥∥∥2 ` 1

2
s2 pk ` αq kβkβk´1

∥∥∥V ´

zk
¯∥∥∥2 @k ě 1.

According to Theorem 10, we have

lim
kÑ`8

kβkβk´1

∥∥∥V ´

zk
¯∥∥∥2 “ 0.

This statement together with the fact that the limits limkÑ`8 Ekλ P R and limkÑ`8 pk P R (according
to (49)) exist, allows us to deduce that for the sequence

hk :“
k2

2

ˆ∥∥∥2
´

zk ´ zk´1
¯

` sβk´1V
´

zk
¯∥∥∥2 ` s2βkβk´1 ∥∥∥V ´

zk
¯∥∥∥2˙ @k ě 1,
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the limit
lim

kÑ`8
hk P r0,`8q exists.

Furthermore, by taking into consideration the relation (40), Theorem 10 also guarantees that

ÿ

kěrαs

1

k
hk ď 2

ÿ

kěrαs

k
∥∥∥zk ´ zk´1∥∥∥2 ` s2 ÿ

kěrαs

k

ˆ

βk´1 `
βk
2

˙

βk´1

∥∥∥V ´

zk
¯
∥∥∥2

ď 2
ÿ

kěrαs

k
∥∥∥zk ´ zk´1∥∥∥2 ` s2ˆ1`

α

2 p2` εq

˙

ÿ

kě1

kβ2k´1

∥∥∥V ´

zk
¯∥∥∥2 ă `8.

From here we conclude that limkÑ`8 hk “ 0, and since hk is a sum of two nonnegative terms and,
since pβkqkě0 is nondecreasing, we further deduce

lim
kÑ`8

k
∥∥∥2

´

zk ´ zk´1
¯

` sβk´1V
´

zk
¯∥∥∥ “ lim

kÑ`8
k
a

βkβk´1

∥∥∥V ´

zk
¯∥∥∥ “ lim

kÑ`8
kβk´1

∥∥∥V ´

zk
¯∥∥∥ “ 0.

Using once again (40), we obtain

lim
kÑ`8

kβk

∥∥∥V ´

zk
¯
∥∥∥ “ 0.

Since pzkqkě0 is bounded, we use the Cauchy-Schwarz inequality to derive

0 ď lim
kÑ`8

kβk

A

zk ´ z˚, V
´

zk
¯E

ď lim
kÑ`8

kβk

∥∥∥zk ´ z˚∥∥∥∥∥∥V ´

zk
¯
∥∥∥ “ 0,

and the proof is complete.

4 An explicit algorithm

In this section, additional to its monotonicity, we will assume that the operator V is L-Lipschitz
continuous, with L ą 0. We propose and investigate an explicit numerical algorithm for solving (1),
which follows from a temporal discretization of the dynamical system (12).

The starting point is again its reformulation (36). We fix a time step s ą 0, set τk :“ s pk ` 1q for
every k ě 1, and approximate z pτkq « zk`1 and u pτkq « uk`1. In addition, we choose β pτkq “ 1 for
every k ě 1 and refer to Remark 2 for the explanation of why the time scaling parameter function β
is discretized via a constant sequence. The finite-difference scheme for (36) at time t :“ τk gives for
every k ě 0

$

’

&

’

%

uk`1 ´ uk

s
“ p2´ αqV

´

szk
¯

uk`1 “ 2 pα´ 1q zk`1 ` 2 pk ` 1q
´

zk`1 ´ zk
¯

` 2s pk ` 1qV
´

szk
¯

. (50)

Therefore we have for every k ě 1

uk “ 2 pα´ 1q zk ` 2k
´

zk ´ zk´1
¯

` 2skV
´

szk´1
¯

, (51)

and after substraction we get

uk`1 ´ uk “ 2 pk ` αq
´

zk`1 ´ zk
¯

´ 2k
´

zk ´ zk´1
¯

` 2sV
´

szk
¯

` 2sk
´

V
´

szk
¯

´ V
´

szk´1
¯¯

“ p2´ αq sV
´

szk
¯

, (52)

where the last relation comes from the first equation in (50).
On the other hand, the second equation in (50) can be rewritten for every k ě 0 as

zk`1 “
1

2 pk ` αq
uk`1 `

k ` 1

k ` α

´

zk ´ sV
´

szk
¯¯

. (53)
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To get an explicit choice for szk, we opt for

szk :“
1

2 pk ` αq
uk `

k ` 1

k ` α

ˆ

zk ´
sk

k ` 1
V
´

szk´1
¯

˙

´
αs

2 pk ` αq
V
´

szk´1
¯

@k ě 1. (54)

From here, (51) gives for all k ě 1

szk “ zk `
k

k ` α

´

zk ´ zk´1
¯

´
αs

2 pk ` αq
V
´

szk´1
¯

“ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
αs

2 pk ` αq
V
´

szk´1
¯

,

thus, by subtracting (54) from (53), we obtain

zk`1 ´ szk “
1

2 pk ` αq

´

uk`1 ´ uk
¯

´
s pk ` 1q

k ` α
V
´

szk
¯

`
sk

k ` α
V
´

szk´1
¯

´
αs

2 pk ` αq
V
´

szk´1
¯

“ ´
αs

2 pk ` αq
V
´

szk
¯

´
sk

k ` α

´

V
´

szk
¯

´ V
´

szk´1
¯¯

`
αs

2 pk ` αq
V
´

szk´1
¯

“ ´
s

2

ˆ

1`
k

k ` α

˙

´

V
´

szk
¯

´ V
´

szk´1
¯¯

. (55)

This gives the following important estimate, which holds for every s ą 0 such that sL ď 1 and every
k ě 1∥∥∥V ´

zk`1
¯

´ V
´

szk
¯∥∥∥ ď L

∥∥∥zk`1 ´ szk
∥∥∥ ď sL

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥ ď ∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥ . (56)

Now we can formally state our explicit numerical algorithm.

Algorithm 2. (Explicit Fast OGDA) Let α ą 2, z0, z1, sz0 P H, and 0 ă s ă 1
2L . For every

k ě 1 we set

szk :“ zk `

ˆ

1´
α

k ` α

˙

´

zk ´ zk´1
¯

´
αs

2 pk ` αq
V
´

szk´1
¯

zk`1 :“ szk ´
s

2

ˆ

1`
k

k ` α

˙

´

V
´

szk
¯

´ V
´

szk´1
¯¯

.

For z˚ P Z, 0 ď λ ď α´ 1 and z˚ P Z 0 ă γ ă 2 we define first in analogy to the implicit case the
discrete energy function for every k ě 1 by

Ekλ :“
1

2

∥∥∥ukλ∥∥∥2 ` 2λ pα´ 1´ λq
∥∥∥zk ´ z˚∥∥∥2 ` 2 p2´ γqλsk

A

zk ´ z˚, V
´

szk´1
¯E

`
1

2
p2´ γq s2k pγk ` αq

∥∥∥V ´

szk´1
¯∥∥∥2 , (57)

where
ukλ :“ 2λ

´

zk ´ z˚

¯

` 2k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯

. (58)

In strong contrast to the implicit case, the discrete energy sequence pEkλqkě1 might not dissipate with
every iteration of the algorithm and be even negative. This is the reason why we consider instead the
following regularized seuquence of the energy function, defined for every k ě 2 as

Fk
λ :“ Ekλ ´ 2 p2´ γq sk2

A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯E

`
1

2
p2´ γq s2k

?
k
´

2sL
?
k ` α

¯∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2

´
1

2
λ pα´ 2q s2

ˆ

2´
α

k ` α

˙∥∥∥V ´

szk´1
¯
∥∥∥2 . (59)

Its properties are collected in the following lemma, the proof of which is deferred to the Appendix.
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Lemma 13. Let z˚ P Z and
`

zk
˘

kě0
be the sequence generated by Algorithm 2 for 0 ă γ ă 2 and

0 ď λ ď α´ 1. Then the following statements are true:

piq for every k ě k0 :“ max
!

2,
Q

1
α´2

U)

it holds

Fk`1
λ ´ Fk

λ ď 2λ p2´ αq s
A

szk ´ z˚, V
´

szk
¯E

´
1

2
s2µk

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2

` 2
´

ω2k ` ω3

?
k
¯∥∥∥zk`1 ´ zk∥∥∥2 ` 2s

´

ω0k ` ω1

¯A

zk`1 ´ zk, V
´

szk
¯E

`
1

2
s2
´

ω4k ` ω5

?
k
¯∥∥∥V ´

szk
¯∥∥∥2 ,

where

µk :“ p2´ γq
´

2 p1´ 2sLq pk ` 1q ` α2
?
k ` 1` α´ 4

¯

pk ` 1q ´ p2´ γq pα´ 2q ´ 2λ pα´ 2q ,

(60a)

ω0 :“ p2´ γqλ` γ ´ α` γ pλ` 1´ αq , (60b)

ω1 :“ γ ´ α` α pλ` 1´ αq ă 0, (60c)

ω2 :“ 2 pλ` 1´ αq ď 0, (60d)

ω3 :“ p2´ γq
?
α´ 2 ą 0, (60e)

ω4 :“ 2γ p2´ αq ă 0, (60f)

ω5 :“ p2´ γqα ą 0. (60g)

piiq if 1 ă γ ă 2, then for every k ě k1 :“
Q

2λpα´2q
p2´γqα

U

it holds

Fk
λ ě

2´ γ

γ

∥∥∥2λ
´

zk ´ z˚

¯

` k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯
∥∥∥2

`
p2´ γq2

2γ
k2

∥∥∥zk ´ zk´1∥∥∥2 ` 2λ

ˆ

α´ 1´
2λ

γ

˙∥∥∥zk ´ z˚∥∥∥2 . (61)

In Lemma 13 we have two degree of freedoms in the choice of the parameters γ and λ. The
next result proves that there are choices for these parameters for which the discrete energy starts to
dissipate with every iteration after a finite number of iterations and in the same time it is bounded
from below by a nonnegative term. These two statements are fundamental in the derivation of the
convergence rates and finally in the proof of the convergence of the iterates. The proof of Lemma 14
can be found in the Appendix.

