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Abstract

In this paper, we introduce, in a Hilbert space setting, a second order dynamical system with asymptotically
vanishing damping and vanishing Tikhonov regularization that approaches a multiobjective optimization
problem with convex and differentiable components of the objective function. Trajectory solutions are
shown to exist in finite dimensions. We prove fast convergence of the function values, quantified in terms
of a merit function. Based on the regime considered, we establish both weak and, in some cases, strong
convergence of trajectory solutions towards a weak Pareto optimal point. To achieve this, we apply Tikhonov
regularization individually to each component of the objective function. Furthermore, we conduct numerical
experiments to validate the theoretical results and investigate the qualitative behavior of the dynamical
system. This work extends results from convex single objective optimization into the multiobjective setting.
The results presented in this paper lay the groundwork for the development of fast gradient and proximal
point methods in multiobjective optimization, offering strong convergence guarantees.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and induced norm ||-||. Consider the problem
fi(z)
in F'(x) := : MOP
min (2) : , (MOP)
fm ()
with f; : H - R,i=1,...,m, convex and continuously differentiable functions. In this paper we study the

multiobjective Tikhonov regularized inertial gradient system assigned to (MOP) which is defined on [ty, +00)
by

a .

t?x(t) + PIOJc (o (1)) + & o(t)+i (1) (0) =0, (MTRIGS)
where tg > 0, a, 8 > 0 and ¢ € (0,1], p € (0,2] and C(x) := conv ({Vfi(x) : i =1,...,m}), with initial
data x(tg) = xo € H and @(tg) = vo € H. Here, conv(-) denotes the convex hull of a set, and projj :
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H — H, projk(z) = argmin, ¢k |ly — x|, denotes the projection operator onto a nonempty, convex and
closed set K C H. The development of the system (MTRIGS) is motivated by the recent research on
fast continuous gradient dynamics for single objective optimization problems with convex and differentiable
objective functions. In the latter case, namely, when m = 1 and f := f; in (MOP), the system (MTRIGS)
reduces to the Tikhonov reqularized inertial gradient system

() + %zis(t) + Vf(z(t)) + tépx(t) =0, (TRIGS)
which has recently been extensively studied in the literature (see [1, 2, 3]). Assuming that argmin f, the
set of global minimizers of f, is not empty, if, for instance, p € (0,2), ¢ € (0,1) and p < ¢ + 1, then
for the trajectory solution z(-) of (TRIGS) it holds f(z(t)) — min f = O (¢?) as t — 400, where min f
denotes the minimal objective value of f. Thus, a convergence rate arbitrary close to O (t_2) can be
obtained. Additionally, the trajectory solution converges strongly to the element with the minimum norm
in argmin f, that is, () — Proj.g min (0) as t — +oo.

On the other hand, (MTRIGS) is related to the multiobjective inertial gradient system with asymptotic
vanishing damping

a. .
;x(t) + Projo(a())4it)(0) = 0, (MAVD)

with @ > 3, which was introduced in [4] and further studied in [5]. The system (MAVD) builds on the
inertial multiobjective gradient system

yi(t) + prOjC(x(t))Jri(t)(O) =0, (IMOG?)

with v > 0, which has been examined in [4] and naturally extends the heavy ball with friction dynamical
system

E(t) + (1) + Vf(x(t) =0, (HBF)

studied in [6, 7, 8] in the context of single objective optimization. As shown in [4], (IMOG’) has theoretical
advantages over the dynamical system

E(t) +y&(t) + Projesy) = 0, (IMOG)

which was introduced in [9] as the first multiobjective gradient-like dynamical system featuring an inertial
term. As the asymptotic analysis of (IMOG) requires the condition 42 > L, where L is a joint Lipschitz
constant of the gradients of the components of the objective function, it is unclear whether (IMOG) can
be adapted to systems with asymptotic vanishing damping, i.e., obtained by replacing v by . In [5], it is
shown that the merit function

p:H—-R, z—px)=sup min fi(x)— fi(2), (1.1)
2eH =1,...m
exhibits fast convergence along the trajectory solutions of (MAVD), namely, p(x(t)) = O(t72) as t — +o0,
thus expressing fast convergence of the function values. In addition, for a > 3, the trajectory solutions z(-)
of (MAVD) weakly converge to a weak Pareto optimal points of (MOP). In the single objective case, when
m =1 and f := fi, the system (MAVD) reduces to the celebrated inertial gradient system with asymptotic
vanishing damping

(1) + %:i:(t) YV f(a(t) =0, (AVD)

which was introduced in [10] as the continuous counterpart of Nesterov’s accelerated gradient method [11].
The system (AVD) has further been studied in several papers, including [12, 13, 14, 15]. It holds that
f(z(t)) —min f = O(t~2) as t — +oo and, for a > 3, the trajectory solutions weakly converge to a global
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minimizer of f, provided that argmin f is not empty. Due to its convergence properties, (MAVD) is the
natural counterpart of (AVD) when considering multiobjective optimization problems.

The dynamical system (TRIGS) enhances the asymptotic properties of (AVD) by ensuring, depending on
the chosen regime, weak and even strong convergence of the trajectory to the minimum norm solution, while
retaining the rapid convergence of function values. The dynamical system (MTRIGS) we introduce in this
paper aims to provide a similar improvement over (MAVD) in the context of multiobjective optimization.
The main results regarding the asymptotic behavior (MTRIGS) obtained in this paper are summarized in
Table 1. In principal, we obtain convergence rates for the function values which can be arbitrarily close to
O(t%) ast — +o0o. Furthermore, for p € (0,2), ¢ € (0,1) and p < g+1 the trajectory solution z(-) converges
strongly to a weak Pareto optimal solution which has the minimal norm in the set (2, £ (f;, f7°) C Pu,
with f2° = lmy_, 1o fi(x(2)), L (fi, f2°) the lower level set of f; with respect to f° for i =1,...,m, and
P, the set of weak Pareto optimal solutions of (MOP). For p € (0,2), ¢ € (0,1) and p > ¢ + 1, we show
that the trajectory converges weakly to a weak Pareto optimal solution. The case p = g+ 1 is critical, as it
seems that convergence results for the trajectories cannot be obtained. In addition, we treat some boundary
cases for the parameters p and ¢, which require additional conditions on the parameters o and .

Conditions on
g3

pe(0,2,2g<p | O(t%) O (t79) 01) - Thm. 4.6

max(q,p—q)=(p+1) max(g,p—g)—1 strong Thm. 4.7,
0 (t ’ ) 0 (t ’ ) convergence | Thm. 4.8

p(a(t)) @)l () - =(0)] (1) Theorem

qe(0,1),p<qg+1| O(tP)

g=1,a>3 O (t7P) O(t %) o (1) - Thm. 4.9

_ Thm. 4.6

O(t79), weak !
pe(1,2),q+1<p | Ot | oo ./ \yo O (1) Thm. 4.11,
fto sl|2(s)]|* < +o0 convergence | 4, 0«

_ Thm. 4.6

= O (t ¢ , )
q ; (>0,q1()1, P q)Q, O (t~29) [ sllc’vES)llg . O (1) Conle%l;nce Thm. 4.12,
- to Thm. 4.16

Table 1: Summary of main asymptotic results for (MTRIGS). The function z(-) is the generalized regularization path, that
will be introduced in Section 2. The merit function ¢(-) measures the decay of the function values and gets introduced in
Subsection 1.1. All results have to be understood asymptotically, i.e., as t — +oo0.

To this end, we extend the concept of Tikhonov regularization, initially developed in order to handle ill-
posed integral equations in [16, 17], to multiobjective optimization. The Tikhonov regularization of a convex
optimization problem

min f(x
min f(z)
reads
min f(x) + = ||
rEH 2 ’
where € > 0 is a positive constant. Denoting for all € > 0 its unique minimizer by

. 1>
7 = argmin { f(2) + S [lo]*}
TxEH

it holds that x. converges strongly to proj,,emin £(0) as € — 0, given argmin f # §. The set {z. : € > 0}
forms a smooth curve called regularization path. This is one of the key ingredients used to prove the strong
convergence of the trajectory solution of (TRIGS) to the element of minimum norm in argmin f. To extend
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this approach to the multiobjective optimization setting, we need to define an appropriate generalization of
the regularization path. Although there are a few studies addressing Tikhonov regularization in multiob-
jective optimization (see [18, 19, 20, 21]), these works are limited to the finite dimensional case and impose
stringent assumptions, such as the compactness of the set of weak Pareto optima. Furthermore, these studies
do not address whether a Pareto optimum with the minimum norm is achieved and are thus not suitable
for our convergence analysis.

Therefore, given a regularization function £(-) and a solution z(-) to (MTRIGS), we define the generalized
regularization path for our problem as

£(

2(t) := arg min _max fi(z) = fi(z(¥)) + Tt)||z||2 (1.2)
zen  i=lem

The optimization problem in (1.2) can be seen as a regularization of an adaptive Pascoletti-Serafini scalar-
ization of (MOP) (see [22]). It will turn out that z(-) strongly converges to the weak Pareto optimal point
of (MOP) with minimal norm in a particular lower level set of the objective function. This result will
allow us to conclude that the trajectory solutions z(-) of (MTRIGS) strongly converges to the same weak
Pareto optimal point of (MOP). These investigations lay the groundwork for developing fast gradient and
proximal point methods in multiobjective optimization with strong convergence guarantees for the iterates.
This parallels recent advances in single objective optimization [3, 23, 24, 25, 26, 27].

The paper is organized as follows. In the remainder of this section, we summarize the basic definitions of
multiobjective optimization and introduce the standing assumptions for this study. Section 2 is dedicated
to Tikhonov regularization. We discuss the single objective case, provide a brief overview of existing work
for the multiobjective setting, and prove the strong convergence of the generalized regularization path
to the weak Pareto optimal point of (MOP) with minimal norm in a particular lower level set of the
objective function. Section 3 formally introduces the system (MTRIGS), where we prove the existence of
solutions in finite dimensions, discuss uniqueness, and gather preliminary results on the trajectories. Section
4 contains the asymptotic analysis of solutions of (MTRIGS). The main results of this section concern the
fast convergence rate of the function values in terms of the merit function and the strong convergence of the
trajectory solutions. We conclude our work in Section 6 and propose possible directions for future research.

1.1. Pareto optimality and merit function

The notions of optimality under consideration for the multiobjective optimization problem (MOP) are
introduced below.

Definition 1.1. i) An element x* € H is called Pareto optimal for (MOP) if there does not exist x € H
such that fi(x) < fi(z*) for alli=1,...,m and f;(x) < f;j(z*) for at least one j =1,...,m. The set
of Pareto optimal points is called the Pareto set, and will be denoted by P.

it) An element x* € H is called weak Pareto optimal if there does not exist x € H such that f;(x) < fi(z*)
foralli=1,...,m. The set of all weak Pareto optimal points is called the weak Pareto set, and will
be denoted by P, .

Obviously, every Pareto optimal element is weak Pareto optimal. The following definition extends the
concept of a level set to vector valued functions.

Definition 1.2. Let F : H — R™, F(z) = (f1(2),..., fm(2))" be a vector valued function, and a € R™.
i) We define
L(F,a)={xeH: Flz)Sa}= ﬂ{xe?—l : fi(z) < ag},
i=1

where “<7 denotes the partial order on R™ induced by RY'. For a,b € R™ it holds a = b if and only if
a; <b; foralli=1,...,m.
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i1) We denote

LPy(F,a) = L(F,a) N Py.

In addition to proving strong convergence for the trajectory solutions of (MTRIGS), we are interested in
quantifying the speed of convergence in terms of the objective function values. In multiobjective optimiza-
tion, a useful and meaningful notion used for this purpose (see [4, 5, 28, 29, 30, 31, 32, 33]) is the merit
function ¢ : H — R, x = p(x) = sup,cy ming—1,..m fi(z) — fi(2), see (1.1). The following result, given in
[30, Theorem 3.1], gives a complete description of the set of weak Pareto optimal points of (MOP).

Theorem 1.3. Let ¢(-) be defined by (1.1). For all x € H it holds that p(x) > 0. Furthermore, v € H is a
weak Pareto optimal element for (MOP) if and only if o(x) = 0.

Since f; is weakly lower semicontinuous for ¢ = 1,...,m, the function « — min;—1 __,, fi(z)— fi(2) is weakly
lower semicontinuous for every z € H and therefore ¢(-) is also weakly lower semicontinuous. This means
that every weak accumulation point of a trajectory z(-) that satisfies lim;_, o @(2(t)) = 0 is weakly Pareto
optimal. In the single objective case, i.e., for m = 1 and f; := f, it holds ¢(x) = f(z) — inf.ey f(2)
for all x € H. This provides another justification for using ¢(-) as a measure of the convergence speed
in multiobjective optimization. One should also note that, even if all objective functions are smooth, the
function ¢(-) is not smooth in general. The following lemma provides a useful characterization of ¢(-).

