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Abstract—The recovery of a signal from the magnitudes
of its transformation, like the Fourier transform, is known
as the phase retrieval problem and is of big relevance in
various fields of engineering and applied physics. In this pa-
per, we present a fast inertial/momentum based algorithm
for the phase retrieval problem. Our method can be seen as
an extended algorithm of the Fast Griffin-Lim Algorithm, a
method originally designed for phase retrieval in acoustics.
The new numerical algorithm can be applied to a more
general framework than acoustics, and as a main result
of this paper, we prove a convergence guarantee of the
new scheme. Consequently, we also provide an affirmative
answer for the convergence of its ancestor Fast Griffin-
Lim Algorithm, whose convergence remained unproven in
the past decade. In the final chapter, we complement our
theoretical findings with numerical experiments for the
Short Time Fourier Transform phase retrieval and compare
the new scheme with the Griffin-Lim Algorithm, the Fast
Griffin-Lim Algorithm, and two other iterative algorithms
typically used in acoustics.

Index Terms—phase retrieval, inertial algorithm, Griffin-
Lim algorithm, Fast Griffin-Lim algorithm, convergence
guarantee.

I. INTRODUCTION

Reconstructing the phase of a signal from phaseless
measurements of its (Short Time) Fourier transform is a
pervasive challenge, called the phase retrieval problem.
It arises in a great amount of areas of applications,
most prominently in audio processing [1, 2], imaging
[3, 4], and electromagnetic theory [5, 6]. Therefore it
is, to this day, an active research topic with numerous
algorithms designed to find satisfactory solutions to the
phase retrieval problem. These algorithms can be divided
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into two classes: non-iterative and iterative algorithms.
For the Short Time Fourier Transform (STFT), it was
analysed in [7] that the performance of non-iterative
algorithms strongly depends on the redundancy of the
STFT. They perform better than iterative algorithms in
terms of quality and speed for high redundancies, which
are rarely considered in practice. For the lower, more
common, redundancies the iterative methods gave more
qualitative results than the non-iterative ones, which
motivates their study.

The Griffin-Lim algorithm (GLA) [8] is a well known
and widely used iterative algorithm based on the method
of alternating projections and applied to the phase re-
trieval problem in the time-frequency setting. In optics,
this algorithm is also known as the Gerchberg-Saxton
algorithm [9]. Inspired by the Fast iterative shrink-
age threshold algorithm (FISTA [10]), the authors of
[11] proposed to introduce an inertial/momentum step
to GLA, which formed the Fast Griffin-Lim algorithm
(FGLA). As a result, they obtained a method that
converges faster than GLA in practice and recovers
signals with lower reconstruction error, but the con-
vergence guarantee remained an open question. Since
its introduction, FGLA gained considerable traction for
phase retrieval in audio processing [12, 13] and machine
learning [14, 15], but still, a convergence result for this
iterative algorithm was pending.

In this work, we will present the Accelerated Griffin-
Lim algorithm (AGLA), a new iterative method, and
prove a convergence result for it in a generalized setting
covering a wide range of areas, where the phase retrieval
problem arises, beyond the field of audio processing.
This method is an extension of FGLA, and therefore
our results cover FGLA as well.

Furthermore, we will round out the theoretical results
with the comparison of numerical simulations of AGLA
against its predecessors and other iterative algorithms
to highlight the improved numerical performance of our
algorithm.
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II. THE PHASE RETRIEVAL PROBLEM

A linear and injective transformation from CL → CM
with M ≥ L can be written as a transformation matrix
T in CM×L with full column rank, for example, the
discrete Fourier transform or the analysis operator of
a finite frame [16]. The vector s ∈ [0,+∞)M will
denote the measured magnitudes of the coefficients of the
transform. The phase retrieval problem can be expressed
mathematically as finding the signal x∗ ∈ CL, whose
transform coefficients match the magnitudes s, that is
|Tx∗| = s, where |·| is understood as the absolute value
applied componentwise. The feasibility, uniqueness, and
stability of the phase retrieval problem have been studied
in many works, most notably in [17, 18]. The results
in the present paper are actually independent of the
solvability of the phase retrieval problem.

In practice, measurements can include some noise and
inaccuracies and therefore we are usually looking for
solutions x∗ of the following minimization problem

min
x∈CL

‖|Tx| − s‖ , (1)

where ‖·‖ denotes the norm of CM . In [11] it was
proposed to consider this problem, as the task in finding
a vector c∗ in the set of coefficients admitted by the
transformation matrix T , namely its range, which is
as close as possible to the set of coefficients, whose
magnitude match with s. The range of the transformation
matrix T will be denoted as

C1 = {c ∈ CM | ∃x ∈ CL : c = Tx}. (2)

This set is a linear subspace of CL. Let C2 be the set
of vectors whose magnitudes are equal to s, namely

C2 = {c ∈ CM | |ci| = si ∀i ∈ {1, . . . ,M}}. (3)

The set C2 is, by definition, compact. To formulate the
problem (1) as finding the closest point between two
sets, we introduce two distance functions. The indicator
function δC of a set C is defined as

δC(c) =

{
0 if c ∈ C,
+∞ else,

and the distance function dC to a compact set C is
defined as

dC(c) = min
v∈C
‖c− v‖ for c ∈ CM . (4)

Our aim is to solve the following optimization problem

min
c∈CM

f(c) := δC1
(c) +

1

2
d2
C2

(c), (5)

which is nonconvex and has a close connection to the
original problem (1), as can be seen later.

For finding the closest point between two sets iter-
atively, projection operators are a common tool. Since

C1 is a linear subspace spanned by T , we can write its
orthogonal projection as

PC1
(c) = TT †c,

where T † denotes the pseudo-inverse of T , which is
well-defined since T is assumed to have full column
rank [16].

Since C2 is a nonconvex closed set, the projection of
a vector c onto C2 is nonempty but not always unique.
Therefore we will denote by PC2 : CM ⇒ CM the
possibly set valued projection

PC2(c) = arg min
v∈C2

‖c− v‖ ,

which maps c to the set of its closest points in C2. As in
[11] we will denote by PC2

: CM → CM a closed form
for a possible choice of the projection onto C2, which
we will use in the algorithms

(PC2
(c))i =

{
sici
|ci| if ci 6= 0,

si if ci = 0.
(6)

This projection is equivalent to scaling the elements of c
to have the magnitudes of s, without changing the phase.
The following proposition, whose proof can be found in
the appendix, gives another convenient way to write dC2

and states that this choice of PC2 indeed minimizes the
distance function and is almost everywhere the unique
element of PC2 .

