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Abstract. In a Hilbert space H, we study the convergence properties of the trajectories of a Newton-
like inertial dynamical system with a Tikhonov regularization term governed by a general maximally
monotone operator A : H → 2H. The maximally monotone operator enters the dynamics via its Yosida
approximation with an appropriate adjustment of the Yosida regularization parameter, by adopting an
approach introduced by Attouch-Peypouquet (Math. Prog., 2019) and further developed by Attouch-
László (Set-Valued Var. Anal., 2021). We obtain fast rates of convergence for the velocity and the
Yosida regularization term towards zero, while the generated trajectories converge weakly towards a zero
of A or, depending on the system parameters, strongly towards the zero of minimum norm of A. Our
analysis reveals that the damping coefficient, the Yosida regularization parameter and the Tikhonov
parametrization are strongly correlated.
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1 Introduction

1.1 The dynamical system and a model result

Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm ‖ · ‖. Given a general
set-valued maximally monotone operator A : H → 2H consider the inclusion problem

0 ∈ Ax, (1)

and assume that the solution set S := {x ∈ H : 0 ∈ Ax} is nonempty.
The operator A : H → 2H is said to be monotone if 〈u−v, x−y〉 ≥ 0 for all (x, u), (y, v) ∈ GrA, where

GrA := {(z, w) ∈ H×H : w ∈ A(z)} denotes its graph. The operator A is said to be maximally monotone
if there is no other monotone operator A′ : H → 2H such that GrA ( GrA′. The most prominent
example for a set-valued maximally monotone operator is the convex subdifferential ∂f : H → 2H,
∂f(x) := {u ∈ H : f(y) − f(x) ≥ 〈u, y − x〉 ∀y ∈ H} of a proper, convex and lower semicontinuous
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function f : H → R ∪ {+∞}. In this case, solving the inclusion problem (1) is equivalent to finding a
global minimum of f .

In order to solve (1) we will study the asymptotic behaviour, as t→ +∞, of the second-order in time
evolution equation for t ≥ t0

(DIN-AVD-TIKH) ẍ(t) +
α

tq
ẋ(t) + β

d

dt

(
Aλ(t)(x(t))

)
+Aλ(t)(x(t)) + ε(t)x(t) = 0,

where α > 0, β ≥ 0, 0 < q ≤ 1, λ : [t0,+∞) −→ (0,+∞) is the Yosida parametrization function
and ε : [t0,+∞) −→ (0,+∞) is the Tikhonov parametrization function. The single-valued operators
JλA : H → H and Aλ : H → H, defined by

JλA = (Id +λA)−1 and Aλ =
1

λ
(Id−JλA) ,

are the resolvent of A and the Yosida regularization of A of parameter λ > 0, respectively. Notice that
Aλ is λ-cocoercive, namely 〈Aλ(x)−Aλ(y), x−y〉 ≥ λ‖Aλ(x)−Aλ(y)‖2 for all λ > 0 and x, y ∈ H, hence
λ−1-Lipschitz continuous. It holds 0 ∈ Ax if and only if Aλ(x) = 0. For all these and other properties of
these operators we refer the reader to [10].

The dependence of the Yosida regularization parameter λ(t) on time will play a crucial role in the
asymptotic analysis. This has been already noticed by Attouch-Peypouquet in [7], where in case β = 0,
q = 1 (classical vanishing damping) and ε = 0 (without Tikhonov regularization) a Yosida regularization
parameter of order t2 was considered (see also [5] and [13]). This motivates the adoption of the follow-
ing standing assumptions in effect for the rest of the paper (even if some of the statements, including
Proposition 5, Lemma 6 or Theorem A.1, hold under more general hypotheses):

General assumption:

• λ(t) := λt2q, with λ > 0 and 0 < q ≤ 1;

• ε : [t0,+∞) −→ [0,+∞) is a nonincreasing function of class C1 fulfilling limt−→+∞ ε(t) = 0.

Notice that the second condition on the Tikhonov parametrization function is standard in the context
of Tikhonov regularization. The presence of the Tikhonov regularization term in the dynamical system
is responsible for the strong convergence of the trajectories to the minimal norm solution in S, while the
rates of convergence of the velocity and the Yosida regularization term towards zero can be quantified.
The corresponding asymptotic analysis relies on the construction of a suitable energy function which
dissipates along time. The considered approach is rooted in the recent developments from [2, 3, 15]
on Tikhonov regularized inertial dynamics for convex optimization. At their turn, these can be seen
as continuous time dynamics resulting by applying Polyak’s Heavy Ball Method to the strongly convex
function obtained by adding a corresponding Tikhonov regularization term to a convex C1 function (see
Subsection 1.2 for further details).

For the following model result, which summarizes the statements in Corollary 4 and Corollary 9, we
assume that 0 < q < 1, choose ε(t) := a

tp , for a, p > 0, and recall that sgnβ = 0 for β = 0 and sgnβ = 1

for β > 0. One can easily notice that max
(

(sgnβ)(1− q), 3q+1
2

)
< q + 1 < 2.

Theorem 1. Let A : H → 2H be a maximally monotone operator such that S := {x ∈ H : 0 ∈ Ax}
is nonempty. Consider the evolution equation (DIN-AVD-TIKH) with α > 1, β ≥ 0, λ(t) = λt2q, with
λ > 1

α2 and 0 < q < 1, and ε(t) = a
tp , with a, p > 0. Then, for any trajectory x : [t0,+∞) → H of

(DIN-AVD-TIKH), the following statements are true:
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(i) If q + 1 < p ≤ 2 and, moreover, a ≥ q(1 − q) for p = 2, we have the rates of convergence

‖ẋ(t)‖ = o
(
1
tq

)
and ‖Aλ(t)(x(t))‖ = o

(
1
t2q

)
as t→ +∞; if, in addition, β = 0 or β > 0 and q >

1

2
,

then x(t) converges weakly, as t→ +∞, to an element of S.

(ii) If max
(

(sgnβ)(1− q), 3q+1
2

)
< p < q + 1, we have the rates of convergence ‖ẋ(t)‖ = o

(
1
tq

)
and

‖Aλ(t)(x(t))‖ = o
(

1
t2q

)
as t → +∞ and x(t) converges strongly, as t → +∞, to the element of

minimum norm of S.

(iii) If p = q + 1, we have the rates of convergence ‖ẋ(t)‖ = O
(
1
tq

)
and ‖Aλ(t)(x(t))‖ = O

(
1
t2q

)
as t→

+∞. This case is critical and separates the settings in which weak and strong convergence for the
trajectory can be obtained. In this case we can at least guarantee that x(t) is bounded.

We would like to stress that in Theorem 1(ii) we provide a setting in which we have both strong
convergence of the trajectories to the element of minimum norm in S and fast convergence rates for the
velocity and the Yosida regularization. In the particular case of a convex optimization problem we will
derive from here fast convergence rates also for the objective function value, see Theorem 11 in Section
4. The setting in which all these statements hold requires q to be strictly less than 1.

Let us comment on the case q = 1 for which (DIN-AVD-TIKH) is the dynamical system with classical
vanishing damping term α

t . The analysis in Section 3, see Theorem 7, prohibits the choice q = 1 for
getting both strong convergence of the trajectories and fast convergence rates. However, for this choice
we can have according to Corollary 4 the weak convergence of the trajectories and fast convergence
rates. On the other hand, one can consider the alternative approach developed in [4] (see also [11])
for an inertial dynamical system with Tikhonov regularization and classical vanishing damping term α

t
approaching the minimization of a convex C1 function, which provides two different settings in terms of
the dynamical system parameters, one for the strong convergence of the trajectories to minimum norm
minimizer and another one for fast convergence rates. However, the drawback of this approach is that
there is no common instance for which both statements hold.

1.2 Related works

The second order in time evolution equation with vanishing damping defined for t ≥ t0 as

ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0, (2)

where α > 0 and f : H → R is a convex C1 function, introduced by Su-Boyd-Candés in [17], was the
starting point of significant research activities devoted to this type of dynamics. The reason is that it
exhibits for f(x(t)) −min f a rate of convergence of order O( 1

t2
) as t → +∞, where min f denotes the

minimal function value of f , which is assume to have a global minimizer. This is an improvement over
the gradient flow

ẋ(t) +∇f(x(t)) = 0 (3)

and Polyak’s Heavy Ball Method with friction

ẍ(t) + αẋ(t) +∇f(x(t)) = 0, (4)

for which the rate of convergence for f(x(t))−min f is of order O(1t ) as t→ +∞. The dynamics (2) can
be seen as a continuous version of the celebrated Nesterov accelerated gradient algorithm with momentum
[16].

Later, in [8] it has been shown that an additional Hessian driven damping term in (2)

ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0, (5)
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where β ≥ 0 and f is a convex C2 function, may attenuate the oscillations of the trajectories and provide
integrability results for ∇f along the trajectories, while preserving the fast rate of convergence for the
function values. The evolution equation (5) is intimately related to Newton-type methods, see [8, 9].
By taking into account that ∇2f(x(t))ẋ(t) = d

dt∇f(x(t)), the temporal discretizations of the dynamical
system with Hessian driven damping term lead to inertial type algorithms involving gradient correction
terms.

Second order dynamics with vanishing damping have been considered also in the context of solving
monotone inclusion problems of the from (1) (see [7])

ẍ(t) +
α

t
ẋ(t) +Aλ(t)(x(t)) = 0, (6)

for which rates have been obtained for the convergence of ‖ẋ(t)‖ and ‖Aλ(t)(x(t))‖ towards zero as
t → +∞. In case A is the convex subdifferential, the dynamics (6) can be regarded as a smoothing
approach for solving nonsmooth optimization problems.

The evolution equation (6) has been further developed in [5] by considering, in analogy with the
dynamics in (5), an additional Newton-like correction term

ẍ(t) +
α

t
ẋ(t) + β

d

dt

(
Aλ(t)(x(t))

)
+Aλ(t)(x(t)) = 0. (7)

We refer also to [13] for a dynamical system with a splitting character tailored to the solving of structured
monotone inclusions.

As for the evolution equations with vanishing damping along fast rates of convergence, in general,
“only” the weak convergence of the trajectories can be proved, they have been enhanced with Tikhonov
regularization terms in order to enforce strong convergence of the trajectories to a minimal norm solu-
tion. For an alternative approach for deriving convergence rates for continuous dynamics with vanishing
damping for linear ill-posed problems in the presence of source conditions we refer to [12].

In connection with the minimization of a convex C1 function f : H → R, the following dynamical
system defined for t ≥ t0 as

ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0 (8)

has been considered in [4]. Depending on the speed of convergence of the Tikhonov parametrization
function ε(t) to 0 as t→ +∞, the authors obtained the strong convergence of the trajectories to minimizer
of minimum norm and fast convergence rates for the function values, however, in two settings different
from another. The analysis has been extended in [11] to evolution equations with involving Hessian
driven damping and Tikhonov regularization terms

ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0. (9)

We refer to [14] for a further extension to nonsmooth convex optimization problems. We stress that in
none of the approaches in [4, 11, 14] there is a setting for the system parameters in which both fast
convergence rates and strong convergence of the trajectories to the minimal norm solution hold.

This drawback was recently overcome in [2] (see also [3, 6]) by considering the damping proportional
to the square root of the Tikhonov parameter

ẍ(t) + α
√
ε(t)ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0. (10)

This evolution equation was motivated by interesting observation that if the function f in (4) is γ-strongly
convex with modulus γ > 0, then the Heavy Ball Method (4) with α := 2

√
γ leads to an evolution

equation with guaranteed exponential convergence rate for f(x(t)) −min f . Therefore, the idea of this
new Tikhonov regularization approach is to approximate the function f by the strongly convex function
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fε(t) = f + ε(t)
2 ‖ · ‖

2 with modulus ε(t), where ε(t) decays to 0 as t→ +∞. The term ∇f(x(t)) + ε(t)x(t)
in (10) is nothing else than ∇fε(t)(x(t)). In other words, the idea in [2] is to take advantage of the
remarkable properties of the heavy ball method when applied to strongly convex functions. Another
particularity of the new approach concerns the energy functional used in the analysis. Indeed, while in
the approaches [4, 11, 14] the energy functional is anchored at a solution of the problem to be solved, in
[2] it is anchored at xε(t), where xε(t) is the unique minimizer of fε(t).