Lemma 1.4. For zy € H and a € R, assume that LP,(F, F(x)) # 0 holds for all x € L(F,F(x) + a).
Then,

o(z) = sup “min  fi(z) — fi(z) Vxe L(F,F(zo)+ a).
2ELPy (F,F(zg)+a) i=1,....,m

Proof. Let x € L(F, F(xo) + a) be fixed. Obviously,

wp min fi@)— f(2) < swpmin i) — £i(2) = p(a). (1.3
2ELP (F,F(z0)+a) i=1,....m zeH t=1,....m

Next, we show that minj—1, . fi(z) — fi(2) < SuP.icr(p p(e)) Mitiz1,..m fi(x) — fi(z) holds for all = € H.
We assume that there exists z ¢ L(F, F/(z)) with mini—1 . fi(2) = fi(2) > SUD,/cp(p pz)) Mii=1,..m fi(T)—
fi(#"). Since z & L(F, F(x)), there exists j € {1,...,m} with f;(z) > f;(z). Therefore
0> min fi@) = (=)= s min file) - Fi(z) 20,
i=1,...,m Lm

2/ €L(F,F(z)) =17

which leads to a contradiction. Hence,

sup min fi(z) — fi(z) < sup ~min  f;(x) — fi(2). (1.4)
2eH =1,...m 2€L(F,F(z)) i=1,...,m

Next, we show that sup,c,(r ) Mini=1,...m fi(®) = fi(2) < SUp.erp, (F p(x)) Mili=1,...m fi(T) — fi(2).
By assumption, for all z € L(F,F(z)) there exists 2/ € LP,(F,F(z)) C LP,(F,F(x)). Since 2’ €
LP,(F,F(2))), it holds f;(2') < fi(z) for all i = 1,..., m, hence

“min  fi(z) — fi(z) £ min  fi(x) — f;(2). (1.5)
i=1,....,m i=1,...,m
From (1.5), we conclude
sup ~min  fi(x) — fi(2) < sup ~min  fi(x) — fi(2). (1.6)
2€L(F,F(x)) =1m 2E€LP, (F,F(z)) =1mm
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Since z € L(F, F(xo) + a), we have LP,,(F, F(x)) C LPy(F, F(x¢) + a), hence

sup ~min  fi(x) — fi(2) < sup ~min  fi(x) — fi(2). (1.7)
2E€LPy (F,F(x)) =L m 2E€LP (F,F(20)+a) =L

Combining (1.4), (1.6) and (1.7), it yields

o) < sup ~min_ fi(z) — fi(2), (1.8)
2ELP Y (F,F(z0)+a) ©=1-m

which proves the statement. O

1.2. Assumptions

The research presented in this paper is conducted within the context of the following standing assumptions,
which apply throughout the paper.

(A1) The component functions f; : H — R, ¢ = 1,...,m, are convex and continuously differentiable with
Lipschitz continuous gradients.
(Az) Given the initial data tg > 0 and zg,v9 € H, define a € R™ with a; = %onﬂz + %H’U(J”Q for
0

i=1,...,m. For all z € L(F, F(x¢) + a) it holds that LP,,(F, F(z)) # 0 and further

R = sup inf |z < +oo. (1.9)
F*€F(LPy(F,F(z0)+a)) 2€FT({F*})

(Asz) The set S(q) == argmin,cy max;—1,. . m fi(2) — ¢ # 0 is nonempty for all ¢ € R™ and the mapping
zo : R™ — M, ¢ = projg(y)(0), is continuous.

1.2.1. Discussion of assumption (Asz)

The assumption (As) is in the spirit of a hypothesis used in the literature (see [4, 5, 28, 29, 30, 31]) in
the asymptotic analysis of continuous and discrete time gradient methods for multiobjective optimization.
There, the assumption is formulated only for ¢ = 0, which is recovered in our setting if we restrict the
initial conditions to xg = vg = 0. For arbitrary initial conditions, our analysis requires the assumption to
hold for a € R by a; := %Hx(to)ﬂ + |&(to)[[* > 0 for i = 1,...,m, as for this choice of a, the solutions
of (MTRIGS) can be shown to remain in £(F, F(x(to)) + a). This expansion of the level set is necessary
because of the additional Tikhonov regularization which can produce trajectories that leave the initial level
set L(F, F(z(tg))). We visualize (A3) in Figure 1, which shows the schematic image space for an (MOP) with
two objective functions. Given an initial point o € H and a € R™ from (Ag), the set F(LPy,(F (zo) + a))
is shown in blue. For all function values F* € F(LP,(F(xo) + a)) the constant R gives a uniform bound
on the minimum norm element in the preimage F~!({F*}). For the single objective case (m = 1) this
assumption is naturally satisfied if a solution to the optimization problem exists.

1.2.2. Discussion of assumption (As3)

We need assumption (As) to show the strong convergence of the generalized regularization path for multiob-
jective optimization problems. We illustrate the necessity of this assumption with an example in Section 2.
In the following we show that the continuity of the projection g = zo(q) = projg(,)(0) is closely connected
with the continuity of the set-valued map (see [34, 35, 36, 37, 38, 39] for related discussions)

S:R™=H, g+ S(q):=argmin max fi(z) — qi-
zeH  i=l.m

To this end, we recall the notion of Mosco convergence (see [34]).

Definition 1.5. Let {Ck}kzo,C'* C H be nonempty, convexr and closed sets. We say that the sequence
{C*}k>0 is Mosco convergent to C* if
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F(LPy(F, F(xg) + a))l

f

Figure 1: Visualization of (A2) with a trajectory x(¢) € LPw (F, F(z0) + a).

i) for any x* € C* there exists {x*}y>0 with x* — x* such that 2% € C* for all k > 0;
ii) for any sequence {ki}i>0 C N with z¥ € C* for all | > 0 such that 2" — z* as | — +oo, it holds
x* e C*.

Here we use — to denote strong convergence and — to denote weak convergence. The following theorem
can be used to derive the continuity of zo(-) from the Mosco continuity of S(-). We recall that a set-valued
map S(+) is said to be Mosco continuous if for all ¢* € R™ and any sequence {¢*}r>o C R™ with ¢* — ¢*
the sequence {S(¢*)}x>0 is Mosco convergent to S(q*).

Theorem 1.6. (/34, Sonntag-Attouch Theorem]) Let {C*}r>0,C* C H be nonempty, conver and closed
sets. The following statements are equivalent:

i) {C*¥}k>0 is Mosco convergent to C*;

ii) {C*}r>o is Wijsman convergent to C*, i.e., for all x € H, it holds limy_, 1 dist(x, C%) = dist(z, C*);
iii) for all x € H, it holds limg_, 4 oo Projox (z) = projeos ().
The following proposition shows that for all ¢* € R™ and for any sequence {¢* >0 € R™ with @ = ¢,
condition i) in the definition of the Mosco convergence of {S(¢*)}x>0 to S(g*) is always fulfilled.

Proposition 1.7. Let ¢* € R™ and {¢"}k>0 C R™ be a sequence with ¢* — ¢* as k — +oo. Let
{2F}k>0 € H be a sequence with z* € S(¢*) for all k > 0 such that 2% — 2* € H as k — +oo. Then,
x* € S(q*).

Proof. We show that
max filx®) —qf < _mnax fi(z) —qf VzeH.

Let z € H be arbitrary. We use the weak lower semicontinuity of max;—; . m fi(:) — ¢ to conclude

max fi(z*) —¢f <liminf max f;(z*) — ¢ <liminf ( max f;(z*) — ¢F + max ¢ — qf)
i=1,....m k—+o00 i=1,....m k—+oo \i=1,....m i=1,....m
=liminf ma (2F) — ¢F <liminf ma (2) —qF
klﬁioo i:l,..?fmfl( ) - < k—+o00 i:l,..?fmfl( )~

<liminf( max fi(z) —¢f + max ¢ — qf) = max fi(z) —q;.
7 i=1,....m m

k—+oo \i=1,....m i=1,...,

Hence z* € S(q*), which completes the proof. O
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The condition i) in the definition of the Mosco convergence of {S(g*)}x>0 to S(¢g*) when ¢* — ¢* as
k — 400 does not hold in general, but can be show to be satisfied under various circumstances. One of
these is when the function z — max;—1,._ fi(x) —¢; exhibits a growth property uniformly for ¢ € R™ along
approximating sequences.

Definition 1.8. (growth property uniformly along approzimating sequences) Assume S(q) # O for all q €
R™. We say that the function x — max;—1,._m, fi(x) — ¢; satisfies the growth property uniformly along
approximating sequences if for all ¢* € R™ there exists a strictly increasing function ¢ : [0, +00) — [0, +00)
with 1 (0) = 0 such that for all sequences {q¢*}r>0 C R™ with ¢* — ¢* as k — +oo it holds

_nax fi(z®) — gF — 12% _max fi(z) —qf > o (dist(z*, S(¢¥))) Va* € S(¢*) Vk > 0.
i=1,....,m z i=1,....,m

X

The following lemma states the Lipschitz continuity of the optimal value function arising in the definition
of the set-valued map S(-).

Lemma 1.9. Assume S(q) # 0 for all ¢ € R™. Then, the optimal value function

v:R™ =R, ¢g—ov(g) = inf max fi(z)—q,
z€ 1,....m

i=1,
is Lipschitz continuous.

Proof. Let q',q?> € R™ and choose x! € S(q') and 22 € S(¢?). It holds

v(g') = max fi(z')—q; < max fi(2?)—q]

i=1,...om" 77 T q=1,..,

< max fi(a%) =g+ max ¢ —gq <v(¢*)+ g’ — ¢lleo

i=1,...,m

Analogously,

v(¢?) < v(g") + lld" = @ lloos
thus,
w(g") —v(@®)] < ll¢" = ¢ |loo-
O

The next theorem shows that the uniform growth property indeed guarantees that for all ¢* € R™ and
for any sequence {¢"}r>0 C R™ with ¢* — ¢*, the sequence {S(¢")}r>0 is Mosco convergent to S(g*).
Therefore, in the light of Theorem 1.6, assumption (Asg) is fulfilled.

Theorem 1.10. Assume S(q) # 0 for all ¢ € R™ and that x — max;—1,_._m [i(x) — ¢; satisfies the growth
property uniformly along approximating sequences. Let ¢* € R™ and {qk}kzo C R™ be a sequence with
q* — q* as k — +o0o. Then, {S(q")}r>0 is Mosco convergent to S(q*).

Proof. Condition i) in Definition 1.5 is satisfied according to Proposition 1.7. We prove by contradiction
that condition i) is also satisfied. Let z* € S(¢*) be such that for any sequence {z¥};>¢ with z* € S(¢*)
for all £ > 0, it holds xk /4 x* as k — +oo. Hence, there exist § > 0 and a subsequence {k;};>0 € N such
that dist(z*, S(¢*)) > § for all [ > 0. We use the growth property to conclude

_max filx™) — qf’ — inf max f;(z)— qf’ > (dist(x*,S(qk’))) >¢9(6) >0 VI>0,

i=1,...,m zeH i=1,....m

which yields

We let [ — +o00 and use ¢¥ — ¢* and the continuity of the optimal value function to derive a contradiction.
O
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Remark 1.11. For the analysis presented in this paper, a weaker version of assumption (Asz) would suffice.
In fact, continuity of the mapping

zo :R™ = H, g+ z9(q) = projg4)(0),

is not required at all points ¢ € R™, but only at those ¢ € F(H). Nonetheless, for the sake of notational
simplicity, we adopt the stronger version stated in (Asg).

2. Tikhonov regularization for multiobjective optimization

In this section we extend the concept of Tikhonov regularization from single objective to multiobjective
optimization and study the properties of the associated regularization path. The obtained results will play
a crucial role in the asymptotic analysis we perform in the following sections for (MTRIGS).

A fundamental concept in the study of Tikhonov regularization when minimizing a convex and differentiable
function f : H — R, is the regularization path. This path, defined as {z. : € > 0}, is a smooth and bounded
curve where each z. is the unique minimizer of f + 5[|-|*. As & = 0, it holds zc — Proj, g min s(0) (see, for
instance, [40, Theorem 27.23]). The regularization path is crucial in the asymptotic analysis conducted in
[1] for (TRIGS), where the convergence of the trajectory solution z(-) to the minimum norm solution was
demonstrated by showing that lim; 4 oo ||2(t) — 2-(+)|| = 0. We aim to extend this idea to the multiobjective
setting when studying (MOP) and the dynamical system (MTRIGS).

Although the analysis presented in this section holds in a more general form for any continuously differen-
tiable function € : [tg, +00) — (0, +00) that is nonincreasing and satisfies lim;_, o €(t) = 0, we restrict the
analysis in this paper to the case e(t) = tﬁp in order to be consistent with the formulation of the system
(MTRIGS). Define for all ¢t > ¢

fra(@) F1(@) + 55 |||
min : = Z s (MOPg)
zEH : P
ft,m(x) fm( ) 2“,”1'”2
where
B

fri:H—=R, x— fi(r)+

2
x fori=1,...,m.
LA
Although the functions f; ; are strongly convex, one cannot expect (MOP 2 ) to have a unique Pareto optimal
t

solution. This necessitates a suitable concept of a regularization path. To address this, we utilize the merit
function defined in (1.1) for the regularized problem (MOP 5 ), that we define for all ¢ > ¢ as
t

el - L2 2

o : H—R, x> sup mln fri(x) — fri(2) = sup . Ilnin filz) — fi(z) +

2eH i=1,...,m 2eH i=1,...,m 2tP 2tp

The merit function can be interpreted as the Pascoletti-Serafini scalarization of the problem (MOP ) (see,

for instance, [22, Section 2.1]). Inspired by the formulation of the merit function and by the lehonov
regularization in the single objective case, we consider for all ¢ > ¢y the unique minimizer of the problem

min max fi(z) — fi(z(t)) + i

min x| 555 121° (2.2)

as an element of the regularization path, where x : [to, +00) — H is a trajectory which will be specified
later. Note that for the single objective case, namely when m = 1, we recover the classical regularization
path independent of the trajectory x(-). Since the function z — max;=1. m fi(2) — fi(z(t)) depends on ¢,
we cannot make use of the properties of the regularization path in the single objective case to characterize
the asymptotic behavior of this new path. This will be done in the following result.

9



247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Theorem 2.1. Let q : [tg, +00) — R™ be a continuous function with q(t) — ¢* € R™ as t — +o00, and

2(t) == arg min max fi(z) —aqi(t) + £||z||2 for all t > to,
zeH =1, 2tP

S(q) == arg min _max fi(2) — qi for all ¢ € R™, (2.3)
zeH  i=Ll..m

20(q) = Projg(y)(0) for all g € R™.
Then, z(t) — 2z0(q*) strongly converges as t — +00.
Proof. Let (tx)k>0 C [to,+00) be an arbitrary sequence with ¢, — 400 as k — +oco0. For all k > 0, we
denote ¢j, = ﬁ, q* = q(ty), 2F == 2(t},), and 2t == 2(¢¥). For all k > 0 it holds

Ek €k Ek
max fi(z¥) = q; + S [I28)7 < max fi(e) —af + S lleoll* < max fi(z") —ai + a7 (2.4)
i=1,...,m 2 i=1,...,m 2

i=1,...,m
hence,
k k
2% < llzo ]l (2.5)

According to assumption (As), 20(-) is continuous, consequently, {2§}1>0 is bounded. This implies that
{zk}kzo is also bounded and hence possesses a weak sequential cluster point. We show that this point is
unique, which will imply that {z¥}x>¢ is weakly convergent.