Proposition II.1. For all c ∈ CM the distance to C2

can be written as

dC2
(c) = ‖|c| − s‖ (7)

and dC2
(c) = ‖c− PC2

(c)‖ holds. If c /∈ D, where
D := {c ∈ CM | ∃i ∈ {1, ...,M} : ci = 0 and si 6= 0},
then PC2(c) is the unique closest point to c in C2, namely
PC2

(c) = {PC2
(c)}.

The set D consists of the points, where the magnitude
of one coefficient is zero while the respective measured
one – si – is not. This set has been observed to be
problematic, for example, in the work [19] it is proven
that the phase derivative of the STFT is numerically
unstable, i.e., there is a peculiar pole phenomenon at
points in this set. Later on, we will prove that for general
frames the function 1

2d
2
C2

is differentiable only on the
complement of D. Therefore this set will turn out to
play a significant role in the convergence analysis of the
iterates.

Proposition II.1 motivates the choice of the objective
function f , since for c ∈ C1 we see that f(c) coincides
with the function value of (1) at T †c. One can show that
for any local/global minimizer c∗ of (5), x∗ = T †c∗ is
a local/global minimizer of (1) and vice versa.
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III. THE ALGORITHMS

In 1984, Griffin and Lim presented the algorithm
known as Griffin-Lim algorithm (GLA). They showed
that the iterates of the algorithm converge to a set of
critical points of a magnitude-only distance measure and
that the objective function values of the iterates are non-
increasing. In the following, N denotes the amount of
iterations of the algorithms, which can be chosen as +∞
as well. Here, without any risk of confusion, we use the
subscript n to mean the nth iteration, like cn, tn. On the
other hand, the subscript i means ci is the ith component
of the vector c ∈ CM .

Algorithm 1 Griffin-Lim algorithm

INITIALIZE c0 ∈ CM

Iterate for n = 1, . . . , N
cn = PC1

(PC2
(cn−1))

RETURN T †cN

In 2013, Perraudin, Balazs and Søndergaard stated
that GLA can be seen as the method of alternating
projections of the iterates onto C2 and C1 and proposed
the Fast Griffin-Lim Algorithm (FGLA) by adding an
inertial/momentum step [11]. The algorithm is based on
the idea of the inertial proximal-gradient method, in the
spirit of the Heavy Ball method [20] and Fast iterative
shrinkage threshold algorithm (FISTA) [10], which also
works in the nonconvex setting [21].

This algorithm achieved better results than GLA in
numerical experiments, but a convergence guarantee was
not addressed.

Algorithm 2 Fast Griffin-Lim algorithm

INITIALIZE c0 ∈ CM , t0 ∈ C1 and α > 0

Iterate for n = 1, . . . , N
tn = PC1

(PC2
(cn−1))

cn = tn + α(tn − tn−1),

RETURN T †cN

In this paper we present a further modification to
GLA, by adding a second inertial sequence (dn)n∈N,
which will not be projected. Its purpose is to stabilize
the algorithm and avoid getting stuck at the points, in
which FGLA stops at, while the distance between the
projection of (cn)n∈N and the nonprojected (dn)n∈N is
still large. A similar idea can be found in [21, 22].

Algorithm 3 Accelerated Griffin-Lim algorithm

INITIALIZE c0 ∈ CL, t0, d0 ∈ C1 and α, β, γ > 0

Iterate for n = 1, . . . , N
tn = (1− γ)dn−1 + γPC1

(PC2
(cn−1))

cn = tn + α(tn − tn−1),
dn = tn + β(tn − tn−1)

RETURN T †cN

AGLA is a generalization of FGLA since for γ = 1
the generated sequences by FGLA and AGLA coincide.
In the following chapter, we will state parameter choices
of α, β, and γ, for which we prove the convergence of
the algorithm.

IV. CONVERGENCE OF THE FUNCTION VALUES

To guarantee consistent performance of iterative
schemes for optimization problems, one has to establish
theoretical convergence results. This involves analyzing
the convergence behavior of the function values at the
generated iterates and addressing both the subsequential
and global convergence of the iterates towards a criti-
cal point or a local/global minimum of the underlying
problem.

In this chapter, we prove the convergence result for
AGLA. We will use the following identity, which is a
generalization of the parallelogram law, typically used
in the proof of convergence of the function values of the
iterates for algorithms with inertial sequences. It will be
used several times in the analysis. It can be shown by a
simple calculation, hence we omit the detail. Precisely,
for any two vectors a, b ∈ CM and any two real numbers
τ, σ ∈ R, it holds

‖τa+ σb‖2 = (τ + σ) τ ‖a‖2 + (τ + σ)σ ‖b‖2

− τσ ‖a− b‖2 . (8)

Using this identity we will state the proof of the
function values of the iterates generated by AGLA for
certain parameter regimes.

Theorem IV.1. Let (cn)n∈N, (dn)n∈N and (tn)n∈N be
the sequences generated by AGLA. Suppose that

0 < γ < 2 and 0 ≤ 2β |1− γ| < 2− γ, (9)

and

0 ≤ α <

{(
1− 1

γ

)
β + 1

γ −
1
2 if 0 < γ ≤ 1,

1
2β(γ−1)+γ −

1
2 if 1 < γ < 2.

(10)

Then the following statements are true
(i) There exist constants K1 > K2 > 0 such that the
following descent property holds for all n ≥ 1

d2
C2

(cn) +K1∆2
tn ≤ d

2
C2

(cn−1) +K2∆2
tn−1

,
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where ∆tn := ‖tn − tn−1‖. Therefore ∆tn converges to
zero and limn→+∞ d2

C2
(cn) ∈ R exists.

(ii) (cn)n∈N is a bounded sequence and every cluster
point c∗ of (cn)n∈N fulfills

PC1
(PC2

(c∗)) = c∗.

Proof. Let n ≥ 1. By the definition of the algorithm,
the sequences (cn)n≥1, (tn)n∈N and (dn)n∈N lie in
the linear subspace C1. This observation will be useful
throughout the proof and turns our focus on analyzing,
how the distances of the iterates to C2 behave.