The approaches in [2, 3, 6] have been alleviated in [15] by considering evolution equations for which
the damping was not necessarily proportional (tough correlated) to the square root of the Tikhonov
parametrization function. In this more flexible setting, strong convergence of the trajectories to a mini-
mum norm solution in combination with faster rates of convergence than in [2] have been proved.

In this paper we follow the recently introduced approach from [2] with the modification considered
in [15] and provide among others a setting in which both the strong convergence of the trajectories of
(DIN-AVD-TIKH) to the minimal norm solution of (1) and fast rates of convergence for the velocity and
the Yosida regularization along the trajectory can be shown.

2 Fast convergence rates and weak convergence

In this section we will introduce an energy functional anchored at a solution of (1) which dissipates as
t → +∞. This will allow us to derive some pointwise and integral estimates, as well as fast rates of
convergence for the velocity, the Yosida regularization of the operator and its time derivative. We also
obtain the weak convergence of the trajectories under some mild assumptions imposed on the system
parameters and the Tikhonov parametrization function.

The main result of this section is the following.

Theorem 2. Let A : H → 2H be a maximally monotone operator such that S := {x ∈ H : 0 ∈ Ax} is
nonempty. Consider the evolution equation (DIN-AVD-TIKH) with β ≥ 0, λ(t) = λt2q, for λ > 0 and
0 < q ≤ 1, and the system parameters satisfying the following conditions:

if q < 1, then λ >
1

α2
and ε(t) ≥ q(1− q)

t2
for t large enough;

if q = 1, then either α > 3 and λ >
1

8(α− 3)
orα > 1, λ >

1

(α− 1)2
and

ε̇(t)

ε(t)
≤ −2

t
for t large enough.

In addition, assume that
∫ +∞
t0

tqε(t)dt < +∞.

Then, for any trajectory x : [t0,+∞)→ H of (DIN-AVD-TIKH), the following statements are true:

(i) (convergence of the trajectory) x(t) is bounded. Furthermore, if β = 0 or β > 0 and q >
1

2
, then

x(t) converges weakly, as t→ +∞, to an element of S;

(ii) (integral estimates)

∫ +∞

t0

tq‖ẋ(t)‖2dt < +∞,
∫ +∞

t0

t3q‖Aλ(t)(x(t))‖2dt < +∞,

and, if

∫ +∞

t0

t3qε2(t)dt < +∞, then

∫ +∞

t0

t3q‖ẍ(t)‖2dt < +∞;

(iii) (fast convergence rates) ‖ẋ(t)‖ = O
(
1
tq

)
, ‖Aλ(t)(x(t))‖ = o

(
1
t2q

)
,
∥∥ d
dtAλ(t)(x(t))

∥∥ = O
(

1
t3q

)
as

t→ +∞. In addition, if
∫ +∞
t0

t3qε2(t)dt < +∞, then ‖ẋ(t)‖ = o

(
1

tq

)
as t→ +∞.

Proof. Energy functional. Choose z ∈ S. For 0 < b < α if q < 1 and 0 < b < α− 1 if q = 1, consider
the energy functional

E(t) :=
1

2
‖b(x(t)− z) + tq(ẋ(t) + βAλ(t)(x(t)))‖2 +

b(α− qtq−1 − b)
2

‖x(t)− z‖2 +
t2qε(t)

2
‖x(t)‖2. (11)
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Note that there exists t′0 ≥ t0 such that α− qtq−1 − b > 0 for all t ≥ t′0, consequently, E(t) ≥ 0 for all
t ≥ t′0. The aim of the first part of the proof is to derive the inequality (27).

Using the classical derivation chain rule and (DIN-AVD-TIKH), we get that for the derivative of the
energy function for all t ≥ t0

Ė(t) =
〈
(b+ qtq−1 − α)ẋ(t) + (βqtq−1 − tq)Aλ(t)(x(t))− tqε(t)x(t), b(x(t)− z) + tq(ẋ(t) + βAλ(t)(x(t)))

〉
+ b(α− qtq−1 − b)〈ẋ(t), x(t)− z〉+

bq(1− q)tq−2

2
‖x(t)− z‖2 +

(
qt2q−1ε(t) +

t2q ε̇(t)

2

)
‖x(t)‖2

+ t2qε(t)〈ẋ(t), x(t)〉. (12)

After expansion we obtain for all t ≥ t0

Ė(t) = (b+ qtq−1 − α)tq‖ẋ(t)‖2 +
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq〈ẋ(t), Aλ(t)(x(t))〉

+ b(βqtq−1 − tq)
〈
Aλ(t)(x(t)), x(t)− z

〉
+ β(βqtq−1 − tq)tq‖Aλ(t)(x(t))‖2

− btqε(t)〈x(t), x(t)− z〉 − βt2qε(t)〈Aλ(t)(x(t)), x(t)〉

+
bq(1− q)tq−2

2
‖x(t)− z‖2 +

(
qt2q−1ε(t) +

t2q ε̇(t)

2

)
‖x(t)‖2. (13)

Now, obviously, there exists t1 ≥ t′0 such that b(βqtq−1 − tq) ≤ 0 for all t ≥ t1, hence by using the
cocoerciveness of Aλ(t) we obtain

b(βqtq−1 − tq)
〈
Aλ(t)(x(t)), x(t)− z

〉
≤ b(βqtq−1 − tq)λ(t)

∥∥Aλ(t)(x(t))
∥∥2 .

Further,

−btqε(t)〈x(t), x(t)− z〉 =
btqε(t)

2
(‖z‖2 − ‖x(t)‖2 − ‖x(t)− z‖2),

therefore (13) leads for all t ≥ t1 to

Ė(t) ≤ (b+ qtq−1 − α)tq‖ẋ(t)‖2 +
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq〈ẋ(t), Aλ(t)(x(t))〉

+ (βqtq−1 − tq)(βtq + bλ(t))‖Aλ(t)(x(t))‖2 − βt2qε(t)〈Aλ(t)(x(t)), x(t)〉

+
bq(1− q)tq−2 − btqε(t)

2
‖x(t)− z‖2 +

(
2qt2q−1 − btq

2
ε(t) +

t2q ε̇(t)

2

)
‖x(t)‖2 +

btqε(t)

2
‖z‖2.

(14)

Case q < 1. In this case b < α and, according to the assumptions, ε(t) ≥ q(1−q)
t2

for t large enough.

Hence, there exists t2 ≥ t1 such that 2qt2q−1−btq
2 ≤ 0 and bq(1−q)tq−2−btqε(t)

2 ≤ 0 for all t ≥ t2. Consequently,
for all t ≥ t2 we have the following estimate

−βt2qε(t)〈Aλ(t)(x(t)), x(t)〉 ≤ btq − 2qt2q−1

2
ε(t)‖x(t)‖2 +

β2t4qε(t)

2(btq − 2qt2q−1)
‖Aλ(t)(x(t))‖2.

By neglecting the nonpositive terms t2q ε̇(t)
2 ‖x(t)‖2 (ε is nonincreasing) and bq(1−q)tq−2−btqε(t)

2 ‖x(t) − z‖2,
(14) yields for all t ≥ t2

Ė(t) ≤ (b+ qtq−1 − α)tq‖ẋ(t)‖2 +
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq〈ẋ(t), Aλ(t)(x(t))〉

+

(
(βqtq−1 − tq)(βtq + bλ(t)) +

β2t4qε(t)

2(btq − 2qt2q−1)

)
‖Aλ(t)(x(t))‖2 +

btqε(t)

2
‖z‖2. (15)
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Since in this case λ > 1
α2 , we can choose c0 > 1 such that λ > c0

α2 . We show that the coefficient of

‖Aλ(t)(x(t))‖2 in (15) is less than − bλ
c0
t3q for t large enough. Indeed, since q < 1 one has β2t4q

2(btq−2qt2q−1)
=

β2

2b t
3q+O(t4q−1) as t→ +∞. On the other hand, (βqtq−1−tq)(βtq+bλ(t)) = −bλt3q+O(t2q) as t→ +∞.

Now, since ε(t)→ 0 as t→ +∞, we conclude from here that there exists t3 ≥ t2 such that

(βqtq−1 − tq)(βtq + bλ(t)) +
β2t4qε(t)

2(btq − 2qt2q−1)
= −bλ

(
1− β2ε(t)

2b2λ

)
t3q +O(t4q−1) +O(t2q) ≤ −bλ

c0
t3q

for all t ≥ t3. Finally, for s > 0 we have the estimate(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq〈ẋ(t), Aλ(t)(x(t))〉 ≤∣∣β(b+ qtq−1 − α) + (βqtq−1 − tq)

∣∣ tq
2

(
s

tq
‖ẋ(t)‖2 +

tq

s
‖Aλ(t)(x(t))‖2

)
for all t ≥ t3. (16)

Therefore (15) leads to

Ė(t) ≤

(
(b+ qtq−1 − α)tq +

∣∣β(b+ qtq−1 − α) + (βqtq−1 − tq)
∣∣ tq

2

s

tq

)
‖ẋ(t)‖2

+

(
−bλ
c0
t3q +

∣∣β(b+ qtq−1 − α) + (βqtq−1 − tq)
∣∣ tq

2

tq

s

)
‖Aλ(t)(x(t))‖2 +

btqε(t)

2
‖z‖2 for all t ≥ t3.

(17)

Obviously, since q < 1, the coefficient of ‖ẋ(t)‖2 in (17) is
(
b− α+ s

2

)
tq+O(t2q−1)+O(1) as t→ +∞.

On the other hand, the coefficient of ‖Aλ(t)(x(t))‖2 in (17) is
(
− bλ
c0

+ 1
2s

)
t3q+O(t2q) as t→ +∞. Now, let

us choose b such that c0
2bλ < 2(α−b). This is possible since, as λ > c0

α2 , the inequality −4λb2+4αλb−c0 > 0
has solutions in the interval (0, α). Further, choose s such that c0

2bλ < s < 2(α − b). In conclusion, there
exist t4 ≥ t3 and K1,K2 > 0 such that

Ė(t) ≤ −K1t
q‖ẋ(t)‖2 −K2t

3q‖Aλ(t)(x(t))‖2 +
btqε(t)

2
‖z‖2 for all t ≥ t4. (18)

Case q = 1. In this case (14) reads

Ė(t) ≤ (b+ 1− α)t‖ẋ(t)‖2 + (β(b+ 2− α)− t) t〈ẋ(t), Aλ(t)(x(t))〉
+ (β − t)(βt+ bλt2)‖Aλ(t)(x(t))‖2 − βt2ε(t)〈Aλ(t)(x(t)), x(t)〉

− btε(t)

2
‖x(t)− z‖2 +

(
2− b

2
tε(t) +

t2ε̇(t)

2

)
‖x(t)‖2 +

btε(t)

2
‖z‖2 for all t ≥ t1. (19)

A. First we assume that α > 3 and λ > 1
8(α−3) . We can choose 2 < b < α− 1, hence 2−b

2 tε(t) ≤ 0 and

− btε(t)
2 ≤ 0 for all t ≥ t1. Consequently, for all t ≥ t1 we have the following estimate

−βt2ε(t)〈Aλ(t)(x(t)), x(t)〉 ≤ b− 2

2
tε(t)‖x(t)‖2 +

β2t3ε(t)

2(b− 2)
‖Aλ(t)(x(t))‖2.

Hence, by neglecting the nonpositive terms t2ε̇(t)
2 ‖x(t)‖2 and − btε(t)

2 ‖x(t)− z‖2, (19) yields

Ė(t) ≤ (b+ 1− α)t‖ẋ(t)‖2 + (β(b+ 2− α)− t) t〈ẋ(t), Aλ(t)(x(t))〉

+

(
(β − t)(βt+ bλt2) +

β2t3ε(t)

2(b− 2)

)
‖Aλ(t)(x(t))‖2 +

btε(t)

2
‖z‖2 for all t ≥ t1. (20)
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Let us choose c0 > 1 such that λ > c0
8(α−3) . Since ε(t)→ 0 as t→ +∞ we conclude that there exists

t2 ≥ t1 such that

(β − t)(βt+ bλt2) +
β2t3ε(t)

2(b− 2)
≤ −bλ

c0
t3 for all t ≥ t2.

