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FAST CONVEX OPTIMIZATION VIA CLOSED-LOOP TIME SCALING OF
GRADIENT DYNAMICS ∗, ∗∗

Hedy Attouch1, Radu Ioan Boţ2 and Dang-Khoa Nguyen3

Abstract. In a Hilbert setting, for convex differentiable optimization, we develop a general frame-
work for adaptive accelerated gradient methods. They are based on damped inertial dynamics where
the coefficients are designed in a closed-loop way. Specifically, the damping is a feedback control of
the velocity, or of the gradient of the objective function. For this, we develop a closed-loop version
of the time scaling and averaging technique introduced by the authors. We thus obtain autonomous
inertial dynamics which involve vanishing viscous damping and implicit Hessian driven damping.
By simply using the convergence rates for the continuous steepest descent and Jensen’s inequality,
without the need for further Lyapunov analysis, we show that the trajectories have several remark-
able properties at once: they ensure fast convergence of values, fast convergence of the gradients
towards zero, and they converge to optimal solutions. Our approach leads to parallel algorithmic
results, that we study in the case of proximal algorithms. These are among the very first general
results of this type obtained using autonomous dynamics. Since the proposed numerical methods
are based on proximal techniques, the results can be extended to a broader class, specifically to the
problem of minimizing a proper, lower semicontinuous, and convex function. Numerical experiments
are conducted to demonstrate the efficiency of the proposed methods.
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1. Introduction

In a real Hilbert space H, we develop a dynamic approach to the rapid resolution of convex optimization
problems which relies on inertial dynamics whose damping is designed as a closed-loop control. We consider
the minimization problem

min {f(x) : x ∈ H} , (1)

Keywords and phrases: fast convex optimization; damped inertial dynamic; time scaling; averaging; closed-loop control;
Nesterov and Ravine algorithms; Hessian driven damping; proximal algorithms
∗ This work was completed in the final year of Hedy Attouch’s life, just months before his passing. Radu Ioan Boţ and
Dang-Khoa Nguyen wish to take this opportunity to pay tribute to a remarkable mathematician, a kind and generous soul,
whose absence is deeply felt.
∗∗ The research of Radu Ioan Boţ and Dang-Khoa Nguyen has been partially supported by the Austrian Science Fund,
projects W 1260 and P 34922-N, respectively.
1 IMAG, Univ. Montpellier, CNRS, Montpellier, France
e-mail: hedy.attouch@umontpellier.fr
2 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
e-mail: radu.bot@univie.ac.at
3 Faculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam
and Vietnam National University, Ho Chi Minh City, Vietnam
e-mail: ndkhoa@hcmus.edu.vn

© EDP Sciences, SMAI 2025



where, throughout the paper, we make the following assumptions on the function f to be minimized

(A)

{
f : H → R is a convex function of class C1; S = argminH f 6= ∅;

∇f is Lipschitz continuous on the bounded sets of H.
(2)

Our study is part of the close links between dissipative dynamical systems and optimization algorithms, the
latter being obtained by temporal discretization of the continuous dynamics. Our study comes as a natural
extension of the authors’ previous work [4] where the technique of time scaling and averaging was used in an
open-loop way, giving rise to non-autonomous damped inertial dynamics with fast convergence properties.
In the present paper, we take advantage of the simplicity and flexibility of this technique to develop it
in a closed-loop way. This will give rise to autonomous damped inertial dynamics with fast convergence
properties. Recall that the low-resolution ODE obtained by Su, Boyd, and Candès [36] of the accelerated
gradient method of Nesterov, together with the corresponding high-resolution ODE [8], [34] (which involves
an additional Hessian driven damping term) are non-autonomous dynamics, the coefficient of viscous friction
being of the form α/t. Our study therefore opens a new path in the field of first-order adaptive optimization
methods.

1.1. Time scale and averaging: the open-loop approach

Let us briefly explain the time scaling and averaging method in the open-loop case on a model example
(see [4] for more details). Then we will look at how to develop a corresponding closed-loop approach. As
the basic starting dynamic, we consider the continuous steepest descent

(SD) ż(s) +∇f(z(s)) = 0, (3)

for which we have the classical convergence result

f (z (s))− infH f = o

(
1

s

)
as s→ +∞.

Then, we make the change of time variable s = τ(t) in (SD), where τ(·) is an increasing function from R+

to R++, continuously differentiable, and satisfying limt→+∞ τ(t) = +∞. Setting y(t) := z(τ(t)), we get

ẏ(t) + τ̇(t)∇f(y(t)) = 0. (4)
The convergence rate becomes

f(y(t))− infH f = o

(
1

τ(t)

)
as t→ +∞. (5)

Taking τ(·) which grows faster than the identity, makes the solution trajectories unchanged but travelled
faster. The price to pay is that (4) is a non-autonomous dynamic in which the coefficient in front of the
gradient term tends to infinity as t → +∞. This prevents from using gradient methods to discretize it.
Recall that for fixed-stepsize gradient methods the step size has to be less than or equal to twice the inverse
of the Lipschitz constant of the gradient. To overcome this difficulty we come with the second step of our
method which is averaging. Let us attach to y(·) the new function x : [t0,+∞[→ H defined by

ẋ(t) +
1

τ̇(t)
(x(t)− y(t)) = 0, (6)

with x(t0) = x0 given in H. We shall explain further the averaging interpretation. Equivalently

y(t) = x(t) + τ̇(t)ẋ(t). (7)
By temporal derivation of (7) we get

ẏ(t) = ẋ(t) + τ̈(t)ẋ(t) + τ̇(t)ẍ(t). (8)
Replacing y(t) and ẏ(t) as given by (7) and (8) in (4), we get

ẍ(t) +
1 + τ̈(t)

τ̇(t)
ẋ(t) +∇f

(
x(t) + τ̇(t)ẋ(t)

)
= 0. (9)
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In doing so, we passed from the first-order differential equation (4) to the second-order differential equation
(9), with the advantage that now the coefficient in front of the gradient is fixed. Let us now particularize
the time scale τ(·). Taking

τ(t) =
t2

2(α− 1)
, (10)

gives 1+τ̈(t)
τ̇(t) = α

t , and the corresponding dynamic with implicit Hessian driven damping

ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) +

t

α− 1
ẋ(t)

)
= 0. (11)

In this dynamic, the Hessian driven damping appears in an implicit form. This type of dynamic was initiated
in [1], see also [28] for a related autonomous system in the case of a strongly convex function f . The rationale
justifying the use of the term “implicit” comes from the observation that by a Taylor expansion (as t→ +∞
we have tẋ(t)→ 0 which justifies the use of Taylor expansion), we have

∇f
(
x(t) +

t

α− 1
ẋ(t)

)
≈ ∇f(x(t)) + t

α− 1
∇2f(x(t))ẋ(t),

thus making the Hessian damping appear indirectly in (11). Because of its important role in attenuating the
oscillations, several recent studies have been devoted to inertial dynamics combining the asymptotic vanishing
damping with the geometric Hessian-driven damping (coined sometimes Newton-type inertial dynamics);
see e.g., [2, 8–11, 18, 19, 27, 34]. In turn, the corresponding algorithms, among which IGAHD enjoys several
favorable properties, introduce a correction term in the Nesterov accelerated gradient method (see [30, 31])
which reduces the oscillatory aspects.