We aim at an expression for ‖cn−1 − PC2
(cn−1)‖2 by

using the properties of the projections. For this purpose,
note that PC1

is the orthogonal projection onto the linear
subspace C1 and therefore the identity

‖PC1
(x)− x‖2 + ‖y‖2 = ‖PC1

(x)− x+ y‖2 (11)

holds for all (x, y) ∈ CL×C1. Define xn := PC2(cn−1)
and yn = PC1

(xn), then for arbitrary z ∈ C1 it holds
z − yn ∈ C1. Hence according to (11) we have

‖yn − xn‖2 + ‖z − yn‖2 = ‖z − xn‖2 . (12)

By rewriting the definition of the algorithm, we see that

1

γ
tn +

γ − 1

γ
dn−1 = PC1

(PC2
(cn−1)), (13)

and therefore we can write yn = 1
γ tn + γ−1

γ dn−1. Since
z − yn = 1

γ (z − tn) + γ−1
γ (z − dn−1) the following

expression can be expanded using the identity (8)

‖z − yn‖2 =
1

γ
‖z − tn‖2 +

γ − 1

γ
‖z − dn−1‖2

− γ − 1

γ2
‖tn − dn−1‖2 . (14)

Combining (12) and (14) leads to

‖yn − xn‖2 −
γ − 1

γ2
‖tn − dn−1‖2 =

‖z − xn‖2 −
1

γ
‖z − tn‖2 −

γ − 1

γ
‖z − dn−1‖2 .

(15)

The left hand side is independent of the choice of z,
hence we can substitute z by cn and cn−1 and equate
both right hand sides of (15) to get

‖cn − xn‖2 −
1

γ
‖cn − tn‖2 −

γ − 1

γ
‖cn − dn−1‖2 =

d2
C2

(cn−1)− 1

γ
‖cn−1 − tn‖2 −

γ − 1

γ
‖cn−1 − dn−1‖2 ,

(16)

where we used the fact that dC2
(cn−1) = ‖cn−1 − xn‖ .

By the definition of the generated sequences, we can see
that the following identities hold

‖cn − tn‖2 = α2∆2
tn , (17)

‖cn − dn‖2 = (α− β)2∆2
tn , (18)

‖tn − dn‖2 = β2∆2
tn . (19)

Furthermore, we can use the property that the distance
of cn to C2 is not larger than the distance of cn to an
arbitrary point in C2

dC2
(cn) = min

x∈C2

‖cn − x‖ ≤ ‖cn − xn‖ . (20)

Applying (17), (18) and (20) into (16) yields

d2
C2

(cn)− α2

γ
∆2
tn −

γ − 1

γ
‖cn − dn−1‖2 ≤

d2
C2

(cn−1)− 1

γ
‖cn−1 − tn‖2−

γ − 1

γ
(α−β)2∆2

tn−1
.

(21)

In order to handle the differences cn−1 − tn and cn −
dn−1, we will first represent these as linear combinations
of differences of consecutive terms of the sequence
(tn)n∈N. Therefore we need to distinguish between the
two cases γ ∈ (0, 1] and γ > 1.
Case 1: Assume that γ ∈ (0, 1]. By the definition of the
sequences, we see that

cn − dn−1 = (1 + α)(tn − tn−1)− β(tn−1 − tn−2)

tn − cn−1 = (tn − tn−1)− α(tn−1 − tn−2)

and by applying the identity (8) and leaving out a
positive term, we get the following estimations

‖cn − dn−1‖2 ≥ (1 + α− β)((1 + α)∆2
tn − β∆2

tn−1
),

‖tn − cn−1‖2 ≥ (1− α)(∆2
tn − α∆2

tn−1
).

Applying these estimates into (21) leads to

d2
C2

(cn) +K1∆2
tn ≤ d

2
C2

(cn−1) +K2∆2
tn−1

, (22)

with K1 := 1−γ
γ (1+2α+α2−β−αβ)+ 1

γ (1−α−α2)

and K2 := 1−γ
γ (β−αβ+α2)+ 1

γ (α−α2). Lemma A.1
ensures that (9) and (10) imply K1 > K2 > 0.
Case 2: Assume that γ > 1. Similarly, we see that

cn − dn−1 = (1 + α)(tn − tn−1) + β(tn−2 − tn−1)

tn − cn−1 = (tn − tn−1)− α(tn−1 − tn−2)

and by applying the identity (8), we get

‖cn − dn−1‖2 ≤ (1 + α+ β)((1 + α)∆2
tn + β∆2

tn−1
),

‖tn − cn−1‖2 ≥ (1− α)(∆2
tn − α∆2

tn−1
).

Applying these estimates into (21) leads to

d2
C2

(cn) +K1∆2
tn ≤ d

2
C2

(cn−1) +K2∆2
tn−1

, (23)
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with K1 := 1−γ
γ (1+2α+α2 +β+αβ)+ 1

γ (1−α−α2)

and K2 := 1−γ
γ (α2 − β − 3αβ) + 1

γ (α − α2). Lemma
A.1 asserts that (9) and (10) imply K1 > K2 > 0.

In both scenarios, we obtain the desired descent in-
equality. Moreover, we can deduce from (22) and (23)
that the sequence(

d2
C2

(cn) +K2∆2
tn

)
n∈N (24)

is positive and non-increasing as n increases, therefore
the sequence (24) converges as n → +∞. In order to
use telescoping sum arguments, we can rewrite (22) and
(23) to get

0 ≤ (K1 −K2)∆2
tn ≤ d

2
C2

(cn−1)− d2
C2

(cn)

+K2(∆2
tn−1
−∆2

tn).

If we sum up this inequality we deduce that

(K1 −K2)

N∑
j=2

∆2
tj ≤ d

2
C2

(c1)− d2
C2

(cN )

+K2(∆2
t1 −∆2

tN ).

Since for all n ≥ 2 it holds d2
C2

(c0) + K2∆2
t0 ≥ 0, by

taking the limit n→ +∞ we see that

+∞∑
j=2

∆2
tj ≤ d

2
C2

(c1) +K2∆2
t1 < +∞

holds, and therefore ∆tn → 0 as n → +∞. Moreover,
we already showed that (24) is converges and as a
consequence dC2(cn) also converges as n → +∞.
Hence the sequence (cn)n∈N must be bounded, since its
distance to the bounded set C2 converges. By (17) and
(18), we see that (‖cn − tn‖)n∈N and (‖cn − dn‖)n∈N
converge to zero as well. Using this observation and (13)
we conclude

PC1
(PC2

(cn))− cn → 0 as n→ +∞. (25)

Furthermore, since cn is a bounded sequence, there exist
cluster points. For each cluster point c∗

PC1
(PC2

(c∗)) = c∗

has to hold by (25).

In numerical experiments we will see that whenever
β or γ are not chosen to fulfill (9), then AGLA does
not converge. This suggests that it might not be possible
to extend the condition (9). On the other hand, (9)
and (10) together are sufficient conditions to guarantee
convergence.