Finally, for s > 0 we have the estimate

(β(b+ 2− α)− t) t〈ẋ(t), Aλ(t)(x(t))〉 ≤ |β(b+ 2− α)− t| t
2

(
s

t
‖ẋ(t)‖2 +

t

s
‖Aλ(t)(x(t))‖2

)
for all t ≥ t2.

(21)
Therefore (20) leads to

Ė(t) ≤
(

(b+ 1− α)t+
|β(b+ 2− α)− t| t

2

s

t

)
‖ẋ(t)‖2

+

(
−bλ
c0
t3 +

|β(b+ 2− α)− t| t
2

t

s

)
‖Aλ(t)(x(t))‖2 +

btε(t)

2
‖z‖2 for all t ≥ t2. (22)

The coefficient of ‖ẋ(t)‖2 in (22) is
(
b+ 1− α+ s

2

)
t + O(1) as t → +∞. On the other hand, the

coefficient of ‖Aλ(t)(x(t))‖2 in (22) is
(
− bλ
c0

+ 1
2s

)
t3 + O(t2) as t → +∞. Now, let us choose b such

that c0
2bλ < 2(α − 1 − b), which is possible since in this case λ > c0

8(α−3) ≥
c0

(α−1)2 hence the inequality

−4λb2 + 4(α − 1)λb − c0 > 0 has solutions in the interval (2, α − 1). Fuhrther, we choose s such that
c0
2bλ < s < 2(α− 1− b). In conclusion, there exist t4 ≥ t2 and K1,K2 > 0 such that

Ė(t) ≤ −K1t‖ẋ(t)‖2 −K2t
3‖Aλ(t)(x(t))‖2 +

btε(t)

2
‖z‖2 for all t ≥ t4. (23)

B. Now we assume that α > 1, λ > 1
(α−1)2 and ε̇(t)

ε(t) ≤ −
2
t for t large enough. In this case 0 < b < α−1

and there exists t2 ≥ t1 such that

2− b
2

tε(t) +
t2ε̇(t)

2
< 0 for all t ≥ t2.

Consequently, for all t ≥ t2 we have the following estimate

−βt2ε(t)〈Aλ(t)(x(t)), x(t)〉 ≤
(
b− 2

2
tε(t)− t2ε̇(t)

2

)
‖x(t)‖2 +

β2t3ε2(t)

2 ((b− 2)ε(t)− tε̇(t))
‖Aλ(t)(x(t))‖2.

Hence, by neglecting the nonpositive term − btε(t)
2 ‖x(t)− z‖2, (19) yields

Ė(t) ≤ (b+ 1− α)t‖ẋ(t)‖2 + (β(b+ 2− α)− t) t〈ẋ(t), Aλ(t)(x(t))〉

+

(
(β − t)(βt+ bλt2) +

β2t3ε2(t)

2 ((b− 2)ε(t)− tε̇(t))

)
‖Aλ(t)(x(t))‖2 +

btε(t)

2
‖z‖2 for all t ≥ t2. (24)

Let us choose c0 > 1 such that λ > c0
(α−1)2 . Since −2ε(t) − tε̇(t) ≥ 0 for all t ≥ t2 and ε(t) → 0 as

t→ +∞, we conclude that there exists t3 ≥ t2 such that

(β − t)(βt+ bλt2) +
β2t3ε2(t)

2 ((b− 2)ε(t)− tε̇(t))
≤ (β − t)(βt+ bλt2) +

β2t3ε(t)

2b
≤ −bλ

c0
t3 for all t ≥ t3.

Combining the above relation with (24) and (21) we get that for all s > 0 one has

Ė(t) ≤
(

(b+ 1− α)t+
|β(b+ 2− α)− t| t

2

s

t

)
‖ẋ(t)‖2

+

(
−bλ
c0
t3 +

|β(b+ 2− α)− t| t
2

t

s

)
‖Aλ(t)(x(t))‖2 +

btε(t)

2
‖z‖2 for all t ≥ t3. (25)
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Now, let us choose b such that c0
2bλ < 2(α− 1− b), which is possible since in this case λ > c0

(α−1)2 , hence

the inequality −4λb2 + 4(α− 1)λb− c0 > 0 has solutions in the interval (0, α− 1). Further, we choose s
such that c0

2bλ < s < 2(α− 1− b). In conclusion, there exist t4 ≥ t3 and K1,K2 > 0 such that

Ė(t) ≤ −K1t‖ẋ(t)‖2 −K2t
3‖Aλ(t)(x(t))‖2 +

btε(t)

2
‖z‖2 for all t ≥ t4. (26)

In other words, from (18), (23) and (26) we conclude that for all 0 < q ≤ 1 there exist K1,K2 > 0
and t4 ≥ t0 such that

Ė(t) +K1t
q‖ẋ(t)‖2 +K2t

3q‖Aλ(t)(x(t))‖2 ≤ btqε(t)

2
‖z‖2 for all t ≥ t4. (27)

Convergence rates. We consider T > t4 and integrate (27) on the interval [t4, T ]. By taking into
account that tqε(t) ∈ L1[t0,+∞) we obtain that there exists C > 0 such that

E(T ) +K1

∫ T

t4

tq‖ẋ(t)‖2dt+K2

∫ T

t4

t3q‖Aλ(t)(x(t))‖2dt ≤ C. (28)

From (28) and the definition of E(t) we deduce that x(t) is bounded,

sup
t≥t0
‖b(x(t)− z) + tq(ẋ(t) + βAλ(t)(x(t)))‖2 < +∞ (29)

and ∫ +∞

t0

tq‖ẋ(t)‖2dt < +∞ and

∫ +∞

t0

t3q‖Aλ(t)(x(t))‖2dt < +∞. (30)

Since Aλ(t) is 1
λ(t) Lipschitz continuous and z ∈ S, we have for all t ≥ t0

‖Aλ(t)(x(t))‖ = ‖Aλ(t)(x(t))−Aλ(t)(z)‖ ≤
1

λ(t)
‖x(t)− z‖.

Taking into account that λ(t) = λt2q and ‖x(t)− z‖ is bounded, we deduce that

‖Aλ(t)(x(t))‖ = O
(

1

t2q

)
as t→ +∞ (31)

and further, using (29),

‖ẋ(t)‖ = O
(

1

tq

)
as t→ +∞. (32)

Now, according to Lemma A.2 in the Appendix, we have∥∥∥∥ ddtλ(t)Aλ(t)(x(t))

∥∥∥∥ ≤ 2‖ẋ(t)‖+ 2
|λ′(t)|
λ(t)

‖x(t)− z‖ = O
(

1

tq

)
as t→ +∞. (33)

This relation combined with (31) leads to
∥∥λ(t) ddtAλ(t)(x(t))

∥∥ = O
(
1
tq

)
as t→ +∞. Consequently,∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ = O
(

1

t3q

)
as t→ +∞. (34)

Next we will improve the estimate in (31) and show that actually

‖Aλ(t)(x(t))‖ = o

(
1

t2q

)
as t→ +∞.
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For all t ≥ t0 we have∣∣∣∣ ddt‖λ(t)Aλ(t)(x(t))‖4
∣∣∣∣ = 4

∣∣∣∣〈λ(t)Aλ(t)(x(t)),
d

dt
(λ(t)Aλ(t)(x(t)))

〉∣∣∣∣ ‖λ(t)Aλ(t)(x(t))‖2. (35)

According to (31) and (33) there exists K > 0 such that

4

∣∣∣∣〈λ(t)Aλ(t)(x(t)),
d

dt
(λ(t)Aλ(t)(x(t)))

〉∣∣∣∣ ≤ 4
∥∥λ(t)Aλ(t)(x(t))

∥∥∥∥∥∥ ddt(λ(t)Aλ(t)(x(t)))

∥∥∥∥ ≤ K

tq
,

hence (35) leads to ∣∣∣∣ ddt‖λ(t)Aλ(t)(x(t))‖4
∣∣∣∣ ≤ K

tq
‖λ(t)Aλ(t)(x(t))‖2 for all t ≥ t0.

According to (30), the term on the right-hand side of the above relation belongs to L1([t0,+∞),R), which
implies

d

dt
‖λ(t)Aλ(t)(x(t))‖4 ∈ L1([t0,+∞),R).

Therefore, according to Lemma A.4 in the Appendix,

lim
t→+∞

‖λ(t)Aλ(t)(x(t))‖4 exists.

hence, L := limt→+∞ ‖λ(t)Aλ(t)(x(t))‖2 exists as well. Using again (30), that is∫ +∞

t0

1

tq
‖λ(t)Aλ(t)(x(t))‖2dt = λ2

∫ +∞

t0

t3q‖Aλ(t)(x(t))‖2dt < +∞,

we deduce that L = 0. Therefore, limt→+∞ ‖λ(t)Aλ(t)(x(t))‖ = 0, which gives

‖Aλ(t)(x(t))‖ = o

(
1

t2q

)
as t→ +∞. (36)

Further, by using (again DIN-AVD-TIKH), we have for all t ≥ t0

‖ẍ(t)‖2 =

∥∥∥∥αtq ẋ(t) + β
d

dt
Aλ(t)(x(t)) +Aλ(t)(x(t)) + ε(t)x(t)

∥∥∥∥2 ,
which leads via the Cauchy-Schwarz inequality to

t3q‖ẍ(t)‖2 ≤ 4t3qε2(t)‖x(t)‖2 + 4α2tq‖ẋ(t)‖2 + 4β2t3q
∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥2 + 4t3q
∥∥Aλ(t)(x(t))

∥∥2 . (37)

Next we will show that

t3q
∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥2 ∈ L1([t0,+∞),R). (38)

Indeed, according to Lemma A.2 (c2) in the Appendix we have for all t ≥ t0

t3q
∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥2 ≤ t3q ( 2

λt2q
‖ẋ(t)‖+

4q

t
‖Aλ(t)(x(t))‖

)2

≤ 8

λ2tq
‖ẋ(t)‖2 +

32q2

t2−3q
‖Aλ(t)(x(t))‖2

and the claim follows via (30).
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Finally, suppose that
∫ +∞
t0

t3qε2(t)dt < +∞. Using that ‖x(t)‖ is bounded, from (30), (38) and (37)
we obtain that ∫ +∞

t0

t3q‖ẍ(t)‖2dt < +∞. (39)

Next we prove that ‖ẋ(t)‖ = o
(
1
tq

)
as t→ +∞. For all t ≥ t0 we have

d

dt
t2q‖ẋ(t)‖2 = 2qt2q−1‖ẋ(t)‖2 + 2t2q〈ẍ(t), ẋ(t)〉

and
2t2q〈ẍ(t), ẋ(t)〉 ≤ t3q‖ẍ(t)‖2 + tq‖ẋ(t)‖2,

hence,
d

dt
t2q‖ẋ(t)‖2 ≤ t3q‖ẍ(t)‖2 + (2qt2q−1 + tq)‖ẋ(t)‖2.

According to (39) and (30) we have t 7→ t3q‖ẍ(t)‖2 + (2qt2q−1 + tq)‖ẋ(t)‖2 ∈ L1([t0,+∞),R). Therefore,
using again Lemma A.4 in the Appendix, we get that there exists limt→+∞ t

2q‖ẋ(t)‖2 ∈ R. Using (30)
again, we have ∫ ∞

t0

1

tq
(t2q‖ẋ(t)‖2)dt =

∫ ∞
t0

tq‖ẋ(t)‖2dt < +∞,

hence,
lim

t→+∞
t2q‖ẋ(t)‖2 = 0.

In other words,

‖ẋ(t)‖ = o

(
1

tq

)
as t→ +∞.

Weak convergence of x(t) as t→ +∞. We assume that β = 0 or β > 0 and q > 1
2 . For z ∈ S we

introduce the anchor function

hz : [t0,+∞)→ R, hz(t) =
1

2
‖x(t)− z‖2.

The classical derivation chain rule gives for all t ≥ t0

ḧz(t) +
α

tq
ḣz(t) =

〈
ẍ(t) +

α

tq
ẋ(t), x(t)− z

〉
+ ‖ẋ(t)‖2.