Lemma 14. The following statements are true:

piq if γ and δ are such that

1`
1

α´ 1
ă γ ă 2, (62)

and

max

#

d

2

ˆ

1´
1

γ

˙

,

d

p2´ γq pα´ 1q ` pγ ´ 1q pα´ 2q

γ pα´ 2q

+

ă δ ă 1, (63)

then there exist two parameters

0 ď λ pα, γq ă λ pα, γq ď
γ

2
pα´ 1q , (64)

such that for every λ satisfying λ pα, γq ă λ ă λ pα, γq one can find an integer k2 pλq ě 1 with the
property that the following inequality holds for every k ě k2 pλq

Rk :“ 2δ
´

ω2k ` ω3

?
k
¯∥∥∥zk`1 ´ zk∥∥∥2 ` 2s

´

ω0k ` ω1

¯A

zk`1 ´ zk, V
´

szk
¯E

`
δ

2
s2
´

ω4k ` ω5

?
k
¯∥∥∥V ´

szk
¯∥∥∥2 ď 0; (65)
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piiq there exists a positive integer k3 such that for every k ě k3 it holds

µk ě p2´ γq p1´ 2sLq pk ` 1q2 . (66)

Now we are in position to provide first convergence rates statements for Algorithm 2.

Theorem 15. Let z˚ P Z and
`

zk
˘

kě0
be the sequence generated by Algorithm 2. Then the following

statements are true:

piq it holds

ÿ

kě1

A

szk ´ z˚, V
´

szk
¯E

ă `8, (67a)

ÿ

kě1

k2
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ă `8, (67b)

ÿ

kě1

k
∥∥∥zk`1 ´ zk∥∥∥2 ă `8, (67c)

ÿ

kě1

k
∥∥∥V ´

szk
¯∥∥∥2 ă `8; (67d)

piiq the sequence
`

zk
˘

kě0
is bounded and it holds∥∥∥zk ´ zk´1∥∥∥ “ O

ˆ

1

k

˙

,
A

zk ´ z˚, V
´

zk
¯E

“ O
ˆ

1

k

˙

,∥∥∥V ´

zk
¯
∥∥∥ “ O

ˆ

1

k

˙

,
∥∥∥V ´

szk
¯
∥∥∥ “ O

ˆ

1

k

˙

as k Ñ `8;

piiiq if 1 `
1

α´ 1
ă γ ă 2, then there exist 0 ď λ pα, γq ă λ pα, γq ď γ

2 pα´ 1q such that for every

λ pα, γq ă λ ă λ pα, γq both sequences
`

Ekλ
˘

kě1
and

`

Fk
λ

˘

kě2
converge.

Proof. Let 1`
1

α´ 1
ă γ ă 2 and 0 ă δ ă 1 such that (63) holds. According to Lemma 14 there exist

λ pα, γq ă λ pα, γq such that (64) holds. We choose λ pα, γq ă λ ă λ pα, γq and get, according to the
same result, an integer k2pλq ě 1 such that for every k ě k2pλq the inequality (65) holds. In addition,
according to Lemma 14(ii), we get a positive integer k3 such that (66) holds for every k ě k3.

This means that for every k ě k4 pλq :“ max tk0, k2 pλq , k3u, where k0 is the positive integer
provided by Lemma (13)(i), we have

Fk`1
λ ´ Fk

λ ď 2λ p2´ αq s
A

szk ´ z˚, V
´

szk
¯E

´
1

2
p2´ γq p1´ 2sLq s2 pk ` 1q2

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2

` 2 p1´ δq
´

ω2k ` ω3

?
k
¯∥∥∥zk`1 ´ zk∥∥∥2 ` 1

2
p1´ δq s2

´

ω4k ` ω5

?
k
¯∥∥∥V ´

szk
¯∥∥∥2 .

Since ω2 ă 0, ω4 ă 0 and ω3, ω5 ě 0, we can choose k5 :“
Q

max
!

´2ω3
ω2
,´2ω5

ω4

)U

ą 0, which then means

that for every k ě k6 :“ max tk4 pλq , k5u

Fk`1
λ ´ Fk

λ ď 2λ p2´ αq s
A

szk ´ z˚, V
´

szk
¯E

´
1

2
p2´ γq s2 p1´ 2sLq pk ` 1q2

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2

` p1´ δqω2k
∥∥∥zk`1 ´ zk∥∥∥2 ` 1

4
p1´ δq s2ω4k

∥∥∥V ´

szk
¯∥∥∥2 . (68)

In view of (61) and by taking into account that λ ă γ
2 pα´ 1q, we get that Fk

λ ě 0 starting from the
index k1, thus the sequence

`

Fk
λ

˘

kě2
is bounded from below. Under these premises, we can apply

Lemma A.6 to (68), and obtain piq as well as that the sequence
`

Fk
λ

˘

kě1
converges.
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According to (68), we also have that
`

Fk
λ

˘

kěk6
is nonincreasing, which, according to (61), implies

that following estimate holds for every k ě k6

2´ γ

γ

∥∥∥2λ
´

zk ´ z˚

¯

` k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥2

`
p2´ γq2

2γ
k2

∥∥∥zk ´ zk´1∥∥∥2 ` 2λ

ˆ

α´ 1´
2λ

γ

˙∥∥∥zk ´ z˚∥∥∥2 ď Fk
λ ď Fk6

λ ă `8.

This yields that the sequences
`

2λ
`

zk ´ z˚
˘

` k
`

zk ´ zk´1
˘

` γskV
`

szk´1
˘˘

kě1
,
`

k
`

zk ´ zk´1
˘˘

kě1
,

and
`

zk
˘

kě0
are bounded. In particular, for every k ě k6 we have

∥∥∥2λ
´

zk ´ z˚

¯

` k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥ ď C0 :“

d

γFk6
λ

2´ γ
ă `8,

k
∥∥∥zk ´ zk´1∥∥∥ ď C1 :“

b

2γFk6
λ

2´ γ
ă `8,

∥∥∥zk ´ z˚∥∥∥ ď C2 :“

d

γFk6
λ

2λ pγ pα´ 1q ´ 2λq
ă `8.

Using the triangle inequality, we deduce from here that for every k ě k6∥∥∥V ´

szk´1
¯∥∥∥ ď 1

γsk

´∥∥∥2λ
´

zk ´ z˚

¯

` k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥` 2λ

∥∥∥zk ´ z˚∥∥∥¯
`

1

γs

∥∥∥zk ´ zk´1∥∥∥ ď C3

k
, (69)

where

C3 :“
1

γs
pC0 ` C1 ` 2λ pα, γqC2q ą 0.

The statement (67b) yields

lim
kÑ`8

k
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯
∥∥∥ “ 0 ñ C4 :“ sup

kě1

!

k
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥) ă `8, (70)

which, together with (56) implies that for every k ě k6∥∥∥V ´

zk`1
¯∥∥∥ ď ∥∥∥V ´

zk`1
¯

´ V
´

szk
¯∥∥∥` ∥∥∥V ´

szk
¯∥∥∥ ď ∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥` ∥∥∥V ´

szk
¯∥∥∥ ď C5

k
, (71)

where
C5 :“ C3 ` C4 ą 0.

The last assertion in piiq follows from the Cauchy-Schwarz inequality and the boundedness of
`

zk
˘

kě0
,

namely, for for every k ě k6 it holds

0 ď
A

zk ´ z˚, V
´

zk
¯E

ď

∥∥∥zk ´ z˚∥∥∥∥∥∥V ´

zk
¯∥∥∥ ď C2C5

k ´ 1
.

To complete the proof of piiiq, we are going to show that in fact

lim
kÑ`8

Ekλ “ lim
kÑ`8

Fk
λ P R.

Indeed, we already have seen that

lim
kÑ`8

pk ` 1q
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥ “ lim

kÑ`8

∥∥∥V ´

szk
¯∥∥∥ “ 0,

which, by the Cauchy-Schwarz inequality and (56) yields

0 ď lim
kÑ`8

k2
∣∣∣Azk ´ zk´1, V ´

zk
¯

´ V
´

szk´1
¯E∣∣∣ ď C1 lim

kÑ`8
k
∥∥∥V ´

zk
¯

´ V
´

szk´1
¯∥∥∥

ď C1 lim
kÑ`8

k
∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥ “ 0.

From here we obtain the desired statement.
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The following theorem addresses the convergence of the sequence of iterates to an element in Z.

Theorem 16. Let z˚ P Z and
`

zk
˘

kě0
be the sequence generated by Algorithm 2. Then the sequence

`

zk
˘

kě0
converges weakly to a solution of (1).

Proof. Let 1`
1

α´ 1
ă γ ă 2 and λ pα, γq ă λ pα, γq be the parameters provided by Lemma 14 such

that (64) holds and with the property that for every λ pα, γq ă λ ă λ pα, γq there exists an integer
k2pλq ě 1 such that for every k ě k2pλq the inequality (65) holds. The proof relies on Opial’s Lemma
and follows the line of the proof of Theorem 11, by defining this time for every k ě 1

pk :“
1

2
pα´ 1q

∥∥∥zk ´ z˚∥∥∥2 ` kAzk ´ z˚, zk ´ zk´1 ` sV ´

szk´1
¯E

, (72)

qk :“
1

2

∥∥∥zk ´ z˚∥∥∥2 ` s k
ÿ

i“1

@

zi ´ z˚, V
`

szi´1
˘D

. (73)

One can notice that the limit

lim
kÑ`8

k
ÿ

i“1

@

zi ´ z˚, V
`

szi´1
˘D

“ lim
kÑ`8

k
ÿ

i“1

@

zi ´ szi´1, V
`

szi´1
˘D

` lim
kÑ`8

k
ÿ

i“1

@

szi´1 ´ z˚, V
`

szi´1
˘D

P R

exists due to (67a) and the fact that the series
ř

kě2

@

zk ´ szk´1, V
`

szk´1
˘D

is absolutely convergent,
which follows from

k
ÿ

i“2

∣∣@zi ´ szi´1, V
`

szi´1
˘D∣∣ ď k

ÿ

i“2

∥∥V `

szi´1
˘∥∥∥∥zi ´ szi´1

∥∥ ď sC3C4

8
ÿ

i“2

1

i pi´ 1q
ă `8 @k ě 2,

where we make use of (56), (70), and (69), and of the constants C3, C4 defined in the proof of Theorem
15.

As for the implicit algorithm, we can improve also for the explicit algorithm the convergence rates.