Let 2°° be an arbitrary weak sequential cluster point of {zk}kzo, and a subsequence zF — 2> as | — +00.
For all z € H it holds

“max  (f;(2*°) — ¢f) < liminf max (fz(zk’) - q:‘) + s—glﬂzklﬂz

=1,....m l—=+o00 i=1,.
- () = qt) + S (o — a)
pmint g, (A =)+ 5l e, (=

(

<liminf (i_qlaxm (£it2) = a") + 5;”42) (2.6)
(
(

=400 eees

* €k *
max (fi() =) + L=+ max (g7 - qfl))
.,m 2 i=1,....m

From here, z*° € S(g*) follows. Next, we show that z°° = zy(¢*). From the continuity of zo(-) we have
25t = 20(q") = 20(q") as | — +oo, (2.7)
and the weak lower semicontinuity of the norm gives
12790 < llmﬁﬂfllzk’ﬂ < 1lm+SuP\|2k’|| < 11m+SuP|\Zo’|| = l[20(¢")I- (2.8)

Since 2 € S(g*) and 20(¢*) = projg(4+)(0), we get 2> = 20(g*). This proves that {2*} >0 weakly converges
to zo(g*). Using again (2.8), we get

1 —
Jim |21 = flz0(a”)]|
from which we conclude that z¥ — z¢(q*) strongly converges as k — +o00. O

Remark 2.2. The continuity of zo(-) formulated in assumption (As) can be seen as a reqularity condition on
the objective functions f; fori=1,...,m. It is satisfied for convex single objective optimization problems as
long as the set of minimizers is not empty. In this setting the mapping g — 2o(q) is constant. The following
example shows that the assumption (As) is crucial for obtaining convergence of z(t) as t — +oo.
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Example 2.3. Define the functions

2

)

1 1
p:R—=>R, y— §max(y73,())2+§max(2fy,())

10?3 + 1a3, if |v1] <1, x2+1<4/1—2a2
9:RP=R, z0 9 |og|+iaf -1, if lz1] > 1, 22+1<0,
J?% + (.TQ =+ 1)2 - ('TQ + l)a 8l$€, (29)

fOR SR, e (- 1 o) + g(a),

f2:RZS R,z %(xl +1)% + ¢(22) + (),

which are all conver and differentiable with Lipschitz continuous gradients (see Appendiz C). We consider
the multiobjective optimization problem

: fi(z)
2.1
miy [ fol) | (2.10)
and the Tikhonov regqularized problem
| fil@) + 5l
. 2.11
iy | A0 el (210

Figure 2a illustrates the weak Pareto set Py, of the problem (2.10) alongside the Pareto set of the reqularized
problem (2.11) for various values of € > 0 denoted by Py. As e decreases, the weak Pareto set of (2.11)
“converges” to the weak Pareto set of (2.10). Due to the T-shape of the weak Pareto set, the edges of the
reqularized weak Pareto sets become sharper as € diminishes. For this problem the map

20:R* = R? g 20(q) = projg(y)(0),

with S(q) = argminmax (f1(2) — q1, f2(2) — q2) is not continuous everywhere. Indeed,
z€R?

20(q1,0) = (0,3) # (0,2) = proj oy xj2,3(0) = 20((0,0)) as ¢1 — 0.

We define, for to := (1920)7,

S

)

2
tP
q:[to,too) > R, t— { th } = | 2w®)+1) (tp—ﬁw(t)) -1
2

with w(t) = %ﬂwt), where > 0 is a positive scaling parameter. It holds q(t) — ¢* = (0,0)T ast — +oo.
For this example the reqularization path is given for all t > tg by

2y = |~ +1) Et;—?w) 1| cargminmax (1) - (0, o) - alt) + oI (212
wl(t z€R?

In Figure 2 (b), the regularization path z(-) given by (2.12) is depicted. One can observe that it oscil-
lates in the xa-coordinate between the values 2.25 and 2.75 as t — 400. The function z(t) does not con-
verge as t — +o0o, although all accumulation points are weak Pareto optimal and global minimizers of
max (f1(z) — qf, f2(2) — q3). The minimal norm solution zo(¢*) = (0,2) is not an accumulation point of
z(+). This example clearly shows that the continuity of zo(+) is essential to derive Theorem 2.1.

11
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294

295

lPur,l(]"—’
_'P'll/‘l(] L5

— Fw, 10!

Figure 2: Contour plots of the functions fi and f2 defined in (2.9): (a) The weak Pareto sets of (2.10) and (2.11) for
e € {1071,10715,1072,102->,10~ 3} (b) The weak Pareto set of (2.10) and the regularization path z(-) defined in (2.12)
with parameters p=1, [3 2, n=z5

We conclude this section by introducing three propositions that summarize the main properties of z(-).
Proposition 2.4. Let a € R and assume that the trajectory solution x : [to,+00) — H fulfills x(t) €
L(F, F(z(to)) + a) for all t > to. Then, the regularization path,

() = argmin_max_f(2) — fi(a(t) + &

2
z€EH i=1,...,m 9P ||2H ) fO’r all © 2 th
is bounded. Specifically, z(t) € Br(0) for all t > to, where R is defined in (Asg).

Proof. By (Ajs), it holds S(F(z(t))) == argmin max;=1,..m (fi(2) — fi(z(t))) # 0 for all ¢ > ¢;. Fix some

zEH
t > to.
From the properties of Tikhonov regularization in single objective optimization (cf. [40, Theorem 27.23]),
we know

[z <zl ¥z € S(F(2(t))). (2.13)

Next, we show that

“T{F*}) C S(x(t) VEF* € F(S(F(z(t))). (2.14)

Let F* € F(S(F(z(t))). Then, there exists z € S(F(z(t)) with F(z) = F*. Let w € F~'({F*}) then
F(w) = F(z) and hence
max fi(w) — fi(x(t)) = max fi(z) = fi(x(t)) = inf max fi(z) - fi(z(t)).

i=1,....m i=1,...,m zeH i=1,....m

This shows w € S(F(x(t)) and hence (2.14) holds. From (2.13) and (2.14) we conclude that for all F* €
F(S(F(x(t)))) we get

2@l < NIz ¥z e FTH{F"}),

12
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308

309

310

311

and hence

IOl = dnf Nzl VET € FIS(F@(0))).

Since this bound holds for all F* € F(S(F(x(t)))), we get
12N s B el = errerePis@eom! < F*eF(SSIEE“(x(t)))ZEF’iP(f{F*})”Z”. (2.15)
Next, we prove that
S(F(z(t))) C LPw(F, F(z(to)) + a). (2.16)
Let z € S(F(x(t))). Then,

Lmax fi() = fila(®) < max fila(t) ~ fi(a(t) =0,

, i=1,...,

hence
fi(2) < fil@®) < fila(to) +ai Vi=1,....m,

and therefore z € L(F, F(x(t9)) + a). Assuming that z ¢ LP,(F, F(x(tg)) + a), it follows that z ¢ P,, and
hence there exists some y € ‘H with

fily) < fi(z) for alli =1,... ,m.

Therefore,

which is a contradiction to z € S(F(z(t))). This proves inclusion (2.16). Consequently, according to (2.15)
and (2.16),

Iz < sup inf  ||z|| = R < +o0,
F*€F(LPy(F,F(z(to))+a) 2€F T ({F*})

where the upper bound R is given by (As). O

Proposition 2.5. Let q : [tg, +00) = R™ be a continuous function and

z(t) == argmin max f;(z) —¢(t) + £||z||2 for allt > to.
el i=1,..m 2tp

Then, z(-) is a continuous mapping.

Proof. We fix an arbitrary t > ¢¢ and show that z(-) is continuous (continuous from the right if ¢ = ¢¢) in ¢.
Let t € [f — K, t+ H] N [to, +00) for some k > 0. Then, by strong convexity and the minimizing properties
of z(t) and z(t), we get

max (fi(z(0) — a:(t)) + 2o 2D

i=1,...,m Zﬁtp B (217)
— max (H(2(0) = alt) — 2ol 2 2@ - 20

13
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319

320

321

322

323

324

325

326

327

and

max (fi((0) - a®) + 20

e 5 5 (2.18)
(2(F) — (D)) — =5 12(D)||? > =5 ||2(t) — 2(D)]|?
= s (GO - 6) - 25101 2 S50 - @17
respectively. Using the monotonicity of ¢ — %, (2.17) and (2.18) lead to
Jmax (i)~ @) + max (@@~ u(0) + oll=OI
Bz B ) (2.19)
- max (fi(2(t) —ait)) — 5 201" 2 m\lz(t) — 2%,
respectively,
L (Fi0) — a®) + max (a(t) — a®) + o5 =00
" T g - (2.20)
- (F0 @) - Zl=@I > il - 1
Adding (2.19) and (2.20) yields
7 L/B_B 2 N B 112
2t~ ol + 5 (35 - 5 ) (RO - OF) 2 om0 -0 22

By Proposition 2.4, the function z(-) is bounded, so by the continuity of ¢(-) the left-hand-side of (2.21)
vanishes as t — ¢. This demonstrates the continuity of z(-) in ¢. O

In the next proposition, we describe the connection between the original merit function ¢(-) and the merit
function ¢;(-) of the regularized problem. This will allow us to derive asymptotic convergence results on
o(z(t)) for t — +o00.

Proposition 2.6. Let a € R be the vector introduced in assumption (Az) and assume that  : [to, +00) —

H fulfills x(t) € L(F, F(z(to)) + a) for allt > ty. We define

z(t) = argmin max f;(z) — fi(z(t)) + £||z||2 for all t > to.
zeH i=l,...,m 2tp

Then, the following statements hold:

i) For allt >ty and ally € H

min f(e(0) ~ fiy) S min ua(o(0) ~ fual0) + 2ol

1=1,..., 2tp
hence
BR?
Plalt) < pula(t) + 20
where R is defined in (As).
it) For allt > tg
Py (x(t
Ja(t) — 2(0))? < L2

B
14
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Proof. i) Fix t > tp and y € H. From the definition of z(¢), we have

hence

min Fia() ~ i) + @~ ol < min fue®) ~ fa(6).

Using the definition of ¢ (), we get

min_ fi(x(t)) = fi(y) < ee(z(t) + o lyll*. (2.22)

i=1,...,m 2tp

By (As), it holds LP,(F, F(x(ty)) + a) # 0, therefore,

sup inf min  fi(x(t)) — fi(y)

F*€F(LPy (F,F(x(to))+a)) VEF T ({F*}) i=1,....m

B 2
<y + — sup inf Y|l 2.23
O o e ey ver eyl (2.23)

Additionally, we have

sup min  fi(x(t)) = fily) = sup inf min  f;(x(t)) = fi(y)-

YELPW (F,F(z(to))+a) ¥=1r-m F*€F(LPy(F,F(x(to))+a)) VEF T({F*}) i=1,....m
(2.24)

Note that (2.24) holds since for all y € LP,,(F, F(x(to)) +a) there exists F* = F(y) € F(LPy(F, F(x(ty)) +
a)) with min;—q,_, fi(z(t)) — fi(y) = min—1,_m fi(z(t)) — fi(2) for all z € F7L({F*}). On the other
hand, for all F* e F(LPy(F,F(z(t)) + a)) any y € LPy(F, ( (to)) + a) with F(y F* satisfies

) =
ming—; . m fi(z(t) — fily) = mfzeF Ly Ming=1, m fi(2(t)) — fi(2). Combining (2.23) and (2.24), and
using Lemma 1.4 and (As), it yields

pla(t) < pu(a(t)) + 55

i1) From the strong convex1ty of f;; with modulus 2 > we conclude the strong convexity of z — max;—1, . m ft,i(2)—

fr.i(2(t)) with modulus 2 7+ This gives for all ¢ > ¢

pu(e(t) = min fii(x(t)) = fri(2(t)
= max fi(x(t)) = fra(e(t)) — max fii(z(t)) = fri(z(t))

i=1,....,m i=1,...,m

> Slla(t) — =),

and the desired inequality follows. O

3. Existence of solutions and some preparatory results for the asymptotic analysis

In this section, we discuss the existence of solution trajectories of the dynamical system (MTRIGS) and
derive their properties which will be used in the asymptotic analysis.

15



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

3.1. Existence of trajectory solutions

The existence of solutions of (MTRIGS) follows analogously to that shown for the system (MAVD) in [5]
and requires the Hilbert space H to be finite dimensional. We only give the definition of solutions and the
main existence theorem in this subsection and move the proof to Appendix Appendix B.

Due to the implicit structure of the differential equation (MTRIGS), we do not expect the trajectory
solutions z(-) to be twice continuously differentiable in general. However, we show that there are continuously
differentiable solutions with an absolutely continuous first derivative. The following definition describes what
we understand by a solution of (MTRIGS).

Definition 3.1. We call a function x : [tg, +00) — H, t — x(t) a solution to (MTRIGS) if it satisfies the
following conditions:

(i) x(-) € C([tg, +0)), i-e., x(-) is continuously differentiable on [ty, +00);
(ii) x(-) is absolutely continuous on [to,T| for all T > tg;

(i1i) There exists a (Bochner) measurable function & : [to, +00) — H with &(t) = (to) + f:o Z(s)ds for all
t> tO;

(iv) @(-) is differentiable almost everywhere and %i(t) = i(t) holds for almost all t € [to,+00);
(v) a(t)+ projc(w(t))+t[%w(t)+i(t) (0) =0 holds for almost all t € [tg, +00);
(vi) z(to) = zo and &(tg) = vo.

Next, we give the main existence theorem for solution to (MTRIGS).

Theorem 3.2. Assume H is finite dimensional. Then, for all initial values (xg,v9) € H X H there exists a
function x(-) which is a solution of (MTRIGS) in the sense of Definition 3.1.