By using (DIN-AVD-TIKH), the monotonicity of Aλ(t) and the Cauchy-Schwarz inequality we get for all
t ≥ t0

ḧz(t) +
α

tq
ḣz(t) =

〈
−β d

dt
Aλ(t)(x(t))−Aλ(t)(x(t))− ε(t)x(t), x(t)− z

〉
+ ‖ẋ(t)‖2

= ‖ẋ(t)‖2 − β
〈
d

dt
Aλ(t)(x(t)), x(t)− z

〉
−
〈
Aλ(t)(x(t)), x(t)− z

〉
− ε(t)〈x(t), x(t)− z〉

≤ ‖ẋ(t)‖2 + β

∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ ‖x(t)− z‖+
ε(t)

4
‖z‖2. (40)

Next we show that t 7→ tqk(t) ∈ L1([t0,+∞),R), where k(t) := ‖ẋ(t)‖2 + β
∥∥ d
dtAλ(t)(x(t))

∥∥ ‖x(t) − z‖ +
ε(t)
4 ‖z‖

2 is the function on the right-hand side of (40). Indeed, according to the hypotheses we have
tqε(t) ∈ L1([t0,+∞),R). Further, from (30), we have tq‖ẋ(t)‖2 ∈ L1([t0,+∞),R). Therefore, if β = 0, we
have t 7→ tqk(t) ∈ L1([t0,+∞),R).
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Now, assume that β > 0 and q > 1
2 . According to (34) there exists K > 0 such that

∥∥ d
dtAλ(t)(x(t))

∥∥ ≤
K
t3q

for t large enough, hence,

βtq
∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ ‖x(t)− z‖ ≤ βK‖x(t)− z‖ 1

t2q
. (41)

Since ‖x(t)− z‖ is bounded and q > 1
2 , we have t 7→ K‖x(t)− z‖ 1

t2q
∈ L1([t0,+∞),R), consequently, also

in this case, t 7→ tqk(t) ∈ L1([t0,+∞),R).
If q < 1 we can apply [15, Lemma 13] and use the argumentation in [15, Lemma 6] to obtain that

limt→+∞ hz(t) exists. If q = 1 we can apply [7, Lemma A.6] to get the same conclusion. In other words,

lim
t→+∞

‖x(t)− z‖ exists for all z ∈ S,

which means that the first condition in Opial Lemma (Lemma A.5 in the Appendix) is satisfied. Next
we will show that the second condition is also satisfied, namely that every weak sequential cluster point
of x(t) belongs to S. To this end we will use that the Yosida approximation of a maximally monotone
operator fulfils

Aλ(x) ∈ A(x− λAλ(x)) for all x ∈ H and λ > 0. (42)

Let x∗ be a weak sequentially cluster point of x(t). Then, there exists a sequence tn → +∞ such that
x(tn) converges weakly to x∗ as n→ +∞. Since the graph of A is sequentially closed in the weak×strong
topology, by using (36), we have

0 = lim
n→+∞

Aλ(tn)(x(tn)) ∈ A
(

lim
n→+∞

(x(tn)− λ(tn)Aλ(tn)(x(tn))

)
= A(x∗).

Consequently, x(t) converges weakly to an element of S. �

Remark 3. The assumptions imposed on the Tikhonov parametrization function ε in Theorem 2 are
in concordance with the investigations made in [11] and [15]. Indeed, the condition t 7→ tqε(t) ∈
L1([t0,+∞),R) recovers the condition used in [11] in case q = 1 in order to obtain weak convergence.

For the choice ε(t) := a
tp , with a, p > 0, this integrability condition is nothing else than p > q + 1.

In case q = 1 this leads to p > 2 which has as consequence that ε̇(t)
ε(t) ≤ −

2
t holds for t large enough. On

the other hand, in case q < 1, ε(t) ≥ q(1−q)
t2

holds for t large enough if and only if p < 2 or p = 2 and
a ≥ q(1 − q). These are exactly the conditions under which weak convergence of the trajectories of a
Tikhonov regularized dynamical system has been obtained in [15].

Theorem 2 for the choice ε(t) := a
tp , with a, p > 0, leads to the following result.

Corollary 4. Let A : H → 2H be a maximally monotone operator such that S := {x ∈ H : 0 ∈ Ax} is
nonempty. Consider the evolution equation (DIN-AVD-TIKH) with β ≥ 0, λ(t) = λt2q, for λ > 0 and
0 < q ≤ 1, ε(t) = a

tp , for a, p > 0 with p ≥ q + 1, and the system parameters satisfying the following
conditions:

if q < 1, then λ >
1

α2
;

if q = 1, then either α > 3 and λ >
1

8(α− 3)
or α > 1 and λ >

1

(α− 1)2
.

Then, for any trajectory x : [t0,+∞)→ H of (DIN-AVD-TIKH), the following statements are true:
(i) If q+ 1 < p < 2 or q+ 1 < p = 2 and a ≥ q(1− q) or q = 1 and p > 2, then the statements (i)-(iii)

in Theorem 2 hold, including
∫ +∞
t0

t3q‖ẍ(t)‖2dt < +∞ and ‖ẋ(t)‖ = o

(
1

tq

)
as t→ +∞.

(ii) If p = q+1, then lims→+∞

∫ s
t0
tq‖ẋ(t)‖2dt

ln s < +∞ and lims→+∞

∫ s
t0
t3q‖Aλ(t)(x(t))‖2dt

ln s < +∞. Further-

more, ‖ẋ(t)‖ = O
(√

ln t
tq

)
, ‖Aλ(t)(x(t))‖ = O

(√
ln t
t2q

)
and

∥∥ d
dtAλ(t)(x(t))

∥∥ = O
(√

ln t
t3q

)
as t→ +∞.
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Proof. (i) According to Remark 3, if q + 1 < p all the conditions in the hypotheses of Theorem 2 are
satisfied, hence its conclusion holds. Even more, since in this case 2p− 3q > 1, it holds

∫ +∞
t0

t3qε2(t)dt =

a2
∫ +∞
t0

t3q−2pdt < +∞.
(ii) Now, consider the case p = q + 1. The relation (27) that we derived in the proof of Theorem 2

reads

Ė(t) +K1t
q‖ẋ(t)‖2 +K2t

3q‖Aλ(t)(x(t))‖2 ≤ ab

2t
‖z‖2 for all t ≥ t4. (43)

We choose T > t4, integrate (43) on the interval [t4, T ] and obtain that there exists C1, C2 > 0 such that

E(T ) +K1

∫ T

t4

tq‖ẋ(t)‖2dt+K2

∫ T

t4

t3q‖Aλ(t)(x(t))‖2dt ≤ C1 lnT + C2. (44)

From (44) and the definition of E we deduce that supt≥t0
‖x(t)−z‖2

ln t < +∞ and

sup
t≥t0

‖b(x(t)− z) + tq(ẋ(t) + βAλ(t)(x(t)))‖2

ln t
< +∞. (45)

In addition,

lim
s→+∞

∫ s
t0
tq‖ẋ(t)‖2dt

ln s
< +∞ and lim

s→+∞

∫ s
t0
t3q‖Aλ(t)(x(t))‖2dt

ln s
< +∞. (46)

Now, since Aλ(t) is 1
λ(t) Lipschitz continuous and z ∈ S one has for all t ≥ t0

‖Aλ(t)(x(t))‖ = ‖Aλ(t)(x(t))−Aλ(t)(z)‖ ≤
1

λ(t)
‖x(t)− z‖.

Taking into account that λ(t) = λt2q and ‖x(t)− z‖2 = O(ln t) as t→ +∞, we deduce that

‖Aλ(t)(x(t))‖ = O

(√
ln t

t2q

)
as t→ +∞. (47)

Using (47), from (45) we obtain that

‖ẋ(t)‖ = O

(√
ln t

tq

)
as t→ +∞. (48)

Finally, as in the proof of Theorem 2 one can show that∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ = O

(√
ln t

t3q

)
as t→ +∞.

�

3 Strong convergence and fast rates

In order to obtain both fast rates of convergence and strong convergence of the trajectories to the minimal
norm solution, we will use a different energy functional in which we will replace the anchor z ∈ S with
xt = (Aλ(t) + ε(t) Id)−1(0). Here we rely on an approach proposed in [2] for smooth convex optimization
problems. In addition, we will strengthen the conditions imposed on the system parameters in Section 2.
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It is well known that if A is a maximally monotone operator such that S := {x ∈ H : 0 ∈ Ax} is
nonempty and if t 7→ ε(t) is a positive function such that ε(t) −→ 0 as t −→ +∞, then xε(t) converges
to x∗ = projS 0 strongly in H as t→ +∞, where xε(t) denotes the unique zero of the strongly monotone
operator A+ ε(t) Id, that is Axε(t) + ε(t)xε(t) = 0.

We will prove a similar result for the Yosida regularization of A. To this end we will denote by xt ∈ H
the unique element such that

Aλ(t)xt + ε(t)xt = 0. (49)

Actually, xt depends on both ε(t) and λ(t), however we prefer for simpler notation xt than xε(t),λ(t).

Proposition 5. Let A be a maximally monotone operator such that S := {x ∈ H : 0 ∈ Ax} is nonempty.
Let t 7→ ε(t) and t 7→ λ(t) be positive functions defined on [t0,+∞). Then ‖xt‖ ≤ ‖x∗‖ for all t ≥ t0.

Assume further that limt→+∞ ε(t) = 0 and limt→+∞ ε(t)λ(t) = 0. Then xt converges strongly, as
t→ +∞, to x∗.

Proof. Let t ≥ t0. Since Aλ(t)+ε(t) Id is ε(t)-strongly monotone, Aλ(t)xt+ε(t)xt = 0 and Aλ(t)x
∗+ε(t)x∗ =

ε(t)x∗, we have
〈−ε(t)x∗, xt − x∗〉 ≥ ε(t)‖xt − x∗‖2. (50)

Consequently, 〈−xt, xt − x∗〉 ≥ 0. In other words, ‖x∗‖2 − ‖xt‖2 − ‖xt − x∗‖2 ≥ 0, hence

‖xt‖ ≤ ‖x∗‖. (51)

So, the net (xt)t≥t0 is bounded and its set of weak sequential cluster points is nonempty.
Assume now that limt→+∞ ε(t) = 0 and limt→+∞ ε(t)λ(t) = 0. First we show that xt converges weakly,

as t→ +∞, to x∗. Let x̃ a weak sequential cluster point of xt, that is, x̃ is the weak limit of a sequence
(xtn)n≥0. Since (xtn)n≥0 is bounded, and ε(tn) → 0 and ε(tn)λ(tn) → 0 as n → +∞, it yields that the
sequences (ε(tn)xtn)n≥0 and (ε(tn)λ(tn)xtn)n≥0 converge strongly to zero as n→ +∞. Using again that
the graph of A is sequentially closed in the weak×strong topology and (42), we obtain

0 = lim
n→+∞

Aλ(tn)xtn + ε(tn)xtn = lim
n→+∞

Aλ(tn)xtn ∈ A
(

lim
n→+∞

(xtn − λ(tn)Aλ(tn)xtn)

)
= A

(
lim

n→+∞
(xtn + λ(tn)ε(tn)xtn)

)
= A(x̃). (52)

Hence, x̃ ∈ S. On the other hand, from the weak lower semicontinuity of the norm and (51) we get

‖x̃‖ ≤ lim inf
n→+∞

‖xtn‖ ≤ ‖x∗‖.

Since x∗ is the minimum norm element of S, we must have x̃ = x∗. As x∗ is the limit of every weak
convergent subsequence of (xt)t≥t0 it follows that xt converges weakly, as t → +∞, to x∗. Using again
(51), it yields

‖x∗‖ ≤ lim inf
t→+∞

‖xt‖ ≤ lim sup
t→+∞

‖xt‖ ≤ ‖x∗‖,

hence,
lim

t→+∞
‖xt‖ = ‖x∗‖. (53)

In conclusion, xt converges strongly, as t→ +∞, to x∗. �

The following estimate of the time derivative of xt will be useful in our investigations.
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Lemma 6. Let A : H → 2H be a maximally monotone operator, ε : [t0,+∞)→ (0,+∞) a nonincreasing
function of class C1 and λ : [t0,+∞)→ (0,+∞) a positive function of class C1. For every t ∈ [t0,+∞) let
xt be the unique zero of the strongly monotone operator Aλ(t)+ε(t) Id . Then, t 7→ xt is almost everywhere
differentiable and ∥∥∥∥ ddtxt

∥∥∥∥ ≤
(
− ε̇(t)
ε(t)

+
2|λ̇(t)|
λ(t)

)
‖xt‖ for almost all t ≥ t0.