Theorem 17. Let z˚ P Z and
`

zk
˘

kě0
be the sequence generated by Algorithm 2. Then it holds∥∥∥zk ´ zk´1∥∥∥ “ o

ˆ

1

k

˙

,
A

zk ´ z˚, V
´

zk
¯E

“ o

ˆ

1

k

˙

,∥∥∥V ´

zk
¯∥∥∥ “ o

ˆ

1

k

˙

,
∥∥∥V ´

szk
¯∥∥∥ “ o

ˆ

1

k

˙

as k Ñ `8.

Proof. Let 1`
1

α´ 1
ă γ ă 2 and λ pα, γq ă λ pα, γq be the parameters provided by Lemma 14 such

that (64) holds and with the property that for every λ pα, γq ă λ ă λ pα, γq there exists an integer
k2pλq ě 1 such that for every k ě k2pλq the inequality (65) holds.

We fix λ pα, γq ă λ ă λ pα, γq and recall that according to Theorem 15(iii) the sequence pEkλqkě1
converges.

From (58) and (57) we have that for every k ě 1

Ekλ “
1

2

∥∥∥2λ
´

zk ´ z˚

¯

` 2k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥2 ` 2λ pα´ 1´ λq

∥∥∥zk ´ z˚∥∥∥2
` 2 p2´ γqλsk

A

zk ´ z˚, V
´

szk´1
¯E

`
1

2
p2´ γq s2k pγk ` αq

∥∥∥V ´

szk´1
¯∥∥∥2

“ 2λ pα´ 1q
∥∥∥zk ´ z˚∥∥∥2 ` 4λk

A

zk ´ z˚, z
k ´ zk´1 ` sV

´

szk´1
¯E

`
1

2
p2´ γqαs2k

∥∥∥V ´

szk´1
¯∥∥∥2

`
k2

2

ˆ∥∥∥2
´

zk ´ zk´1
¯

` γsV
´

szk´1
¯
∥∥∥2 ` p2´ γq γs2 ∥∥∥V ´

szk´1
¯
∥∥∥2˙ .
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We set for every k ě 1

hk :“
k2

2

ˆ∥∥∥2
´

zk ´ zk´1
¯

` γsV
´

szk´1
¯∥∥∥2 ` p2´ γq γs2 ∥∥∥V ´

szk´1
¯∥∥∥2˙ ,

and notice that, in view of (72), we have

Ekλ “ 4λpk `
1

2
p2´ γqαs2k

∥∥∥V ´

szk´1
¯
∥∥∥2 ` hk.

Theorem 15 asserts that

lim
kÑ8

k
∥∥∥V ´

szk´1
¯
∥∥∥2 “ 0,

which, together with limkÑ`8 Ekλ P R and limkÑ`8 pk P R, yields

lim
kÑ`8

hk P R exists.

In addition, (67c) and (67d) in Theorem 15 guarantee that

ÿ

kě1

1

k
hk ď 4

ÿ

kě1

k
∥∥∥zk ´ zk´1∥∥∥2 ` 1

2
p2` γq γs2

ÿ

kě1

k
∥∥∥V ´

szk´1
¯
∥∥∥2 ă `8.

Consequently, limkÑ`8 hk “ 0, which yields

lim
kÑ8

k
∥∥∥2

´

zk ´ zk´1
¯

` γsV
´

szk´1
¯∥∥∥ “ lim

kÑ8
k
∥∥∥V ´

szk´1
¯∥∥∥ “ 0.

This immediately implies limkÑ`8 k
∥∥zk ´ zk´1∥∥ “ 0. The fact that limkÑ`8 k

∥∥V `

zk
˘∥∥ “ 0 follows

from (70) and (71), since

0 ď lim
kÑ`8

k
∥∥∥V ´

zk
¯∥∥∥ ď lim

kÑ`8
k
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥` lim

kÑ`8
k
∥∥∥V ´

szk
¯∥∥∥ “ 0.

Finally, using the Cauchy-Schwarz inequality and the fact that
`

zk
˘

kě0
is bounded, we obtain that

limkÑ`8 k
@

zk ´ z˚, V
`

zk
˘D

“ 0.

5 Numerical experiments

In this section we perform numerical experiments to illustrate the convergence rates derived for the
explicit Fast OGDA method and to compare our algorithm with other numerical schemes from the
literature designed to solve equations governed by a monotone and Lipschitz continuous operator. To
this end we consider a minmax problem studied in [39], which has then been used in [49] to illustrate
the performances of anchoring based numerical methods. This reads

min
xPRn

max
yPRn

L px, yq :“
1

2
xx,Hxy ´ xx, hy ´ xy,Ax´ by , (74)

where

A :“
1

4

¨

˚

˚

˚

˚

˚

˝

´1 1

. .
.

. .
.

´1 1
´1 1
1

˛

‹

‹

‹

‹

‹

‚

P Rnˆn, H :“ 2ATA, b :“
1

4

¨

˚

˚

˚

˚

˚

˝

1
1
...
1
1

˛

‹

‹

‹

‹

‹

‚

P Rn and h :“
1

4

¨

˚

˚

˚

˚

˚

˝

0
0
...
0
1

˛

‹

‹

‹

‹

‹

‚

P Rn.

We notice that L is nothing else than the Lagrangian of a linearly constrained quadratic minimization
problem. It has been shown in [39] that ‖A‖ ď 1

2 , thus ‖H‖ ď 1
2 , and, consequently, for the monotone

mapping px, yq ÞÑ
´

∇xL px, yq ,´∇yL px, yq
¯

we can take L “ 1 as Lipschitz constant.

In the following we summarize all the algorithms we use in the numerical experiments and the
corresponding step sizes:
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piq OGDA: Optimistic Gradient Descent Ascent method (7) (see [42]) with s :“ 0.48
L ;

piiq EG: Extragradient method (6) (see [30, 2]) with s :“ 0.96
L ;

piiiq EAG-V: Extra Anchored Gradient method (10) (see [49]) with variable step sizes pskqkě0 satisfying
(11);

pivq Nesterov-EAG: Nesterov’s accelerated variant of the Extra Anchored Gradient method, which has
been proposed in [47] and can be obtained from (10) be taking in the first update line the sequence
´

k`1
Lpk`2q

¯

kě0
as step sizes, and in the second one the constant step size 1

L (see [47, Theorem 5.1,

Lemma 5.1, Theorem 5.2]);

pvq Halpern-OGDA: OGDA mixed with the Halpern anchoring scheme, which has been proposed in
[48] and can be obtained from the variant of (10) with variable step sizes by replacing in the first
update line V

`

zk
˘

by V
`

szk´1
˘

;

pviq Fast OGDA: our explicit algorithm with s :“ 0.48
L and various choices of α.

Figure 1: Explicit Fast OGDA outperforms all other explicit methods

For the first numerical experiments we consider the same setting as in [49], namely, we take
n “ 200, which means that the underlying space is R400, and allow a maximum number of iterations
of 5 ˆ 105. Figure 1 presents the convergence behaviour of the different methods when solving (74)
in logarithmic scale. One can see that the anchoring based methods perform better than the classical
algorithms EG and OGDA, and that Nesterov-EAG performs better than Halpern-OGDA, which
reconfirms a finding of [47] and is not surprising when one takes into account that the first allows for
larger step sizes than EAG-V (and Halpnern-OGDA). On the other hand, Fast OGDA outperforms
all the other methods in spite of the fact that the step size is restricted to

`

0, 1
2L

˘

.
Figure 2 shows that the parameter α ą 2 influences significantly the convergence behaviour of the

explicit Fast OGDA method. For this numerical experiment we take n “ 1000, which means that
the underlying space is R2000, and allow a maximum number of iterations of 5 ˆ 105. The speed of
convergence increases with increasing α and seem to be much better than o p1{kq. Let us mention that
the minimax problem (74) was constructed to show lower complexity bounds of first order methods
for convex-concave saddle point problems.

For Nesterov’s dynamical systems with α
t as damping coefficient and the corresponding numer-

ical algorithms approaching the minimization of a smooth and convex function, it is known that α
influences in the same way the convergence rates of the objective function values. Another intriguing

25



Figure 2: The parameter α influences the convergence behaviour of explicit Fast OGDA

similarity with Nesterov’s continuous and discrete schemes is the evident oscillatory behaviour of the
trajectories, however, there for the objective function values, while for explicit Fast OGDA for the
norm of the operator along the trajectory/sequence of generated iterates. This suggests that Nes-
terov’s acceleration approach can improve the convergence behaviour of continuous and discrete time
approaches beyond the optimization setting.

In the following we complement the comparative study of the above numerical methods by fol-
lowing the performance profile developed by Dolan and Moré ([21]). We denote by S the set of the
algorithms/solvers (i)-(vi) from above, where for the Fast OGDA method we take α :“ 3. We solve
minmax problems of the form (74) with L : Rn ˆ Rm Ñ R, for 10 different pairs pn,mq such that
20 ď m ď n ď 200 and, for each such pair, for 100 randomly generated sparse matrices A P Rmˆn and
vectors b P Rm and h P Rn, and H :“ 2ATA. For each pair pn,mq we also take 10 initial points with
normal distribution, which leads to a set of problems P with Np “ 10ˆ 100ˆ 10 “ 10000 instances.

For each problem p P P and each solver s P S, we denote by tp,s the number of iterations needed
by solver s to solve the problem p successfully, i.e. by satsifying the following stopping criteria before
kmax :“ 105 iterations

‖V pxk, ykq‖
‖V px0, y0q‖

ď Tolop “ 10´6 and
‖pxk, ykq ´ pxk´1, yk´1q‖

‖pxk, ykq‖` 1
ď Tolvec “ 10´5.

The two stopping criteria quantify the relative errors measured for the operator norm and the discrete
velocity. We define the performance ratio as

rp,s :“

$

&

%

tp,s
min ttp,s : s P Su

if tp,s ă kmax,

0 otherwise,

and the performance of the solver s as

ρs pτq :“
1

Np
size tp P P : 0 ă rp,s ď τu ,

where τ is a real factor. The performance ρs pτq for solver s gives the probability that the performance
ratio rp,s is within a factor τ P R of the best possible ratio. Therefore, the value of ρs p1q gives the
probability that the solver s gives the best numerical performance when compared to the others, while
ρs pτq for large values of τ measures its robustness.

Figure 3 represents the performance profiles of the six solvers. We observe that the Fast OGDA
method is the most efficient, followed by EAG-V and Halpern-OGDA. We note that for τ ě 3 these
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three solvers are robust and solve 90% of the problems, while Nesterov-EGA and EG solve for τ ě 4
80% of the problems.

