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Abstract It is known that if a twice differentiable function has a Lipschitz contin-
uous Hessian, then its gradients satisfy a Jensen-type inequality. In particular, this
inequality is Hessian-free in the sense that the Hessian does not actually appear in
the inequality. In this paper, we show that the converse holds in a generalized setting:
if a continuous function from a Hilbert space to a reflexive Banach space satisfies
such an inequality, then it is Fréchet differentiable and its derivative is Lipschitz
continuous. Our proof relies on the Baillon–Haddad theorem.

1 Introduction

Carmon et al. [3] proposed a first-order method for minimizing nonconvex functions
having Lipschitz continuous gradients and Hessians. The idea is that even if the
Hessian is not actually used, its mere Lipschitz continuity makes it possible to design
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faster first-order methods than what would be possible if the function only had
Lipschitz continuous gradients. In this vein, several algorithms have been proposed
that offer theoretical or practical improvements (e.g., [1, 5, 6, 7, 8, 10]). Among
these, Marumo and Takeda [7] proposed a first-order method that does not require
the Lipschitz constant of the Hessian as an input of the algorithm, unlike previous
methods. An important step in their analysis is establishing the following Jensen-type
inequality.

Lemma 1 (Hessian-free inequality [7, Lemma 3.1]). Let f : Rd → R be a twice
differentiable function with L-Lipschitz continuous Hessian. Then, for any x1, . . . ,xn ∈
Rd and λ1, . . . ,λn ≥ 0 such that ∑

n
i=1 λi = 1, we have∥∥∥∥∥∇ f

(
n

∑
i=1

λixi

)
−

n

∑
i=1

λi∇ f (xi)

∥∥∥∥∥≤ L
2 ∑

1≤i< j≤n
λiλ j∥xi − x j∥2. (1)

The proof of Lemma 1, naturally, uses the fact that f has a Lipschitz continuous
Hessian. However, the resulting inequality (1) is free of Hessians and only involves
the gradient of f .

A natural question then is the following:

If f is continuously differentiable and satisfies (1) for some constant L > 0, is f necessarily
twice differentiable? If so, is its Hessian L-Lipschitz continuous?

It turns out that as a consequence of the Baillon–Haddad Theorem the answer is
yes. This is somewhat surprising given the fact that (1) does not involve Hessians at
all. In fact, we will prove the following Theorem 1, a generalization of the answer to
the Hilbert space setting.

In what follows, given Banach spaces X and Y we denote the space of bounded
linear operators between X and Y by B(X ,Y ). Let X∗ denote the dual space of X , i.e.,
X∗ := B(X ,R). Also, for simplicity, throughout the paper we use the same notation
∥·∥ to indicate the norms on different Banach spaces. We recall that operator norm is
defined for T ∈ B(X ,Y ) by ∥T∥ := supx∈X ,∥x∥≤1∥T (x)∥.

Theorem 1. Let X and Y be real Hilbert and reflexive Banach spaces, respectively.
Let F : X → Y be a continuous function and let L > 0. Then the following are
equivalent:

(i) F is Fréchet differentiable on X and its derivative F ′ : X → B(X ,Y ) is L-
Lipschitz continuous, i.e.,∥∥F ′(x)−F ′(y)

∥∥≤ L∥x− y∥ ∀x,y ∈ X ,

where the norm on the left-hand side is the operator norm.
(ii) For any x1, . . . ,xn ∈ X and λ1, . . . ,λn ≥ 0 such that ∑

n
i=1 λi = 1, the following

holds: ∥∥∥∥∥F

(
n

∑
i=1

λixi

)
−

n

∑
i=1

λiF(xi)

∥∥∥∥∥≤ L
2 ∑

1≤i< j≤n
λiλ j∥xi − x j∥2. (2)
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The proof of (i) =⇒ (ii) is essentially the same as that of Lemma 1, since the
proof in [7] does not rely on the assumptions X =Y =Rd and F = ∇ f . In this paper,
we focus on the converse implication (ii) =⇒ (i).