Proof. First, we will show that t 7→ xt is locally absolutely continuous on [t0,+∞), which will provide
the almost everywhere differentiability of t 7→ xt. To this end we consider an arbitrary closed interval
[u, v] ⊆ [t0,+∞) and show that for every τ > 0 there exists η > 0 such that for any finite family of
intervals Ik = (uk, vk) ⊆ [u, v] it holds(

Ik ∩ Ij = ∅ and
∑
k

|vk − uk| < η

)
⇒
∑
k

‖xvk − xuk‖ < τ.

For all t ≥ t0 it holds by the definition

(Aλ(t) + ε(t) Id)−1(y) = J 1
ε(t)

Aλ(t)

(
y

ε(t)

)
and further, according to [10, Proposition 23.6],

J 1
ε(t)

Aλ(t)

(
y

ε(t)

)
=

ε(t)λ(t)

1 + ε(t)λ(t)

y

ε(t)
+

1

1 + ε(t)λ(t)
J( 1

ε(t)
+λ(t)

)
A

(
y

ε(t)

)
.

Now, consider t, s ∈ [u, v] and let xt := (Aλ(t) + ε(t) Id)−1(0) and xs := (Aλ(s) + ε(s) Id)−1(0). According
to [10, Proposition 23.28], it holds

‖xt − xs‖ =

∥∥∥∥ 1

1 + ε(t)λ(t)
J( 1

ε(t)
+λ(t)

)
A

(0)− 1

1 + ε(s)λ(s)
J( 1

ε(s)
+λ(s)

)
A

(0)

∥∥∥∥
≤
∣∣∣∣ 1

1 + ε(t)λ(t)
− 1

1 + ε(s)λ(s)

∣∣∣∣ ∥∥∥∥J( 1
ε(t)

+λ(t)
)
A

(0)

∥∥∥∥
+

1

1 + ε(s)λ(s)

∥∥∥∥J( 1
ε(t)

+λ(t)
)
A

(0)− J( 1
ε(s)

+λ(s)
)
A

(0)

∥∥∥∥
≤
∣∣∣∣ 1

1 + ε(t)λ(t)
− 1

1 + ε(s)λ(s)

∣∣∣∣ ∥∥∥∥J( 1
ε(t)

+λ(t)
)
A

(0)

∥∥∥∥
+

ε(t)

(1 + ε(s)λ(s))(1 + ε(t)λ(t))

∥∥∥∥J( 1
ε(t)

+λ(t)
)
A

(0)

∥∥∥∥(∣∣∣∣ 1

ε(t)
− 1

ε(s)

∣∣∣∣+ |λ(t)− λ(s)|
)
, (54)

which means that there exist A,B > 0 such that for all t, s ∈ [u, v] it holds

‖xt − xs‖ ≤ A
∣∣∣∣ 1

1 + ε(t)λ(t)
− 1

1 + ε(s)λ(s)

∣∣∣∣+B

∣∣∣∣ 1

ε(t)
− 1

ε(s)

∣∣∣∣+B|λ(t)− λ(s)|. (55)

Since the functions t 7→ A
1+ε(t)λ(t) , t 7→

B
ε(t) and t 7→ Bλ(t) are absolute continuous on [u, v], for every

τ > 0 there exists η > 0 such that for any finite family of intervals Ik = (uk, vk) ⊆ [u, v] we have the
implications(

Ik ∩ Ij = ∅ and
∑
k

|vk − uk| < η

)
⇒
∑
k

∣∣∣∣ A

1 + ε(vk)λ(vk)
− A

1 + ε(uk)λ(uk)

∣∣∣∣ < τ

3
,
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∑
k

∣∣∣∣ B

ε(vk)
− B

ε(uk)

∣∣∣∣ < τ

3
and

∑
k

|Bλ(vk)−Bλ(uk)| <
τ

3
.

Now, by using (55) we get ∑
k

‖xvk − xuk‖ <
τ

3
+
τ

3
+
τ

3
= τ,

and the claim follows.
In order to prove the second claim we fix t ∈ [t0,+∞) such that s 7→ xs is differentiable at t and

h > 0. We have ε(t)xt +Aλ(t)xt = 0 and ε(t+ h)xt+h +Aλ(t+h)xt+h = 0, so

〈−ε(t+h)xt+h+ε(t)xt, xt+h−xt〉+〈Aλ(t)xt−Aλ(t+h)xt, xt+h−xt〉 = 〈Aλ(t+h)xt+h−Aλ(t+h)xt, xt+h−xt〉.

In virtue of the monotonicity of Aλ(t+h) the right-hand side of the above equality is nonnegative, hence

−〈ε(t+ h)xt+h − ε(t)xt, xt+h − xt〉+ 〈Aλ(t)xt −Aλ(t+h)xt, xt+h − xt〉 ≥ 0. (56)

On the other hand, from the Cauchy-Schwarz inequality we get

〈Aλ(t)xt −Aλ(t+h)xt, xt+h − xt〉 ≤ ‖Aλ(t)xt −Aλ(t+h)xt‖‖xt+h − xt‖

and by using Lemma A.2 (b) in the Appendix

‖Aλ(t)xt −Aλ(t+h)xt‖ ≤
|λ(t)− λ(t+ h)|

λ(t)
(‖Aλ(t)(xt)‖+ ‖Aλ(t+h)(xt)‖).

Plugging this into (56), it yields

−〈ε(t+h)xt+h− ε(t)xt, xt+h−xt〉+
|λ(t)− λ(t+ h)|

λ(t)
(‖Aλ(t)(xt)‖+‖Aλ(t+h)(xt)‖)‖xt+h−xt‖ ≥ 0. (57)

By dividing (57) by h2 and letting h→ 0 we obtain

−
〈
d

dt
(ε(t)xt),

d

dt
xt

〉
+ 2
|λ̇(t)|
λ(t)

‖Aλ(t)xt‖
∥∥∥∥ ddtxt

∥∥∥∥ ≥ 0.

In other words, since Aλ(t)xt = −ε(t)xt, it holds

−ε̇(t)
〈
xt,

d

dt
xt

〉
− ε(t)

∥∥∥∥ ddtxt
∥∥∥∥2 + 2

|λ̇(t)|ε(t)
λ(t)

‖xt‖
∥∥∥∥ ddtxt

∥∥∥∥ ≥ 0.

Using again the Cauchy-Schwarz inequality and the fact that ε is nonincreasing, we obtain further that

−ε̇(t)‖xt‖
∥∥∥∥ ddtxt

∥∥∥∥− ε(t)∥∥∥∥ ddtxt
∥∥∥∥2 + 2

|λ̇(t)|ε(t)
λ(t)

‖xt‖
∥∥∥∥ ddtxt

∥∥∥∥ ≥ 0,

which provides the desired estimate. �

Now we state the main result of this section.

Theorem 7. Let A : H → 2H be a maximally monotone operator such that S := {x ∈ H : 0 ∈ Ax} is
nonempty. Consider the evolution equation (DIN-AVD-TIKH) with β ≥ 0 and λ(t) = λt2q, for λ > 1

α2
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and 0 < q < 1. Assume that
∫ +∞
t0

t3qε2(t)dt < +∞ and the Tikhonov parametrization function also
satisfies the following conditions:

(C0) lim
t→+∞

t2qε(t) = 0;

(C1) There exist c1 > 0 and max{q, 1− 2q} < r < 1 such that ε(t) ≥ c1
tr+q

for t large enough;

(C2) There exists c2 > 0 such that βε(t) ≤ c2
t1−q

for t large enough;

(C3) There exists c3 > 2q +
16c2β

αλ−
√
λ

such that
ε̇(t)

ε(t)
≤ −c3

t
for t large enough;

(C4) There exists c4 > 0 such that

(
ε̇(t)

ε(t)

)2

≤ c4
t2

for t large enough.

Then, for any trajectory x : [t0,+∞[→ H of (DIN-AVD-TIKH), the following statements are true:

(i) (convergence of the trajectory) x(t) converges strongly, as t→ +∞, to x∗, the element of minimum
norm of S;

(ii) (integral estimates)
∫ +∞
t0

tq‖ẋ(t)‖2dt < +∞,
∫ +∞
t0

t3q‖Aλ(t)(x(t))‖2dt < +∞ and∫ +∞
t0

t3q‖ẍ(t)‖2dt < +∞;

(iii) (fast convergence rates) ‖ẍ(t)‖ = o
(

1
t2q

)
, ‖ẋ(t)‖ = o

(
1
tq

)
, ‖Aλ(t)(x(t))‖ = o

(
1
t2q

)
and∥∥ d

dtAλ(t)(x(t))
∥∥ = o

(
1
t3q

)
as t→ +∞.

Proof. Energy functional. For 0 < b < α, consider the energy functional

E(t) :=
1

2
‖b(x(t)− xt) + tq(ẋ(t) + βAλ(t)(x(t)))‖2 +

b(α− qtq−1 − b)
2

‖x(t)− xt‖2 +
t2qε(t)

2
‖x(t)‖2.

(58)

Note that there exists t′0 ≥ t0 such that α− qtq−1− b > 0 for all t ≥ t′0, consequently, E(t) is nonnegative
for all t ≥ t′0. The aim of the first part of the proof is to derive the inequality (78), with (72) as an
intermediate result.

Using the classical derivation chain rule and (DIN-AVD-TIKH), we get for the derivative of the energy
function for all t ≥ t0

Ė(t) =
〈
(b− α+ qtq−1)ẋ(t) + (βqtq−1 − tq)Aλ(t)(x(t)), b(x(t)− xt) + tq(ẋ(t) + βAλ(t)(x(t)))

〉
+

〈
−tqε(t)x(t)− b d

dt
xt, b(x(t)− xt) + tq(ẋ(t) + βAλ(t)(x(t)))

〉
+
bq(1− q)tq−2

2
‖x(t)− xt‖2

+ b(α− qtq−1 − b)
〈
ẋ(t)− d

dt
xt, x(t)− xt

〉
+

(
qt2q−1ε(t) +

t2q ε̇(t)

2

)
‖x(t)‖2

+ t2qε(t)〈ẋ(t), x(t)〉. (59)

After expansion, we obtain for all t ≥ t0

Ė(t) = (b+ qtq−1 − α)tq‖ẋ(t)‖2 +
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq〈ẋ(t), Aλ(t)(x(t))〉

+ b(βqtq−1 − tq)
〈
Aλ(t)(x(t)), x(t)− xt

〉
+ β(βqtq−1 − tq)tq‖Aλ(t)(x(t))‖2

− btqε(t)〈x(t), x(t)− xt〉 − βt2qε(t)〈Aλ(t)(x(t)), x(t)〉

+ b(qtq−1 − α)

〈
d

dt
xt, x(t)− xt

〉
− btq

〈
d

dt
xt, ẋ(t)

〉
− bβtq

〈
d

dt
xt, Aλ(t)(x(t))

〉
+
bq(1− q)tq−2

2
‖x(t)− xt‖2 +

(
qt2q−1ε(t) +

t2q ε̇(t)

2

)
‖x(t)‖2. (60)
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On the other hand, since

1

2
‖b(x(t)− xt) + tq(ẋ(t) + βAλ(t)(x(t)))‖2 ≤ b2‖x(t)− xt‖2 + 2t2q‖ẋ(t)‖2 + 2β2t2q‖Aλ(t)(x(t))‖2,

we have for all t ≥ t0

E(t) ≤ 2t2q‖ẋ(t)‖2 + 2β2t2q‖Aλ(t)(x(t))‖2 +
b(α− qtq−1 + b)

2
‖x(t)− xt‖2 +

t2qε(t)

2
‖x(t)‖2.