Figure 3: The performance profiles of the six solvers

A Appendix

In the first subsection of the appendix we collect some fundamental auxiliary results for the analysis
carried out in the paper. Further, we present the proof of the existence and uniqueness theorem
for (12) and also the proofs of technical lemmas used in the convergence analysis of the numerical
algorithms.

A.1 Auxiliary results

The following result can be found in [1, Lemma 5.1].

Lemma A.1. Let δ ą 0. Suppose that f : rδ,`8q Ñ R is locally absolutely continuous, bounded from
below, and there exists g P L1 prδ,`8qq such that for almost every t ě δ

d

dt
f ptq ď g ptq .

Then the limit lim
tÑ`8

f ptq P R exists.

Opial’s Lemma ([38]) in continuous form is used in the proof of the weak convergence of the
trajectory of the dynamical system (12).

Lemma A.2. Let S be a nonempty subset of H and z : rt0,`8q Ñ H. Assume that

piq for every z˚ P S, lim
tÑ`8

‖z ptq ´ z˚‖ exists;

piiq every weak sequential cluster point of the trajectory z ptq as tÑ `8 belongs to S.

Then zptq converges weakly to a point in S as tÑ `8.

For the convergence proof of the iterates generated by the two numerical algorithms we use the
discrete counterpart of Opial’s Lemma.

Lemma A.3. Let S be a nonempty subset of H and pzkqkě1 be a sequence in H. Assume that

piq for every z˚ P S, lim
kÑ`8

‖zk ´ z˚‖ exists;
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piiq every weak sequential cluster point of the sequence pzkqkě1 as k Ñ `8 belongs to S.

Then pzkqkě1 converges weakly to a point in S as k Ñ `8.

The following result can be found in [13, Lemma A.2].

Lemma A.4. Let a ą 0 and q : rt0,`8q Ñ H be a continuously differentiable function such that

lim
tÑ`8

ˆ

q ptq `
t

a
9q ptq

˙

“ l P H.

Then it holds lim
tÑ`8

q ptq “ l.

The discrete counterpart of this result is stated below. We provide a proof for it, as we could not
find any reference for this result in the literature.

Lemma A.5. Let a ě 1 and pqkqkě0 be a bounded sequence in H such that

lim
kÑ`8

ˆ

qk`1 `
k

a
pqk`1 ´ qkq

˙

“ l P H.

Then it holds lim
kÑ`8

qk “ l.

Proof. For every k ě 0 we set rk :“ qk ´ l. We fix ε ą 0. Then there exists k0 ě 1 such that for every
k ě k0 ∥∥∥∥rk`1 ` k

a
prk`1 ´ rkq

∥∥∥∥ ď ε.

Multiplying both side by aka´1, we obtain for every k ě k0∥∥`aka´1 ` ka˘ rk`1 ´ kark∥∥ ď εaka´1.

Then by applying the triangle inequality and using the fact that r :“ supkě0 ‖rk‖ ă `8, we deduce
that for every k ě k0

‖pk ` 1qa rk`1 ´ k
ark‖ ď εaka´1 `

∣∣pk ` 1qa ´ ka ´ aka´1
∣∣ r. (75)

The Lagrange error bound of a Taylor series says that for every k ě k0 there exists mk P pk, k ` 1q
such that ∣∣pk ` 1qa ´ ka ´ aka´1

∣∣ ď 1

2
a |a´ 1|ma´2

k .

From here we consider two cases.

The case 1 ď a ă 2. Then for every k ě k0 and every m P pk, k ` 1q we have ma´2 ď 1 and thus (75)
leads to

‖pk ` 1qa rk`1 ´ k
ark‖ ď εaka´1 `

1

2
a |a´ 1| r.

We choose K ě k0 and use a telescoping sum argument to get

‖pK ` 1qa rK`1 ´ k
a
0rk0‖ “

∥∥∥∥∥ K
ÿ

k“k0

´

pk ` 1qa rk`1 ´ k
ark

¯

∥∥∥∥∥ ď K
ÿ

k“k0

‖pk ` 1qa rk`1 ´ k
ark‖

ď εa
K
ÿ

k“k0

ka´1 `
1

2
a |a´ 1| r

K
ÿ

k“k0

1 ď εa pK ` 1qa `
1

2
a |a´ 1| r pK ` 1q .

Once again, using the triangle inequality, we conclude that

‖rK`1‖ ď
1

pK ` 1qa
‖pK ` 1qa rK`1 ´ k

a
0rk0‖`

ka0
pK ` 1qa

‖rk0‖ ď εa`
a |a´ 1| r

2 pK ` 1qa´1
`

ka0r

pK ` 1qa
.
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The case a ě 2. For for every k ě k0 and every m P pk, k ` 1q we have ma´2 ď pk ` 1qa´2, hence (75)
leads to

‖pk ` 1qa rk`1 ´ k
ark‖ ď εaka´1 `

1

2
a pa´ 1q r pk ` 1qa´2 .

We choose also in this case K ě k0 and by a similar argument as above we have that

‖pK ` 1qa rK`1 ´ k
a
0rk0‖ “

∥∥∥∥∥ K
ÿ

k“k0

´

pk ` 1qa rk`1 ´ k
ark

¯

∥∥∥∥∥ ď K
ÿ

k“k0

‖pk ` 1qa rk`1 ´ k
ark‖

ď εa
K
ÿ

k“k0

ka´1 `
1

2
a pa´ 1q r

K
ÿ

k“k0

pk ` 1qa´2

ď εa pK ` 1qa´1
K
ÿ

k“0

1`
1

2
a pa´ 1q r pK ` 1qa´2

K
ÿ

k“0

1

ď εa pK ` 1qa `
1

2
a pa´ 1q r pK ` 1qa´1 .

This leads to

‖rK`1‖ ď εa`
a pa´ 1q r

2 pK ` 1q
`

ka0r

pK ` 1qa
.

Therefore, in both scenarios we obtain

lim sup
kÑ`8

‖rk‖ ď εa,

which leads to the desired conclusion, as ε ą 0 was arbitrarily chosen.

The following result is a particular instance of [16, Lemma 5.31].

Lemma A.6. Let pakqkě1, pbkqkě1 and pdkqkě1 be sequences of real numbers. Assume that pakqkě1 is
bounded from below, and pbkqkě1 and pdkqkě1 are nonnegative sequences such that

ř

kě1 dk ă `8. If

ak`1 ď ak ´ bk ` dk @k ě 1,

then the following statements are true:

piq the sequence pbkqkě1 is summable, namely
ř

kě1 bk ă `8;

piiq the sequence pakqkě1 is convergent.

The following elementary result is used several times in the paper.

Lemma A.7. Let a, b, c P R be such that a ‰ 0 and b2 ´ ac ď 0. The following statements are true:

piq if a ą 0, then it holds
a ‖x‖2 ` 2b xx, yy ` c ‖y‖2 ě 0 @x, y P H;

piiq if a ă 0, then it holds
a ‖x‖2 ` 2b xx, yy ` c ‖y‖2 ď 0 @x, y P H.

A.2 Proof of the existence and uniqueness theorem for the evolution equation

In this subsection we provide the proof of the existence and uniqueness of the trajectories of (12).
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Proof of Theorem 5 . The system (12) can be rewritten as a first-order ordinary differential equation

$

’

’

’

’

&

’

’

’

’

%

9z ptq “
1

2t
u ptq ´

1

t
pα´ 1q z ptq ´ β ptqV pz ptqq

9u ptq “

´

t 9β ptq ` p2´ αqβ ptq
¯

V pz ptqq
´

z pt0q , u pt0q
¯

“

´

z0, 2 pα´ 1q z0 ` 2t0 9z0 ` 2t0β pt0qV
`

z0
˘

¯

, (76)

where for every t ě t0 we define

u ptq :“ 2 pα´ 1q z ptq ` 2t 9z ptq ` 2tβ ptqV pz ptqq .

We define G : rt0,`8q ˆHˆHÑ HˆH by

G pt, ζ, µq :“

ˆ

´

t 9β ptq ` p2´ αqβ ptq
¯

V pζq ,
1

2t
µ´

1

t
pα´ 1q ζ ´ β ptqV pζq

˙

,

so that (76) becomes

$

&

%

´

9u ptq , 9z ptq
¯

“ G pt, z ptq , u ptqq
´

z pt0q , u pt0q
¯

“

´

z0, 2 pα´ 1q z0 ` 2t0 9z0 ` 2t0β pt0qV
`

z0
˘

¯ .

Since G is Lipschitz continuous on bounded sets, the local existence and uniqueness theorem (see,
for instance, [44, Theorems 46.2 and 46.3]) allows to conclude that there exists a unique continuous
differentiable solution pz, uq P H ˆ H of (76) defined on a maximally interval rt0, Tmaxq where 0 ă
t0 ă Tmax ď `8. Furthermore, either

Tmax “ `8 or lim
tÑTmax

‖pz ptq , u ptqq‖ “ `8.

In the following we will show that indeed Tmax “ `8.
According to (23), for z˚ P Z fixed, for every t0 ď t ă Tmax it holds

Eα´1 ptq ` 2

ż t

t0

τ2β pτqw pτq ‖V pz pτqq‖2 dτ ď Eα´1 pt0q ă `8,

which implies that
t ÞÑ uptq is bounded on rt0, Tmaxq. (77)

On the other hand, inequality (25) implies that

ż Tmax

t0

τβ2 pτq ‖V pz pτqq‖2 dτ ď Eα´1 pt0q
ε

ă `8,

for some ε ą 0. Now for 0 ă λ ă α´ 1, we have according to (27b) that for every t0 ď t ă Tmax

2λ pα´ 1´ λq ‖z ptq ´ z˚‖2 ď Eλ ptq ď Eλ pt0q `
2

ε
pα´ 1´ λq Eα´1 pt0q ă `8. (78)

From (77) and (78) we have that limtÑTmax ‖pz ptq , u ptqq‖ ă `8, therefore Tmax “ `8. �

A.3 Proof of the technical lemma used in the analysis of the implicit algorithm

In this subsection we provide the proof of Lemma 9 which shows that the discrete energy (42) dissipates
with every iteration of the implicit Fast OGDA method.
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Proof of Lemma 9 . Let 0 ď λ ď α´ 1. For brevity we denote for every k ě 0

uk`1λ :“ 2λ
´

zk`1 ´ z˚

¯

` 2 pk ` 1q
´

zk`1 ´ zk
¯

` s pk ` 1qβkV
´

zk`1
¯

. (79)

This means that for every k ě 1 it holds

ukλ “ 2λ
´

zk ´ z˚

¯

` 2k
´

zk ´ zk´1
¯

` skβk´1V
´

zk
¯

,

therefore taking the difference and using (38) we deduce that

uk`1λ ´ ukλ “ 2 pλ` 1´ αq
´

zk`1 ´ zk
¯

` 2 pk ` αq
´

zk`1 ´ zk
¯

´ 2k
´

zk ´ zk´1
¯

` s
´

pk ` 1qβk ´ kβk´1

¯

V
´

zk`1
¯

` skβk´1

´

V
´

zk`1
¯

´ V
´

zk
¯¯

“ 2 pλ` 1´ αq
´

zk`1 ´ zk
¯

` p1´ αq sβkV
´

zk`1
¯

´ skβk´1

´

V
´

zk`1
¯

´ V
´

zk
¯¯

.