Note that in (11) the coefficient of the Hessian damping is proportional to the inverse of the viscosity
damping. Thus asymptotically when the viscous damping tends towards zero, and therefore can cause
many small oscillations to appear, the coefficient of the Hessian driven damping tends towards infinity, and
therefore has an effective effect on the attenuation of the oscillations. This is the situation considered by
Attouch, Boţ and Nguyen in [4], who obtained convergence rates comparable to those associated with the
Nesterov accelerated gradient method. A major advantage of this approach is that there is no need to do a
Lyapunov analysis, we only use the classical convergence rate for the continuous steepest descent. Moreover,
the convergence of the trajectories is a direct consequence of the known results for the steepest descent.

In the continuous-time models considered above, the system parameters are given as explicit functions
of time – for instance, terms such as α

t or t2

α−1 appear – thus giving rise to what are known as open-loop
systems. By contrast, in what follows we shall introduce and study dynamical systems whose coefficients
depend directly on the evolving trajectory itself. Such systems are referred to as closed-loop systems, the
terminology being self-explanatory.

1.2. Closed-loop control

The idea is to exploit the time scaling and averaging method and the fact that (SD) provides several
quantities which are increasing and converge to +∞ as t→ +∞, so which are eligible for time scaling. This
will enable us to perform time scaling and averaging in a closed-loop way. Indeed, in (SD), the velocity and
the norm of the gradient are monotonically decreasing to zero. So, the idea is to use their inverse for defining
the time scaling. Specifically, in a first result we are going to define the derivative of the time scaling τ(·) as
a function of the inverse of the speed. This means acceleration of the time scaling when the speed decreases.
Following this approach, we will obtain in Theorem 3.2 the following model result.

Theorem 1.1. Suppose that f : H → R satisfies (A). Let us choose the positive parameters according to
q > 0, p ≥ 1, and γ > 1. Let x : [t0,+∞[→ H be a solution trajectory of the following system

ẍ(t) +
(1 + γ)τ̇(t)2 − τ(t)τ̈(t)

τ(t)τ̇(t)
ẋ(t) + γ τ̇(t)

2

τ(t) ∇f
(
x(t) +

1

γ

τ(t)

τ̇(t)
ẋ(t)

)
= 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p |τ̇ (t)|p−1

∥∥∥∥∇f (x (t) + 1

γ

τ(t)

τ̇(t)
ẋ (t)

)∥∥∥∥p−1 = 1.

(12)
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Then, we have the fast convergence of values: as t→ +∞

f(x(t))− infH f = o

(
1

t1+q−
1
p

)
. (13)

Moreover, the solution trajectory x(t) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

Throughout this paper, convergence of the trajectory is always to be understood in the weak sense.
Consequently, the expression “its limit” consistently refers to the weak limit of the trajectory.

As a special case of Theorem 1.1, take p = 1, q = 2. Then, the last equation of (12) gives λ(t) ≡ 1.
According to this, the second equation of (12) gives τ(t) = t2

4 , and we find a case with time scaling in an
open-loop form. After elementary calculation, the first equation of (12) is written as

ẍ(t) +
α

t
ẋ(t) +

α− 1

2
∇f

(
x(t) +

t

α− 1
ẋ(t)

)
= 0,

with α = 2γ + 1 > 3, and the convergence rate of the values becomes

f(x(t))− infH f = o

(
1

t2

)
. (14)

We therefore recover the results obtained by the authors in the case of the open loop, giving the optimal
convergence rates for general convex differentiable optimization. This inertial formulation may seem at first
glance complicated. Indeed it is equivalent to the first-order system in time and space

ẏ (t) + τ̇ (t)∇f (y (t)) = 0

ẋ(t) + γ
τ̇(t)

τ(t)
x(t)− γ τ̇(t)

τ(t)
y(t) = 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p ‖ẏ (t)‖p−1 = 1,

(15)

whose temporal discretization provides corresponding optimization algorithms, see Theorem 5.1.

1.3. Link with the existing literature

Contrary to the rich literature that has been devoted to non-autonomous damped inertial methods and
their links with the fast first-order optimization algorithms for general convex optimization (in particular the
Nesterov accelerated gradient method), only a small number of papers have been devoted to these questions,
based on autonomous methods. Indeed the heavy ball method of Polyak only provides the asymptotic
convergence rate 1/t for general convex functions. The idea is therefore to see if we can mimic the fast
convergence properties of the Su, Boyd, and Candès dynamic model (see [36]) of the Nesterov accelerated
gradient method, using autonomous dynamics. A natural idea is to design the damping term, on which is
based the optimization properties of the system, in a closed-loop way. In this direction, we can mention the
following contributions.

a) Our study has a natural link with works devoted to regularized Newton methods for solving monotone
inclusions (and (1) in particular). Given a general maximally monotone operator A : H ⇒ H, to overcome
the ill-posed character of the continuous Newton method, in line with [13], Attouch, Redont and Svaiter
have studied in [12] the following closed-loop dynamic version of the Levenberg-Marquardt method{

v(t) ∈ A(x(t))
‖v(t)‖γ ẋ(t) + βv̇(t) + v(t) = 0.

When γ > 1, they showed the well-posedness of the above system, and analyzed its convergence properties.
When A = ∇f this system writes

‖∇f(x(t))‖γ ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0.

Thus, its inertial version

ẍ(t) + ‖∇f(x(t))‖γ ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0
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falls within the framework of our study with the damping equal to a closed-loop control of the norm of
the gradient. The techniques developed in [12] are particularly useful for studying the well-posedness of
dynamics with implicit features.

b) Although significantly different, our approach has several points in common with the article by Lin
and Jordan [23]. In this article, the authors study the closed-loop dynamical system

ẏ (t) + τ̇ (t)∇f (x (t)) = 0

ẋ (t) + τ̇(t)
τ(t) (x (t)− y (t)) +

[τ̇(t)]2

τ(t) ∇f (x (t)) = 0

τ (t)− 1

4

(∫ t
0

√
λ (r)dr + c

)2
= 0

[λ (t)]
p ‖∇f (x (t))‖p−1 = θ,

(16)

where c > 0 and 0 < θ < 1. The corresponding second-order in time damped inertial system writes as follows

ẍ(t) +
2 [τ̇(t)]

2 − τ(t)τ̈(t)
τ(t)τ̇(t)

ẋ(t) +
[τ̇(t)]

2

τ(t)
∇2f (x(t)) ẋ(t) +

τ̇(t)(τ̇(t) + τ̈(t))