V. CONVERGENCE OF THE ITERATES

The goal of this section is to analyze the conditions
under which the convergence of the entire sequence of
iterates can be guaranteed. To achieve this, we will
associate c ∈ CM with y ∈ RM×2, where yi =
(Re(ci), Im(ci)) for all i ∈ {1, . . . ,M}, in order to apply
subdifferential calculus and the Kurdyka–Łojasiewicz-
property (KL-property) V.4, which are defined for func-
tions from RM×2 to R := R ∪ {±∞}. The set C1 ⊆
RM×2 remains a linear subspace and the set C2 can be
written as

C2 = {y ∈ RM×2 : ‖yi‖ = si,∀i = 1, ...,M}. (26)

The domain of an extended real-valued function f is
defined as dom f = {y : f(y) < +∞}. For our
objective function (5) it holds dom f = C1. A function
is called proper if it never attains the value −∞ and its
domain is a nonempty set. Since our objective function is
nonconvex and not everywhere differentiable, we intro-
duce the notion of the limiting subdifferential following
[23, Definition 8.3].

Definition V.1. For the proper function f : RM×2 → R
and point ȳ ∈ dom f , the regular subgradient ∂̂f(ȳ) is
defined as the set of vectors v̄ ∈ RM×2 which fulfill

lim inf
y→ȳ

f(y)− f(ȳ)− 〈v̄, y − ȳ〉
‖y − ȳ‖

≥ 0,

and the limiting subdifferential ∂f(ȳ) is defined as the
set of vectors v̄ ∈ RM×2 such that there exist sequences
(yn)n∈N ⊆ RM×2 and vn ∈ ∂̂f(yn) such that yn → ȳ,
f(yn)→ f(ȳ) and vn → v̄ as n→ +∞.

The subdifferential is a set-valued operator and its
domain is defined as dom ∂F := {u ∈ RM×2 :
∂F (u) 6= ∅}. If f is continuously differentiable on a
open set, then ∂f is single-valued and thus coincide with
∇f on this set [23, Corrolary 9.19].

The following proposition states the formula for the
subgradient of our objective function, whose proof is
postponed to the appendix.

Proposition V.2. For the function f : RM×2 → R,
y 7→ δC1(y) + 1

2d
2
C2

(y) the limiting subdifferential
∂f : RM×2 ⇒ RM×2 is given by

∂f(y) = C⊥1 + y − PC2(y), for y ∈ C1 \D,

where
D = {y ∈ RM×2 | ∃i ∈ {1, ...,M} : yi = 0 and si 6= 0}.

Furthermore for y ∈ C1 \D it holds

d∂f(y)(0) ≤ ‖y − PC1
(PC2

(y))‖ .

Here for simplicity, we keep the notation f for the
objective function and write f(y) when it maps from
RM×2 to R, and f(c) when f : CM → R.
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Before we introduce the KL-property, we have to
define the class of concave and continuous functions.

Definition V.3. Let η ∈ (0,+∞]. We denote by Φη
all function ϕ : [0, η) → [0,+∞) which satisfy the
following conditions

(i) ϕ(0) = 0

(ii) ϕ is C1 on (0, η) and continuous at 0

(iii) for all s ∈ (0, η) : ϕ′(s) > 0

We state the definition of the KL-property, which can
be used to prove convergence iterates of first-order and
second-order methods, with nonconvex objective func-
tions [24]. Intuitively speaking, functions that satisfy
this property are not too flat at their respective local
minimizers and critical points. For b > a, we will write
Ja < F < bK to denote the level set {u ∈ RM×2 : a <
F (u) < b} of a function F : RM×2 → R.

Definition V.4. Let F : RM×2 → R be proper and lower
semicontinuous. ∂F denotes the subdifferential of F .
The function F is said to have the Kurdyka–Łojasiewicz-
property at u ∈ dom ∂F if there exist η ∈ (0,+∞], a
neighborhood U of u and a function ϕ ∈ Φη , such that
for all

u ∈ U ∩ JF (u) < F < F (u) + ηK,

the following holds

ϕ′(F (u)− F (u))d∂F (u)(0) ≥ 1.

The function ϕ is called the desingularizing function.

The following result, taken from [25, Lemma 6],
provides a uniformized KL property on a neighborhood
and will be crucial in our convergence analysis.

Lemma V.5. Let Ω be a compact set and F : RM×2 →
R be a proper and lower semicontinuous function.
Assume that F is constant on Ω and satisfies the KL
property at each point of Ω. Then there exist ε > 0, η > 0
and ϕ ∈ Φη such that for every u ∈ Ω and every element
u in the intersection{
u ∈ RM×2 : dΩ(u) < ε

}
∩ JF (u) < F < F (u) + ηK

the following holds:

ϕ′ (F (u)− F (u)) d∂F (u)(0) ≥ 1.

The KL-property holds for a broad class of functions,
especially for the indicator functions and distance func-
tions of semi-algebraic sets as stated in [26]. Since C1

as a linear subspace is algebraic and C2 is algebraic as
we see in (26), we know that our objective function f
in (5) has the KL-property.

For the proof of the convergence of the iterates, we
introduce the regularized version of f , namely FK :
RM×2 × RM×2 defined as

FK(y, z) = δC1(y) +
1

2
d2
C2

(y) +
K

2α2
‖y − z‖2 ,

with K > 0. Then by Proposition 10.5 and Corollary
10.9 of [23] the formula of the subdifferential ∂FK :
RM×2 × RM×2 ⇒ RM×2 × RM×2 is given as

∂FK(y, z) =

{
∂f(y) +

K

α2
(y − z)

}
×
{
K

α2
(z − y)

}
.

(27)

Furthermore, by [27] we know that FK inherits the KL-
property from f . Simple calculations show that F is non-
increasing, and the distance of the subgradient to 0 can
be estimated from above.

Proposition V.6. Let (cn)n∈N, (dn)n∈N and (tn)n∈N be
the sequence generated by AGLA and assume that (9)
and (10) hold. Then the following statements are true:

(i) There exist a constant κ1 > 0 such that for all n ∈ N
it holds

FK2
(cn, tn) + κ1∆2

tn ≤ FK2
(cn−1, tn−1), (28)

where K2 is defined as in Theorem IV.1.
(ii) If cn ∈ D for at most finitely many n ∈ N, where
D is defined as in Proposition V.2, then there exist an
integer m ∈ N and a constant κ2 > 0 such that for all
n ≥ m

d∂FK2
(cn,tn)(0) ≤ κ2(∆tn+1 + ∆tn) (29)

holds.

The proof of this proposition can be found in the
appendix. Now we can state the proof that the generated
iterates of AGLA converge by using the KL-property and
the previous observations.

Theorem V.7. Let (cn)n∈N, (dn)n∈N and (tn)n∈N be
the sequence generated by AGLA. Assume that (9) and
(10) hold and that cn ∈ D for at most finitely many
n ∈ N, where D is defined as in Proposition V.2. Then
(cn)n∈N converges and the limit c∗ is a critical point of
f , if c∗ /∈ D.