(80)

In the following we want to use the following identity

1

2

ˆ∥∥∥uk`1λ

∥∥∥2 ´ ∥∥∥ukλ∥∥∥2˙ “ A

uk`1λ , uk`1λ ´ ukλ

E

´
1

2

∥∥∥uk`1λ ´ ukλ

∥∥∥2 @k ě 1. (81)

Using the relations (79) and (80), for every k ě 1 we derive that

A

uk`1λ , uk`1λ ´ ukλ

E

“ 4λ pλ` 1´ αq
A

zk`1 ´ z˚, z
k`1 ´ zk

E

` 2λ p1´ αq sβk

A

zk`1 ´ z˚, V
´

zk`1
¯E

´ 2λskβk´1

A

zk`1 ´ z˚, V
´

zk`1
¯

´ V
´

zk
¯E

` 4 pλ` 1´ αq pk ` 1q
∥∥∥zk`1 ´ zk∥∥∥2

` 2s pλ` 2´ 2αq pk ` 1qβk

A

zk`1 ´ zk, V
´

zk`1
¯E

´ 2s pk ` 1q kβk´1

A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

zk
¯E

` p1´ αq s2 pk ` 1qβ2k

∥∥∥V ´

zk`1
¯∥∥∥2

´ s2 pk ` 1q kβkβk´1

A

V
´

zk`1
¯

, V
´

zk`1
¯

´ V
´

zk
¯E

, (82)

and

´
1

2

∥∥∥uk`1λ ´ ukλ

∥∥∥2 “ ´2 pλ` 1´ αq2
∥∥∥zk`1 ´ zk∥∥∥2 ´ 1

2
p1´ αq2 s2β2k

∥∥∥V ´

zk`1
¯∥∥∥2

´
1

2
s2k2β2k´1

∥∥∥V ´

zk`1
¯

´ V
´

zk
¯∥∥∥2

´ 2 pλ` 1´ αq p1´ αq sβk

A

zk`1 ´ zk, V
´

zk`1
¯E

` 2 pλ` 1´ αq skβk´1

A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

zk
¯E

` p1´ αq s2kβkβk´1

A

V
´

zk`1
¯

, V
´

zk`1
¯

´ V
´

zk
¯E

. (83)

A direct computation shows that

´

pλ` 2´ 2αq pk ` 1q ´ pλ` 1´ αq p1´ αq
¯

βk

“

´

pλ` 1´ αq p2k ` α` 1q ´ λ pk ` 1q
¯

βk

“

´

pλ` 1´ αq p2k ` α` 1q ´ λ
¯

βk ´ λk pβk ´ βk´1q ` λkβk´1. (84)
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By plugging (82) and (83) into (81), we get for every k ě 1

1

2

ˆ∥∥∥uk`1λ

∥∥∥2 ´ ∥∥∥ukλ∥∥∥2˙
“ 4λ pλ` 1´ αq

A

zk`1 ´ z˚, z
k`1 ´ zk

E

` 2λ p1´ αq sβk

A

zk`1 ´ z˚, V
´

zk`1
¯E

´ 2λskβk´1

A

zk`1 ´ z˚, V
´

zk`1
¯

´ V
´

zk
¯E

` 2 pλ` 1´ αq p2k ` α` 1´ λq
∥∥∥zk`1 ´ zk∥∥∥2

` 2s
´

pλ` 1´ αq p2k ` α` 1q ´ λ pk ` 1q
¯

βk

A

zk`1 ´ zk, V
´

zk`1
¯E

´ 2sk pk ` α´ λqβk´1

A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

zk
¯E

`
1

2
p1´ αq s2β2k p2k ` α` 1q

∥∥∥V ´

zk`1
¯∥∥∥2

´ s2 pk ` αq kβkβk´1

A

V
´

zk`1
¯

, V
´

zk`1
¯

´ V
´

zk
¯E

´
1

2
s2k2β2k´1

∥∥∥V ´

zk`1
¯

´ V
´

zk
¯∥∥∥2 .

(85)

Next we are going to consider the remaining terms in the difference of the discrete energy functions.
First we observe that for every k ě 0

2λ pα´ 1´ λq

ˆ∥∥∥zk`1 ´ z˚∥∥∥2 ´ ∥∥∥zk ´ z˚∥∥∥2˙
“ 2λ pα´ 1´ λq

ˆ

2
A

zk`1 ´ z˚, z
k`1 ´ zk

E

´

∥∥∥zk`1 ´ zk∥∥∥2˙ . (86)

Some algebra shows that for every k ě 1

2λs pk ` 1qβk

A

zk`1 ´ z˚, V
´

zk`1
¯E

´ 2λskβk´1

A

zk ´ z˚, V
´

zk
¯E

“ 2λs
´

pk ` 1qβk ´ kβk´1

¯A

zk`1 ´ z˚, V
´

zk`1
¯E

` 2λskβk´1

´A

zk`1 ´ z˚, V
´

zk`1
¯E

´

A

zk ´ z˚, V
´

zk
¯E¯

“ 2λs
´

pk ` 1qβk ´ kβk´1

¯A

zk`1 ´ z˚, V
´

zk`1
¯E

` 2λskβk´1

A

zk`1 ´ z˚, V
´

zk`1
¯

´ V
´

zk
¯E

` 2λskβk´1

A

zk`1 ´ zk, V
´

zk
¯E

“ 2λs
´

pk ` 1qβk ´ kβk´1

¯A

zk`1 ´ z˚, V
´

zk`1
¯E

´ 2λskβk´1

A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

zk
¯E

` 2λskβk´1

A

zk`1 ´ z˚, V
´

zk`1
¯

´ V
´

zk
¯E

` 2λskβk´1

A

zk`1 ´ zk, V
´

zk`1
¯E

. (87)

Finally, according to (39) and (40), we have for every k ě rαs

pk ` α` 1q pk ` 1qβk`1 ´ pk ` αq kβk´1

“ pk ` α` 1q pk ` 1q
`

βk`1 ´ βk
˘

` pk ` αq k
`

βk ´ βk´1
˘

` p2k ` α` 1qβk

ď pα´ 2´ εq
´

pk ` α` 1qβk`1 ` pk ` αqβk

¯

` p2k ` α` 1qβk

“ pα´ 2´ εq
´

pk ` 1q pβk`1 ´ βkq ` αβk`1 ` p2k ` α` 1qβk

¯

` p2k ` α` 1qβk

ď pα´ 2´ εq p2α´ 2´ εqβk`1 ` pα´ 1´ εq p2k ` α` 1qβk

ď
α

2` ε
pα´ 2´ εq p2α´ 2´ εqβk ` pα´ 1´ εq p2k ` α` 1qβk
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and thus it holds

1

2
s2 pk ` α` 1q pk ` 1qβk`1βk

∥∥∥V ´

zk`1
¯∥∥∥2 ´ 1

2
s2 pk ` αq kβkβk´1

∥∥∥V ´

zk
¯∥∥∥2

“
1

2
s2
´

pk ` α` 1q pk ` 1qβk`1 ´ pk ` αq kβk´1

¯

βk

∥∥∥V ´

zk`1
¯∥∥∥2

`
1

2
s2 pk ` αq kβkβk´1

ˆ∥∥∥V ´

zk`1
¯∥∥∥2 ´ ∥∥∥V ´

zk
¯∥∥∥2˙

ď
1

2

´ α

2` ε
pα´ 2´ εq p2α´ 2´ εq ` pα´ 1´ εq p2k ` α` 1q

¯

s2β2k

∥∥∥V ´

zk`1
¯
∥∥∥2

` s2 pk ` αq kβkβk´1

A

V
´

zk`1
¯

, V
´

zk`1
¯

´ V
´

zk
¯E

´
1

2
s2 pk ` αq kβkβk´1

∥∥∥V ´

zk`1
¯

´ V
´

zk
¯∥∥∥2 . (88)

After adding the relations (85) - (88) and by taking into consideration (84), we obtain (43).
�

A.4 Proofs of the technical lemmas used in the analysis of the explicit algorithm

In this subsection we provide the proofs of the two main technical lemmas used in the analysis of the
explicit Fast OGDA method.