τ(t)
∇f (x(t)) = 0. (17)

In the above system, the Hessian driven damping comes in an explicit way because of the structure of the first
equation which differs from the structure of the continuous steepest descent. In contrast, in our approach, the
first equation is the rescaled continuous steepest descent, and the Hessian driven damping comes implicitly.
Let us highlight some advantages of our approach.
• Our system is introduced in a natural way by using the time scaling and averaging method. This

makes unnecessary to perform a Lyapunov analysis for the inertial system. It has already been done for the
continuous steepest descent. This results in a significantly simplified mathematical analysis.
• Our dynamic model contains an additional parameter q which, when q = 2, gives the setting of Lin and

Jordan, and which, when judiciously tuned, gives better convergence rates.
• Our approach provides the weak convergence of the trajectories to optimal solutions.
We shall return later to the precise comparison between the two systems.
c) In [3], Attouch, Boţ and Csetnek study the convergence properties of the Autonomous Damped Inertial

Gradient Equation

(ADIGE) ẍ(t) + G
(
ẋ(t),∇f(x(t)),∇2f(x(t))

)
+∇f(x(t)) = 0,

where the damping term G
(
ẋ(t),∇f(x(t)),∇2f(x(t))

)
acts as a closed-loop control. They pay particular

attention to the role played by the parameter r > 1 in the asymptotic convergence analysis of the dynamic

ẍ(t) + ‖ẋ(t)‖r−2ẋ(t) +∇f(x(t)) = 0.

They show that the case r = 2 separates the weak damping (r > 2) from the strong damping (r < 2), which
emphasizes the importance of this case. These questions have also been considered by Haraux and Jendoubi
in [21].

d) In [35], Song, Jiang, and Ma develop an interesting technique for accelerating high-order algorithms
under general Hölder continuity assumption. Their continuous-time framework reduces to an inertial sys-
tem without Hessian-driven damping in the first-order setting, which has been proven to be an inaccurate
surrogate. Although underlying their approach, the acceleration via time scaling, the averaging technique,
and the closed-loop tuning of the coefficients are not clearly identified.

e) Recently, Maier, Castera, and Ochs proposed in [26] the following closed-loop dynamical system

ẍ (t) +
√
E (t)ẋ (t) +∇f (x (t)) = 0,

where E (t) = f (x (t))− infH f + 1
2 ‖ẋ (t)‖

2. They established that the function values along the generated
trajectory converge at a rate of o

(
1

t2−δ

)
as t→ +∞, for arbitrary δ > 0. Our approach differs fundamentally

from that in [26]: the coefficients in our closed-loop systems depend on the derivative of the trajectory and
on the gradient of f along the trajectory, but not on the function value itself. Moreover, while we are able
to prove convergence of the trajectory, this property remains unknown for the system studied in [26]. A
further limitation of the latter approach, as also acknowledged by the authors, is that the continuous-time
dynamics requires prior knowledge of the optimal value of the problem.
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1.4. Organization of the paper

After a general presentation of the article in the introduction, we provide in Section 2 a general estimate
of the time scaling for the continuous steepest descent when it is defined in a closed-loop way. This is crucial
for the rest of the paper. Then we specialize these results to situations of particular interest, and examine in
details the case of closed-loop systems induced respectively by velocities, and then by gradients. In Section
3, which is the main part of the paper, we develop the next important step in our approach, which is the
averaging operation. This provides accelerated damped inertial dynamics that are autonomous and with
fast convergence properties. Finally, in Section 4 we analyze the fast convergence properties of proximal
algorithms which come naturally from the temporal discretization of the continuous dynamics.

2. Closed-loop time scaling of the steepest descent

2.1. Formulation of the closed-loop time scaling

Given t0 ≥ 0, q > 0, and p ≥ 1, the time scale function τ : [t0,+∞[→ R++ is defined by
ẏ (t) + τ̇ (t)∇f (y (t)) = 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p
[G (y (t))]p−1 = 1,

(18)

where G(·) is a given positive, continuous function that depends on the information of the trajectory y(·).
This general formalism allows us to unify the various situations coming from different choices of the time
scaling as a feedback control of the state of the system. For example, G may be a function of y, ẏ, f (y) ,∇f (y)
and/or any mixture combination of them. Then the function λ(·), for which we assume only positive values,
is continuous and it links the coefficient of ∇f , namely τ̇(·), with the solution trajectory y(·).
As a useful result, note that for every t ≥ t0, it holds

τ̇ (t) =
1

qq−1

(∫ t

t0

[λ (r)]
1
q dr + t0

)q−1
[λ (t)]

1
q

= [τ (t)]
q−1
q [λ (t)]

1
q > 0. (19)

Moreover, the relations (18) allow us to cover the open-loop case. In particular, when p = 1 it holds λ (t) = 1
for every t ≥ t0. This yields for every q > 0

τ (t) =

(
t

q

)q
.

Taking further q := 1, then τ (t) becomes the regular time in variable t, namely τ (t) = t for every t ≥ t0. Let
us specify the interpretation of (18) as a steepest descent dynamic which is rescaled in time in a closed-loop
way.

Proposition 2.1. Suppose that f : H → R satisfies (A). Let t0 ≥ 0, q > 0, p ≥ 1 and y : [t0,+∞[ → H be
a solution trajectory of the system (18). Suppose that

lim
s→+∞

τ (s) = +∞.

Then, y(·) is a solution trajectory of a time rescaled continuous steepest descent (SD), as described below:
Let s0 = τ (t0) and z : [s0,+∞[→ H be a solution trajectory of the following system

ż (s) +∇f (z (s)) = 0. (20)

Then, we have
y (t) = z (τ (t)) ∀t ≥ t0,

and there exists a continuously differentiable function σ : [s0,+∞[→ R++ such that

z (s) = y (σ (s)) ∀s ≥ s0.
6



Proof. We already interpreted how to go from a solution trajectory z(·) of (SD) to the closed-loop system
above via the time scaling function τ(·). Let us now show the reverse direction. Let y : [t0,+∞[ → H
be a solution trajectory of (18). We have that λ is continuous and positive on [t0,+∞[, therefore τ is a
monotonically increasing function, hence injective. On the other hand, we have t0 = τ (t0) =

(
t0
q

)q
. Since

by assumption limt→+∞ τ (t) = +∞, this means τ is a continuous function whose image contains [s0,+∞[,
hence surjective. Combining these premises, we have shown that τ is a bijection, which means it is invertible.

Set σ ≡ τ−1 and make the change of time variable t := σ (s) in (18). Let us define

z (s) = y (σ (s)) = y
(
τ−1 (s)

)
.

Then by the chain rule, we have

ż (s) = ẏ
(
τ−1 (s)

) 1

τ̇ (τ−1 (s))
= ẏ (σ (s))

1

τ̇ (σ (s))
.