Proof. See the proof of Theorem Appendix B.6 in Appendix Appendix B. O

Remark 3.3. The uniqueness of the trajectory solutions of (MTRIGS) remains an open problem. There
are two magor difficulties in deriving uniqueness, as for the dynamical system (MAVD). First, the mul-
tiobjective steepest descent direction is not Lipschitz continuous, but only Hélder continuous. So even for
simpler multiobjective gradient-like systems like &(t) = projc(y(1))(0) it is not trivial to show uniqueness of
trajectories in the general setting. The second problem is the implicit structure of the equation (MTRIGS).
Therefore, we cannot use standard arguments like the Cauchy-Lipschitz theorem to derive the uniqueness of
solutions. Note that the asymptotic analysis performed in this paper applies to any trajectory solution x(-)
of (MTRIGS), which reduces the importance of the uniqueness statement.

3.2. Preparatory results for the asymptotic analysis

In this subsection, we derive some properties that all trajectory solution z(-) of the system (MTRIGS) share.

Proposition 3.4. Let z(-) be a trajectory solution of (MTRIGS). Then, for alli =1,...,m and almost
all t > tg it holds

(VH(O) + Salt) +3(0) + 5i(0.40) ) <0,

and therefore
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Proof. According to Definition 3.1, each solution z(-) satisfies

(6% .
~ 72 = Proje i & aw i (0);

for almost all t > tg. From the variational characterization of the projection, it follows that

B . a Q.
(VAGO) + falt) + 50 + Sa0)., Git0)) <o
for almost all ¢ > tg and all 4 = 1,...,m, which leads to the desired inequality. O

In the next proposition, we define component-wise a multiobjective energy function and show that its
components fulfill a decay property along each trajectory solution.

Proposition 3.5. Let x(-) be a trajectory solution of (MTRIGS). For alli=1,...,m, we define the energy
function

1

Wt [to, +00) = R, t = fi(z(t)) + ﬁl\ z(t)|* + §||i‘(t)||2- (3.1)
Then, for alli=1,...,m and almost all t > tqy it holds
d 2 O 2
Vi) < tpH lz@®I” = Zllz@I" < 0.

Further, for a € R defined as a; := T B1z(to)||? + $ll&(to) || fori=1,...,m, it holds

x(t) € L(F,F(x(to)) +a) for all t>t,.

Proof. According to Definition 3.1, the velocity #(-) of a trajectory solution is differentiable almost every-

where. For all 2 = 1,...,m and almost all ¢t > ¢, it holds
d 2 B . L s
Vi) = (Vfila(1)), () — WH 2@ + 55 (), 2(2)) + (2(2), Z(2))
- ﬂ,ﬂu S0P+ {Talt) + Sale) + 50,500
< — Pl - Sl <o,

where the penultimate inequality follows from Proposition 3.4. The last statement of the proposition follows
using the monotonicity of each W; for i = 1,...,m, on [tg, +00). O

Since for almost all £ > o, Projo, ) (0) belongs to C(x(t)) + tﬁpx(t) + &(t), there exists 6(t) €

+ 5w (t)+i(t)
AT — {0 eRT > 0= 1} such that

(%

— 2 (8) = POl a4 i) = D 0OV filw () + 2
=1

Zat) + i (t). (3.2)

tq tp

In the following proposition, we show that there exists a measurable function 6(-) satisfying (3.2).

Proposition 3.6. Let x(-) be a trajectory solution of (MTRIGS). Then, there exists a measurable function
0 : [to, +00) = A™,  t+— 0(t),

which satisfies for almost all t > tg

_%fk(t) = PrOJc(a())+ Lo+t (0) = ; 0:()V fi(z(t)) + tﬁpm(t) + &(2). (3:3)
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Proof. The proof follows the lines of the proof of Lemma 4.3 in [5], where a similar result was shown for the
system (MAVD). For almost all ¢t > tg, there exists §(t) € A™ such that

2

0(t) € argmin j(t,0), where j(¢,0) B
geam

x(t) + &(¢) (3.4)

The existence of a measurable selection 6 : [tg, +00) — A™,t = 0(t) € argmingcam j(t,6) can be verified
using [41, Theorem 14.37]. To this end, we have to show that j(-,-) is a Carathéodory integrand, i.e., j(-, )
is measurable for all § and j(¢,-) is continuous for all ¢ > ¢;. The second condition is obviously satisfied.
Since z(+) is a trajectory solution of (MTRIGS) in the sense of Definition 3.1, Z(-) is (Bochner) measurable.
Hence, for all 8 € A™, j(6,-) is measurable as a composition of measurable and continuous functions. This
demonstrates that the first condition is also satisfied. O

By using the weight function 6(-) we can give a further variational characterization of a trajectory solution
of (MTRIGS).

Proposition 3.7. Let x(-) be a trajectory solution of (MTRIGS) and 0 : [tg, +00) — A™ the corresponding
measurable weight function given by Proposition 3.6. Then, for all i = 1,...,m and almost all t > ty it

holds

(V fix( <Ze )V fi(z <t>> :

Proof. By Proposition 3.4, we have for all : = 1,...,m and almost all ¢ > ¢

(0%
tq

(VH(O) + Salo) + )+ 5

which, combined with (3.3), yields

(V fix( <Ze )V fi(z <t>> :

'(t),ab(t)> <0, (3.5)

We conclude this section with the following proposition.

Proposition 3.8. Let () be a trajectory solution of (MTRIGS). Then, the following statements are true:
i) z(-) is bounded;
i) if z(-) is bounded, then Z(-) is essentially bounded.

Proof. i) According to Proposition 3.5, we have for all i =1,...,m and all t > ¢
§||~‘U(f)H2 < Wilt) < Wilto),

which proves the first statement.
i1) If z(-) is bounded, then V f;(z(-)) is also bounded for all ¢ = 1,...,m, as a consequence of the Lipschitz
continuity of the gradients. According to (MTRIGS), we have for almost all ¢ > ¢

. « . ..

Z(t) + tqu(t) = proJC(I(t))th%m(t)(—x(t)),

hence,

i ®) < 5 Nl + |

Since all expressions on the right hand side of (3.6) are bounded on [tg, +00), Z(-) is essentially bounded. O
18

projC(w(t))+g%m(t)(—i(t))H . (3.6)
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4. Asymptotic analysis

In this section, we study the asymptotic behavior of the trajectory solutions to (MTRIGS). The convergence
rates for the merit function values and the convergence of the trajectory depend heavily on the parameters
p € (0,2],q € (0,1] and a, 8 > 0. The results in this section extend those in [3] from the single objective
to the multiobjective framework. The following energy functions are the key to the asymptotic analysis of
(MTRIGS).

Definition 4.1. Let () be a trajectory solution of (MTRIGS), r € [¢,1] and z € H. Let v : [to, +00) —
[0, +00) and £ : [tg, +00) = R be continuously differentiable functions. We define fori=1,...,m

T (8) = 1 (fra(z(t) — fri(2) + %Hv(t)(x(t) —2) + "2 (t)[* + @Ilm(t) -2

2
and
7 enlt) = 27 min (fui(e(0) ~ i) + IO~ 2) 4 I+ S ) — 2.
For z(t) == argmin,cy max;—1,. m ft,i(2) — fe,i(x(t)) fort > ty, we define
Grelto+00) 2R, oG (0= 2 min (fra(w(t) = fra(=(1)
£ 3OO —20) + 50 + 2 a(e) - 2(0)]°
= %" (x(t))
F 20 - =) + a0l + D ) - 202

The functions ~(-) and &(-) will be specified at a later point in the analysis. In the next proposition, we
derive estimates for the derivatives of the energy functions introduced above.

Proposition 4.2. Let x(-) be a trajectory solution of (MTRIGS), r € [¢,1] and z € H. Let v : [ty, +00) —
[0,400) and & : [tg, +00) = R be continuously differentiable functions.

i) For alli=1,...,m, the function Q;,Y@Z(-) is absolutely continuous on every interval [to, T] for T > to,
differentiable almost everywhere on [tg, +00), and its derivative satisfies for almost all t € [tg, +00)
d . o1 r . poE o
T 2(1) S 2 (fuafwlt) — Fua() — 9(0) min (o) — foal2)) + L]
+ (YO )+t = ™)+ 17 (1) + (1)) (2 () — 2, E(2)) (4.1)
' t r /8 ' r— r— .
+ (107 )+ 52 =0 35 ) 10 = 1P + £ 00 + 1 = a0

ii) The function GI . .(-) is absolutely continuous on every interval [to, T| for T' > to, differentiable almost

everywhere on [ty,+00), and its derivative satisfies for almost all t € [tg, +00)
d

2r
LGS (e — (1) min (fua(e(®) ~ fual2) + D
+ (YO (1) + 1t — ™) + 7 () + £(1)) (a(t) - z,2(8)) (4.2)

n (wtw’(t) L8O el ) la(t) — 22 + (1) + vt — a9 (D).

21>

2 2t
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Proof. Fix an arbitrary i € {1,..., m}. It is obvious that G] E .(+) is absolutely continuous on every interval
[to, T for T > to and therefore differentiable almost everywhere on [to, +00). Let ¢ > to be a point at which
G, »(+) is differentiable. By the chain rule, it holds that

Gt a®) = 2 (fy(2(8)) = Foae)) + 27 (57 o (t) (0) — POt at)| + 2O

(O ((t) — 2) + 7@ (), (v(8) + rt" i (t) + o (1) (x(t) — 2) + t7E(1))

FEW () - 2.#0) + C D a(e) - 22

Let 6(-) be the measurable weight function given by Proposition 3.6. By Proposition 3.7, we have

% e (t) S 2P (fri(x(t) — fra(z)) + 27 <Z(9 WV fri( x(t)> + gﬁil (E1l
(Y@ () — 2) + (), (v(8) + 7t (l) + A (O (E) — 2) + D) (43)
e ((t) — 2, 500) + 2 a(t) — 2]

Using (3.3), we write
i (t) = —at" Y (t —tTZH WV fri(x
which we use to evaluate
(YO (@(t) = 2) + t7a(t), (y(t) +rt" )i (t) + 9/ () (@ (t) — 2) + 7E(t))
=<v(t)(ﬂf(t) —2) 7w (t), (v(t) + rt" T — at" )i (t) + /() (a(t) — 2 —t’"ZG )V fri(x >

= (O (@) + e = at") (@(t) — z,2(8)) + ()Y (@) 2(t) — 2]1* — 7y (2) <w(t) -2 Z Qi(t)Vft,i(iﬂ(t))>

(v () + " — ot () + 7y () (@ (), 2( o <Z 0:i(t)V fr.i( ﬂ'ﬁ(t)>

=1

=[O0 @)+t = at™) + 7y ()] (2(t) = 2, 8(8)) + ()Y ()2 (t) - 2|

— 17y < —ZXF Vil >+ﬂww+nr%wquﬂmF—W<zymwmxmm¢m>.
- (4.4)

20



1s  We combine (4.3) and (4.4) to derive

d

s () < 2rt?r—1 (fri(z(t)) = fri(2)) + 2" <Z OV fri( as(t)> gﬁi_l [ElR
=1
+ (&) (v(t) +rt" T —

at"=) + 17y (1)) (x(t) — 2,2 (1) + ()Y () ]l(t) — 2])*
—t"(t) <$(t) —5y ei(t)Vft,i(x(t))> (v (1) + e — a0 ()]
i=1

e <Z BV il <t>> e (a(t) 2, 5(0) + D ) — 2|

2r
= 2 (fa(xt)) — foale)) + P21

opp+i 17

OO0 + 17 = a0 470 +60) (0 - 2.80) + (2070 + £12) ate) —
(1) < ~ a(t), Zei<t>Vft,i<x<t>>> HE Q)+t = at a0
i=1

447

(4.5)
We use the strong convexity of x — >0, 0;(¢)(fr.i(x) — fr.i(2)) to derive
<z —a(t Ze )V fri(z > Z ) (fri(2) = fra(w (1)) — %Hx(t) — =
i=1 (4.6)
< - min fui(e(0) ~ fuil2) — o latt) =P
us  Plugging (4.5) into (4.6) gives
d
1916 (0) < 27 (fri(@(t)) = fri(2)) — 7y (1) Jwin(fri(@(t) = fri(2)) - V(t)tr%llx(t) - z|?
OO0 + 7 = a0 4870 +60) w(0) - 2.400) + (1070 + £ ) ate) = 17
2r
FOO) + 7 a0 + B,
w9 concluding part 7). Statement i7) follows immediately from ¢) and Lemma Appendix A.1 O

For given A > 0 and r € [q, 1], we choose in the first part of the convergence analysis
v : [to, +00) = [0, 400), t — (t) = A,
451

and £ :[to,+00) > R, t=&(t) = A(rt" "+ at™ 1 —2)).
For this choice of the two parameter functions, we rename the energy functions as follows

1
Elnz o, +00) S Ry EL (1) 1= Gl e (1) = 1 (fua(a(t) = fri(2) + 5 M (1) = 2) + t7i(0)]

A
+ 5 (rt" '+ at™ 9 —2)) [|2(t) — 27,
w2 for i = ]., ey My,

E: i to,+o0) = R, EY (1) =G ¢ (1) = 2

min (fuae(0) = fua(2) + 5 A0 - 2) + )]
+ % (rt" "+ at™"9 = 2X) [l (t) — 2%,

21
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454

455

459

460

461

462

463

464

465

and
£ lto,Ho0) > B, E5(1) = G1e(t) = 7 _min (fuala(t) ~ Foal=(t))) + 5 IAG() — 2(0) + 730
+ % (Ttr_l + o™ = 2X) ||z (t) — 2(1)]1?
= P a0) + 5 IN(0) — 2(0) + 7 (0)

£ 2 ot = 20) ) — (1),

where z(t) == arg min, gy max;—1, .. m fr,i(2) — fr,i(x(t)) for t > to. In the following, we formulate a propo-
sition on &7 () and & _(+) similar to Proposition 4.2.