Proof. For simplicity we will denote Fn = FK2(cn, tn)
and limn→∞ Fn = F ∗, which exists by Theorem IV.1.
For any cluster point c∗ of the sequence (cn)n∈N, we
see that F (c∗) = F ∗ by Theorem IV.1. If there exists an
integer n0 ∈ N such that Fn0

= F ∗, then the inequality
(28) implies that ∆tn = 0 for all n ≥ n0. Hence by the
definition of the algorithm and (17)-(19), the sequences
(tn)n≥n0

, (dn)n≥n0
and (cn)n≥n0

are constant and the
statement is proven.
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Now assume that Fn > F ∗ for all n ∈ N. If cn ∈ D
for at most finitely many n ∈ N, then we can choose
m ∈ N such that for all n ≥ m the vector cn /∈ D.

From Theorem IV.1, we know that the sequence
((cn, tn))n∈N is bounded, and therefore there exist clus-
ter points. Let us denote by Ω the set of all cluster
points of the sequence ((cn, tn))n∈N. We can see that
Ω is closed and also bounded. Moreover, the value of F
over Ω always equals F ∗. Since F has the KL-property,
according to Lemma V.5, there exist ε, η > 0 and a
function ϕ ∈ Φη such that all element (y, z) in the
intersection{

(y, z) ∈ RM×2 × RM×2 : dΩ((y, z)) < ε
}

∩ JF ∗ < FK2 < F ∗ + ηK (30)

it holds

ϕ′ (FK2
((y, z))− F ∗) d∂FK2

((y,z))(0) ≥ 1. (31)

In the following we will use the KL-property to prove
that the sequence (tn)n∈N is a Cauchy-sequence and
therefore is convergent. Since Fn converges to F ∗ and
d∂FK2

(cn,tn)(0) → 0 as n → +∞ due to Proposition
V.6, there exists n1 ≥ m such that (cn, tn) belongs to
the intersection (30) for all n ≥ n1. This means by (31)
and (29), the inequality

κ2ϕ
′(Fn − F ∗)(∆tn+1

+ ∆tn)

≥ ϕ′(Fn − F ∗)d∂Fn
(0) ≥ 1, (32)

holds for all n ≥ n1. Since ϕ is concave and differen-
tiable, we know that

ϕ(z)− ϕ(y) ≥ ϕ′(z)(z − y).

By choosing z = Fn − F ∗ and y = Fn+1 − F ∗ then
plugging (28) and (32), we obtain after some rearranging

ϕ(Fn − F ∗) − ϕ(Fn+1 − F ∗) ≥
κ1

κ2

∆2
tn+1

∆tn+1 + ∆tn

holds for n ≥ n1. By applying Lemma A.2 in the
appendix we can see that this implies that
9κ2

4κ1
(ϕ(Fn − F ∗)− ϕ(Fn+1 − F ∗)) ≥ 2∆tn+1

−∆tn

holds. Summing up this inequality for j = n1, . . . , n̄
leads to

n̄∑
j=n1

∆tj+1 ≤
9κ2

4κ1
(ϕ(Fn1

− F ∗)− ϕ(Fn̄+1 − F ∗))

+ ∆tn1
−∆tn̄+1

.

Since ϕ is nonnegative, by passing n̄→∞, we deduce
+∞∑
j=n1

∆tj ≤
9κ2

4κ1
ϕ(Fn1

− F ∗) + ∆tn1
< +∞.

This implies that (tn)n∈N is a Cauchy-sequence and
therefore converges. Since (cn)n∈N and (dn)n∈N are
linear combinations of (tn)n∈N, we conclude that these
series converge as well and the limit of (cn)n∈N has to be
c∗ according to Theorem IV.1. Furthermore 0 ∈ ∂f(c∗)
by Proposition V.2 if c∗ /∈ D.

Since AGLA with γ = 1 reduces to FGLA, we can
state the following convergence properties of FGLA to
complement the result in [11]. It is a direct consequence
of Theorem IV.1 and V.7.

Corollary V.8. Let (cn)n∈N be the sequences generated
by FGLA. If α ∈ (0, 0.5), then

(i) There exist constants K1 > K2 > 0 such that the
following descent property holds for all n ≥ 1

d2
C2

(cn) +K1∆2
tn ≤ d

2
C2

(cn−1) +K2∆2
tn−1

,

where ∆tn := ‖tn − tn−1‖. Therefore ∆tn converges to
zero and limn→+∞ d2

C2
(cn) ∈ R exists.

(ii) Furthermore (cn)n∈N is a bounded sequence and
every convergent subsequence converges to a point c∗,
which fulfills

PC1(PC2(c∗)) = c∗

and is therefore a critical point if c∗ /∈ D, where D is
defined as in Proposition V.2.
(iii) If cn ∈ D for at most finitely many n ∈ N, then
(cn)n∈N is a convergent sequence.

To summarize our results, we have established con-
ditions and parameter regimes for AGLA and FGLA
that guarantee that the generated sequences (cn)n∈N
assert a decreasing property and that every cluster point
c∗ /∈ D is a local minimizer of our objective function.
To guarantee convergence, we needed the condition
cn ∈ D for at most finitely many n ∈ N, since
outside of D the projection PC2 is unique and 1

2d
2
C2

is continuously differentiable. It is important to mention
that the inequalities used in the statements above do
not cover all possible choices of parameters for which
we have observed convergence in the simulations. A
similar situation occurs even if 1

2d
2
C2

is assumed to
have Lipschitz-continuous gradient, see [21, 22]. Notice
that Lipschitz-continuity does not hold in our model,
according to Proposition V.2.

Most importantly, our proofs show that for AGLA and
FGLA a good performance and minimizing properties
for the phase retrieval problem can be guaranteed, when
the parameters are well chosen.

In Figure 1 we plotted for fixed β ∈ [0, 5] and γ ∈
[0.1, 1.5] the upper bound for α s.t. α, β, γ satisfy the
convergence guarantees (9) and (10) of Theorem IV.1.
The white areas symbolize the combinations of β and
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Fig. 1: Largest possible choice for α in AGLA for
given β and γ based on the conditions (9) and (10) that
guarantee convergence

γ, for which (9) is not fulfilled, i.e. where we expect
AGLA not to converge.

Before we take a look at the numerical simulations we
will state a corollary, which motivates for which iterates
we are going to plot the function values.