This leads to
ż (s) +∇f (z (s)) = 0.

In other words, z : [s0,+∞[→ H is a solution trajectory of (SD). �

The above assertion allows us to transfer the convergence results of (SD) to some closed-loop systems.
In particular, given a time scaling function τ(·) as described above, by making the change of time variable

s := τ (t), we obtain the following results from Theorem 8.1 in the appendix applied to the unperturbed
continuous steepest descent system.∫ +∞

t0

τ (t)

τ̇ (t)
‖ẏ (t)‖2 dt < +∞, (21)∫ +∞

t0

τ (t) τ̇ (t) ‖∇f (y (t))‖2 dt < +∞, (22)

f(y(t))− infH f = o

(
1

τ(t)

)
as t→ +∞, (23)

‖∇f (y (t))‖ = o

(
1

τ(t)

)
as t→ +∞. (24)

2.2. Lower bound estimate of the time scaling τ(t)

As key ingredient of our approach, the next step is to establish a lower bound for τ(t) in terms of t. This
will reflect the acceleration of our dynamic via time scaling and allow us to achieve fast convergence rates.
For this, we will need the following technical lemma, which can be seen as a nonlinear Grönwall result.

Lemma 2.1. Suppose that there exists C0 > 0 and b > a ≥ 0 such that∫ t

t0

[τ (r)]
a
[λ (r)]

−b
dr ≤ C0 < +∞ ∀t ≥ t0, (25)

where τ is defined in terms of λ as in (18), namely, τ (t) = 1
qq

(
t0 +

∫ t
t0
[λ (r)]

1
q dr

)q
. Then, there exists

C1 > 0 such that

τ (t) ≥ C1 (t− t0)
qb+1
b−a ∀t ≥ t0. (26)

Proof. Let t ≥ t0 be fixed. By applying the Hölder inequality and (25), we get∫ t

t0

[τ (r)]
a

qb+1 dr ≤
(∫ t

t0

[τ (r)]
a
[λ (r)]

−b
dr

) 1
qb+1

(∫ t

t0

[λ (r)]
1
q dr

) qb
qb+1

≤ C
1

qb+1

0

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

) qb
qb+1

=
(
C0q

qb
) 1
qb+1 [τ (t)]

b
qb+1 . (27)
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If a = 0, then (26) follows immediately from (27). From now on suppose that a > 0, so that the inequality
(27) can be rewritten as ∫ t

t0

[τ (r)]
a

qb+1 dr ≤
(
C0q

qb
) 1
qb+1

(
[τ (t)]

a
qb+1

) b
a

. (28)

The arguments are now adapted from [23], which is inspired by the proof of Bihari-LaSalle inequality. Let

Cq,b :=
(
C0q

qb
) 1
qb+1 > 0 and A (t) :=

∫ t

t0

[τ (r)]
a

qb+1 dr ∀t ≥ t0,

so that (28) becomes

A (t) ≤ Cq,b
[
Ȧ (t)

] b
a ∀t ≥ t0

or, equivalently,

C
− ab
q,b ≤ [A (t)]

− ab Ȧ (t) ∀t ≥ t0.
Integrating from t0 to t, we obtain

C
− ab
q,b (t− t0) ≤

(
1− a

b

) [
[A (t)]

1− ab − [A (t0)]
1− 1

b

]
≤ [A (t)]

1− ab ≤
[
Cq,b [τ (t)]

b
qb+1

]1− ab
= C

b−a
b

q,b [τ (t)]
b−a
qb+1 ,

where the last inequality comes from (27). Since b > a, the conclusion follows. �

Let us now particularize our results to some model situations.

2.3. Closed-loop control of (SD) via the velocity

Theorem 2.1. Suppose that f : H → R satisfies (A). Let q > 0, p ≥ 1 and y : [t0,+∞[ → H be a solution
trajectory of the following system

ẏ (t) + τ̇ (t)∇f (y (t)) = 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p ‖ẏ (t)‖p−1 = 1.

(29)

Then, the following statements are satisfied:

(i) (convergence of values) f (y (t))− infH f = o
(
t−(1+q−

1
p )
)

as t→ +∞.

(ii) (convergence of gradients towards zero) ‖∇f (y (t))‖ = o
(
t−(1+q−

1
p )
)

as t→ +∞.

(iii) (integral estimate of the velocities)
∫ +∞

t0

t(1+
1
q−

1
pq ) ‖ẏ (t)‖2+

p−1
pq dt < +∞.

(iv) The solution trajectory y(t) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

Proof. When p = 1, we recover the open loop case with the time scaling function τ(t) =
(
t
q

)q
. The result is

a direct consequence of Theorem 8.1. Therefore, from now on we only consider the case p > 1. Recall that
from (21) we have ∫ +∞

t0

τ (t)

τ̇ (t)
‖ẏ (t)‖2 dt < +∞. (30)

By using successively the definition of λ, and relation (19), we obtain

τ (t)

τ̇ (t)
‖ẏ (t)‖2 =

τ (t)

τ̇ (t)
[λ (t)]

− 2p
p−1 = [τ (t)]

1
q [λ (t)]

− 1
q−

2p
p−1 ∀t ≥ t0.

8



According to the two above results we get∫ +∞

t0

[τ (r)]
1
q [λ (r)]

− 1
q−

2p
p−1 dr < +∞.

We are now in position to apply Lemma 2.1 with p > 1, a := 1
q and b := 1

q +
2p
p−1 . We have

qb+ 1

b− a
=

2 + 2pq
p−1

2p
p−1

=
p− 1 + pq

p
= 1 + q − 1

p
,

and therefore there exists some constant C1 > 0 such that

τ (t) ≥ C1 (t− t0)1+q−
1
p ∀t ≥ t0. (31)

This leads to limt→+∞ τ (t) = +∞. Therefore, according to Proposition 2.1, we can extract the results from
Theorem 8.1 and the corresponding formulas (21), (22), (23). Specifically, we obtain

(i) for the values

f (y (t))− infH f = o

(
1

τ(t)

)
= o

(
1

t1+q−
1
p

)
,

(ii) for the gradients

‖∇f (y (t))‖ = o

(
1

τ(t)

)
= o

(
1

t1+q−
1
p

)
.

(iii) for the velocities: we start from (30), i.e.
∫ +∞
t0

τ (t)

τ̇ (t)
‖ẏ (t)‖2 dt < +∞, that we evaluate as follows:

τ (t)

τ̇ (t)
‖ẏ (t)‖2 =

τ(t)

τ(t)
q−1
q λ(t)

1
q

‖ẏ (t)‖2

=
τ(t)

1
q

λ(t)
1
q

‖ẏ (t)‖2

= τ(t)
1
q ‖ẏ (t)‖2+

p−1
pq ∀t ≥ t0.

According to (31) we deduce that∫ +∞

t0

t(1+
1
q−

1
pq ) ‖ẏ (t)‖2+

p−1
pq dt < +∞.