Setting X = Y = Rd and F = ∇ f establishes the converse of Lemma 1. Slightly
more generally, the following result holds.

Corollary 1. Let X be a real Hilbert space and let f : X → R be a Fréchet differ-
entiable function such that its gradient ∇ f satisfies (1) for every x1, . . . ,xn ∈ X and
λ1, . . . ,λn ≥ 0 such that ∑

n
i=1 λi = 1. Then, f is twice differentiable with L-Lipschitz

continuous Hessian.

2 Proof of the Theorem

We start with a result that is contained in the enhanced version of the Baillon–Haddad
Theorem described by Bauschke and Combettes in [2].

Theorem 2 (A piece of the Baillon–Haddad Theorem [2, Theorem 2.1]). Let X
be a real Hilbert space. Let β > 0 and suppose that g : X → R∪{+∞} is a proper,
convex and lower semicontinuous function. Then the following are equivalent:

(i) g takes only real values, it is Fréchet differentiable on X and its gradient
∇g : X → X is 1

β
-cocoercive1;

(ii) β

2 ∥·∥
2 −g is convex.

We will prove Theorem 1 by reducing it to the case Y = R through the following
lemma.

Lemma 2. Let X and Y be real Hilbert and Banach spaces, respectively. Let F : X →
Y be a continuous function. Let L> 0 and suppose that (2) holds for any x1, . . . ,xn ∈X
and λ1, . . . ,λn ≥ 0 such that ∑

n
i=1 λi = 1. For each y∗ ∈Y ∗, define the slice φy∗ : X →

R by φy∗ := y∗ ◦F, i.e.,

φy∗(x) = y∗(F(x)) ∀x ∈ X . (3)

Then, for each y∗ ∈ Y ∗ with ∥y∗∥ ≤ 1, the function φy∗ is Fréchet differentiable
everywhere and its gradient ∇φy∗ : X → X is L-Lipschitz continuous.

Proof. Inequality (2) gives for any x,y ∈ X and t ∈ [0,1]

∥F(x+ t(y− x))− (1− t)F(x)− tF(y)∥ ≤ L
2

t(1− t)∥x− y∥2. (4)

For every x,y ∈ X and t ∈ [0,1], we have

1 G : X → X is 1
β

-cocoercive if ⟨G(x)−G(y),x− y⟩ ≥ 1
β
∥G(x)−G(y)∥2 for all x,y ∈ X .
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∣∣

=
∣∣∣y∗(F(x+ t(y− x))− (1− t)F(x)− tF(y)

)∣∣∣ (by the definition (3) of φy∗ )

≤ ∥F(x+ t(y− x))− (1− t)F(x)− tF(y)∥ (by ∥y∗∥ ≤ 1)

≤ L
2

t(1− t)∥x− y∥2, (by (4))

which implies that

−L
2

t(1−t)∥x−y∥2 ≤ φy∗(x+t(y−x))−(1−t)φy∗(x)−tφy∗(y)≤
L
2

t(1−t)∥x−y∥2.

(5)
The first and second inequalities in (5), together with the identity

t(1− t)∥x− y∥2 = (1− t)∥x∥2 + t∥y∥2 −∥x+ t(y− x)∥2,

imply that L
2∥·∥

2 −φy∗ and L
2∥·∥

2 +φy∗ are convex, respectively.
In particular, we have

L∥·∥2 −
(

L
2
∥·∥2 +φy∗

)
︸ ︷︷ ︸

convex

=
L
2
∥·∥2 −φy∗︸ ︷︷ ︸

convex

.

By Theorem 2, L
2∥·∥

2 + φy∗ is Fréchet differentiable on X and ∇(L
2∥·∥

2 + φy∗) is
1

2L -cocoercive. In particular, φy∗ is Fréchet differentiable on X . The cocoercivity of
∇(L

2∥·∥
2 +φy∗) implies that

〈
L(x− y)+∇φy∗(x)−∇φy∗(y),x− y

〉
≥ 1

2L

∥∥L(x− y)+∇φy∗(x)−∇φy∗(y)
∥∥2

for all x,y ∈ X . Expanding both sides and rearranging terms yields ∥∇φy∗(x)−
∇φy∗(y)∥2 ≤ L2∥x− y∥2, which proves that ∇φy∗ is L-Lipschitz continuous.