Corollary V.9. Let (cn)n∈N be the sequence generated
by AGLA. Assume that (9) and (10) hold and that cn ∈ D
for at most finitely many n ∈ N, where D is defined as
in Proposition V.2. Then for yn = PC1

(PC2
(cn)) the

following properties hold:
(i) For n ≥ 0

d2
C2

(yn) ≤ d2
C2

(cn)− ‖yn − cn‖2 .

(ii) The sequence (yn)n∈N converges as n→ +∞.

Proof. Let n ≥ 0. By (11) we know that

‖yn − PC2
(cn)‖2 = ‖cn − PC2

(cn)‖2 − ‖yn − cn‖2 .

By the definition of the distance function we see
that d2

C2
(yn) ≤ ‖yn − PC2

(cn)‖2 and d2
C2

(cn) =

‖cn − PC2
(cn)‖2 hold and by this (i) is proven. Further-

more by the results of the Theorems IV.1 and V.7 we can
deduce by (13) that (yn)n∈N converges as well.

VI. NUMERICAL EXPERIMENTS

In this section we will present the results of our
numerical experiments and test the performance of
the algorithm AGLA for the STFT-spectrogram inver-
sion. As signals we used the © EBU Audio Test
sequences, which provide 70 audio files for testing.
To reduce the computational time for each signal, we
trimmed down every signal to their first two seconds. In
this paper we only present the results of some selected
signals of this test set. A reproducible research adden-
dum is available at http://ltfat.org/notes/059/, where we

Best 5 combinations with convergence guarantee
α β γ Average SSNR

0.09 1.10 0.20 9.45696

0.39 1.90 0.90 9.44955

0.48 1.15 0.95 9.44320

0.54 0.55 0.90 9.44319

0.51 0.60 0.95 9.44246

TABLE I: The best parameter combinations satisfying
the convergence guarantee with respect to average SSNR
after 100 iterations over the test set

Best 5 combinations over all
α β γ Average SSNR

0.99 1.00 1.30 11.47489

1.00 1.10 1.30 11.45270

1.00 1.05 1.30 11.43239

0.99 0.99 1.30 11.42138

1.05 1.30 1.25 11.39242

TABLE II: The best parameter combinations with respect
to average SSNR after 100 iterations over the test set

provide the code, from which one can test different
configurations of windows and parameters and the results
of our parameter testing. It is important to mention, that
the presented algorithm and convergence proofs work for
a broad range of transformations. In this publication we
restrict ourselves to the application in acoustics using a
STFT for T .

The simulations were performed with hop size of
32 and 256 FFT bins and a Gaussian window using
the LTFAT toolbox [28]. This choice of hop size and
bins ensures that it is possible to reconstruct the signals
uniquely from their measurements [17]. For more nu-
merical experiments with a different window function,
we refer to [29]. As a quality measure we used the
Spectrogram Signal to Noise Ratio, which is defined as

SSNR(x) = −10 log10

(
‖|Tx| − s‖
‖s‖

)
.

It measures the similarity of the spectrogram of the sig-
nal to the desired spectrogram, but it does not necessarily
relate to perceived audio quality. Maximizing the SSNR
for a signal x is equivalent to minimizing our objective
function (5), since dC2 = ‖|·| − s‖ for given s and the
negative logarithm is monotonely decreasing.

Having three parameters in AGLA rather than one
in FGLA makes the algorithm on the one hand more
flexible and adaptable, but on the other hand makes it
more difficult to assert, which parameter combination
is the best. Therefore we first present a summary of
our numerical parameter tests for the parameters of α,
β and γ. We took ten signals of the test sequence set

http://ltfat.org/notes/059/
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and let the algorithms run for 100 iterations, initialized
with the projected measurements vector, namely c0 =
t0 = d0 = PC1(s), where s denotes the measurements
of the STFT of a signal. The signals were chosen to
cover a wide range of acoustical signals, including single
instruments, human speech and full orchestras. We tested
the performance of parameter combinations, satisfying
the sufficient conditions to guarantee convergence, and
also the best possible combinations, disregarding the
convergence guarantee. It is important to note that these
results will vary for different choices of window func-
tions and different redundancies of the STFT. A table
including the final SSNR for all tested combinations can
be found in the research addendum.

We computed for β ∈ [0.1, 2] and γ ∈ [0.2, 1.6]
the largest possible α up to two decimal points, which
satisfies the conditions (9) and (10) and tested the
parameter combinations for ten different signals. The
results are displayed in Table I.

It is interesting to note that all parameter combinations
satisfying (9) and (10) resulted in a very similar SSNR
after 100 iterations. Overall the combination with α =
0.09, β = 1.1 and γ = 0.2 performed the best after 100
iterations, followed by combinations, where α ≈ 0.5.

We did the same test considering further 532 com-
binations with α ∈ [0.95, 1.15], β ∈ [0.95, 1.5] and
γ ∈ [0.95, 1.3]. Even though these combinations are
not covered by the convergence guarantee, they show
the best possible convergence of our proposed algorithm
AGLA. In these tests, we noticed that if β and γ do not
fulfill (9), then the algorithm does not converge. This
observation is included in the research addendum. It
seems optimal to choose γ = 1.3, α ≈ 1 and β ≥ α.

We compared AGLA to two other algorithms, which
were observed to perform well in the STFT phase
retrieval in [30]. The first algorithm is the Relaxed
Averaged Alternating Projections (RAAR) proposed by
R. Luke for the phase retrieval problem in Diffraction
Imaging [31].

Algorithm 4 Relaxed Averaged Alternating Reflections

INITIALIZE c0 ∈ Cn and λ ∈ (0, 1]

Iterate for n = 1, . . . , N
cn+1 = λ

2 (cn +RC1(RC2(cn)))+(1−λ)PC2(cn)

RETURN T †cN

According to [32] the best performance of RAAR for
speech signals can be expected for λ = 0.9.

The second algorithm is the Difference Map (DM)
proposed by V. Elser for phase retrieval in [33].

Algorithm 5 Difference Map

INITIALIZE c0 ∈ Cn and ρ ∈ R \ {0}
Iterate for n = 1, . . . , N
tn = PC2

(cn) + 1
ρ (PC2

(cn)− cn)

sn = PC1
(cn) + 1

ρ (PC1
(cn)− cn)

cn+1 = cn + ρ(PC1
(tn)− PC2

(sn))

RETURN T †cN

In general choosing ρ close to 1 yields the best
performance of DM and in [30] it was observed that
the choice ρ = 0.8 performs best for speech signals. To
the best of our knowledge the convergence for DM is
unproven.

Based on the observation in Corollary V.9, we plotted
for FGLA and AGLA the SSNR of yn = PC1

(PC2
(cn))

and for RAAR and DM the SSNR of the iterates cn
respectively.