(iv) Let us finally examine the convergence of the solution trajectories. We know that the solution
trajectory of the continuous steepest descent converges weakly when t → +∞, and its limit belong to
S = argminH f 6= ∅; see Theorem 8.1 in appendix. With our notation we therefore have that z(s) converges
weakly when s→ +∞. Since τ(t)→ +∞ as t→ +∞, we immediately deduce that y(t) = z (τ(t)) converges
weakly as t→ +∞, and its limit belong to S = argminH f 6= ∅. This completes the proof. � �

2.4. Closed-loop control of (SD) via the norm of gradient

We develop an analysis parallel to that of the previous section, replacing speed control with gradient
control.

Theorem 2.2. Suppose that f : H → R satisfies (A). Let q ≥ 1
2 , p ≥ 1 and y : [t0,+∞[→ H be a solution

trajectory of the following system
ẏ (t) + τ̇ (t)∇f (y (t)) = 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p ‖∇f (y (t))‖p−1 = 1.

(32)

Then, the following statements are satisfied:
9



(i) (convergence of values) f (y (t))− infH f = o (t−pq) as t→ +∞.
(ii) (convergence of gradients towards zero) ‖∇f (y (t))‖ = o (t−pq) as t→ +∞.

(iii) (integral estimate of the gradients)
∫ +∞

t0

tpq(2−
1
q ) ‖∇f (y (t))‖2+

p−1
pq dt < +∞.

(iv) The solution trajectory y(t) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

Proof. Again, we only consider the case p > 1. We know from (22) that∫ +∞

t0

τ (t) τ̇ (t) ‖∇f (y (t))‖2 dt < +∞.

By using successively the definition of λ, and the relation (19), we obtain

τ (t) τ̇ (t) ‖∇f (y (t))‖2 = τ (t) τ̇ (t) [λ (t)]
− 2p
p−1 = [τ (t)]

2− 1
q [λ (t)]

1
q−

2p
p−1 ∀t ≥ t0.

Therefore ∫ +∞

t0

[τ (t)]
2− 1

q [λ (t)]
1
q−

2p
p−1 dt < +∞.

Let us apply Lemma 2.1 with a := 2− 1
q and b = 2p

p−1 −
1
q . We have b > a, a ≥ 0 for q ≥ 1

2 , and

qb+ 1

b− a
=

2pq
p−1

2p
p−1 − 2

= pq.

Therefore
τ (t) ≥ C1 (t− t0)pq ∀t ≥ t0. (33)

This gives limt→+∞ τ (t) = +∞. According to Proposition 2.1, we can extract the results from Theorem 8.1
and the corresponding formulas (21), (22), (23). Specifically, we obtain

(i) for the values

f (y (t))− infH f = o

(
1

τ(t)

)
= o

(
1

tpq

)
;

(ii) for the gradients

‖∇f (y (t))‖ = o

(
1

τ(t)

)
= o

(
t−pq

)
;

(iii) for the integral estimate of the gradients: we start from (30)∫ +∞

t0

τ (t) τ̇ (t) ‖∇f (y (t))‖2 dt < +∞,

that we evaluate as follows:

τ (t) τ̇ (t) ‖∇f (y (t))‖2 = τ (t) [τ (t)]
q−1
q [λ (t)]

1
q ‖∇f (y (t))‖2

= τ(t)2−
1
q λ(t)

1
q ‖∇f (y (t))‖2

= τ(t)2−
1
q ‖∇f(y(t))‖2−

p−1
pq ∀t ≥ t0.

According to (33) we deduce that∫ +∞

t0

tpq(2−
1
q ) ‖∇f (y (t))‖2+

p−1
pq dt < +∞.

(iv) The convergence of the solution trajectory follows from an argument similar to that of the previous
section. This completes the proof. �

Remark 2.1. a) We thus achieved our first goal which was to accelerate the convergence properties of
the continuous steepest descent using closed-loop time scaling. For example, concerning the convergence
rate of the values, we passed from the convergence rate 1/t for the steepest descent to 1/t(1+q−

1
p ) when

the closed-loop control acts on the velocity, and 1/tpq in the case of the gradient. Clearly, by playing with
10



the parameters p and q we can get arbitrary fast convergence results. The same observation holds for the
convergence of the gradients towards zero.

b) By introducing a time scale function τ(·) which grows faster than the identity (i.e.τ(t) ≥ t) either in
open-loop or closed-loop, we have thus accelerated the continuous steepest descent dynamic. The price to
pay is that we no longer have an autonomous dynamic in (4), with as major drawback the fact that the
coefficient in front of the gradient term tends towards infinity as t→ +∞. This prevents from using gradient
methods to discretize it, as for fixed-stepsize gradient methods the step size has to be less than or equal to
twice the inverse of the Lipschitz constant of the gradient. To overcome this, we come with the second step
of our method which is averaging.

3. Accelerated gradient systems with closed-loop control of the damping

3.1. General results concerning time scale and averaging

We will prove the following general result which puts forward a damped inertial dynamics which comes
by time scale and averaging of the continuous steepest descent. Then we will specialize it and consider time
scale obtained in a closed-loop way, and thus cover the two model situations.

Theorem 3.1. Suppose that f : H → R satisfies (A). Let γ > 1, and let τ : [t0,+∞[→ R++ be an
increasing function, continuously differentiable, such that limt→+∞ τ(t) = +∞. Let x : [t0,+∞[ → H be a
solution trajectory of the following second-order differential equation

ẍ(t) +
(1 + γ)τ̇(t)2 − τ(t)τ̈(t)

τ(t)τ̇(t)
ẋ(t) + γ

τ̇(t)2

τ(t)
∇f

(
x(t) +

1

γ

τ(t)

τ̇(t)
ẋ(t)

)
= 0. (34)

Then, we have the convergence rate of the values: as t→ +∞

f (x(t))− infH f = o

(
1

τ (t)

)
, (35)

and x(t) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

Proof. For simplicity, we assume that the system has the Cauchy data (x (t0) , ẋ (t0)) = (x0, 0) ∈ H ×H.
a) We first prove that the trajectory x(·) can be seen to be obtained from the trajectory of the continuous

steepest descent via time scale and averaging. We start from y(·) solution of

ẏ (t) + τ̇ (t)∇f (y (t)) = 0. (36)
According to the time scale analysis developed in (5) we have

f (y (t))− infH f = o

(
1

τ (t)

)
as t→ +∞.