Now, we consider a constant K ≥ 0 that will be defined later. Then, for all t ≥ t0

Ė(t) +
K

t
E(t) ≤ (b+ qtq−1 − α+ 2Ktq−1)tq‖ẋ(t)‖2

+
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq〈ẋ(t), Aλ(t)(x(t))〉

+ b(βqtq−1 − tq)
〈
Aλ(t)(x(t)), x(t)− xt

〉
+ β(βqtq−1 − tq + 2βKtq−1)tq‖Aλ(t)(x(t))‖2

− btqε(t)〈x(t), x(t)− xt〉 − βt2qε(t)〈Aλ(t)(x(t)), x(t)〉

+ b(qtq−1 − α)

〈
d

dt
xt, x(t)− xt

〉
− btq

〈
d

dt
xt, ẋ(t)

〉
− bβtq

〈
d

dt
xt, Aλ(t)(x(t))

〉
+
b(q(1− q)tq−2 +K(α− qtq−1 + b))t−1

2
‖x(t)− xt‖2

+

(
qt2q−1ε(t) +

t2q ε̇(t)

2
+
Kt2q−1ε(t)

2

)
‖x(t)‖2. (61)

Since Aλ(t)(xt) + ε(t)xt = 0 and Aλ(t) is cocoercive, we have for all t ≥ t0〈
Aλ(t)(x(t)), x(t)− xt

〉
=
〈
Aλ(t)(x(t))−Aλ(t)(xt)− ε(t)xt, x(t)− xt

〉
≥ λ(t)‖Aλ(t)(x(t))−Aλ(t)(xt)‖2 − ε(t)〈xt, x(t)− xt〉

= λ(t)‖Aλ(t)(x(t)) + ε(t)xt‖2 +
ε(t)

2
(‖xt‖2 + ‖x(t)− xt‖2 − ‖x(t)‖2)

= λ(t)(‖Aλ(t)(x(t))‖2 + 2ε(t)〈Aλ(t)(x(t)), xt〉+ ε2(t)‖xt‖2)

+
ε(t)

2
(‖xt‖2 + ‖x(t)− xt‖2 − ‖x(t)‖2). (62)

Now, obviously there exists t1 ≥ t′0 such that b(βqtq−1 − tq) ≤ 0 for all t ≥ t1, hence (62) leads to

b(βqtq−1 − tq)
〈
Aλ(t)(x(t)), x(t)− xt

〉
≤ b(βqtq−1 − tq)λ(t)(‖Aλ(t)(x(t))‖2

+ 2ε(t)〈Aλ(t)(x(t)), xt〉+ ε2(t)‖xt‖2)

+ b(βqtq−1 − tq)ε(t)
2

(‖xt‖2 + ‖x(t)− xt‖2 − ‖x(t)‖2) (63)

for all t ≥ t1. Further,

− btqε(t)〈x(t), x(t)− xt〉 =
btqε(t)

2
(‖xt‖2 − ‖x(t)− xt‖2 − ‖x(t)‖2) for all t ≥ t1. (64)
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Plugging (63) and (64) into (61) yields for all t ≥ t1

Ė(t) +
K

t
E(t) ≤ (b+ qtq−1 − α+ 2Ktq−1)tq‖ẋ(t)‖2

+
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq〈ẋ(t), Aλ(t)(x(t))〉

+ (β(βqtq−1 − tq + 2βKtq−1)tq + b(βqtq−1 − tq)λ(t))‖Aλ(t)(x(t))‖2

− βt2qε(t)〈Aλ(t)(x(t)), x(t)〉+ 2b(βqtq−1 − tq)λ(t)ε(t)〈Aλ(t)(x(t)), xt〉

+ b(qtq−1 − α)

〈
d

dt
xt, x(t)− xt

〉
− btq

〈
d

dt
xt, ẋ(t)

〉
− bβtq

〈
d

dt
xt, Aλ(t)(x(t))

〉
+
b(q(1− q)tq−2 +K(α− qtq−1 + b))t−1 + b(βqtq−1 − 2tq)ε(t)

2
‖x(t)− xt‖2

+

(
qt2q−1ε(t) +

t2q ε̇(t)

2
+

(Kt2q−1 − bβqtq−1)ε(t)
2

)
‖x(t)‖2 +

bβqtq−1ε(t)

2
‖xt‖2. (65)

Further, for every l > 0 (which will be specified later) and all t ≥ t1, one has(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq〈ẋ(t), Aλ(t)(x(t))〉 ≤ (66)

|
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq|

2

(
‖ẋ(t)‖2

ltq
+ ltq‖Aλ(t)(x(t))‖2

)
.

Similarly, for all t ≥ t1 and every positive function m(t) > 0 (which will be specified later), one has

−βt2qε(t)〈Aλ(t)(x(t)), x(t)〉 ≤ βt2qε(t)

2

(
‖x(t)‖2

m(t)
+m(t)‖Aλ(t)(x(t))‖2

)
, (67)

while for positive function n(t) > 0 (which will be specified later), one has

2b(βqtq−1 − tq)λ(t)ε(t)〈Aλ(t)(x(t)), xt〉 ≤ |b(βqtq−1 − tq)λ(t)ε(t)|
(
‖xt‖2

n(t)
+ n(t)‖Aλ(t)(x(t))‖2

)
. (68)

Finally, according to Lemma 6, one has
∥∥ d
dtxt

∥∥2 ≤ ((2 ε̇(t)ε(t)

)2
+ 8q2

t2

)
‖xt‖2 for almost every t ≥ t0. Hence,

for almost all t ≥ t0, every positive function s1(t) > 0 and every positive constants s2, s3 > 0 (which will
be specified later), one has

b(qtq−1 − α)

〈
d

dt
xt, x(t)− xt

〉
≤ |b(qt

q−1 − α)|
2

(
1

s1(t)

(
2

(
ε̇(t)

ε(t)

)2

+
8q2

t2

)
‖xt‖2 + s1(t)‖x(t)− xt‖2

)
,

(69)

−btq
〈
d

dt
xt, ẋ(t)

〉
≤ btq

2

(
1

s2

(
2

(
ε̇(t)

ε(t)

)2

+
8q2

t2

)
‖xt‖2 + s2‖ẋ(t)‖2

)
, (70)

and

−bβtq
〈
d

dt
xt, Aλ(t)(x(t))

〉
≤ bβtq

2

(
1

s3t2q

(
2

(
ε̇(t)

ε(t)

)2

+
8q2

t2

)
‖xt‖2 + s3t

2q‖Aλ(t)(x(t))‖2
)
. (71)

Plugging (66)-(71) into (65), we obtain that for almost every t ≥ t1 it holds

Ė(t) +
K

t
E(t) ≤ µ(t)‖ẋ(t)‖2 + ν(t)‖Aλ(t)(x(t))‖2 + σ(t)‖x(t)− xt‖2 + θ(t)‖x(t)‖2 + ρ(t)‖xt‖2, (72)
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where

µ(t) = (b+ qtq−1 − α+ 2Ktq−1)tq +
|
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq|

2ltq
+
s2bt

q

2
; (73)

ν(t) = (β(βqtq−1 − tq + 2βKtq−1)tq + b(βqtq−1 − tq)λ(t)) +
|
(
β(b+ qtq−1 − α) + (βqtq−1 − tq)

)
tq|ltq

2

+
βt2qε(t)m(t)

2
+ |b(βqtq−1 − tq)λ(t)ε(t)|n(t) +

s3bβt
3q

2
; (74)

σ(t) =
b(q(1− q)tq−2 +K(α− qtq−1 + b))t−1 + b(βqtq−1 − 2tq)ε(t)

2
+
|b(qtq−1 − α)|s1(t)

2
; (75)

θ(t) =

(
qt2q−1ε(t) +

t2q ε̇(t)

2
+

(Kt2q−1 − bβqtq−1)ε(t)
2

)
+
βt2qε(t)

2m(t)
; (76)

ρ(t) =
bβqtq−1ε(t)

2
+
|b(βqtq−1 − tq)λ(t)ε(t)|

n(t)
+

(
2

(
ε̇(t)

ε(t)

)2

+
8q2

t2

)(
|b(qtq−1 − α)|

2s1(t)
+
btq

2s2
+

bβ

2s3tq

)
.

(77)

In the following we will choose the parameters and functions left “unspecified” in order to make the
coefficient functions µ(t), ν(t), σ(t), and θ(t) become nonpositive for t large enough.

• Since q < 1, µ(t) =
(
b− α+ 1

2l + s2b
2

)
tq +O(t2q−1) +O(1) as t→ +∞. We set

l := bλ+
1

4(α− b)
and s2 :=

α− b− 1
2l

b
.

Since λ > 1
α2 , for all b ∈

(
α
2 −

√
α2λ2−λ
2λ , α2 +

√
α2λ2−λ
2λ

)
it holds b − α + 1

2l + s2b
2 < 0. Hence, for every b

chosen in this interval, there exists t2 ≥ t1 such that µ(t) < 0 for all t ≥ t2.
• We set

n(t) :=
n

ε(t)
, with n :=

1− l
2bλ

4
> 0.

If β > 0 we set s3 :=
bλ− l

2
bβ > 0 and m(t) =: mt, where m > 0 will be specified later. Under this

circumstances, ν(t) =
(
− bλ

4 + l
8

)
t3q + βmt2q+1ε(t)

2 +O(t2q) as t→ +∞. Now, according to condition (C2),

there exists c2 > 0 such that t ≤ c2tq

βε(t) for t large enough, hence βmt2q+1ε(t)
2 ≤ mc2t3q

2 for t large enough.

Setting m := 2
c2

(
bλ
8 −

l
16

)
, it holds ν(t) ≤

(
− bλ

8 + l
16

)
t3q + O(t2q) as t → +∞, therefore there exists

t3 ≥ t2 such that ν(t) < 0 for all t ≥ t3.
If β = 0 one has ν(t) =

(
−3bλ

4 + 3l
8

)
t3q +O(t2q) as t→ +∞, therefore there exists t3 ≥ t2 such that

ν(t) < 0 for all t ≥ t3.
• Let q < r < 1 as provided by condition (C1) and let

s1(t) := s1t
−r,

where s1 > 0 will be specified later. Then, for t large enough βqtq−1 − tq ≤ 0, hence σ(t) ≤ b
2(s1αt

−r −
tqε(t)) + O(t−1) as t → +∞. According to (C1), there exists c1 > 0 such that tqε(t) ≥ c1

tr for t large
enough. Choosing s1 such that s1α < c1, it holds s1αt

−r − tqε(t) ≤ (s1α − c1)t−r for t large enough,
hence there exists t4 ≥ t3 such that σ(t) < 0 for all t ≥ t4.
• If β > 0, by taking into account that m(t) = mt with m = 2

c2

(
bλ
8 −

l
16

)
, one has for all t ≥ t1

θ(t) ≤ t2q ε̇(t)

2
+

(K + β
m + 2q)t2q−1ε(t)

2
.
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Since by condition (C3),
ε̇(t)
ε(t) ≤ −

c3
t for t large enough and c3 > 2q+ 16c2β

αλ−
√
λ

, one can choose b := α− 1
2
√
λ
∈(

α
2 −

√
α2λ2−λ
2λ , α2 +

√
α2λ2−λ
2λ

)
and in this case it holds β

m = 8c2β

αλ−
√
λ

. Hence, for all K ∈
(

0, 8c2β

αλ−
√
λ

]
one

has ε̇(t)
ε(t) ≤ −(K + β

m + 2q)t−1 for t large enough, that is, there exists t5 ≥ t4 such that θ(t) ≤ 0 for all
t ≥ t5.

If β = 0, then θ(t) = t2q ε̇(t)
2 + (K+2q)t2q−1ε(t)

2 . Proceeding as before, we choose K ∈ (0, c3 − 2q], which
allows us to conclude that there exists t5 ≥ t4 such that θ(t) ≤ 0 for all t ≥ t5.

In what follows we fix also K > 0 such that K 6= 1− r, K ∈
(

0, 8c2β

αλ−
√
λ

]
if β > 0, and K ∈ (0, c3− 2q]

if β = 0.