For the comparison between the algorithms, we eval-
uated AGLA, FGLA, DM, and RAAR by initializing
with the projected measurements vector, namely, taking
c0 = t0 = d0 = PC1

(s). For the first simulations we
used the 60 signals which were not included in the
parameter search to remove any bias. For the purpose
of a better overview, we did not include the algorithm
GLA in this test, since the observations in [11] clearly
showed that FGLA outperforms GLA in nearly every
setting. For DM and RAAR we chose ρ = 0.8 and
λ = 0.9 respectively, for FGLA α = 0.99 and for
AGLA the best combination from Table II. In Figure
2 we depicted the SSNR reached by the algorithms after
100 iterations over the tests set. Furthermore we included
in Figure 3 four graphs for the SSNR reached by the
iterates of the four algorithms over 1000 iterations. These
selected graphs are not necessarily representative of the
overall average SSNR reached by the algorithms, but
are included to show certain reoccurring behaviours, we
want to highlight.

Fig. 2: Box plots depicting the SSNR that FGLA, AGLA,
RAAR, and DM reached over the test set after 100
iterations with their respective best parameter choice and
initialization with the projected measurements vector
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For the next experiment, we initialized the algorithms
with the reconstructed signal from the Phase Gradient
Heap Integration (PGHI) presented in [34] and compared
them in Figure 5 and Figure 4 for the same signals.

PGHI is a noniterative method for the phase retrieval
problem, based on the phase-magnitude relations of a
continuous STFT. It is efficient, but when used for the
discrete setting it introduced inaccuracies depending on
the parameters of the discrete STFT, and it was observed
to give a good starting point for iterative algorithms [7].

For the last experiment, we ran GLA with FGLA
and AGLA with their respective best parameter choices
covered by the convergence guarantee, proven in this
paper. The results are displayed in Figure 7.

Fig. 3: Comparison of FGLA, AGLA, RAAR, and DM
with their respective best parameter choice and initial-
ization with the projected measurements vector

Fig. 4: Box plots depicting the SSNR that FGLA, AGLA,
RAAR, and DM reached over the test set after 100
iterations with their respective best parameter choice and
PGHI initialization

Fig. 5: Comparison of FGLA, AGLA, RAAR, and DM
with their respective best parameter choice and PGHI
initialization
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Fig. 6: Box plots depicting the SSNR that GLA, FGLA
and AGLA reached over the test set after 100 iterations
with their respective best parameter choice satisfying the
convergence guarantee

Fig. 7: Comparison of GLA, FGLA, and AGLA, with
their respective parameter choice satisfying the conver-
gence guarantee

We can observe that DM performed on average best,
but it is also important to note that DM computes
twice as many different projections per iterations com-
pared to the other algorithms and the projections are
the computationally most expensive segments of the
algorithms. This was noticeable in the computational
time per iteration for each signal, where the iterates of
DM took at least 50% longer to compute compared to
AGLA. We see that AGLA performed on average better
than FGLA and is able to reach comparable SSNR to
DM and RAAR. Over the test set we observed that, DM
and RAAR tend to start oscillating after 100 iterations,
whereas FGLA and AGLA stayed stable, an important
trait in algorithms. With PGHI-initialization we observe
that there was a slight increase in the intensity of the
oscillations of DM and RAAR, but for FGLA and AGLA
nearly none. These observations suggest that AGLA is
an algorithm suitable for hybrid schemes, where one
initializes with either a non-iterative scheme or the end
point of another, maybe faster, scheme, after a fixed
number of iterations as it has been studied for FGLA
in [30]. Choosing the parameters of FGLA and AGLA
to satisfy the convergence guarantee, can lead to slightly
accelerated and more consistent behaviour compared to
GLA. We notice that for the chosen combination of
AGLA, we can experience slightly lower SSNR in the
beginning, which then catches up or even surpasses the
other algorithms. This behaviour can be attributed to the
relatively large value of β = 1.1 and the small value of
γ = 0.2. As a result, the nonprojected sequence exhibits
a significant inertial/momentum step, while the projected
iterates are less influential. Consequently, we experience
a slower performance in the beginning.

VII. CONCLUSION

In this paper we presented the Accelerated Griffin-
Lim algorithm and proved convergence results for it and
its predecessor, the Fast Griffin-Lim algorithm. If the
parameters are chosen to fulfill the necessary conditions
to guarantee convergence and the minimizing properties,
both of them outperform the Griffin-Lim algorithm,
making it now possible for them to replace this classical
method as the standard and reliable phase retrieval
algorithm for acoustic. We showed that one can expect
good convergence behaviour of inertial based methods
theoretically and practically in the phase retrieval setting.
The numerical results indicate that there are parameter
combinations outside of the convergence regimes for
which the algorithm asserts fast behaviour, further spark-
ing interest in studying these methods. The simulations
indicate that the Accelerated Griffin-Lim algorithm has
the possibility to perform similarly error-wise to Re-
laxed Averaged Alternating Reflections and Difference
Map, the two other powerful retrieval methods. The
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proposed method achieves better convergence behaviour
in the sense of having fewer to none oscillations and
performing better for good initialization. Given the good
results of the Accelerated Griffin-Lim algorithm under
the initialization with Phase Gradient Heap Integration,
the exploration of hybrid schemes presents an intriguing
question for future research. Furthermore, the perfor-
mance of the proposed method under different audio
quality measures warrants further investigation.
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APPENDIX

Proof of Proposition II.1. In order to prove (7), we are
going to look at a general property of the distances of
complex numbers to elements on the one dimensional
sphere. For given a ∈ C and r > 0, one can deduce by
rewriting in polar coordinates that

min
|b|=r

|a− b|2 = min
θ∈[0,2π)

∣∣a− reiθ∣∣2 (33)

= min
θ∈[0,2π)

|a|2 + r2 − 2 |a| r cos(∠a− θ).

Since this minimum is attained at θ = ∠a, we get

min
|b|=r
|a− b|2 =

∣∣a− rei∠a∣∣2
= ||a| − r|2

∣∣ei∠a∣∣2 = ||a| − r|2 .

If r = 0, then b = 0 is the unique minimizer of (33).
Therefore we can see that

d2
C2

(c) = min
v∈C2

‖c− v‖2 (34)

=

L∑
i=1

min
vi∈C,|vi|=si

|ci − vi|2

=

L∑
i=1

||ci| − si|2 = ‖|c| − s‖2 ,

which proves the first statement. For the second state-
ment, we use the definition (6) of PC2

and (7)

‖c− PC2(c)‖2 =

L∑
i=1

|ci − (PC2(c))i|2

=
∑
ci 6=0

∣∣∣∣ci − ci si|ci|
∣∣∣∣2 +

∑
ci=0

|si|2

=
∑
ci 6=0

|ci|2
∣∣∣∣1− si

|ci|

∣∣∣∣2 +
∑
ci=0

|si|2

=
∑
ci 6=0

||ci| − si|2 +
∑
ci=0

|si|2

=

L∑
i=1

||ci| − si|2 = d2
C2

(c).