Proof of Lemma 13 . Let z˚ P Z, 0 ă γ ă 2 and 0 ď λ ď α´1. First we prove that for every k ě 1

Ek`1λ ´ Ekλ “2λ p2´ αq s
A

zk`1 ´ z˚, V
´

szk
¯E

` 2 pλ` 1´ αq p2k ` α` 1q
∥∥∥zk`1 ´ zk∥∥∥2

` 2s
´

`

p2´ γqλ` γ ´ α` γ pλ` 1´ αq
˘

k ` γ ´ α` α pλ` 1´ αq
¯A

zk`1 ´ zk, V
´

szk
¯E

´ 2 p2´ γq sk pk ` αq
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

`
1

2
p2´ αq s2 p2γk ` α` γq

∥∥∥V ´

szk
¯∥∥∥2´ 1

2
p2´ γq s2k p2k ` αq

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 .
(89)

For every k ě 1 we have

uk`1λ :“ 2λ
´

zk`1 ´ z˚

¯

` 2 pk ` 1q
´

zk`1 ´ zk
¯

` γs pk ` 1qV
´

szk
¯

, (90)

and after substraction we deduce from (52) that

uk`1λ ´ ukλ “ 2 pλ` 1´ αq
´

zk`1 ´ zk
¯

` 2 pk ` αq
´

zk`1 ´ zk
¯

´ 2k
´

zk ´ zk´1
¯

` γsV
´

szk
¯

` γsk
´

V
´

szk
¯

´ V
´

szk´1
¯¯

“ 2 pλ` 1´ αq
´

zk`1 ´ zk
¯

` pγ ´ αq sV
´

szk
¯

` pγ ´ 2q sk
´

V
´

szk
¯

´ V
´

szk´1
¯¯

. (91)

Next we recall the identities in (81) and (86)

1

2

ˆ∥∥∥uk`1λ

∥∥∥2 ´ ∥∥∥ukλ∥∥∥2˙ “ A

uk`1λ , uk`1λ ´ ukλ

E

´
1

2

∥∥∥uk`1λ ´ ukλ

∥∥∥2 @k ě 1,

(92)

2λ pα´ 1´ λq

ˆ∥∥∥zk`1 ´ z˚∥∥∥2 ´ ∥∥∥zk ´ z˚∥∥∥2˙ “ 4λ pα´ 1´ λq
A

zk`1 ´ z˚, z
k`1 ´ zk

E

´ 2λ pα´ 1´ λq
∥∥∥zk`1 ´ zk∥∥∥2 @k ě 0, (93)

respectively, as they are required also in the analysis of the explicit algorithm.
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We first use the relations (90) and (91) to derive for every k ě 1 that

A

uk`1λ , uk`1λ ´ ukλ

E

“ 4λ pλ` 1´ αq
A

zk`1 ´ z˚, z
k`1 ´ zk

E

` 2λ pγ ´ αq s
A

zk`1 ´ z˚, V
´

szk
¯E

` 2λ pγ ´ 2q sk
A

zk`1 ´ z˚, V
´

szk
¯

´ V
´

szk´1
¯E

` 4 pλ` 1´ αq pk ` 1q
∥∥∥zk`1 ´ zk∥∥∥2

` 2
´

γ ´ α` γ pλ` 1´ αq
¯

s pk ` 1q
A

zk`1 ´ zk, V
´

szk
¯E

` 2 pγ ´ 2q s pk ` 1q k
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

` γ pγ ´ αq s2 pk ` 1q
∥∥∥V ´

szk
¯∥∥∥2

` γ pγ ´ 2q s2 pk ` 1q k
A

V
´

szk
¯

, V
´

szk
¯

´ V
´

szk´1
¯E

, (94)

and

´
1

2

∥∥∥uk`1λ ´ ukλ

∥∥∥2 “ ´2 pλ` 1´ αq2
∥∥∥zk`1 ´ zk∥∥∥2 ´ 1

2
pγ ´ αq2 s2

∥∥∥V ´

szk
¯∥∥∥2

´
1

2
pγ ´ 2q2 s2k2

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2

´ 2 pλ` 1´ αq pγ ´ αq s
A

zk`1 ´ zk, V
´

szk
¯E

´ 2 pλ` 1´ αq pγ ´ 2q sk
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

´ pγ ´ 2q pγ ´ αq s2k
A

V
´

szk
¯

, V
´

szk
¯

´ V
´

szk´1
¯E

. (95)

A direct computation shows that

`

γ ´ α` γ pλ` 1´ αq
˘

pk ` 1q ´ pλ` 1´ αq pγ ´ αq

“
`

γ ´ α` γ pλ` 1´ αq
˘

k ` γ ´ α` α pλ` 1´ αq ,

therefore, by replacing (94) and (95) into (92), we get for every k ě 1

1

2

ˆ∥∥∥uk`1λ

∥∥∥2 ´ ∥∥∥ukλ∥∥∥2˙
“ 4λ pλ` 1´ αq

A

zk`1 ´ z˚, z
k`1 ´ zk

E

` 2λ pγ ´ αq s
A

zk`1 ´ z˚, V
´

szk
¯E

` 2λ pγ ´ 2q sk
A

zk`1 ´ z˚, V
´

szk
¯

´ V
´

szk´1
¯E

` 2 pλ` 1´ αq p2k ` α` 1´ λq
∥∥∥zk`1 ´ zk∥∥∥2

` 2s
´

`

γ ´ α` γ pλ` 1´ αq
˘

k ` γ ´ α` α pλ` 1´ αq
¯A

zk`1 ´ zk, V
´

szk
¯E

` 2 pγ ´ 2q sk pk ` α´ λq
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

`
1

2
pγ ´ αq s2 p2γk ` α` γq

∥∥∥V ´

szk
¯∥∥∥2

` pγ ´ 2q s2k pγk ` αq
A

V
´

szk
¯

, V
´

szk
¯

´ V
´

szk´1
¯E

´
1

2
pγ ´ 2q2 s2k2

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 .

(96)

Furthermore, one can show that for every k ě 1 it holds

2λs pk ` 1q
A

zk`1 ´ z˚, V
´

szk
¯E

´ 2λsk
A

zk ´ z˚, V
´

szk´1
¯E

“ 2λs
A

zk`1 ´ z˚, V
´

szk
¯E

` 2λsk
´A

zk`1 ´ z˚, V
´

szk
¯E

´

A

zk ´ z˚, V
´

szk´1
¯E¯

“ 2λs
A

zk`1 ´ z˚, V
´

szk
¯E

` 2λsk
A

zk`1 ´ z˚, V
´

szk
¯

´ V
´

szk´1
¯E

´ 2λsk
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

` 2λsk
A

zk`1 ´ zk, V
´

szk
¯E

. (97)
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and

1

2
s2 pk ` 1q

`

γ pk ` 1q ` α
˘

∥∥∥V ´

szk
¯∥∥∥2 ´ 1

2
s2k pγk ` αq

∥∥∥V ´

szk´1
¯∥∥∥2

“
1

2
s2 p2γk ` α` γq

∥∥∥V ´

szk
¯
∥∥∥2 ` 1

2
s2k pγk ` αq

ˆ∥∥∥V ´

szk
¯
∥∥∥2 ´ ∥∥∥V ´

szk´1
¯∥∥∥2˙

“
1

2
s2 p2γk ` α` γq

∥∥∥V ´

szk
¯
∥∥∥2 ` s2k pγk ` αqAV ´

szk
¯

, V
´

szk
¯

´ V
´

szk´1
¯E

´
1

2
s2k pγk ` αq

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯
∥∥∥2 . (98)

Hence, multiplying (97) and (98) by 2´γ ą 0, and summing up the resulting identities with (93) and
(96), we obtain (89).

(i) Let k ě 2 be fixed. By the definition of Fk
λ in (59), we have for every k ě 2

Fk`1
λ ´ Fk

λ

“ Ek`1λ ´ Ekλ ´
1

2
λ pα´ 2q s2

„ˆ

2´
α

k ` α` 1

˙∥∥∥V ´

szk
¯∥∥∥2 ´ ˆ

2´
α

k ` α

˙∥∥∥V ´

szk´1
¯∥∥∥2

´ 2s p2´ γq
”

pk ` 1q2
A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

szk
¯E

´ k2
A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯Eı

`
1

2
p2´ γqαs2

„

pk ` 1q
?
k ` 1

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ´ k?k ∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2

` p2´ γq s3L

„

pk ` 1q2
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ´ k2 ∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2 . (99)

By using the definition of ω0, ω1, ω2 and ω4 in (60) the fact that 0 ď λ ď α ´ 1 and 0 ă γ ă 2, from
(89) we obtain that for every k ě 1 it holds

Ek`1λ ´ Ekλ
“ 2λ p2´ αq s

A

zk`1 ´ z˚, V
´

szk
¯E

´ 2 p2´ γq sk pk ` αq
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

` 2s pω0k ` ω1q

A

zk`1 ´ zk, V
´

szk
¯E

` 2
`

ω2k ` pλ` 1´ αq pα` 1q
˘

∥∥∥zk`1 ´ zk∥∥∥2
`

1

2
s2
`

ω4k ` p2´ αq pα` γq
˘

∥∥∥V ´

szk
¯∥∥∥2 ´ 1

2
p2´ γq s2k p2k ` αq

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2

ď 2λ p2´ αq s
A

zk`1 ´ z˚, V
´

szk
¯E

´ 2 p2´ γq sk pk ` αq
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

` 2s pω0k ` ω1q

A

zk`1 ´ zk, V
´

szk
¯E

` 2ω2k
∥∥∥zk`1 ´ zk∥∥∥2 ` 1

2
s2ω4k

∥∥∥V ´

szk
¯
∥∥∥2

´
1

2
p2´ γq s2k p2k ` αq

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 . (100)
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Plugging (100) into (99), it yields for every k ě 2

Fk`1
λ ´ Fk

λ

ď 2λ p2´ αq s
A

zk`1 ´ z˚, V
´

szk
¯E

´ 2 p2´ γq sk pk ` αq
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

´
1

2
λ pα´ 2q s2

„ˆ

2´
α

k ` α` 1

˙∥∥∥V ´

szk
¯∥∥∥2 ´ ˆ

2´
α

k ` α

˙∥∥∥V ´

szk´1
¯∥∥∥2

´ 2s p2´ γq
”

pk ` 1q2
A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

szk
¯E

´ k2
A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯Eı

`
1

2
p2´ γqαs2

„

pk ` 1q
?
k ` 1

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ´ k?k ∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2

` p2´ γq s3L

„

pk ` 1q2
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ´ k2 ∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2

` 2s pω0k ` ω1q

A

zk`1 ´ zk, V
´

szk
¯E

` 2ω2k
∥∥∥zk`1 ´ zk∥∥∥2 ` 1

2
s2ω4k

∥∥∥V ´

szk
¯
∥∥∥2

´
1

2
p2´ γq s2

`

2k2 ` αk
˘

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 . (101)

Our next aim is to derive upper estimates for the first two terms on the right-hand side of (101),
which will eventually simplify the subsequent four terms. First we observe that from (55) we have for
every k ě 1