This means there exists a positive function ε which satisfies limt→+∞ ε (t) = 0 and

f (y (t))− infH f =
ε (t)

τ (t)
∀t ≥ t0. (37)

Let us define the time averaging process as the transformation from y to x according to the formula

ẋ(t) + γ
τ̇(t)

τ(t)
x(t) = γ

τ̇(t)

τ(t)
y(t), (38)

where γ > 1. Equivalently

y(t) = x(t) +
1

γ

τ(t)

τ̇(t)
ẋ(t). (39)

By taking the derivative of y(·) we get

ẏ (t) = ẋ (t) +
1

γ

τ(t)

τ̇(t)
ẍ(t) +

1

γ

τ̇(t)2 − τ(t)τ̈(t)
τ̇(t)2

ẋ(t). (40)

Replacing ẏ (t) by this expression in the constitutive rescaled steepest descent equation (36), we get

ẋ (t) +
1

γ

τ(t)

τ̇(t)
ẍ(t) +

1

γ

τ̇(t)2 − τ(t)τ̈(t)
τ̇(t)2

ẋ(t) + τ̇ (t)∇f
(
x(t) +

1

γ

τ(t)

τ̇(t)
ẋ(t)

)
= 0.

11



Equivalently

1

γ

τ(t)

τ̇(t)
ẍ(t) +

(1 + γ)τ̇(t)2 − τ(t)τ̈(t)
γτ̇(t)2

ẋ(t) + τ̇ (t)∇f
(
x(t) +

1

γ

τ(t)

τ̇(t)
ẋ(t)

)
= 0.

After multiplication by γ τ̇(t)τ(t) we get

ẍ(t) +
(1 + γ)τ̇(t)2 − τ(t)τ̈(t)

τ(t)τ̇(t)
ẋ(t) + γ

τ̇(t)2

τ(t)
∇f

(
x(t) +

1

γ

τ(t)

τ̇(t)
ẋ(t)

)
= 0. (41)

b) Let us now come to the corresponding estimate of the convergence rates with x(t) instead of y(t). The
idea is to express x as an average of y, and then conclude thanks to Jensen’s inequality. Set

b(t) =
τ̇(t)

τ(t)
≥ 0 (42)

B(t) =

∫ t

t0

b(u)du =

∫ t

t0

τ̇(u)

τ(u)
du = ln

(
τ(t)

τ(t0)

)
. (43)

Therefore
eB(t) =

τ(t)

τ(t0)
. (44)

In order to express x in terms of y, we need to integrate the first-order linear differential equation (38) which
is written equivalently as follows

ẋ(t) + γb(t)x(t) = γb(t)y(t).

After multiplying by eγB(t), we get equivalently

eγB(t)ẋ(t) + γb(t)eγB(t)x(t) = γb(t)eγB(t)y(t),

that is,
d

dt

(
eγB(t)x(t)

)
= γb(t)eγB(t)y(t).

Integrating from t0 to t we get

eγB(t)x(t) = eγB(t0)x(t0) + γ

∫ t

t0

b(u)eγB(u)y(u)du.

According to eγB(t0) = e0 = 1 we get

x(t) = e−γB(t)x(t0) + γe−γB(t)

∫ t

t0

b(u)eγB(u)y(u)du

= e−γB(t)y(t0) + γe−γB(t)

∫ t

t0

b(u)eγB(u)y(u)du, (45)

where the last equality follows from the choice of the Cauchy data y(t0) = x(t0) and ẋ(t0) = 0. Then,
observe that x(t) can be simply written as follows

x(t) =

∫ t

t0

y(u) dµt(u), (46)

where µt is the positive Radon measure on [t0, t] defined by

µt = e−γB(t)δt0 + γb(u)eγ(B(u)−B(t))du. (47)

Precisely, in (47), δt0 is the Dirac measure at t0, and b(u)eB(u)−B(t)du is the measure with density b(u)eB(u)−B(t)

with respect to the Lebesgue measure on [t0, t]. According to

γe−γB(t)

∫ t

t0

b(u)eγB(u)du = 1− e−γB(t),

we have that µt is a positive Radon measure on [t0, t] whose total mass is equal to 1. It is therefore a
probability measure, and x(t) is obtained by averaging the trajectory y(·) on [t0, t] with respect to µt. From

12



there, let us show how to deduce fast convergence properties for the so defined trajectory x(·). According to
the convexity of f , and Jensen’s inequality, we deduce that

f

(∫ t

t0

y(u) dµt(u)

)
− infH f = (f − infH f)

(∫ t

t0

y(u)dµt(u)

)
≤

∫ t

t0

(f(y(u))− infH f) dµt(u)

=

∫ t

t0

ε (u)

τ (u)
dµt(u),

where the last inequality above comes from (37). According to the definition of µt (see (47)) and the
formulation of x(t) (see (46)), we deduce that

f (x(t))− infH f ≤ ε (t0)

τ (t0)
e−γB(t) + γe−γB(t)

∫ t

t0

ε (u)

τ (u)
b(u)eγB(u)du.

Equivalently,

τ (t) (f (x(t))− infH f) ≤ ε (t0)
(
τ (t)

τ (t0)

)1−γ

+ γτ (t) e−γB(t)

∫ t

t0

ε (u)

τ (u)
b(u)eγB(u)du. (48)

Since γ > 1 and limt→+∞ τ(t) = +∞, it holds

lim sup
t→+∞

τ (t) (f (x(t))− infH f) ≤ γ lim sup
t→+∞

τ (t) e−γB(t)

∫ t

t0

ε (u)

τ (u)
b(u)eγB(u)du.

It is therefore enough to show that

lim sup
t→+∞

(
γτ (t) e−γB(t)

∫ t

t0

ε (u)

τ (u)
b(u)eγB(u)du

)
≤ 0.

In order to prepare for integration by parts, note that

γb(u)eγB(u) =
d

du

(
eγB(u)

)
and

τ̇ (u)

[τ (u)]
2−γ =

d

du

(
1

γ − 1

1

[τ (t)]
1−γ

)
.

Given an arbitrary η > 0 we consider Tη > t0 such that ε (u) ≤ η for every u ≥ Tη. Therefore, for every
t ≥ Tη, by integration by parts and by taking into consideration the relations (42)-(44), we get

γτ (t) e−γB(t)

∫ t

t0

ε (u)

τ (u)
b(u)eγB(u)du

= γτ (t) e−γB(t)

(∫ Tη

t0

ε (u)

τ (u)
b(u)eγB(u)du+

∫ t

Tη

ε (u)

τ (u)
b(u)eγB(u)du

)

≤ τ (t) e−γB(t)

(
γ

∫ Tη

t0

ε (u)

τ (u)
b(u)eγB(u)du+ ηγ

∫ t

Tη

1

τ (u)
b(u)eγB(u)du

)

= τ (t) e−γB(t)

(
γ

∫ Tη

t0

ε (u)

τ (u)
b(u)eγB(u)du+

η

τ (t)
eγB(t) − η

τ (Tη)
eγB(Tη) + η

∫ t

Tη

τ̇ (u)

[τ (u)]
2 e
γB(u)du

)

= τ (t) e−γB(t)

(
γ

∫ Tη

t0

ε (u)

τ (u)
b(u)eγB(u)du+

η

τ (t)
eγB(t) − η

τ (Tη)
eγB(Tη) +

η

[τ (t0)]
γ

∫ t

Tη

τ̇ (u)