Moreover, we see from (33) that θ = ∠α is the unique
minimizer when a 6= 0, thus PC2

(c) is the unique mini-
mizer of (34) for c /∈ D by the calculations above.

Proof of Proposition V.2. In [35], an explicit formula
for the limiting subgradient of the power of a distance
function is derived. By this result, we know that for
y ∈ RM×2

∂

(
1

2
d2
C2

)
(y) = y − PC2

(y).

By Proposition II.1 we can deduce that for y /∈ D

∂

(
1

2
d2
C2

)
(y) = {y − PC2(y)}

holds, since then PC2
(y) = {PC2

(y)} and that
1
2d

2
C2

(y) = 1
2 ‖y − PC2

(y)‖2 . If we look at the defi-
nition of PC2

, we notice that each component is con-
tinuously differentiable around a neighbourhood of any
y /∈ D, since x 7→ x

|x| is continously differentiable
around a neighbourhood of any x 6= 0. Since ‖·‖2 is
continuously differentiable everywhere, we deduce that
1
2d

2
C2

is continuously differentiable around a neighbour-
hood of any y /∈ D. Therefore ∂ 1

2d
2
C2

(y) = ∇ 1
2d

2
C2

(y)
for y /∈ D by [23, Corrolary 9.19].

For δC1
the limiting subgradient is given by the

orthogonal space ∂δC1(y) = C⊥1 for y ∈ C1 by [23,
Exercise 8.14]. Furthermore, using the sum rule forumla
[23, Exercise 8.8], we can deduce for the objective
function f(y) = δC1

(y) + 1
2d

2
C2

(y) that for y ∈ C1 \D

∂f(y) = C⊥1 + y − PC2
(y).

By the definition of the distance of the sum of sets to
a point, we have that for y ∈ C1 \D

d∂f(y)(0) ≤ min
z∈C⊥1 ,u∈PC2

(y)
‖z + y − u‖

≤ min
z∈C⊥1

‖z + y − PC2
(y)‖ (35)

By taking z = PC2
(y)−PC1

(PC2
(y)) ∈ C⊥1 , we get the

conclusion from (35).

Proof of Proposition V.6. Choose m ∈ N such that for
all n ≥ m the vector cn /∈ D and let n ≥ m. By the
decreasing property of Theorem IV.1 and by (17) we
know that

FK2
(cn, tn) + κ1 ‖cn − tn‖2 ≤ FK2

(cn−1, tn−1),

where κ1 = K1−K2

2α2 and thus proving the first statement,
since K1 > K2. Using the triangle inequality we can see

that by (27) and a similar argument as in Proposition V.2

d∂Fn
(0) ≤ ‖cn − PC1

(PC2
(cn)) +K2(cn − tn)‖

+K2 ‖cn − tn‖ , (36)

since cn ∈ C1 \D. By (13) we know that

cn − PC1
(PC2

(cn)) =
1

γ
(cn − tn+1) +

γ − 1

γ
(cn − dn)

Furthermore, by the definition of the algorithm we see
that cn − dn = α

α−β (cn − tn). Combining this observa-
tions in (36) we see that

d∂Fn
(0) ≤ 1

γ
‖cn − tn+1‖+ µ ‖cn − tn‖
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with µ =
∣∣∣ (γ−1)α
γ(α−β) +K2

∣∣∣ + K2 > 0. Furthermore using
the triangle inequality we see that

d∂Fn
(0) ≤ 1

γ
‖tn − tn+1‖+

(
1

γ
+ µ

)
‖cn − tn‖ .

Since cn − tn = α(tn − tn−1) we conclude that

d∂Fn(0) ≤ κ2(∆tn+1 + ∆tn)

with κ2 = max{ 1
γ , (

1
γ + µ)α}.

Lemma A.1. Suppose that γ > 0 and

0 ≤ 2β|1− γ| < 2− γ (37)

(i) For 0 < γ ≤ 1, if

0 < α <

(
1− 1

γ

)
β +

1

γ
− 1

2
(38)

then
K1 > K2 > 0,

where K1 := 1−γ
γ (1+2α+α2−β−αβ)+ 1

γ (1−α−α2)

and K2 := 1−γ
γ (α2 + β − αβ) + 1

γ (α− α2).
(ii) For 1 < γ < 2, if

0 < α <
1

2β(γ − 1) + γ
− 1

2
(39)

then
K1 > K2 > 0,

where K1 := 1−γ
γ (1+2α+α2+β+αβ)+ 1

γ (1−α−α2)

and K2 := 1−γ
γ (α2 − β − 3αβ) + 1

γ (α− α2).

Proof. One can check that (37) guarantees the the feasi-
bility of α in both (38) and (39). Moreover, we can see
that (38) implies

2γα < 2− γ + 2 (γ − 1)β,

from which we are going to show that it further yields
K1 − K2 > 0. It remains to show that K2 > 0. After
some calculations, we see that it is equivalent to

γα2 − (1 + (γ − 1)β)α+ (γ − 1)β < 0. (40)

Observe that for every 0 < γ < 1 it holds

∆1 = (1 + (γ − 1)β)
2 − 4γ (γ − 1)β

> (1 + (γ − 1)β)
2
> 0,

Hence the inequality (40) holds for α > 0 if and only if

0 < α <
1 + (γ − 1)β +

√
∆1

2γ
.

Furthermore, if α fulfills (38), then for 0 < γ < 1

2γα < 2− γ + 2 (γ − 1)β

< 2 + 2 (γ − 1)β

< 1 + (γ − 1)β + |1 + (γ − 1)β|
< 1 + (γ − 1)β +

√
∆1.

Therefore (38) implies K1 > K2 > 0 for this case. The
result for 1 < γ < 2 can be deduced similarly.

Lemma A.2. Let A, B and C be positive real numbers.
Then A ≥ C2

B+C implies

9

4
A ≥ 2C −B.

Proof. Rewriting the given assumption leads to√
(B + C)A ≥ C.

We can apply the weighted arithmetic-geometric mean
inequality 2

3α+ 3
2β ≥ 2

√
αβ and get

2

3
(B + C) +

3

2
A ≥ 2C.

By rewriting this inequality and multiplying by 3
2 we get

the conclusion.
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