• Finally, taking into account that
(
ε̇(t)
ε(t)

)2
≤ c4

t2
for t large enough, we deduce that there exist the

constants K1,K2,K3 > 0 and there exists t6 ≥ t5 such that for all t ≥ t6

ρ(t) =
bβqtq−1ε(t)

2
+
|b(βqtq−1 − tq)λ(t)ε2(t)|

n
+

(
2

(
ε̇(t)

ε(t)

)2

+
8q2

t2

)(
|b(qtq−1 − α)|tr

2s1
+
btq

2s2
+

bβ

2s3tq

)
≤ K1t

q−1ε(t) +K2t
3qε2(t) +K3t

r−2.

Taking into account the above considerations, and using the fact that ‖xt‖ ≤ ‖x∗‖, we obtain from
(72) that for almost all t ≥ t6 it holds

Ė(t) +
K

t
E(t) ≤ (K1t

q−1ε(t) +K2t
3qε2(t) +K3t

r−2)‖x∗‖2. (78)

By multiplying (78) with tK we obtain that for almost all t ≥ t6 it holds

d

dt
(tKE(t)) ≤ (K1t

K+q−1ε(t) +K2t
K+3qε2(t) +K3t

K+r−2)‖x∗‖2. (79)

Now we fix T > t6 and integrate (79) on the interval [t6, T ]. This yields

TKE(T ) ≤ K1‖x∗‖2
∫ T

t6

tK+q−1ε(t)dt+K2‖x∗‖2
∫ T

t6

tK+3qε2(t)dt+
K3‖x∗‖2

K + r − 1
TK+r−1 + C0

for some constant C0 > 0. In other words, for all T ≥ t6 it holds

E(T ) ≤ K1‖x∗‖2
∫ T
t6
tK+q−1ε(t)dt

TK
+K2‖x∗‖2

∫ T
t6
tK+3qε2(t)dt

TK
+

K3‖x∗‖2

K + r − 1
T r−1 +

C0

TK
. (80)

It remains to show that the right-hand side of (80) goes to zero as T → +∞. Indeed, using the fact
that λ(t)ε(t)→ 0 as t→ +∞ we have that ε(t) < 1

t2q
for t large enough and this shows that

K1‖x∗‖2
∫ T
t6
tK+q−1ε(t)dt

TK
→ 0 as T → +∞.

Obviously, since r < 1, we have

K3‖x∗‖2

K + r − 1
T r−1 +

C0

TK
→ 0 as T → +∞.

In order to show that

∫ T
t6
tK+3qε2(t)dt

TK
→ 0 as T → +∞ we will use Lemma A.3 in the Appendix. Indeed,

by assumption, the function t 7→ f(t) = t3qε2(t) ∈ L1((t6,+∞),R), and the function t 7→ ϕ(t) = tK is
positive and nondecreasing on [t6,+∞) and limt→+∞ ϕ(t) = +∞. Hence,

lim
T→+∞

∫ T
t6
tK+3qε2(t)dt

TK
= lim

T→+∞

1

ϕ(T )

∫ T

t6

ϕ(t)f(t)dt = 0.
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Convergence rates and strong convergence of x(t) as t → +∞. The fact that E(t) → 0 as
t → +∞ has as consequence that limt→+∞ ‖x(t) − xt‖2 = 0. According to Proposition 5, xt → x∗ as
t→ +∞, therefore

x(t) converges strongly, as t→ +∞, to x∗. (81)

According to (C0) we get t2qε(t)x(t) → 0 as t → +∞. Now, using that Aλ(t) is 1
λ(t)− Lipschitz

continuous, it yields

λt2q‖Aλ(t)(x(t))‖ = λ(t)‖Aλ(t)(x(t))−Aλ(t)(x∗)‖ ≤ ‖x(t)− x∗‖ for all t ≥ t0,

which, in combination with (81), yields to

lim
t→+∞

t2q‖Aλ(t)(x(t))‖ = 0. (82)

From the fact that E(t) → 0 as t → +∞ and (81) we also obtain that ‖tq(ẋ(t) + βAλ(t)(x(t)))‖ → 0
as t→ +∞, which, in combination with (82), further yields

lim
t→+∞

tq‖ẋ(t)‖ = 0. (83)

Lemma A.2 (c2) in the Appendix guarantees that
∥∥ d
dtAλ(t)(x(t))

∥∥ ≤ 2
λ(t)‖ẋ(t)‖+ 2 |λ

′(t)|
λ(t) ‖Aλ(t)(x(t))‖

for all t ≥ t0, and from here we deduce that

lim
t→+∞

t3q
∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ = 0. (84)

Finally, since t2qε(t)x(t)→ 0 as t→ +∞ by using the definition of (DIN-AVD-TIKH), we obtain that

lim
t→+∞

t2q‖ẍ(t)‖ = 0. (85)

Integral estimates. In order to derive the integral estimates we will set K := 0. Then (72) becomes
for all t ≥ t1

Ė(t) ≤ µ(t)‖ẋ(t)‖2 + ν(t)‖Aλ(t)(x(t))‖2 + σ(t)‖x(t)− xt‖2 + θ(t)‖x(t)‖2 + ρ(t)‖xt‖2. (86)

As seen above, for the coefficient functions µ(t) and ν(t) we have sharper estimates than that they are
negative for t large enough. In particular we have that

µ(t) ≤ −C1t
q for some C1 > 0 and t large enough

and
ν(t) ≤ −C2t

3q for some C2 > 0 and t large enough.

In analogy to (78), we can conclude that there exist t7 ≥ t6 and K1,K2,K3 > 0 such that

Ė(t) + C1t
q‖ẋ(t)‖2 + C2t

3q‖Aλ(t)(x(t))‖2 ≤ (K1t
q−1ε(t) +K2t

3qε2(t) +K3t
r−2)‖x∗‖2 for all t ≥ t7.

(87)

Next we fix T > t7 and integrate (87) on the interval [t7, T ]. This yields

E(T ) + C1

∫ T

t7

tq‖ẋ(t)‖2dt+ C2

∫ T

t7

t3q‖Aλ(t)(x(t))‖2dt ≤ K1‖x∗‖2
∫ T

t7

tq−1ε(t)dt+K2‖x∗‖2
∫ T

t7

t3qε2(t)dt

+
K3‖x∗‖2

r − 1
T r−1 + C3, (88)
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for some constant C3 > 0. According to the hypotheses and the fact that ε(t) ≤ 1
t2q

for t large enough,
we obtain that the right-hand side of (88) is bounded, therefore∫ +∞

t0

tq‖ẋ(t)‖2dt < +∞ and

∫ +∞

t0

t3q‖Aλ(t)(x(t))‖2dt < +∞.

In order to obtain the integral estimate for the acceleration ẍ(t) we can proceed as in Theorem 2, namely,
by making use of (37) and (38). From here we obtain∫ +∞

t0

t3q‖ẍ(t)‖2dt < +∞.

�

Remark 8. As seen in Proposition 5, condition (C0) is essential to guarantee that xt converges to the
minimal norm element x∗ which was one of the main ingredients for proving strong convergence.

Natural candidates for Tikhonov parametrization functions that satisfy the conditions (C0) − (C4)
are, as in the previous section, ε(t) = a

tp , with a, p > 0. For this choice, (C0) is nothing else that p > 2q,
while (C1) is equivalent to p < 1 + q. Further, (C2) holds if and only if β = 0 or β > 0 and p ≥ 1− q. If
β > 0 and p > 1−q, then c2 can be taken arbitrarily small, whereas if p = 1−q, then c2 ≥ βa. Condition

(C3) asks for the existence of an element c3 in the interval
(

2q + 16c2β

αλ−
√
λ
, p
]
, which can be guaranteed

only for p > 1 − q, since in this case condition (C2) is fulfilled for c2 arbitrarily small. Finally, (C4) is
always satisfied for this choice of ε.

Consequently, if max ((sgnβ)(1− q), 2q) < p < 1 + q, then ε(t) = a
tp , for a > 0, satisfies (C0)− (C4).

This is in concordance with the conditions imposed on the Tikhonov parametrization function in [4],[11]
and [15].

Theorem 7 and Remark 8 lead to the following result.

Corollary 9. Let A : H → 2H be a maximally monotone operator such that S := {x ∈ H : 0 ∈ Ax} is
nonempty. Consider the evolution equation (DIN-AVD-TIKH) with β ≥ 0, λ(t) = λt2q, for λ > 1

α2 and

0 < q < 1, ε(t) = a
tp , for a > 0 and max

(
(sgnβ)(1− q), 3q+1

2

)
< p ≤ q + 1. Then, for any trajectory

x : [t0,+∞)→ H of (DIN-AVD-TIKH), the following statements are true:
(i) If p < q + 1, then the statements (i)-(iii) of Theorem 7 are valid. In addition, ‖x(t) − xt‖ =

O(t
3q−2p+1

2 ) as t→ +∞.
(ii) If p = q + 1, then the trajectory x(t) is bounded and ‖ẍ(t)‖ = O

(
1
t2q

)
, ‖ẋ(t)‖ = O

(
1
tq

)
,

‖Aλ(t)(x(t))‖ = O
(

1
t2q

)
and

∥∥ d
dtAλ(t)(x(t))

∥∥ = O
(

1
t3q

)
as t→ +∞.

Proof. (i) The condition
∫ +∞
t0

t3qε2(t)dt < +∞ is equivalent to p > 3q+1
2 and, since 3q+1

2 > 2q, as seen
in Remark 8, the conditions (C0) − (C4) are fulfilled. Hence, all the assumptions in the hypotheses of
Theorem 7 are satisfied.

In order to derive the rate of convergence for ‖x(t)− xt‖, we consider again (80), which reads in this
case,

E(T ) ≤ K1a‖x∗‖2
∫ T
t6
tK+q−p−1dt

TK
+K2a

2‖x∗‖2
∫ T
t6
tK+3q−2pdt

TK
+
K3‖x∗‖2

K + r − 1
T r−1+

C0

TK
for all T ≥ t6. (89)

In other words, there exist constants K̃1, K̃2, K̃3, K̃4 > 0 such that

E(T ) ≤ K̃1T
q−p + K̃2T

3q−2p+1 + K̃3T
r−1 + K̃4T

−K for all T ≥ t6. (90)
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Obviously, 3q−2p+1 > q−p. Further, in condition (C1), one can take r such that q < r < 3q−2p+2 < 1,
hence 3q − 2p+ 1 > r − 1.

Finally, we will show that we can choose K such that 3q − 2p + 1 > −K. Indeed, according to the

proof of Theorem 7, for β > 0 we must choose K ∈
(

0, 8c2β

αλ−
√
λ

]
such that K 6= 1− r. Since p > 1− q, we

can choose c2 > 0 such that −3q + 2p− 1 < 8c2β

αλ−
√
λ
< 16c2β

αλ−
√
λ
< p− 2q. Therefore, as seen in Remark 8,

(C3) remains valid and we can choose a positive K 6= 1− r such that −3q + 2p− 1 < K < 8c2β

αλ−
√
λ

.

If β = 0, then we must choose K ∈ (0, c3 − 2q]. Since, as seen in Remark 8, c3 = p fulfils (C3), for
K = p− 2q we have 3q − 2p+ 1 > −K and K 6= 1− r.

Consequently, the right-hand side of (90) is a term of order O(T 3q−2p+1) as T → +∞, which, by
taking into account the definition of E(t), yields

‖x(t)− xt‖ = O(t
3q−2p+1

2 ) as t→ +∞.

(ii) Now we consider the case p = q + 1. We start from (72), according to which, for all t ≥ t1

Ė(t) +
K

t
E(t) ≤ µ(t)‖ẋ(t)‖2 + ν(t)‖Aλ(t)(x(t))‖2 + σ(t)‖x(t)− xt‖2 + θ(t)‖x(t)‖2 + ρ(t)‖xt‖2. (91)

We choose l and s2 as in Theorem 7 and obtain that µ(t) < 0 for t large enough. Further, we set

m(t) := 1
b t
q+1 and obtain βt2qε(t)m(t)

2 = O(t2q) as t→ +∞, hence, for s3 chosen as in the proof of Theorem
7 we obtain that ν(t) < 0 for t large enough.