The biggest hurdle in proving Theorem 1 is establishing the Fréchet differentiabil-
ity of F . If Y were finite-dimensional, say, Y = Rd , we would have F = (F1, . . . ,Fd)
for certain functions Fi : X → R. These Fi are, of course, the slices of F defined by
the usual unit vectors of Rd . Then, Lemma 2 would imply that all the Fi have an
L-Lipschitz derivative from which we would conclude the Fréchet differentiability
of F through elementary means. The case where Y is infinite-dimensional is more
delicate as it takes more effort to establish that F is indeed Fréchet differentiable by
analyzing its slices, as shown in the proof of the following lemma.

Lemma 3. Let X and Y be real Banach spaces and suppose that Y is reflexive. Let
F : X → Y be a continuous function and let L > 0. For each y∗ ∈ Y ∗ with ∥y∗∥ ≤ 1,
suppose that the slice φy∗ : X → R defined by (3) is Fréchet differentiable and its
derivative φ ′

y∗ : X → X∗ is L-Lipschitz continuous. Then, F is Fréchet differentiable
and its derivative F ′ : X → B(X ,Y ) is L-Lipschitz continuous.
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Note that, to make the statement more general, X is not assumed to be a Hilbert
space; rather, it is only assumed to be a Banach space, unlike in Lemma 2. Therefore,
we use the derivative φ ′

y∗ : X → X∗ in place of the gradient ∇φy∗ : X → X in this
lemma.

Proof (Proof of Lemma 3). By the Lipschitz continuity of φ ′
y∗ , for every x,h ∈ X and

y∗ ∈ Y ∗ with ∥y∗∥ ≤ 1, we have∣∣∣φy∗(x+h)−φy∗(x)−φ
′
y∗(x)h

∣∣∣≤ L
2
∥h∥2. (6)

The proof is divided into three parts:

(1) showing that for each x ∈ X , the map y∗ 7→ φ ′
y∗(x) is a bounded linear map from

Y ∗ to X∗,
(2) constructing the Fréchet derivative of F using the reflexivity of Y , and
(3) showing that the derivative is L-Lipschitz continuous.

(1) Linearity and boundedness of y∗ 7→ φ ′
y∗(x) for every x ∈ X .

Fix x ∈ X arbitrarily. The map y∗ 7→ φy∗(x) is linear by the definition (3), hence
y∗ 7→ φ ′

y∗(x) is a linear map between Y ∗ and X∗.
Next, we show the boundedness. The continuity of F at x implies that there exists

δ > 0 such that for each h ∈ X with ∥h∥ ≤ δ it holds

∥F(x+h)−F(x)∥ ≤ 1. (7)

Thus, for each y∗ ∈ Y ∗ with ∥y∗∥ ≤ 1, we have∥∥φ
′
y∗(x)

∥∥= 1
δ

sup
∥h∥≤δ

∣∣φ ′
y∗(x)h

∣∣
≤ 1

δ
sup

∥h∥≤δ

(∣∣φy∗(x+h)−φy∗(x)
∣∣+ L

2
∥h∥2

)
(by (6))

≤ 1
δ

sup
∥h∥≤δ

(
∥F(x+h)−F(x)∥+ L

2
∥h∥2

)
(by the definition (3) of φy∗

and ∥y∗∥ ≤ 1)

≤ 1
δ
+

L
2

δ , (by (7))

which proves the boundedness of y∗ 7→ φ ′
y∗(x).

(2) Constructing the Fréchet derivative of F .