Proposition 4.3. Let x(-) be a trajectory solution of (MTRIGS), A >0, r € [¢,1] and z € H.

i) For alli=1,...,m, the function &, (-) is absolutely continuous on every interval [to, T] for T > to,
differentiable almost everywhere on [to, +o0), and its derivative satisfies for almost all t € [tg, +o0)

TN A0 S 2 (s (0) — fual2) = M min (Joallt)) — foal=)) + B o]

% [N
FA 2t = A) (2(t) — 2, 2(0) F 7 (At = at™) ||2(1))2 (4.7)

+ % (r(r =Dt 2 +a(r—gt" " = Bt"P) |z(t) — 2|

ii) The functions £ _(-) is absolutely continuous on every interval [to, T] for T' > to, differentiable almost
everywhere on [ty,+00), and its derivative satisfies for almost all t € [tg, +00)

Ler ()< (@ri = A7) min (fi(o(0) = fuule) + + 102
+A(2rt"t = A) (as(t) —z,8(t)) +t" (At — ") || 2(2)]|? (4.8)
+ A (r(r— D2 +a(r—g)t" 1! - Bt ||l (t) — z||2.

2

Proof. The proof follows immediately by Proposition 4.2 using 7/(¢) = 0 and &'(t) = AM(r(r — )t" 2 + a(r —
@t" =97 1) for t > ty. O

Lemma 4.4. Let g € (0,1), z(-) be a trajectory solution of (MTRIGS), A >0, r € [¢,1), and z € H. Define
1
- [to, +00) = R, pip(t) == 2 — 2 Then, for almost all t > t; = max ((27) ,to), it holds

Tt
d 3 _ . ppE3" A3 A2 A 153
T or T < | )= r—q 2 2 AN A Mt 2
G880+ 0.0 < ¢ (3a-ar )l + el + 5 | B - 5 50 - o et - 2]
(4.9)
Proof. For all t > tq it holds
A2 .
EN(t) = 7" oin (foi(@(®) = fri(2) + 5 llo(®) - 2|+ M () — 2, 8(1))
t2r 3 2 A r—1 r— 2
+ —&@®))*+ 5 (rt" "+ ot = 2X) [J2(t) — 2|
2 2 (4.10)

= " min (Jualwlt)) — fua(2)) + 5 (rt a0 = ) fa(t) =

+ M (z(t) — 2, 2(t)) + %Hs&:(t)HQ.

22



1

ws  Note that 11, (t) >0 for all ¢ > (22) ™. Then, combining (4.8) and (4.10), it yields for almost all ¢ > ¢,

%512(0 +pp(OE () < (2rt T = A7) min (fii(2(t) = fei(2)) + 7 (A0t — ™) @)

i=1,....m
+ é (7‘(7‘ — D" falr— gt — Bt“p) llz(t) — 2|2

2
. ) pﬂtQ’r
A (@Y ) ((t) — () + B2

bV =20 in (aelt) - fia(2)
A [3)\7“ Aa A2 22 2ra

2
R R R LG

AN =20t (2(t) — 2, 2(t)) + % (A" = 2r> ) [|2(2) |7

r 3 r— . 2 pﬁtQT 2
.y <2A—at q) el + 22

+)\[_r(r+1) alr+q) 3\ Ao N

— 2
R e | L CEF

t2’r‘ )\2
< <2A - atrq> 12 + 225 P 4 2 [3”" Ny B

= otp+1 2t ¢ e

467

ws  The result above can be extended to the case ¢ € (0,1] and r = 1 for A > 2 as we state in the following

w0 lemma.

w Lemma 4.5. Let ¢ € (0,1], z(-) be a trajectory solution of (MTRIGS), A > 2, r =1 and z € H. Define

a1 1t [to, +00) = R, t > i (t) == 272, Then, for almost all t > tq, it holds
d oy 1 3 1— : 2 pp
FEL0+ gL <t (FA- a0 ) O + 5

+/\{(1—/\)(A—2)+a(x\—(1+q» B

21

== o P a2

a2 Proof. The proof is analogous to that of Lemma 4.4.

w3 4.1. The case p € (0,2] and q < § : convergence rates

(4.11)

«s In Theorem 4.6 we derive convergence rates for the merit function along trajectory solutions of (MTRIGS)

a5 when ¢ € (0,1) is such that p € (0,2] and ¢ < §.

s Theorem 4.6. Let p € (0,2] with ¢ < §, x(-) be a bounded trajectory solution of (MTRIGS), and z(t) :

a7 ArgMin, g, Max;—1,. m f1,i(2) — fri(x(t)) for t > to. Then, we have the following convergence rates as

as t — 400!

a 1) EX(t)=0(1) for0 <X < §;
w i) pule(t) = O (t729);

w i) p(x(t) = O (179

w i) |lz(t) - 2(1)l| = O (1);

v) &) = O (7).

IS
%
@
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488

489

490

491

492

493

494

495

Proof. i) Let 0 < A < § and z € H fixed. We derive a bound for the energy function Eg’z(-) by considering
inequality (4.9) with r = ¢, i.e., for almost all ¢ > max ((%)m ,to)

3\¢ A% B

- | le -,

dt M 2 2

3 . PB og—p— A
et (6)+ naEL(0) <17 (Aa) e A T =

1
From here, we derive for almost all ¢ > max ((Tq) ,to, 1)

d PB og—p— AMB+a
Lt 0+ u0 (0 < Bprrre  XETON ) e

< ?izq*’)*lﬂzﬂ2 + A B+ =N (|2 + [z @)]?) -
Since z(-) is bounded and ¢ < £ < 1, there exist ¢ > max ((Tq) ,to, ) and ¢, M > 0 such that for
almost all ¢ > to

d

L)+ ng(DEL (1) < e (M + 2]) 7. (4.13)

We define the function

t t A 2(1 exp <7t1 Q)
M, : [ta, +00) = R, t+—= My(t) :==exp pq(s)ds | = exp — — —ds | =Coum
ta ¢

, 87 s ‘ t2a ’
(4.14)
with Con, = % > 0. The function 9M,(-) is constructed such that £M,(t) = M, (t)pe(t) and
exp( 12-t,
hence !
d q d oq q
7 (m?q(t)é’)\’z(t» =M, (t) ﬁé}\,z(t) + pg(t)ES (1) ) for almost all ¢ > t,. (4.15)
The relations (4.15) and (4.13) give for almost all ¢ > ¢,
d q 2\ 4—q
= (M (0€8.) < emy(t) (M +[12]2) 7. (4.16)

We integrate (4.16) from to to t > to to get
t
T (DE (0~ My (12)€L (1) < ¢ (M + [a]?) [ 9y (5)s 0,
ta

thus, for all ¢ > ¢4 it holds

M (t2)E5 . (L2) Om, [* A
T e (M 422 ! / exp (51q> s734ds. 4.17
a0 oM HIER s L o (417

The inequality above holds for all z € H and all ¢t > t5. For all t > t5, we choose

Ex (1) <

z:=z(t) =argmin max fi;(2) — fr.i(z(t)),
zeH i=l...m

which, since £{(t) = &} (1)

My (t2)E 1 (t2) Com, [! A (
q 1) < ,2(t) M t 2 q / 1—q 7Sqd )
El(t) < M, (1) + ¢ (M +|]z(t)]| )mq 5, exp 1—q$ s s

24
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510

By Proposition 2.4, z(-) is bounded, and hence there exist constants Cy,Cy > 0 such that for all ¢ > ¢5

4 Cy t A _ _
Elt) < + / exp (51 q) s739s.
)\( ) qu(t) mtq(t) to I—gq

We apply Lemma Appendix A.2 to the integral in (4.18) to derive the asymptotic bound
! A 3 2 A
/ exp $71) s ds =0 [t 9exp | ——t ¢ as t — +oo,
to 1- q 1-— q

Cs /t exp <)\slq) 57%ds =0 (1) ast— +oo
M, (t) to l—gq .

We conclude from (4.18) and (4.19) that

hence

Elt)y=0(1) ast— +oo,

proving statement 4). From here, we can prove the remaining four statements of the theorem.
ii) By the choice of 0 < A\ < §, we have for all ¢ > g

gt a—2)1>0.
Then, by the definition of £{(-) we have for all ¢ > ¢,
t* 1 (w(t)) < EX(1),
which, according to (4.20), gives
eu(z(t) =0 (t729)  ast— +oo.
i11) Using Proposition 2.6 and i) yields

R2
Pla(t)) < prla) + O = O (172) st +oo.
iv) Since for all t > ¢
@t a—22>a -2\ >0,

it holds

%(a —2))[|lz(t) - 2(8)]* < EX().

This estimate together with (4.20) implies that
lz(t) —2(t)]| =0(1) ast— +oo.
v) From i) and iv), we have

2 .
S IO < M) = 2()) + t2(0)]° + A [l(t) — ()|

< 280() + N||z(t) — 2P = O (1) as t — +oo.
From here, we conclude

&) =0 (t79) as t — 4oo.

25
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4.2. The case g € (0,1) and p < ¢+ 1 : convergence rates and strong convergence of the trajectories

In this section, we perform the asymptotic analysis for (MTRIGS) in case p < ¢ + 1.

Theorem 4.7. Let ¢ € (0,1) and p < ¢+ 1, x(-) be a trajectory solution of (MTRIGS), and z(t) :=
argmin, cy, max;—1,.m fr.i(2) — fe.i(x(t)) fort > to. Then, forr € [g,1)N[p —q,1), we have the following
convergence rates as t — +00:

i) E5(t) = O (3= TD) for X € (0,22] N (0, ﬁ} ;
i) pi(z(t)) = O (=),
iii) p(a(t)) = O (°7);

i) ||z(t) — 2(t)]| = O (t*)

o) a(o)] = 0 (=52).

Proof. i) Let r € [¢,1)N[p—gq,1) and z € H fixed. From (4.9), we have for almost all ¢ > max ((27’") ﬁ ,to)

d 3 _ . pBEtA" A3 A2 A 153

T eor T‘t T <[ 2y r—q 2 2 - _ _ t) — 2.

FEL+ i OFE0) < (== ) [ + o el + 5 |5 = 54 5 = 2 et - 41
(4.22)

s
Sincer <l,andp—7r<gq, A < g, andr—q¢g >0, A< %" there exists to > max ((27’") e ,to) such that for
almost all ¢ > to

d I T pﬁtQT 2
ZELL) + a0 (1) < T 12l (4.23)

As before, we define the function

¢ oo exp (1irtlir>
M, : [ta,+00) = R, t+— M.(t) =exp wr(s)ds | = exp — — —ds | =Cop, ————%
to t

L s" s 2r ’
(4.24)

27
t2

with Cmr = 7@;{})(13”@_7')

hence

> 0. The function 9M,(-) is constructed such that £, (t) = M, (t)u,(t) and

% (M (1)E5 (1) = M,.(t) (ié’j{’z(t) + Mr(t)giz(t)) for almost all t > t,. (4.25)

The relations (4.25) and (4.23) give for almost all ¢ > ¢,

& om (0E5.0) < 2 el o+, (1.26)

We integrate (4.26) from t5 to t > t2 to get

t
M (4)E3 (1) — My (t2)E5 L (t2) < %ﬁ||2||2 oM, (5)s%" =P+ Vds,

ta
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thus, for all ¢ > ¢ it holds

. M, (t2)E5 . (t2)  pB, o Com ¢ A
ro(p) < AT PP A ) gt g, 1.2
E.(t) < M0 + 5 Izl M, (1) /t2 exp (1 —8 ) s ds (4.27)

The inequality above holds for all z € H and all ¢t > t5. For all t > t5, we choose

z:=z(t) = argmin max f;;(z) — fri(x(t)),
2zeH =l,...m

which, since 5(t) = &3 (1), yields

m, (t2)5§ (t)(t2) B Con ¢ A
T < )2 2 r 1—r (p+1) .
EX(t) R0 + o5 lz(®)]| R0 /t2 exp (1 7’8 > S ds

By Proposition 2.4, z(+) is bounded, hence there exist constants C7,C2 > 0 such that for all ¢ > ¢o

. C]_ 02 ¢ )\ 1— _(
() < O gl P (s, .
EX(t) < D) + D) /t2 exp(lrs s ds (4.28)

We apply Lemma Appendix A.2 to the integral in (4.28) to derive the asymptotic bound

t
/ exp ( A 81_7") s~ Ptgs =0 <tr_(p+1) exp (Atl_’)) as t — +o0,
to 1—7r 1—7r

hence

G [ A dmr) om0t g — o (3r—(0+1D)
M, () /lt2 exp (1 —8 s ds=0 (t ) as t — +o0. (4.29)
We conclude from (4.28) and (4.29) that
E(t)=0 <t37’_(p+1)) as t — +00, (4.30)

proving statement i). From here, we can prove the other four statements of the theorem.

1

it) If r > q, for t > (%)?‘7 we have rt"~! + at™~7 — 2\ > 0 and hence
t2 o (2(t)) < EX(t). (4.31)

For the case r = ¢ the argument follows in a similar manner. We apply part i) for A € (0, %) N (0, ﬁ} C

(07 %O‘] N (0, g} Then ¢t~ ' 4+ a — 2\ > 0 for all t > ¢y and hence
12 (x(t)) < EX(1). (4.32)
Both cases, together with (4.30), imply that for all » € [¢,1) N [p — ¢, 1)
pr(z(t) =0 (t“(p“)) as t — —+oo0.

i11) Using Proposition 2.6 and 4i) yields

P((0) < palt) + L = 0 (177) a5 t = +ov.
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iv) By Proposition 2.6, we have for all ¢ > ¢

lo(t) — ()2 < %wa»,

and hence by ii) we get
lz(t) — 2(t)] = © (t;) as ¢ — +00. (4.33)

v) From the above considerations, we have

7||fi?(t)||2 < M@ (t) = 2(8) + @) + N[l (t) — 2(2)]?
< 2ET() + A a(t) — 2(1)|2 = O (tSHP“)) as t — +oo.
From here, we conclude
&) = O (tﬂ) as t — -+oo.
O

For this parameter settings, alongside establishing convergence rates, we demonstrate that the bounded
trajectory solutions of (MTRIGS) strongly converge to a weak Pareto optimal point of (MOP). Notably,
this point is also the element of minimum norm within the lower level set of the objective function with
respect to its value at the weak Pareto optimal point.

Theorem 4.8. Let ¢ € (0,1), p < g+ 1, and x(-) be a bounded trajectory solution of (MTRIGS). Then,
x(t) converges strongly to a weak Pareto optimal point x* of (MOP) as t — +o0, which is the element of
manimum norm in (Voo L(fi, fi(z*)).