2λ p2´ αq s
A

zk`1 ´ z˚, V
´

szk
¯E

“ 2λ p2´ αq s
A

zk`1 ´ szk, V
´

szk
¯E

` 2λ p2´ αq s
A

szk ´ z˚, V
´

szk
¯E

“ λ pα´ 2q s2
ˆ

1`
k

k ` α

˙

A

V
´

szk
¯

´ V
´

szk´1
¯

, V
´

szk
¯E

` 2λ p2´ αq s
A

szk ´ z˚, V
´

szk
¯E

“
1

2
λ pα´ 2q s2

ˆ

2´
α

k ` α

˙∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ` 1

2
λ pα´ 2q s2

ˆ

2´
α

k ` α

˙∥∥∥V ´

szk
¯∥∥∥2

´
1

2
λ pα´ 2q s2

ˆ

2´
α

k ` α

˙∥∥∥V ´

szk´1
¯∥∥∥2 ` 2λ p2´ αq s

A

szk ´ z˚, V
´

szk
¯E

ď λ pα´ 2q s2
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯
∥∥∥2 ` 1

2
λ pα´ 2q s2

ˆ

2´
α

k ` α` 1

˙∥∥∥V ´

szk
¯
∥∥∥2

´
1

2
λ pα´ 2q s2

ˆ

2´
α

k ` α

˙∥∥∥V ´

szk´1
¯
∥∥∥2 ` 2λ p2´ αq s

A

szk ´ z˚, V
´

szk
¯E

. (102)

The monotonicity of V and relation (52) yield for every k ě 1

´ 2sk pk ` αq
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

ď 2sk pk ` αq
A

zk`1 ´ zk,
´

V
´

zk`1
¯

´ V
´

szk
¯¯

´

´

V
´

zk
¯

´ V
´

szk´1
¯¯E

“ 2sk pk ` αq
A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

szk
¯E

´ 2sk pk ` αq
A

zk`1 ´ zk, V
´

zk
¯

´ V
´

szk´1
¯E

“ 2s pk ` 1q2
A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

szk
¯E

´ 2sk2
A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯E

` 2s
`

pα´ 2q k ´ 1
˘

A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

szk
¯E

` αs2k
A

V
´

szk
¯

, V
´

zk
¯

´ V
´

szk´1
¯E

` 2s2k2
A

V
´

szk
¯

´ V
´

szk´1
¯

, V
´

zk
¯

´ V
´

szk´1
¯E

. (103)
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Young’s inequality together with (56) show that for every k ě
Q

1
α´2

U

it holds

2s
`

pα´ 2q k ´ 1
˘

A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

szk
¯E

ď 2
a

pα´ 2q k ´ 1
∥∥∥zk`1 ´ zk∥∥∥2 ` 1

2
s2
`

pα´ 2q k ´ 1
˘

a

pα´ 2q k ´ 1
∥∥∥V ´

zk`1
¯

´ V
´

szk
¯∥∥∥2

ď 2
a

pα´ 2q k
∥∥∥zk`1 ´ zk∥∥∥2 ` 1

2
pα´ 1q

?
α´ 1s2 pk ` 1q

?
k ` 1

∥∥∥V ´

zk`1
¯

´ V
´

szk
¯∥∥∥2

ď 2
a

pα´ 2q k
∥∥∥zk`1 ´ zk∥∥∥2 ` 1

2
pα´ 1q

?
α´ 1s4L2 pk ` 1q

?
k ` 1

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2

ď 2
a

pα´ 2q k
∥∥∥zk`1 ´ zk∥∥∥2 ` 1

2
pα´ 1qαs2 pk ` 1q

?
k ` 1

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 , (104)

where in the second estimate we use the fact that pα´ 2q k ´ 1 ď pα´ 1q pk ` 1q, while in the last
one we combine

?
α´ 1 ď α and sL ă 1{2 ă 1.

In addition, for every k ě 2 it holds

αs2k
A

V
´

szk
¯

, V
´

zk
¯

´ V
´

szk´1
¯E

ď
1

2
αs2
?
k
∥∥∥V ´

szk
¯∥∥∥2 ` 1

2
αs2k

?
k
∥∥∥V ´

zk
¯

´ V
´

szk´1
¯∥∥∥2

ď
1

2
αs2
?
k
∥∥∥V ´

szk
¯
∥∥∥2 ` 1

2
αs2k

?
k
∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯
∥∥∥2 ,
(105)

and, by using the Cauchy-Schwarz inequality and (56),

2s2k2
A

V
´

szk
¯

´ V
´

szk´1
¯

, V
´

zk
¯

´ V
´

szk´1
¯E

ď s3Lk2
ˆ∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ` ∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2˙ . (106)

By plugging (104) - (106) into (103) and adding then the result to (102), we get after rearranging the
terms for every k ě k0

2λ p2´ αq s
A

zk`1 ´ z˚, V
´

szk
¯E

´ 2 p2´ γq sk pk ` αq
A

zk`1 ´ zk, V
´

szk
¯

´ V
´

szk´1
¯E

ď
1

2
λ pα´ 2q s2

„ˆ

2´
α

k ` α` 1

˙ ∥∥∥V ´

szk
¯∥∥∥2 ´ ˆ

2´
α

k ` α

˙ ∥∥∥V ´

szk´1
¯∥∥∥2

` 2s p2´ γq
”

pk ` 1q2
A

zk`1 ´ zk, V
´

zk`1
¯

´ V
´

szk
¯E

´ k2
A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯Eı

´
1

2
p2´ γqαs2

„

pk ` 1q
?
k ` 1

∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ´ k?k ∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2

´ p2´ γq s3L

„

pk ` 1q2
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2 ´ k2 ∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2

` 2λ p2´ αq s
A

szk ´ z˚, V
´

szk
¯E

´
1

2
s2
´

µk ´ p2´ γq
`

2k2 ` αk
˘

¯
∥∥∥V ´

szk
¯

´ V
´

szk´1
¯∥∥∥2

` 2 p2´ γq
a

pα´ 2q k
∥∥∥zk`1 ´ zk∥∥∥2 ` 1

2
p2´ γqαs2

?
k
∥∥∥V ´

szk
¯∥∥∥2 , (107)

where we set

µk :“´ 2λ pα´ 2q ´ p2´ γq
´

pα´ 1qα pk ` 1q
?
k ` 1` α pk ` 1q

?
k ` 1` 4sL pk ` 1q2

¯

` p2´ γq
`

2k2 ` αk
˘

“p2´ γq
´

p2´ 4sLq pk ` 1q2 ` pα´ 4q k ´ 2´ α2 pk ` 1q
?
k ` 1

¯

´ 2λ pα´ 2q

“ p2´ γq
´

2 p1´ 2sLq pk ` 1q ` α2
?
k ` 1` α´ 4

¯

pk ` 1q ´ p2´ γq pα´ 2q ´ 2λ pα´ 2q .

Finally, by summing up the relations (101) and (107), we obtain the desired estimate.
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(ii) By the definition of ukλ in (58) and by using the identity (32), for every k ě 1 it holds

Ekλ “
1

2

∥∥∥ukλ∥∥∥2 ` 2λ pα´ 1´ λq
∥∥∥zk ´ z˚∥∥∥2 ` 2 p2´ γqλsk

A

zk ´ z˚, V
´

szk´1
¯E

`
1

2
p2´ γq s2k pγk ` αq

∥∥∥V ´

szk´1
¯∥∥∥2

“
1

2

∥∥∥2λ
´

zk ´ z˚

¯

` 2k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯
∥∥∥2 ` 2λ

ˆ

α´ 1´
2λ

γ

˙∥∥∥zk ´ z˚∥∥∥2
`

1

2
p2´ γqαs2k

∥∥∥V ´

szk´1
¯∥∥∥2 ` 2´ γ

2γ

∥∥∥2λ
´

zk ´ z˚

¯

` γskV
´

szk´1
¯∥∥∥2

“
2´ γ

2γ

ˆ∥∥∥2λ
´

zk ´ z˚

¯

` 2k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥2 ` ∥∥∥2λ

´

zk ´ z˚

¯

` γskV
´

szk´1
¯∥∥∥2˙

` 2λ

ˆ

α´ 1´
2λ

γ

˙∥∥∥zk ´ z˚∥∥∥2 ` 1

2
p2´ γqαs2k

∥∥∥V ´

szk´1
¯∥∥∥2

`
γ ´ 1

γ

∥∥∥2λ
´

zk ´ z˚

¯

` 2k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥2

“
2´ γ

γ

ˆ∥∥∥2λ
´

zk ´ z˚

¯

` k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥2 ` k2 ∥∥∥zk ´ zk´1∥∥∥2˙

` 2λ

ˆ

α´ 1´
2λ

γ

˙∥∥∥zk ´ z˚∥∥∥2 ` 1

2
p2´ γqαs2k

∥∥∥V ´

szk´1
¯∥∥∥2

`
γ ´ 1

γ

∥∥∥2λ
´

zk ´ z˚

¯

` 2k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥2 .

Consequently, as 1 ă γ ă 2, for every k ě k1 “
Q

2λpα´2q
p2´γqα

U

we have

Fk
λ “ Ekλ ´ 2 p2´ γq sk2

A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯E

`
1

2
p2´ γq s2k

?
k
´

2sL
?
k ` α

¯∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2

´
1

2
λ pα´ 2q s2

ˆ

2´
α

k ` α

˙ ∥∥∥V ´

szk´1
¯
∥∥∥2

ě
2´ γ

γ

ˆ∥∥∥2λ
´

zk ´ z˚

¯

` k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥2 ` k2 ∥∥∥zk ´ zk´1∥∥∥2˙

` 2λ

ˆ

α´ 1´
2λ

γ

˙ ∥∥∥zk ´ z˚∥∥∥2 ´ 2 p2´ γq sk2
A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯E

` p2´ γq s3Lk2
∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2 .

Now we use relation (56) and apply Lemma A.7 with pa, b, cq :“
´

1
2 ,´s,

s
L

¯

to verify that for every

k ě 1

1

2
k2

∥∥∥zk ´ zk´1∥∥∥2 ´ 2sk2
A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯E

` s3Lk2
∥∥∥V ´

szk´1
¯

´ V
´

szk´2
¯∥∥∥2

ě k2
ˆ

1

2

∥∥∥zk ´ zk´1∥∥∥2 ´ 2s
A

zk ´ zk´1, V
´

zk
¯

´ V
´

szk´1
¯E

`
s

L

∥∥∥V ´

zk
¯

´ V
´

szk´1
¯
∥∥∥2˙

ě 0.

Combining the last two estimates, one can easily conclude that for every k ě k1 it holds

Fk
λ ě

2´ γ

γ

∥∥∥2λ
´

zk ´ z˚

¯

` k
´

zk ´ zk´1
¯

` γskV
´

szk´1
¯∥∥∥2

`
p2´ γq2

2γ
k2

∥∥∥zk ´ zk´1∥∥∥2 ` 2λ

ˆ

α´ 1´
2λ

γ

˙ ∥∥∥zk ´ z˚∥∥∥2 ,
which is the desired inequality. �
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Proof of Lemma 14 . (i) First we notice that 2
´

1´ 1
γ

¯

“ 2´ 2
γ ă 1 and

1

γ pα´ 2q

`

p2´ γq pα´ 1q ` pγ ´ 1q pα´ 2q
˘

ă 1 ô 1`
1

α´ 1
ă γ ă 2.