[τ (u)]
2−γ du

)

= τ (t) e−γB(t)

(
γ

∫ Tη

t0

ε (u)

τ (u)
b(u)eγB(u)du+

η

τ (t)
eγB(t) − η

τ (Tη)
eγB(Tη) +

η [τ (t0)]
−γ

γ − 1

(
1

[τ (t)]
1−γ −

1

[τ (Tη)]
1−γ

))

≤

(
γ

∫ Tη

t0

ε (u)

τ (u)
b(u)eγB(u)du

)
τ (t) e−γB(t) + η +

η

γ − 1

≤ C [τ (t)]
1−γ

+
ηγ

γ − 1
.
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Since limt→+∞ τ(t) = +∞, and γ > 1, we obtain

lim sup
t→+∞

(
γτ (t) e−γB(t)

∫ t

t0

ε (u)

τ (u)
b(u)eγB(u)du

)
≤ ηγ

γ − 1
. (49)

This being true for every η > 0, we infer

f (x(t))− infH f = o

(
1

τ (t)

)
. (50)

c) For trajectories convergence, we take advantage of the fact that the solution trajectory z (·) of the
continuous steepest descent converges weakly towards a solution x∗ ∈ S. Since limt→+∞ τ(t) = +∞, this
immediately implies that y(t) = z(τ(t)) converges weakly to x∗ as s→ +∞. In other words, for each v ∈ H

〈y (t) , v〉 → 〈x∗, v〉 as t→ +∞.

To pass from the convergence of y to that of x, we use the interpretation of x as an average of y. The
convergence then results from the general property which says that convergence entails ergodic convergence.
Let us make this precise. Using again that limt→+∞ τ(t) = +∞, we have

x(t) ∼ γe−γB(t)

∫ t

t0

b (u) eγB(u)y (u) du =
γ

[τ(t)]
γ

∫ t

t0

τ̇ (u) [τ(u)]
γ−1

y(u)du.

After elementary calculus, we just need to prove that if a(·) is a positive real-valued function which verifies
limu→+∞ a(u) = 0, then limt→+∞A(t) = 0, where

A(t) =
γ

[τ(t)]
γ

∫ t

t0

τ̇ (u) [τ(u)]
γ−1

a(u)du.

Given an arbitrary η > 0, let us take Tη such that t0 < Tη and a(u) ≤ η for u ≥ Tη. For t > Tη, we have

A(t) =
γ

[τ(t)]
γ

∫ Tη

t0

τ̇ (u) [τ(u)]
γ−1

a(u)du+
γ

[τ(t)]
γ

∫ t

Tη

τ̇ (u) [τ(u)]
γ−1

a(u)du

≤ γ

[τ(t)]
γ

∫ Tη

t0

τ̇ (u) [τ(u)]
γ−1

a(u)du+ ητ(t0).

Letting t converge to +∞ we get
lim sup
t→+∞

A(t) ≤ ητ(t0).

This being true for any η > 0, we infer that limt→+∞A(t) = 0, which completes the proof. �

Remark 3.1. a) By taking γ := α−1
2 and τ (t) := t2

2(α−1) , equation (41) becomes (see [4])

ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) +

t

α− 1
ẋ(t)

)
= 0.

We have γ > 1⇐⇒ α > 3, which is in accordance with the convergence results attached to Nesterov method.
b) The assumption of zero initial velocity is made solely to simplify the proof. For general Cauchy data

(x (t0) , ẋ (t0)) = (x0, x1) ∈ H ×H, the formula (46) takes the form

x (t) =

∫ t

t0

y (u) dµt(u) + ξ (t) ,

where ξ (t) = − e
−γB(t)

γ
τ(t0)
τ̇(t0)

x1 does not vanish since x1 6= 0. Nevertheless, the presence of this perturbation
term does not affect the conclusion, as it can be handled in the same manner as in [4, Theorem 2].

3.2. Damped inertial system via closed-loop control of the velocity

Let us now examine the model situation where the time scaling is defined in a closed-loop way as a
feedback control of the velocity. Completing this construction with the averaging process, as described as

14



above, we get that (x, y) : [t0,+∞[ → H ×H is a solution trajectory of the following algebraic-differential
system 

ẏ (t) + τ̇ (t)∇f (y (t)) = 0

ẋ(t) + γ
τ̇(t)

τ(t)
x(t)− γ τ̇(t)

τ(t)
y(t) = 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p ‖ẏ (t)‖p−1 = 1.

(51)

By specializing Theorem 3.1 to this situation we get the following result.

Theorem 3.2. Suppose that f : H → R satisfies (A). Let q > 0, p ≥ 1, γ > 1 and x : [t0,+∞[ → H be a
solution trajectory of the following system

ẍ(t) +
(1 + γ)τ̇(t)2 − τ(t)τ̈(t)

τ(t)τ̇(t)
ẋ(t) + γ τ̇(t)

2

τ(t) ∇f
(
x(t) +

1

γ

τ(t)

τ̇(t)
ẋ(t)

)
= 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p |τ̇ (t)|p−1

∥∥∥∥∇f (x (t) + 1

γ

τ(t)

τ̇(t)
ẋ (t)

)∥∥∥∥p−1 = 1.

(52)

Then, we have the fast convergence of values: as t→ +∞

f(x(t))− infH f = o

(
1

t1+q−
1
p

)
. (53)

Moreover, the solution trajectory x(t) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

Proof. We showed in the proof of Theorem 3.1 how to pass from (51) to (52). Conversely, let x(·) be a
solution trajectory of the damped inertial dynamic (52). Let us show that by setting

y (t) =
1

γ

τ (t)

τ̇ (t)
ẋ (t) + x (t) ,

then (x, y) : [t0,+∞[→ H×H is a solution trajectory of

ẏ (t) + τ̇ (t)∇f (y (t)) = 0

ẋ(t) + γ
τ̇(t)

τ(t)
x(t)− γ τ̇(t)

τ(t)
y(t) = 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p ‖ẏ (t)‖p−1 = 1.

(54)

Indeed, by taking the time derivative of y(·), as given by the second equation of (54), we get

ẏ (t) =
1

γ

τ (t)

τ̇ (t)
ẍ (t) +

1

γ

(
1 + γ − τ (t) τ̈ (t)

[τ̇ (t)]
2

)
ẋ (t)

=
1

γ

τ (t)

τ̇ (t)

(
ẍ (t) +

(1 + γ) [τ̇(t)]
2 − τ(t)τ̈(t)

τ(t)τ̇(t)
ẋ(t)

)

= −τ̇ (t)∇f
(
x (t) +

1

γ

τ (t)

τ̇ (t)
ẋ (t)

)
= −τ̇ (t)∇f (y (t)) .