Proof. To prove the strong convergence of the trajectory solution z(-) we use Theorem 2.1, which states
that z(-) converges strongly, in combination with Theorem 4.7 4v), which states that ||x(t) — z(¢)|| — 0 as
t — +oo. Since z(-) is bounded, it holds inf;>, fi(z(t)) > —oo for i = 1,...,m, and so

1
inf Wi(t) = inf <fi(x(t)) o 0P + 2||a'c<t>|2) > nf fix(t)) >~

where W;(+) is the function introduced in (3.1). By Proposition 3.5, the function W;(-) is monotonically

decreasing and therefore, lim;_, { o W;(t) exists for ¢ = 1,...,m. According to Theorem 4.7, &(t) — 0, hence
Llle@®))? + 31@)))? — 0 as t — +oo. Thus, fori = 1,...,m,

lim f;(z(t)) = t_l§+moo W;(t) = tiiltf;) W;(t) > —o0.

t——+o0

We denote by f* :=limy o0 f(2(t)) = lims 00 (f1(2(t)), ..., frn(z(t))) € R™. We use Theorem 2.1 with
q(t) := f(x(t)) to conclude

2(t) — " 1= projg(s+(0) as t — +o0,

where z(t) := argmin,cy, max;=1,._m fi.:(2) — fe.i(x(t)) and S(f*) := argmin, cy, max;—1,._m (fi(2) — f7).
According to Theorem 4.7, we have ||z(t) — z(¢)|| — 0, hence

z(t) = 2" as t — +o0.

Since ¢(x(t)) — 0 as t — +oo, it yields ¢(z*) = 0, thus z* is a weak Pareto optimal point of (MOP).

By continuity, f* = f(z*) and, since z* is a weak Pareto optimal solution of (MOP), it holds S(f*) =

Nizy L(fi, fi(z™)). O
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4.8. The case p € (0,2] and g =1
In this subsection, we consider the boundary case ¢ = 1, allowing p to be chosen in (0,2]. The assumption

we make for « is consistent with that made in the setting of inertial dynamics with vanishing damping in
the single objective case, see [10, 15].

Theorem 4.9. Let p € (0,2], ¢ =1 and a > 3, x(-) be a bounded trajectory solution of (MTRIGS), and
z(t) := argmin, ¢y max;—1,..m fr,i(2) — fr,i(x(t)) for t > to. Then, we have the following convergence rates
ast — +oo:

i) EX(t) = O (t*7P) for X € [2,22];
ii) pi(x(t)) = O (t77);
iii) p(x(t)) = O (t77);

iv) [|lz(t) — 2(8)]| = O (1);

v) [l#(1)] = 0 (t7%).

Proof. i) Let r = ¢ =1 and z € H fixed. We consider the energy function £ _(-). From inequality (4.11)
we get for almost all ¢ > t,

GEL0 +mO8L0 <t (3a-a) P+ el + 3 [ 2472 - L

lz(t) — 2|2 (4.34)
Sincep—1<1, A < %a and z(-) is bounded, there exist t; > ¢y and M, ¢ > 0 such that for almost all ¢ > ¢;

G E8(0)+ m(ELL1) < ooy (M + |2]). (435)

As before, we define the function

t t
My : b, +00) = R, t+— My(t) :=exp (/ ul(s)ds> = exp (/ s) = Con, "2, (4.36)
t1 t1

with Con, = t2~*. The function 90, (-) is constructed such that Lo, () = M (t)pa (t), hence

jt (M ()Ex . (1)) = Mu(t) <0lt<‘:A L)+ ul(t)Ei,Z(t)) for almost all t > t;. (4.37)

The relations (4.37) and (4.35) give for almost all ¢ > t;

4 oL m) <

We integrate (4.38) from t; to t > t; to get

(M + [l2]%) D (1) (4.38)

N o

ML (1) = M (1)ER . (02) < 5 (M +]2]]%) /zm b s,

thus, for all ¢ > ¢; it holds

My (tl)gi,z(tl)
M (t)

C t
£l .(t) < 5 (M ) s [0, (4.39)
t1

My (2)

The inequality above holds for all z € H and all ¢ > t;. For all t > ¢1, we choose

z:=z(t) = argmin max f;;(z) — fri(z(t)),
zeH  i=Ll.m
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which, since &3 () = Si,z(t) (1), yields

1 _ _
£l < My (t1)E5 1) (t1) o £} p] .

C
M )|
Con 2 22 (M +[12(IF) [Ap X—p

By Proposition 2.4, z(-) is bounded, which means that there exist constants C7,Cy > 0 such that for all
t>11

EX(t) < Cy+ Cot* P, (4.40)
hence
Ext)=0(t*?) ast— +oo, (4.41)

proving statement i). From here, the remaining four statements of the theorem follow as in the proof of
Theorem 4.7. O

Remark 4.10. If we choose A = 2 in the proof of Theorem 4.9 we do not need to assume the boundedness of
x(+) to conclude (4.35) from (4.34). This implies that in the case ¢ = 1 and o > 3 the bound ||z(t) — z(t)| =
O(1) as t — 400 follows without the boundedness assumption on x(-).

4.4. The case p € (0,2] and ¢+ 1 < p : weak convergence of the trajectories

In this section, we show that in the case p € (0,2] and ¢ + 1 < p the bounded trajectory solutions of
(MTRIGS) converge weakly to a weak Pareto optimal point of (MOP). To this end, we make use of Opial’s
Lemma and the energy function from Definition 4.1 with () and £(+) to be specified later. The convergence
rates derived in Subsection 4.1 are valid in this setting.

Theorem 4.11. Let p € (0,2), g+ 1 < p, and x(-) be a trajectory solution of (MTRIGS). Then, for
T e [q, %}, we have

+oo
/ 5201 i(s)|[2ds < +o.

to

Proof. Let z € H fixed. Define
v i [to, +00) = R, t s y(t) = 2rt" L.

With this choice, inequality (4.2) reads for almost all ¢ > ¢

d t2’r‘ .
@Gt < Tl 4 (27 (207 17— a7 4 20(r — DT 4 €(0) (2(1) — 2, (0)
!
* (47”2““ pers e S »“) () = 22 + ¢ 2rt=1 + 771 — = 0) [ (0)]
B thQ'r'

= St 121>+ (2rt" 1 (Brt™™ ! — at™9) 4+ 2r(r — )T + £(t)) (x(t) — 2, 4(t))

+ <4r2(r o # - /5rt2r1p) l2(t) — 2)|® + ¢ (3rt™ " — at™ )| (t)]|%.
(4.42)

Now we choose

€ [to,+00) = R, £(t) = 2rt" Mt — 3rt" ) + 2r(1 — )12 = 20?7707 4 2 (1 — 49r)20 ),
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and notice that &'(t) = 2ar(2r — ¢ — 1)t>"7 =972 4 dr(r — 1)(1 — 4r)t> =3 for all t > to. With this choice,
inequality (4.42) simplifies for almost all ¢t > tg to

d_, ppt*" . r—g— r—1—
%gmgﬁ(t) < ogp i1 21> + (2r(r = 1)(1 =27t + ar(2r — ¢ — V¥ ~972 — Bre>~177) ||z(t) — 2|?

+ 7 (3rt" ™ — at™ ) ||E(2)||2.

(4.43)

1
Since r < %1, we conclude from (4.43) that for almost all ¢ > max <(max(2(7‘;)(127“),0)) P ,t0>

d T T r—1 r—q . 2 thQT
(t) <t"(3rt"" —at™ 1)||&(t)]|7 + o1

LGl 1. (4.44)

1
Hence, there exist ¢; > max <(max(2(r}3)(12r),0)) o ,to) and a,b > 0 such that for almost all t > #;

d
19 (t) < —at® T a ()| + b2,

therefore
t t
o) = et < —a [ i) P+ el [ S ez
tl tl
Since this holds for all z € ‘H, we conclude

t t
Ghe) =Gl o(n(t) < = a/ 77 4|d(s) || *ds + bllZ(t)IIQ/ s ds V> .
t1

t1

_1
Fort > (M) 17q, it holds that £(¢) > 0 and hence g;,g(t) > 0. Then, for all t > max (M,tl)

t

t
o [ aPds < G () bl [ 5 ds,

t1 t1

Since z(-) is bounded by Proposition 2.4 and 2r —p — 1 < —1, the right hand side of the previous inequality
1
is uniformly bounded for all ¢+ > max ((l’aj) T—q ,tl), hence

+oo
/ §277||2(s)||*ds < 4-o00.

to
O

Next, we discuss the boundary case p = 2. To derive weak convergence, we need an additional condition on
the parameter 8 > 0.

Theorem 4.12. Letp =2, ¢ € (0,1), 8 > q(1—q), and z(-) be a bounded trajectory solution of (MTRIGS).

Then, forr € [q, %], we have

+oo
/ 5277 ||i(s)||2ds < +oo. (4.45)

to
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Proof. The proof follows analogously to the proof of Theorem 4.11, with the difference that in order to
conclude (4.44) from (4.43) the additional inequality

2(r —1)(1 — 2r) < B, (4.46)

is necessary. Since r := % satisfies (4.46), it holds

+oo
/ s ||@(s)||?ds < +oo, (4.47)
to
which implies that (4.45) holds for all r € [q7 %1] O
Remark 4.13. In both regimes, namely, for p € (0,2) and ¢+ 1 < p, and for p = 2,q € (0,1) and
B > q(1 —q), choosing r := % we obtain the following integral estimate, which describes the convergence

behavior of the velocity of the trajectory
+oo
/’ s (s)|[2ds < +o0.
to

We use the integral estimates given in Theorem 4.11 and in Theorem 4.12 to prove the weak convergence of
the trajectory solution using Opial’s Lemma (see Lemma Appendix A.3). The following two results prove
that the first condition in Opial’s Lemma is satisfied, while the final weak convergence statement is shown
in Theorem 4.16.

Lemma 4.14. Letp € (0,2]. Let q € (0,1), or g =1 and o > 3, and x(-) be a bounded trajectory solution
of (MTRIGS). Let W;(),i = 1,...,m, be the energy function defined in Proposition 3.5. Then, for all
i=1,...,m, the limit

0= lim f;i(z(t)) = lm W;(t) = inf W;(t) € R

t——+o0 t——+o0 t>to
exists.

Proof. Let i € {1,...,m} be fixed. Since z(-) is bounded, inf;>, f;(x(t)) € R holds, therefore

inf Wi0) = jnf (£(0)+ g oI + 516001 > inf fla(0) € R (4.43)

By Proposition 3.5, W;(-) is monotonically decreasing, thus

lm W;(t) = inf W;(t) > —cc. (4.49)

t—+o0 t>to

By Theorem 4.6, Theorem 4.7 and Theorem 4.9, it holds #(¢) — 0 as ¢ — +oo. Hence, %Hx(t)H2 +
1[|&(t)[|* — 0 as t — +oc. Thus

lim fi(z(t) = lim Wi(t), (4.50)

t——+oo t——+oo
which leads to the desired result. O

Lemma 4.15. Let p € (0,2), ¢ € (0,1) withg+1 < p, orp=2,q9 € (0,1) and 8 > q(1 —q), z(-) be a
bounded trajectory solution of (MTRIGS), and assume that

S={zeH: fi(x) < [fX fori=1,...,m}#0,
with f° =limy_,« fi(x(t)) € R. Then, for all z € S, the limit limy_, o ||x(t) — 2| exists.
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Proof. Let z € S, and define the function
B [to, +00) — R, 2 s o (t) = %Hx(t) — 2
For almost all ¢ > tg it holds that
W(t) = (x(t) — z,2(t))  and  RI(t) = (x(t) — 2,2(t)) + [|la()]*. (4.51)
From (4.51) and (3.3), we have for almost all ¢ > ¢

W) + L (8) = (0 + i (t),2() — ) + a1,

(- S0 0Ta) - Setts =) + st

where 0(-) be the measurable weight function given by Proposition 3.6. Since z € S, we have for all
i=1,...,m, and almost all t > %,

B

(4.52)

F@0) + S5 IO + LIEOIP 2 £i(2) = ) + 2l — 2 P
> Fa(0) + g o0l + (Vi) + a0,z = 2(0)) - eI
hence
(VHO)+ Salt). = o)) < Tl + IO (4.53)

We define function k : [tg, +00) — [0, +00), k(t) = %”2”2 + 3||#()|*. By Theorem 4.11 and Theorem
4.12, we have (¢ — t7]|@(t)[|*) € L* ([to, +00)). On the other hand, since ¢+ 1 < p, we get (t — gttp HzH2> €
L ([to, +o0)), consequently, (t — t9k(t)) € L' ([tp, +00)). Combining (4.52) and (4.53) gives

RY(t) + %h; (t) < k(t) for almost all t > t,.
Now, we can use Lemma Appendix A.4 to conclude that the limit

lim ||z(t) — 2| exists.
t——4o0
O

Theorem 4.16. Let p € (0,2) and ¢+ 1 <p, orp=2,q € (0,1) and 8 > q(1 — q), and z(-) be a bounded
tragectory solution of (MTRIGS). Then x(t) converges weakly to a weak Pareto optimal solution of (MOP)
as t — +o0, which belongs to (i~ L(fi, [7°), where [ =limy_, o fi(z(t)) fori=1,...,m

Proof. We define the set S == {z € H : fi(z) < f* for i=1,...,m} as in Lemma 4.15. Since z(:) is
bounded, it possesses a weak sequential cluster point °° € H. This means that there exists a sequence
{t&}r>0 which converges to +oo with the property that z(f;) converges weakly to > as k — +oo. The
functions f; being weakly lower semicontinuous fulfill for all i =1,...,m

fi@®) < lminf fi(e(t) = T fiCo(t) = £,

therefore z>° € S. We conclude that S is nonempty and all weak sequential cluster points of z(-) belong to
S. On the other hand, according to Lemma 4.15 we have that lim;_, o ||z(t) — 2| exists for all z € S. We
can use Opial’s Lemma (Lemma Appendix A.3) to conclude that x(t) converges weakly to an element in S
for t — +o0. By Theorem 4.6, ¢(x(t)) — 0 as t — +00, therefore, since ¢(+) is weakly lower semicontinuous,
p(x™) <liminfy_, 4o @(x(tx)) = 0. By Theorem 1.3, 2 is a weak Pareto optimal solution of (MOP). O
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5. Numerical experiments

In this section, we illustrate the typical behavior of the trajectory solution z(-) of (MTRIGS) using two
example problems. In the first example, presented in Subsection 5.1, we show that trajectory solutions
z(+) of (MTRIGS) converge to a weak Pareto optimal point «*, which is the element of minimum norm in
Nivy L(fi, fi(z*)), whereas those of (MAVD) may fail to exhibit this behavior. In Subsection 5.2, we analyze
the sensitivity of trajectory solutions of (MTRIGS) with respect to ¢ € (0,1] and p € (0,2]. We highlight
how different parameter choices affect the decay of the merit function values p(z(t)) and the asymptotic
behavior of the distance ||x(t) — z(t)|| to the generalized regularization path as t — +oo.