We choose s1(t) := s1t
−1, where s1 > 0 will be defined later. Then, σ(t) ≤ 1

2(s1αb − 2ab + K(α +

b))t−1 + O(tq−2) as t → +∞. For 0 < K < 2ab
α+b and s1 <

2ab−K(α+b)
αb it holds that σ(t) < 0 for t large

enough.
Further, by taking into account that m(t) = 1

b t
q+1, for β ≥ 0 one has

θ(t) ≤ t2q ε̇(t)

2
+

(K + 2q)t2q−1ε(t)

2
=
−a(q + 1) + a(K + 2q)

2
tq−2.

Hence, if K ≤ 1− q, then θ(t) ≤ 0 for all t ≥ t1.
From here we deduce, as in (78), that there exists t6 ≥ t1 and K1 > 0 such that for almost every

t ≥ t6

Ė(t) +
K

t
E(t) ≤ K1t

−1‖x∗‖2. (92)

By multiplying (92) with tK it yields d
dt(t

KE(t)) ≤ K1t
K−1‖x∗‖2 for almost every t ≥ t6. We choose

T > t6, integrate this inequality on the interval [t6, T ] and obtain that E(T ) ≤ C for some C > 0. This
means that E(t) ≤ C for all t ≥ t6.

By taking into account the definition of the energy functional we obtain that ‖x(t)− xt‖ is bounded,
and further, since ‖xt‖ ≤ ‖x∗‖, that x(t) is bounded. Consequently, ‖tq(ẋ(t)+βAλ(t)(x(t)))‖ is bounded.

Now, using the 1
λ(t) -Lipschitz continuity of Aλ(t) we obtain that ‖Aλ(t)(x(t))‖ = O

(
1
t2q

)
as t → +∞

and from here that ‖ẋ(t)‖ = O
(
1
tq

)
as t → +∞. The fact that

∥∥ d
dtAλ(t)(x(t))

∥∥ = O
(

1
t3q

)
as t → +∞

can be obtained by using the previous estimates and Lemma A.2 (c2) in the Appendix. Finally, by using
(DIN-AVD-TIKH), it yields ‖ẍ(t)‖ = O

(
1
t2q

)
as t→ +∞. �

4 Nonsmooth convex optimization

Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function such that argmin f 6= ∅
and consider the minimization problem

inf
x∈H

f(x).
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The problem of finding a global minimum of f reduces to the solving of the monotone inclusion
0 ∈ ∂f(x). The Moreau envelope of f of modulus λ > 0 is the C1 convex function

fλ : H → R, fλ(x) = inf
y∈H

{
f(y) +

1

2λ
‖x− y‖2

}
.

One has that argminH f = argminH fλ and minH fλ = minH f . The Yosida approximation of ∂f is equal
to the gradient of the Moreau envelope of f , that is, for all λ > 0 it holds (∂f)λ = ∇fλ. Furthermore,
Jλ∂f = proxλf , where

proxλf : H → H, proxλf (x) := argmin
y∈H

{
f(y) +

1

2λ
‖x− y‖2

}
,

denotes the proximal operator of f of modulus λ.
This being said, the evolution equation (DIN-AVD-TIKH) reads in this contexts for t ≥ t0

(DIN-AVD-TIKH-CONV) ẍ(t) +
α

tq
ẋ(t) + β

d

dt

(
∇fλ(t)(x(t))

)
+∇fλ(t)(x(t)) + ε(t)x(t) = 0,

where α > 0, β ≥ 0, 0 < q ≤ 1 λ : [t0,+∞) −→ (0,+∞) is the Moreau envelope parametrization function
and ε : [t0,+∞) −→ (0,+∞) is the Tikhonov parametrization function.

As a direct consequence of Theorem 2 we have the following result.

Theorem 10. Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function such that
argmin f 6= ∅. Consider the evolution equation (DIN-AVD-TIKH-CONV) with β ≥ 0, λ(t) = λt2q, for
λ > 0 and 0 < q ≤ 1, and the system parameters satisfying the following conditions:

if q < 1, then α > 1, λ >
1

α2
and ε(t) ≥ q(1− q)

t2
for t large enough;

if q = 1, then either α > 3 and λ >
1

8(α− 3)
orα > 1, λ >

1

(α− 1)2
and

ε̇(t)

ε(t)
≤ −2

t
for t large enough.

In addition, assume that
∫ +∞
t0

tqε(t)dt < +∞.
Then, for any trajectory x : [t0,+∞) → H of (DIN-AVD-TIKH-CONV), the following statements are
true:

(i) (convergence of the trajectory) x(t) is bounded. Furthermore, if β = 0 or β > 0 and q >
1

2
, then

x(t) converges weakly, as t→ +∞, to global minimizer of f ;

(ii) (integral estimates)

∫ +∞

t0

tq‖ẋ(t)‖2dt < +∞,
∫ +∞

t0

t3q‖∇fλ(t)(x(t))‖2dt < +∞,

and, if

∫ +∞

t0

t3qε2(t)dt < +∞, then

∫ +∞

t0

t3q‖ẍ(t)‖2dt < +∞;

(iii) (fast convergence rates) ‖ẋ(t)‖ = O
(
1
tq

)
, ‖∇fλ(t)(x(t))‖ = o

(
1
t2q

)
,
∥∥ d
dt∇fλ(t)(x(t))

∥∥ = O
(

1
t3q

)
as t→ +∞. In addition, if

∫ +∞
t0

t3qε2(t)dt < +∞, then ‖ẋ(t)‖ = o

(
1

tq

)
as t→ +∞;

(iv) (fast convergence rates for the values) fλ(t)(x(t)) − minH f = o
(

1
t2q

)
and f(proxλ(t)f (x(t))) −

minH f = o
(

1
t2q

)
as t→ +∞.

In addition, ‖ proxλ(t)f (x(t))− x(t)‖ → 0 as t→ +∞.
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Proof. The statements (i)-(iii) follow directly from Theorem 2 applied to the operator ∂f and by using
that (∂f)λ = ∇fλ.

Let us prove (iv). Take x∗ ∈ argmin f. From the gradient inequality we have

fλ(t)(x(t))−min
H

f = fλ(t)(x(t))− fλ(t)(x∗) ≤ 〈∇fλ(t)(x(t)), x(t)− x∗〉

≤ ‖∇fλ(t)(x(t))‖‖x(t)− x∗‖ ≤M‖∇fλ(t)(x(t))‖ = o

(
1

t2q

)
as t→ +∞,

where M := supt≥t0 ‖x(t) − x∗‖. By the definition of fλ(t) and of the proximal operator, we have for all
t ≥ t0

fλ(t)(x(t))−min
H

f = f(proxλ(t)f (x(t)))−min
H

f +
1

2λ(t)
‖x(t)− proxλ(t)f (x(t))‖2. (93)

hence,

f(proxλ(t)f (x(t)))−min
H

f = o

(
1

t2q

)
as t→ +∞ and lim

t→+∞
‖x(t)− proxλ(t)f (x(t))‖2 = 0. (94)

�

Similarly, as a direct consequence of Theorem 7 we have the following result.

Theorem 11. Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function such that
argmin f 6= ∅. Consider the evolution equation (DIN-AVD-TIKH-CONV) with β ≥ 0 and λ(t) = λt2q, for
λ > 1

α2 and 0 < q < 1. Assume that
∫ +∞
t0

t3qε2(t)dt < +∞ and the Tikhonov parametrization function
also satisfies the conditions the conditions (C0)− (C4).
Then, for any trajectory x : [t0,+∞[→ H of (DIN-AVD-TIKH-CONV), the following statements are
true:

(i) (convergence of the trajectory) x(t) converges strongly, as t → +∞, to the element of minimum
norm of argminH f ;

(ii) (integral estimates)
∫ +∞
t0

tq‖ẋ(t)‖2dt < +∞,
∫ +∞
t0

t3q‖∇fλ(t)(x(t))‖2dt < +∞ and∫ +∞
t0

t3q‖ẍ(t)‖2dt < +∞;

(iii) (fast convergence rates) ‖ẍ(t)‖ = o
(

1
t2q

)
, ‖ẋ(t)‖ = o

(
1
tq

)
, ‖∇fλ(t)(x(t))‖ = o

(
1
t2q

)
and∥∥ d

dt∇fλ(t)(x(t))
∥∥ = o

(
1
t3q

)
as t→ +∞;

(iv) (fast convergence of the values) fλ(t)(x(t))−minH f = o
(

1
t2q

)
and f(proxλ(t)f (x(t)))−minH f =

o
(

1
t2q

)
as t→ +∞.

In addition, ‖ proxλ(t)f (x(t))− x(t)‖ → 0 as t→ +∞.

A Appendix

We state the existence and uniqueness result for (DIN-AVD-TIKH) which can be proved by reformulating
the evolution equation as a first oder dynamical system in the product space H×H and by making use
of standard arguments relying on the Cauchy-Lipschitz theorem, see also [5, 11].

Theorem A.1. Let β ≥ 0 and λ, ε : [t0,+∞)→(0,+∞) be continuous functions such that limt→+∞ λ(t) >
0. Then, for all (x0, x1) ∈ H ×H, there exists a unique C2 solution x : [t0,+∞) → H of the dynamical
system (DIN-AVD-TIKH) which satisfies the Cauchy data x(t0) = x0, ẋ(t0) = x1.

In the remaining of the appendix, we present some lemmas which play a crucial role in the analysis
of (DIN-AVD-TIKH). The following important technical result is [5, Lemma 1].

26



Lemma A.2. Let A : H → 2H be a maximally monotone operator, γ, ν > 0 and x, y ∈ H. Then, the
following inequalities are satisfied:

a) ‖γAγ(x)− νAν(y)‖ ≤ 2‖x− y‖+ |γ − ν|‖Aγ(x)‖;

b) ‖Aγ(x)−Aν(y)‖ ≤ 2
γ ‖x− y‖+ |γ−ν|

γ (‖Aγ(x)‖+ ‖Aν(y)‖);

c) If x : [t0,+∞) → H is a differentiable map and λ : [t0,+∞) → (0,+∞) is a derivable function, then,
for all t ∈ [t0,+∞[ and all z ∈ A−1(0),

(c1)

∥∥∥∥ ddtλ(t)Aλ(t)(x(t))

∥∥∥∥ ≤ 2‖ẋ(t)‖+ |λ′(t)|‖Aλ(t)(x(t))‖;

(c2)

∥∥∥∥ ddtAλ(t)(x(t))

∥∥∥∥ ≤ 2

λ(t)
‖ẋ(t)‖+ 2

|λ′(t)|
λ(t)

‖Aλ(t)(x(t))‖;

(c3)

∥∥∥∥ ddtλ(t)Aλ(t)(x(t))

∥∥∥∥ ≤ 2‖ẋ(t)‖+
|λ′(t)|
λ(t)

‖x(t)− z‖.

The following lemma was stated, for instance, in [4, Lemma A.3].

Lemma A.3. Let δ > 0 and f ∈ L1((δ,+∞),R) be a nonnegative and continuous function. Let ϕ :
[δ,+∞) −→ [0,+∞) be a nondecreasing function such that limt−→+∞ ϕ(t) = +∞. Then it holds

lim
t−→+∞

1

ϕ(t)

∫ t

δ
ϕ(s)f(s)ds = 0.

The continuous version of the Opial Lemma stated below is the counterpart of a convergence result
for quasi-Fejér monotone sequences. Its proof can be found in [1, Lemma 5.1].

Lemma A.4. Suppose that F : [t0,+∞) → R is locally absolutely continuous and bounded from below
and that there exists G ∈ L1([t0,+∞),R) such that

d

dt
F (t) ≤ G(t)

for almost every t ∈ [t0,+∞). Then there exists limt−→+∞ F (t) ∈ R.

The continuous version of the Opial Lemma is the main tool for proving weak convergence for the
trajectories of an evolution equation.

Lemma A.5. Let S ⊆ H be a nonempty set and x : [t0,+∞)→ H a given map such that

(i) for every z ∈ S the limit lim
t−→+∞

‖x(t)− z‖ exists;

(ii) every weak sequential limit point of x(t) belongs to the set S.

Then the trajectory x(t) converges weakly, as t→ +∞, to an element in S .
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[5] H. Attouch, S.C. László, Continuous Newton-like inertial dynamics for monotone inclusions, Set-
Valued and Variational Analysis 29, 555-581 (2021)
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