We have shown that for each x ∈ X , the map y∗ 7→ φ ′
y∗(x) is a bounded linear map

between Y ∗ and X∗. Therefore, for each x,h ∈ X , the map y∗ 7→ φ ′
y∗(x)h is an element
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of Y ∗∗. The reflexivity of Y implies that for each x,h ∈ X , there exists a unique
fx(h) ∈ Y such that

y∗( fx(h)) = φ
′
y∗(x)h ∀y∗ ∈ Y ∗. (8)

We will show that fx : X → Y (i.e., h 7→ fx(h)) is the Fréchet derivative of F at
x. Let Y ∗

1 := {y∗ ∈ Y ∗ | ∥y∗∥ ≤ 1}. The Hahn–Banach theorem implies that for any
y ∈ Y we have

∥y∥= sup
y∗∈Y ∗

1

y∗(y), (9)

see [4, Corollary 6.7]. Thus, for each x,h ∈ X , we have

∥F(x+h)−F(x)− fx(h)∥

= sup
y∗∈Y ∗

1

y∗
(

F(x+h)−F(x)− fx(h)
)

(by (9))

= sup
y∗∈Y ∗

1

(
φy∗(x+h)−φy∗(x)−φ

′
y∗(x)h

)
(by (3) and (8))

≤ L
2
∥h∥2 = o(∥h∥). (by (6))

It remains to show that for each x ∈ X the map h 7→ fx(h) is linear and bounded.
Fix x ∈ X arbitrarily. Eq. (8) implies that for each h1,h2 ∈ X and y∗ ∈ Y ∗

y∗
(

fx(h1 +h2)− fx(h1)− fx(h2)
)
= φ

′
y∗(x)(h1 +h2)−φ

′
y∗(x)h1 −φ

′
y∗(x)h2 = 0,

and hence fx(h1 + h2) = fx(h1)+ fx(h2). Similarly we have fx(αh) = α fx(h) for
each α ∈ R. Therefore, the map h 7→ fx(h) is linear. We next show the boundedness.
For each h ∈ X , we have

∥ fx(h)∥= sup
y∗∈Y ∗

1

y∗( fx(h)) (by (9))

= sup
y∗∈Y ∗

1

φ
′
y∗(x)h (by (8))

≤ ∥h∥ sup
y∗∈Y ∗

1

∥φ
′
y∗(x)∥.

Since the boundedness of y∗ 7→ φ ′
y∗(x) was shown in the first part of this proof, the

map h 7→ fx(h) is bounded as well.

(3) Lipschitz continuity of the derivative.

The Lipschitz continuity of x 7→ fx follows from the Lipschitz continuity of φ ′
y∗ .

Indeed, for each x,y ∈ X it holds
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∥∥= sup

∥h∥≤1, y∗∈Y ∗
1

y∗( fx(h)− fy(h)) (by (9))

= sup
∥h∥≤1, y∗∈Y ∗

1

(
φ
′
y∗(x)−φ

′
y∗(y)

)
h (by (8))

= sup
y∗∈Y ∗

1

∥∥φ
′
y∗(x)−φ

′
y∗(y)

∥∥
≤ L∥x− y∥, (by the Lipschitz continuity of φ

′
y∗ )

which completes the proof.

Theorem 1 directly follows from Lemmas 2 and 3 as shown below.

Proof (Proof of (ii) =⇒ (i) in Theorem 1). Let F : X → Y be a continuous function
satisfying (2). By Lemma 2, for each y∗ ∈ Y ∗ with ∥y∗∥ ≤ 1, the slice φy∗ has an
L-Lipschitz continuous gradient ∇φy∗ . By Lemma 3, F also has an L-Lipschitz
continuous derivative F ′.

3 Final remarks

In the proof of (ii) =⇒ (i) in Theorem 1, only the case n = 2 of (2) is used.
As usual, it may be interesting to see if Theorem 1 can be further extended to more

general settings. This would require some extension of Theorem 2, which may be
nontrivial, see [9] for some discussion along these lines. Another source of difficulty
is the fact that ∥·∥2 is not ensured to be differentiable in an arbitrary normed vector
space.
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