—~2(t) (MTRIGS)
—a(t) (MAVD)

Figure 3: Contour plots of fi and f2 defined in (5.1), the weak Pareto set Py, of the problem (MOP-Ex;) and the trajectory
solutions z(-) of (MTRIGS) and (MAVD) with identical initial conditions, respectively.

5.1. Comparison of (MTRIGS) with (MAVD)

In the first example, we consider the following instance of (MOP). Define the sets
Sy i={-1} x[1,2] CR?* and Sy:= {1} x [1,2] CR?

and the functions

1
[i :R2 =R, xm fi(z) = 3 dist(z, S;)?, for i=1,2, (5.1)

which are both convex and continuously differentiable, and have Lipschitz continuous gradients. The weak
Pareto set of the multiobjective optimization problem

o { ﬁg; ] (MOP-Ex;)

is given by
Py = conv (S US2) =[—1,1] x [1,2].
Let z = (21,22) " € Py. Then, the element of minimum norm in ﬂ?zl L(fi, fi(2)) is given by
Projr:_, (s, su2)(0) = (21,1). (5.2)

We approximate a trajectory solution for (MTRIGS) and (MAVD), respectively, in the following context:

e For (MTRIGS), we set av:=4, :=1, ¢ := % and p := %;

e For (MAVD), we set o := 4;
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013
—o(z(t)) (MTRIGS) 1074
1t —p(z(t)) (MAVD)
08 =
= w
B 00 | 105
S 0.4 f/
8
> —Jlz(t) — 2(¢)]| (MTRIGS)
| —Jl2(t) - =(t)| (MAVD)
9 101
10° 10' 10° 0 50 100
¢ t

(a) (b)

Figure 4: The merit function values @(x(t)) and the distance ||z(t) — z(t)|| of the trajectory solutions to the generalized
regularization path for (MTRIGS) and (MAVD) for the problem (MOP-Exy).

e For both systems, we use as initial conditions z(ty) = (2.5, 0.5) and %(t9) = (0,0), where ¢ty = 1;

e For both systems, we use an equidistant discretization in time, i.e., time steps ti := to + kh with step
size h = le—2;

e For both systems, we approximate the first and second derivatives by & (tx) = M and &(tg) =
w(tk+1)72m(tk)+w(tk,1)
h2

, respectively;
e For both systems, we consider the trajectory solutions for ¢ € [1,100].

Note that for (MTRIGS) it holds that p < ¢+ 1. According to Theorem 4.7 and Theorem 4.8, we have
convergence of the merit function values p(x(t)) — 0, convergence of the distance of the trajectory to the
regularization path ||z(t) —z(¢)|| — 0 and strong convergence of the trajectory x(t) to a weak Pareto optimal
point as t — +o0.

Figure 3 shows the contour plots of the objective function f; and fo defined in (5.1), along with the weak
Pareto set P, highlighted in red in the decision space. The figure also displays the trajectory solutions of
(MTRIGS) and (MAVD) with identical initial conditions, respectively, which both converge to points in the
weak Pareto set. Notably, the solution of (MAVD) evolves solely in the x1-direction, whereas the Tikhonov
regularization ensures that the solution of (MTRIGS) converges to an element as specified by (5.2).
Figure 4 visualizes the behavior of the trajectory solutions of (MTRIGS) and (MAVD) by showing, in two
subfigures, the evolution of the merit function values and the distance of the trajectories to the generalized
regularization paths. As already shown in Figure 3, the trajectories enter the weak Pareto set P, after some
time, implying that the merit function values ¢ (z(t)) vanish accordingly. This is illustrated in Subfigure
4a. Subfigure 4b depicts the distance between the trajectory and the generalized regularization path, i.e.,
lx(t) — 2z(t)| for ¢ € [1,100]. For the solution of (MAVD), this distance converges to a positive limit as
t — 4o0o. In contrast, for the solution of (MTRIGS), the distance decays to zero at a sublinear rate, as
predicted by Theorem 4.7.

5.2. The convergence behaviour of (MTRIGS) for different values of ¢ € (0,1] and p € (0,2]

The numerical experiments in this subsection demonstrate a similar influence of the parameters g and p in
on the asymptotic behaviour of (MTRIGS) as was observed in [3] for the system (TRIGS) in the context of
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single objective optimization. Consider
1

1
fi:R*S R, 20 fi(z) = i(xl —1)% + 5(252 —1)%, and

1 1
foiR* =R, x> fi(x) = 5(1‘1 +1)% + §(x2 —1)2
which are both convex and continuously differentiable functions, and have Lipschitz continuous gradients.
The weak Pareto set of the multiobjective optimization problem

| (@)
is given by
Pw = [-1,1] x {1} x Rx R C R*.

We approximate a trajectory solution for (MTRIGS) in the following context:
e Weset a:=4, 3:= %, and consider different values for ¢ € (0, 1] and p € (0, 2J;
e We use as initial conditions z(tg) = ¢ and i (tg) = 0 with to = 1 and zg = (2,3,4,5)";
e We use an equidistant discretization in time, i.e., time steps ¢ := to + kh with step size h = le—3;

e We approximate the first and second derivative of z(-) in time by #(tx) = M and Z(ty) =

z(t’”l)*%}g’“HI(t’“‘l) respectively;

e We consider the trajectory solutions for ¢ € [1,100].

We first fix ¢ = 0.8 and vary the parameter p over the set {0.25, 0.75, 1.25, 1.75}. Afterwards, we fix p = 1.1
and vary ¢ over the set {0.3, 0.6, 0.8, 0.99}.

—p =025 —p =0.75 —p =125 —p =175

10° 10° 10° 10°
—~ —~ —~ —~
N N N N

E w0 E w0 E w0 E w0
8 5 5 8
= = = =
S S S S-

10-10 10-10 10-10 10-10

120 40 60 80 100 120 40 60 80 100 120 40 60 80 100 120 40 60 80 100
t t t t
(a) (b) () (d)
10 10? 10° 10°
—p=025 —p=0.75 —p=125 —p=175
J— PR P ’&

— 10 —~ 10 —~ m“\ — 10
+ + + +
= = = =
N N Q Q
I | | |

—~ 1072 —~ 1072 —~ 102 —~ 102
+ + + +
= = = =
8 8 8 8

1074 1074 104 10~

120 40 60 80 100 120 40 60 80 100 120 40 60 80 100 120 40 60 80 100

(e) (¢9) () (h)

Figure 5: The merit function values p(z(¢)) and the distance ||z(t) — 2(t)|| of the trajectory to the generalized regularization
path for ¢ = 0.8 and p € {0.25, 0.75, 1.25, 1.75}.
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Figure 6: The merit function values ¢(z(t)) and the distance ||z(t) — z(t)|| of the trajectory to the generalized regularization
path for p = 1.1 and ¢ € {0.3, 0.6, 0.8, 0.99}.

Figure 5 shows the evolution of the merit function values p(z(t)) and of the distance ||z(t) — z(¢)|| of the
trajectory to the generalized regularization path for ¢ = 0.8 and p € {0.25, 0.75, 1.25, 1.75}. The merit
function values exhibit the fastest decay for the largest value of p = 1.75. This behavior is expected, as
higher values of p cause the Tikhonov regularization parameter to decay more rapidly, thus exerting less
influence and allowing the function values to converge more quickly. Conversely, the distance ||z (t) — z(t)]]
decays most rapidly for smaller values of p, where the regularization parameter vanishes more slowly and
effectively guides the trajectory towards the regularization path.

Figure 6 shows the evolution of the merit function values ¢(z(t)) and the distance ||z(t) — z(t)| of the
trajectory to the generalized regularization path for p = 1.1 and ¢ € {0.3, 0.6, 0.8, 0.99}. The decay of the
merit function values p(z(t)) is generally insensitive to the choice of ¢; for all considered values of ¢, the
convergence rate remains essentially the same. However, for larger values of ¢, the merit function exhibits
more pronounced oscillations. This behavior is expected, as a larger value of ¢ implies a faster decay of the
friction term 4, thereby reducing damping. In contrast, the decay of the distance ||z(t) — ()| is strongly
influenced by ¢, particularly for ¢ = 0.99, where convergence is significantly faster. For the smallest value
q = 0.3, the distance decreases only slowly, at a sublinear rate. These observations align with expectations:
higher values of g correspond to weaker friction, which allows the trajectory to approach the regularization

path more rapidly in the early phase.

6. Conclusion

In this paper, we propose a novel second-order dynamical system, (MTRIGS), tailored for multiobjective
optimization problems. This system incorporates asymptotically vanishing damping and vanishing Tikhonov
regularization. Leveraging existence theorems for differential inclusions, we establish the existence of solu-
tions to this system in the finite dimensional setting. To analyze the asymptotic behavior of the trajectory
solutions, we introduce a new regularization path for multiobjective optimization problems, derived from
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the Tikhonov regularization of an adaptive scalarization. Using this framework, we demonstrate the strong
convergence of the trajectory solutions z(-) of (MTRIGS) to the weak Pareto optimal point with minimal
norm in a particular lower level set of the objective function. Furthermore, we recover fast convergence rates
quantified in terms of a merit function. We investigate the qualitative behavior of the solution to (MTRIGS)
through multiple numerical experiments. These findings form the basis for developing inertial proximal point
methods with vanishing Tikhonov regularization for multiobjective optimization problems, which yield fast
convergence of function values and strong convergence of iterates. Future research directions include design-
ing second-order gradient dynamics for multiobjective optimization problems with Hessian-driven damping,
as well as addressing multiobjective problems with linear constraints using primal-dual dynamical systems.

Appendix A. Auxiliary lemmas

In the first part of the appendix we introduce some auxiliary lemmas that we use in the asymptotic analysis
of the trajectory solutions of (MTRIGS).

Lemma Appendix A.1. Fori=1,...,m, let h; : [to,+00) — R be absolutely continuous functions on
every interval [to,T| for T > to. Define h : [to,+00) — R, t — h(t) == min;=1 _ mhi(t). Then, the
following statements are true:

i) The function h is absolutely continuous on every interval [to, T] for T > to, and therefore differentiable
at almost all t > tg;

ii) For almost all t > to there exists i € {1,...,m} such h(t) = h;(t) and Lh(t) = Lh;(t).

Proof.

i) The minimum of a family of finitely many absolutely continuous functions is absolutely continuous.

it) Let ¢ > to be such that h(-) and h;(-) are differentiable in ¢ for all i = 1,...,m. Take an arbitrary
sequence {7y x>0 With limy_, o 7% = 0. Then, there exists i € {1,...,m} and a subsequence {k; };>0 C
N with h(t 4+ 7x,) = hi(t + 7%,) for all I > 0. From the continuity of h(-) and h;(-), it holds h(t) = h;(t).
By the definition of the derivative, we get
d h(t+ 1,) — h(t) hi(t+7%,) — hi(t) d

—h(t)= 1 —_— =1 = —h,(t).
dt ®) l—}—rgloo Thy l—:—rgloo Tk, dt ®)

Lemma Appendix A.2. Let o, 5,a,b > 0 be given constants, and tg > 0. Then,

t
/ as~ @ exp(Bs’)ds = O (tlf(“er) exp(ﬂtb)) as t — +oo0.
to

Proof. For t > tg, we use integration by parts to get

t t
—a b _04/ 1—(a+b)d b
as %ex s’)ds = s ex s’) ds
/to p(Bs7) ds = 5 7 exp (8s7)

t 1 b) [t
:% [51’(““’) exp (ﬂsb)LO — % /to as™ (9 exp (Bs?) ds. (A1)
Since b > 0, there exists t; > to such that for all ¢t > ¢;
1—(a+b)| _, 1
o< =, A2
AT (42)
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Define C = ’1 (“'H))‘ ~(a+%) exp (Bs®) ds. Then, (A.1) and (A.2) yield for all t > ¢,

t
/ as” % exp (Bsb) ds <

to

- [81—(a+b) exp (Bsb)}z 4O+ ‘a—i—b‘/ s~ (ath) exp (68)
0 ty

IN

t
[Slf(a%) exp (’Bsb)K +Ci + %/ as”exp (ﬁsb) ds
0 t1

IN

o
g
e
Bb
g{s1f(a+b)ex (51, t o 1 b b 4
b P s)LOJr 1+2/as exp(ﬂs) s

to

hence

¢ 2c
—a ds < 22
/to as” % exp (53 ) s b

Defining Cy = ﬁ—(to)l_(‘”‘b) exp (ﬂ(to)b) + 2C1, we obtain for all ¢ > tg

[817(‘”1’) exp (Bsb)}z +2C1.
0

t
/ as™" exp (Bs") ds < %tl—@“’) exp (Bt") + Ca,

to
and the asymptotic bound holds. O

To prove weak convergence of the trajectory solutions, we use the following continuous version of Opial’s
Lemma (see [15, Lemma 5.7]).

Lemma Appendix A.3. Let S C H be a nonempty set and let x : [tyg, +00) = H be a function satisfying
the following conditions:

(i) For every z € S, limy_, oo ||x(t) — 2|| exists;

(ii) Every weak sequential cluster point of x belongs to S.
Then, z(t) converges weakly to an element x> € S as t — +oo.
The following lemma is a modification of [3, Lemma 16].