This means, if γ satisfies (62), it holds

max

#

d

2

ˆ

1´
1

γ

˙

,

d

p2´ γq pα´ 1q ` pγ ´ 1q pα´ 2q

γ pα´ 2q

+

ă 1,

and thus one can choose δ to fulfill (63).
For the quadratic expression in Rk we calculate

∆1
k

s2
:“ pω0k ` ω1q

2
´ δ2k

´

ω2

?
k ` ω3

¯´

ω4

?
k ` ω5

¯

“
`

ω2
0 ´ δ

2ω2ω4

˘

k2 ´ δ2 pω2ω5 ` ω3ω4q k
?
k `

`

2ω0ω1 ´ δ
2ω3ω5

˘

k ` ω2
1.

Since
`

ω2
0 ´ δ

2ω2ω4

˘

k2 is the dominant term in the above polynomial, it suffices to guarantee that
ω2
0 ´ δ2ω2ω4 ă 0 in order to be sure that there exits some integer k2 pλq ě 1 such that ∆1

k ď 0 for
every k ě k2 pλq and to obtain from here, due to Lemma A.7 piiq, that Rk ď 0 for every k ě k2 pλq.

It remains to show that there exists a choice of λ for which ω2
0 ´ δ2ω2ω4 ă 0 holds. We set

ξ :“ λ` 1´ α ď 0 and get

ω0 “ 2λ` γ ´ α` γ p1´ αq “ 2λ´ α` γ p2´ αq “ 2ξ ` pγ ´ 1q p2´ αq ,

ω2ω4 “ ´4γ pα´ 2q ξ.

This means that we have to guarantee that there exists a choice for ξ for which

ω2
0 ´ δ

2ω2ω4 “

´

2ξ ´ pγ ´ 1q pα´ 2q
¯2
` 4δ2γ pα´ 2q ξ

“ 4ξ2 ` 4 pα´ 2q
`

δ2γ ´ γ ` 1
˘

ξ ` pγ ´ 1q2 pα´ 2q2 ă 0. (108)

A direct computation shows that, according to (63),

∆1
ξ :“ 4 pα´ 2q2

”

`

δ2γ ´ γ ` 1
˘2
´ pγ ´ 1q2

ı

“ 4 pα´ 2q2 δ2γ
`

δ2γ ´ 2 pγ ´ 1q
˘

ą 0.

Hence, in order to get (108), we have to choose ξ between the two roots of the quadratic function
arising in this formula, in other words

ξ1 pα, γq :“ ´
1

2
pα´ 2q

`

δ2γ ´ γ ` 1
˘

´

b

∆1
ξ

4

ă ξ “ λ` 1´ α ă ξ2 pα, γq :“ ´
1

2
pα´ 2q

`

δ2γ ´ γ ` 1
˘

`

b

∆1
ξ

4
.

Obviously ξ1 pα, γq ă 0 and from Viète’s formula ξ1 pα, γq ¨ ξ2 pα, γq “
pγ´1q2pα´2q2

4 , it follows that
ξ2 pα, γq ă 0 as well.

Therefore, going back to λ, in order to be sure that ω2
0 ´ δ2ω2ω4 ă 0 this must be chosen such

that
α´ 1` ξ1 pα, γq ă λ ă α´ 1` ξ2 pα, γq .

Next we will show that

0 ă α´ 1´
1

2
pα´ 2q

`

δ2γ ´ γ ` 1
˘

ă
γ

2
pα´ 1q . (109)
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Indeed, the left-hand side inequality (109) is straightforward since

0 ă α´ 1´
1

2
pα´ 2q

`

δ2γ ´ γ ` 1
˘

ô δ2 ă 1`
1

γ

ˆ

1`
2

α´ 2

˙

.

The right-hand side inequality (109) is equivalent to

α´ 1´
1

2
pα´ 2q

`

δ2γ ´ γ ` 1
˘

ă
γ

2
pα´ 1q ô δ2 ą

1

γ pα´ 2q

`

p2´ γq pα´ 1q ` pγ ´ 1q pα´ 2q
˘

,

which is true according to (63).
From (109) we immediately deduce that

0 ă α´ 1` ξ2 pα, γq and α´ 1` ξ1 pα, γq ă
γ

2
pα´ 1q ,

which allow us to choose

λ pα, γq :“ max t0, α´ 1` ξ1 pα, γqu ă λ pα, γq :“ min
!γ

2
pα´ 1q , α´ 1` ξ2 pα, γq

)

.

In conclusion, choosing λ to satisfy λ pα, γq ă λ ă λ pα, γq, we have ω2
0´ δ

2ω2ω4 ă 0 and therefore
there exists some integer k2 pλq ě 1 such that Rk ď 0 for every k ě k2 pλq.

(ii) For every k ě 1 we have

µk ´ p2´ γq p1´ 2sLq pk ` 1q2 “p2´ γq p1´ 2sLq pk ` 1q2 ` p2´ γqα2 pk ` 1q
?
k ` 1

` p2´ γq pα´ 4q pk ` 1q ´ p2´ γq pα´ 2q ´ 2λ pα´ 2q ,

and the conclusion is obvious since γ ă 2 and s ă
1

2L
. �

Acknowledgements. The authors are thankful to the handling editor and two anonymous
reviewers for comments and remarks which improved the quality of the manuscript, in particular for
the observation on which we elaborate in Remark 8 and the suggestion to use the performance profiles
in the numerical experiments.

References

[1] B. Abbas, H. Attouch and B.F. Svaiter. Newton-like dynamics and forward–backward methods for
structured monotone inclusions in Hilbert spaces. Journal of Optimization Theory and Applications
161(2):331–360, 2014

[2] A. S. Antipin. On a method for convex programs using a symmetrical modification of the Lagrange
function. Ekonomika i Matematicheskie Metody 12:1164–1173, 1976
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[27] O. Güler. New proximal point algorithms for convex minimization. SIAM Journal on Optimiza-
tion 2(4):649–664, 1992

[28] B. Halpern. Fixed points of nonexpanding maps. Bulletin of the American Mathematical Society
73(6): 957–961, 1967

[29] D. Kim. Accelerated proximal point method for maximally monotone operators. Mathematical
Programming 190:57–87, 2021

[30] G. M. Korpelevich. An extragradient method for finding saddle points and for other problems.
Ekonomika i Matematicheskie Metody 12(4):747–756,1976

[31] S. Lee and D. Kim. Fast extra gradient methods for smooth structured nonconvex-nonconcave
minimax problems. NeurIPS 2021: Advances in Neural Information Processing Systems 34, 2021

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras and A. Vladu. Towards deep learning models re-
sistant to adversarial attacks. ICLR 2018: International Conference on Learning Representations,
2018

[33] Y. Malitsky and M. K. Tam. A forward-backward splitting method for monotone inclusions
without cocoercivity. SIAM Journal on Optimization 30(2):1451–1472, 2020

[34] Y. Nesterov. A method of solving a convex programming problem with convergence rate O
`

1{k2
˘

.
Soviet Mathematics Doklady 27:372–376, 1983

[35] Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, New York, 2004

[36] Y. Nesterov. Dual extrapolation and its applications to solving variational inequalities and related
problems. Mathematical Programming 109:319–344, 2007

[37] S. Omidshafiei, J. Pazis, C. Amato, J. P. How and J. Vian. Deep decentralized multi-task multi-
agent reinforcement learning under partial observability. The 34th International Conference on
Machine Learning 70:2681–2690, 2017

[38] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive map-
pings. Bulletin of the American Mathematical Society 73:591–597, 1967

[39] Y. Ouyang and Y. Xu. Lower complexity bounds of first-order methods for convex-concave bi-
linear saddle-point problems. Mathematical Programming 185:1–35, 2021

[40] J. Park and E. K. Ryu. Exact optimal accelerated complexity for fixed-point iterations. The 39th
International Conference on Machine Learning 162, 2022

[41] J. Peypouquet and S. Sorin. Evolution equations for maximal monotone operators: asymptotic
analysis in continuous and discrete time. Journal of Convex Analysis 17(3-4):1113–1163, 2010

[42] L. D. Popov. A modification of the Arrow–Hurwicz method for search of saddle points. Mathe-
matical Notes of the Academy of Sciences of the USSR 28(5):845–848, 1980

[43] R. T. Rockafellar. Monotone operators associated with saddle-functions and minimax problems.
In: F. E. Browder (ed.), Nonlinear Functional Analysis, Proceedings of Symposia in Pure Mathe-
matics 18: 241–250, American Mathematical Society, 1970

[44] G. R. Sell and Y. You. Dynamics of Evolutionary Equations. Springer, New York, 2002

[45] B. Shi, S. Du, M. I. Jordan and W.J. Su. Understanding the acceleration phenomenon via high-
resolution differential equations. Mathematical Programming 195:79–148, 2022

42



[46] W. Su, S. Boyd and E. Candès. A differential equation for modeling Nesterov’s accelerated
gradient method: theory and insights. Journal of Machine Learning Research 17(153):1–43, 2016

[47] Q. Tran-Dinh. The connection between Nesterov’s accelerated methods and Halpern fixed-point
iterations. arXiv:2203.04869, 2022

[48] Q. Tran-Dinh and Y. Luo. Halpern-type accelerated and splitting algorithms for monotone in-
clusions. arXiv:2110.08150, 2021

[49] T. H. Yoon and E. K. Ryu. Accelerated algorithms for smooth convex-concave minimax problems
with O

`

1{k2
˘

rate on squared gradient norm. The 38th International Conference on Machine
Learning 139: 12098–12109, 2021

43

arXiv:2203.04869
arXiv:2110.08150

	Introduction
	Related works
	Our contributions

	The continuous time approach
	An implicit numerical algorithm
	An explicit algorithm
	Numerical experiments
	Appendix
	Auxiliary results
	Proof of the existence and uniqueness theorem for the evolution equation
	Proof of the technical lemma used in the analysis of the implicit algorithm
	Proofs of the technical lemmas used in the analysis of the explicit algorithm