Lemma Appendix A.4. Let ty >0, « >0, g € (0,1), and k : [ty, +o0) — R a nonnegative function such
that

(t— t7k(t)) € L' ([to, +0)). (A.3)

Let h : [tg, +00) — R be a continuously differentiable function that is bounded from below and possesses an
absolutely continuous derivative h'(-). Further, assume h(-) satisfies

B (1) + %h’(t) <k(t) for almost all t > to. (A.4)

Then, (t — [I'(t)],) € L' ([to, +00)), where [I' ()] denotes the positive part of ' (t), and further lim;_, 4o h(t)
exists.

Proof. Define the function

t
M : [to, +00) = R, t — M(t) = exp (/ sofzds> Con exp (10[(1751_‘1) ,
to
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with Coy := exp (—%téfq) and b := %q > 0. For t > ty, using integration by parts, we have

400 +oo +oo
Cgm/ ds / exp (—bsl_q) ds = —l/ sqdi exp (—bsl_q) ds
t t

(0% S

—= (e o) = [T e (b ) (4

t 1 a [T 1
=—exp (—bt'79) + 7/ s exp(—bs )ds.
a a fy

As q¢ — 1 < 0, there exists t; > to such that for all ¢ > ¢; the inequality gt‘kl < % holds and hence

q +o0 1 +o0
7/ 5971 exp(—bs' 79)ds < 7/ exp(—bs'~7)ds. (A.6)
(O 2 t
Combining (A.5) and (A.6), we conclude that for all ¢t > t;
+oo +o00 244
Cgm/ ds / exp (—bsl_q) ds < 2 exp (—btl_q) . (A.7)
o
Using the definition of 9t(-), equahty (A.7) yields for all ¢t > #;
oo ds oo 2t
" 1) = —phsl—a =) < 2| A.
[ stg)mo= ([ ewo) et <3 (A8
We multiply (A.8) by k(-), integrate from ¢y to +00, and apply relation (A.3) to follow
+o0 +oo ds A
/to ( t m(s)) M(t)k(t)dt < +oo. (A.9)
By the definition of M(-), we have £M(t) = M(t)2 and then, by (A.4),
d
s (MR (t)) = M(t)h" (t) + m(t)%h’(t) < M(t)k(t) for almost all t > to. (A.10)

We integrate (A.10) from ¢y to ¢ > ¢y and observe

M) - Mt 1) < | M(s)k(s)ds

The function k(-) takes nonnegative values only and we derive for all ¢ > tg

W), < m(;;)(g O, ml( | mkGs)ds.

We integrate this inequality from ¢y to 400 and write

+oo , t |9ﬁ(t0)h/(t)| +oo 1 t
/to [W()], dt < /t ) wmm (/t sm(s)k(s)ds) dt. (A.11)

Since M(-) grows at an exponential rate, we have ftjoo %dt < 400. We apply Fubini’s Theorem to
the second integral in (A.11) and combine it with (A.9) to conclude

- Djti(t) ( ti)ﬁ(s)k(s)ds) dt = /tm ( ;oo 9;:&93)) M()k(t)dt < +oc. (A.12)

t() tO
Equation (A.11) and (A.12) imply

“+o0
/ W ()], dt < +oo,

to

and by the lower boundedness of h(-) we follow that lim;_, 1 o, h(t) exists. O
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Appendix B. The proof of the existence of trajectory solutions of (MTRIGS)

The proof for the existence of solutions of (MTRIGS) is closely related to the proof given in [5] (see also
[4]) for the existence of solutions of the system (MAVD).

Appendix B.1. Existence of trajectory solutions of a related differential inclusion (DI)
Consider the set-valued map

G:to,+oo) x HxH=HxH, (t,u,v)— {v}x - argmin (g, —v) |, (B.1)
M g

with C'(u) = conv ({V fi(u) : i =1,...,m}), and the differential inclusion

(a(t),o(t)) € G(t, u(t), v(t)),

(u(to), v(to)) = (uo,vo),

(D)

with initial data g > 0 and (ug,v9) € H x H. In the following proposition, we collect the main properties
of G and point out that statement iii), which will play a crucial role in the existence result, requires H to
be finite dimensional. Its proof can be done in the lines of the proof of [5, Proposition 3.1].

Proposition Appendix B.1. The set-valued map G has the following properties:
i) For all (t,u,v) € [tg, +00) X H X H, the set G(t,u,v) CH X H is convex, compact and nonempty.
it) G is upper semicontinuous.
iit) If H is finite dimensional, then the map
¢ [to,+00) x HxH = HXxH, (t,u,v) = Projgs,uwm (0)
18 locally compact.

iv) If the gradients V f; are Lipschitz continuous for i = 1,...,m, then there exists ¢ > 0 such that for all
(t,u,v) € [to, +00) X H x H — H it holds

sup  [[€llzxn < e (L4 1w, v)[[axn) -
§EG(t,u,v)

The following theorem from [42] gives a criterion for the existence of solutions of the differential inclusion
(DI) on compact intervals.

Theorem Appendix B.2. Let X be a real Hilbert space and let 2 C R x X be an open set containing
(to,x0). Let G: Q = X be an upper semicontinuous set-valued map which takes as values nonempty, closed
and conver subsets of X. Assume that the map (t,x) — projg (s, .)(0) is locally compact. Then, there exists
T > tg and an absolutely continuous function x(-) defined on [to, T] which is a solution of the differential
inclusion

ac(t) S G(t,x(t)) Vit € [to,T}, x(t0> = Zy.

Building on Theorem Appendix B.2, we can formulate the following existence result for (DI), which can be
proven similar to [5, Theorem 3.4].

Theorem Appendix B.3. Assume H is finite dimensional. Then, for all (ug,vo) € H x H there exists
T >ty and an absolutely continuous function (u,v) defined on [to, T| which is a solution of the differential
inclusion (DI) on [to,T].
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In a next step we extend the solutions of (DI) to [tg, +00) by using a standard argument that relies on
Zorn’s Lemma. The proof is a refinement of the one given for [5, Theorem 3.5].

Theorem Appendix B.4. Assume H is finite dimensional. Then, for all (ug,vo) € H X H there exists a
function (u,v) defined on [tg, +00) which is absolutely continuous on [to, T for all T >ty and is a solution
to the differential inclusion (DI).

Proof. We define the following set

S = {(u,v,T): T € (to, +o0] and (u,v) : [to,T) — H x H is absolutely continuous on every

compact interval contained in [tg, T) and is a solution of (DI) on [to,T)}.

Note that the condition T' € (¢, +o0] allows for the value +oo for T. By Theorem Appendix B.3, the set &
is not empty. On & we define the partial order < as follows: for (uy,v1,Th), (ug,ve,T2) € &,

(ul,vl,Tl) < (UQ,’UQ,TQ) < T <Ts and (Ul(t)ﬂ}l(t)) = (UQ(t),UQ(t)) for all t € [to,Tl).

The partial order is reflexive, transitive and antisymmetric. We show that any nonempty totally ordered
subset of G has an upper bound in &. Let € C & be a totally ordered nonempty subset of G. We define

Te =sup{T: (u,v,T) € €}
and
(ug,ve) : [to, Te) = H X H, (ug,ve)(t) := (u(t),v(t)) for t < Te and (u,v,t) € €.

By construction, (ue,ve,Te) € 6 and (u,v,T) < (ue,ve, Te), hence there exists an upper bound of € in &.
According to Zorn’s Lemma, there exists a maximal element in &, which we denote by (u,v,T). If T = 400,
the proof is complete.

We assume that T' < +o0o. We show that this contradicts the maximality of (u,v,T) in &. We define on
[to, T') the function

h(t) = [ (u(t), v(t)) = (u(to), v(to))llz x s -
Using the Cauchy-Schwarz inequality, we get for almost all ¢ € [ty, T)

% (5720)) = (U080, (0 0(0) = (w0 o0 < NGO H0. (B2

Proposition Appendix B.1 (iii) guarantees the existence of a constant ¢ > 0 with

(@), o) ll2xn < (1 + [[(u(t), v()l20xn); (B.3)

for almost all ¢ € [tg,T). Define ¢ :== ¢ (1 + ||(u(to),v(t0))|lx#). By applying the triangle inequality, we
have for almost all ¢ € [tg, T)

[(@(t), 9 lrexw < €1+ [[(u(t),v(t)) — (u(to), v(to)) l#xm) , (B.4)
which gives
% (;h%&)) < &(1+ h(t)) hD). (B.5)

Using a Gronwall-type argument (see Lemma A.4 and Lemma A.5 in [43] and Theorem 3.5 in [9]), we
conclude from (B.5) that for all ¢ € [tg,T)

h(t) < éT exp(eT),
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therefore, h is bounded on [tg, T'). Then, u and v are also bounded on [ty,T) and from (B.3) we deduce that
u and © are essentially bounded. This and the fact that @ and ¢ are absolutely continuous guarantee that

T T
ur = U +/ U(s)ds € H and vr = vg +/ i(s)ds € H

to to
are well-defined. Further, considering the differential inclusion
(w(t),o(t)) € G(t,u(t),v(t)) for t > T,
(B.6)
(u(T),v(T)) = (ur,vr),

and using Theorem Appendix B.3, we obtain that there exist § > 0 and a solution (4, 0) : [T, T+0] — HxH
of (B.6) which is absolutely continuous on compact intervals of [T, T + d]. Defining

X (u(t),v(t)) forte€ [to,T),
(W', v )'[to"g)%HXH’tH{ (a(t), 5(t)) forte[TO,T+5)7

we obtain an element (u*,v*,T + ¢) € & with the property that (u,v,T) # (u*,v*,T + ) and (u,v,T) <
(u*,v*, T + ). This is a contradiction to the fact that (u,v,T’) is a maximal element in &. O

, U
, U

Appendix B.2. Existence of trajectory solutions of (MTRIGS)
In this subsection, we construct trajectory solutions of (MTRIGS) starting from solutions of the differential
inclusion (DI). For this purpose, we use the following well-known property of the projection, according to

which, for H a real Hilbert space, C' C H a nonempty, convex, and closed set, and n € H a given vector, it
holds

§ € n—argmin(y,n) if and only if 1 = projo¢(0).
pnel

Using this result, one can easily see that solutions of the differential inclusions (DI) lead to solutions that
satisfy the equation in (MTRIGS).

Theorem Appendix B.5. Let tg > 0 and xo,v9 € H. If (u,v) : [to,00) = H x H is a solution of (DI)
with (u(to), v(to)) = (xo,v0), then x(t) = u(t) satisfies the differential equation

« .

7220+ Projoue))+ fa(+a (0) =0,
for almost all t € [tg, +00), and x(ty) = xo, and &(ty) = vo.

We are now in a position to prove the existence of a trajectory solution of (MTRIGS) in the sense of Definition
3.1. The following result is obtained by combing Theorem Appendix B.4 and Theorem Appendix B.5. The
fact that = € C([tg, +0)) is a consequence of the fact that x(t) = u(t) = u(to) + ftz v(s)ds for all t > tg
and of the continuity of v.

Theorem Appendix B.6. Assume H is finite dimensional. Then, for all xo,vy € H, there exists a function
x : [to, +00) = H which is a solution of (MTRIGS) in the sense of Definition 3.1.

Appendix C. Computational details for Example 2.3
The gradient of g(-) is given by
T, if |z1] <1, x9+1</1—2a3,

T
4]
Vg:R2—>R2, T Z2 .
1

22+ (z2+1)2
wadtl , else.

Vai+(za+1)2

if ‘$1‘>1, o +1<0,
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M, v My : M,

Figure C.7: The sets M; C R? for i = 1,2, 3.

g1 Denoting
M, = {xeR2:|x1| <l,ze+1< 1—x§},M2 ={zeR®: |z > 1,20+ 1 <0}, My :=R*\ (M UM,),

2 we see that Vg(+) is Lipschitz continuous on cl(M;) for ¢ = 1,2, 3. Since Vg|cl(Mv) () and Vg|cl(M )() coincide
i J

sas  on cl(M;) Nel(M;) for i # j € {1,2,3}, the Lipschitz continuity of Vg(-) follows. In fact, Vg(-) = projy, (-),

ss  hence the Lipschitz constant of the gradient is 1. In the following, we show that for ¢ > ¢

2(t) = —(w(t) +1) Et;—ﬁa(t}) -1 ¢ argglinmax(fl(z) —q1(t), f2(2) — q2(t)) + T@,HZHQ (C.1)
wl(t z€ER?

ss  For all ¢t > tg, the function

©, R =R, 20 max(fi(2) —ai(t), f2(2) — (1)) + %IIZIIQ,

ss 18 strongly convex and therefore has a unique minimizer. We show that
0€0.9:(2(¢)), (C.2)

7 where 0,P¢(z(t)) denotes the convex subdifferential of ®,(-) evaluated at z(¢). Note that z2(t) € [2.25,2.75]
ss  for all ¢ >ty and hence

1 1
B(2) = 323 + 3 +9() + s oI+ max (—21 — ar(8), 1),
0 on an open neighborhood of z(t). We have
2 (t) + z1(f) + 820
0.4(=(t)) = Yoy + 0. max (=21 (1) — @ (8), 21 (1)

_14+ £
V1 (024 (22 (1) +1) L z2()

w0 Since z1(t) = —1¢;(t) we have 9, max (—21(t) — ¢1(t), z1(t)) = [-1,1] x {0} and hence

1(t) B
z1(t) + = >+ w2(t)
0.9 (=(1)) = T I B S B (U (C3)
Va2 ((0)+1)? v
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For all t > tg = (1926)%7 taking into account the definition of z;(¢) and z(t) € [2.25,2.75], it holds

z1(t) B
Zl(t) + \/zl(t)2 T (Z2(t) T 1)2 + tTDZl(t) S [—1, 1]

On the other hand, since

p 2
21(t) = —(ealt) + 1) (t(t)) 1,

P — Bzo

we have

ZQ(t)“Fl B _éz
V21 ()2 + (22(t) + 1)2 =1 » 2 (1),

which proves that (C.3), and therefore (C.1) are satisfied.
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