This gives the first equation in (54) and

[λ (t)]
p ‖ẏ (t)‖p−1 = [λ (t)]

p |τ̇ (t)|p−1
∥∥∥∥∇f (x (t) + 1

γ

τ (t)

τ̇ (t)
ẋ (t)

)∥∥∥∥p−1 = 1.
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This shows the equivalence of the two systems. According to Theorem 2.1, and formula (31), there exists a
constant C1 > 0 such that

τ (t) ≥ C1 (t− t0)1+q−
1
p . (55)

Therefore limt→+∞ τ(t) = +∞. According to Theorem 3.1 we deduce

f (x(t))− infH f = o

(
1

t1+q−
1
p

)
, (56)

and the convergence of the trajectory. �

3.3. Damped inertial system via closed-loop control of the gradient

We proceed in parallel to the previous section to obtain the following result.

Theorem 3.3. Suppose that f : H → R satisfies (A). Let q > 0, p ≥ 1, γ > 1, and x : [t0,+∞[ → H be a
solution trajectory of the following system

ẍ(t) +
(1 + γ)τ̇(t)2 − τ(t)τ̈(t)

τ(t)τ̇(t)
ẋ(t) + γ τ̇(t)

2

τ(t) ∇f
(
x(t) +

1

γ
τ(t)
τ̇(t) ẋ(t)

)
= 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p

∥∥∥∥∇f (x (t) + 1

γ

τ (t)

τ̇ (t)
ẋ (t)

)∥∥∥∥p−1 = 1.

(57)

Then, we have the fast convergence of values: as t→ +∞

f(x(t))− infH f = o

(
1

tpq

)
. (58)

Moreover, the solution trajectory x(t) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

Proof. Let x(·) be a solution trajectory of the damped inertial dynamic (57). Let us show show that by
setting

y (t) =
1

γ

τ (t)

τ̇ (t)
ẋ (t) + x (t) ,

then (x, y) : [t0,+∞[→ H×H is a solution trajectory of

ẏ (t) + τ̇ (t)∇f (y (t)) = 0

ẋ(t) + γ
τ̇(t)

τ(t)
x(t)− γ τ̇(t)

τ(t)
y(t) = 0

τ (t)− 1

qq

(
t0 +

∫ t

t0

[λ (r)]
1
q dr

)q
= 0

[λ (t)]
p ‖∇f (y (t))‖p−1 = 1.

(59)

Indeed, by the same argument as for the velocity case, we get
ẏ (t) = −τ̇ (t)∇f (y (t)) .

This gives the first equation in (59) and

[λ (t)]
p ‖∇f(y (t))‖p−1 = [λ (t)]

p

∥∥∥∥∇f (x (t) + 1

γ

τ (t)

τ̇ (t)
ẋ (t)

)∥∥∥∥p−1 = 1.

This shows the equivalence of the two systems. According to Theorem 2.2, and formula (33), there exists a
constant C1 > 0 such that

τ (t) ≥ C1 (t− t0)pq . (60)
Therefore from Theorem 3.1 we deduce, as t→ +∞

f (x(t))− infH f = o

(
1

tpq

)
, (61)

and the convergence of the trajectory. �
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3.4. Comparison with the Lin-Jordan approach

In [23], the authors study the second-order closed-loop dynamical system

ẍ (t) +

(
2τ̇ (t)

τ (t)
− τ̈ (t)

τ̇ (t)

)
ẋ (t) +

[τ̇ (t)]
2

τ (t)
∇2f (x (t)) ẋ (t) +

τ̇ (t) [τ̇ (t) + τ̈ (t)]

τ (t)
∇f (x (t)) = 0

τ (t)− 1

4

(∫ t
0

√
λ (t)dr + c

)2
= 0

[λ (t)]
p ‖∇f (x (t))‖p−1 = θ,

(62)

whose first-order reformulation reads

ẏ (t) + τ̇ (t)∇f (x (t)) = 0

ẋ (t) + τ̇(t)
τ(t) (x (t)− y (t)) +

[τ̇(t)]2

τ(t) ∇f (x (t)) = 0

τ (t)− 1

4

(∫ t
0

√
λ (t)dr + c

)2
= 0

[λ (t)]
p ‖∇f (x (t))‖p−1 = θ,

(63)

where c > 0 and 0 < θ < 1 are given parameters. See also [25] and [24] for some extensions to monotone
equations and monotone inclusions, respectively.

a) In [23], the authors obtained the following convergence rate of function values

f (x (t))− infH f = O
(

1

t
3p+1

2

)
as t→ +∞.

Note that the last two equations in (63) are nothing else than those in (32) with q := 2. For comparison, in
our approach the convergence rate of the values obtained in Theorem 3.3 when q = 2 is

f (x (t))− infH f = o

(
1

t2p

)
,

which is better for every p > 1.
b) Let us now compare the convergence estimates of the gradients. In [23], the authors obtain the integral

estimate ∫ +∞

t0

t
3p+1

2 ‖∇f (x (t))‖
p+1
p dt < +∞,

which leads to
inf

t0≤σ≤t
‖∇f (x (σ))‖ = O

(
t−

3p
2

)
as t→ +∞.

In our approach, the right variable to consider is y(t), instead of x(t). According to (22) we have∫ +∞

t0

τ (t) τ̇ (t) ‖∇f (y (t))‖2 dt < +∞.

Since q = 2, according to (19) we have

τ̇ (t) = [τ (t)]
1
2 [λ (t)]

1
2 .

Therefore

τ (t) τ̇ (t) ‖∇f (y (t))‖2 = τ (t)
3
2 [λ (t)]

1
2 ‖∇f (y (t))‖2 = τ (t)

3
2 ‖∇f (y (t))‖2−

p−1
2p .

Since τ(t) ≥ Ct2p, we deduce that ∫ +∞

t0

t3p ‖∇f (y (t))‖
3p+1
2p dt < +∞,

which leads to
inf

t0≤σ≤t
‖∇f (y (σ))‖ = O

(
t−2p

)
as t→ +∞.
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Again, our approach gives a better convergence rate than [23]. Let us also specify that our analysis provides
the convergence of the trajectories, which is an open question for [23]. Moreover, since our approach is
consistent with the steepest continuous descent, it can naturally be extended to the non-smooth case, and
to the case of cocoercive operators, as it was done in the open-loop case in [4].

3.5. The limiting case γ = 1

Our previous results are valid under the assumption γ > 1. It is a natural question to examine the
limiting case γ = 1. Close examination of the proof of the theorem reveals a slight change in the integration
procedure and a logarithm factor appears. The corresponding result obtained is written as follows.

Theorem 3.4. Suppose that f : H → R satisfies (A). Let x : [t0,+∞[ → H be a solution trajectory of the
following second-order differential equation

ẍ(t) +
2 [τ̇(t)]

2 − τ(t)τ̈(t)
τ(t)τ̇(t)

ẋ(t) +
[τ̇(t)]

2

τ(t)
∇f

(
x(t) +

τ(t)

τ̇(t)
ẋ(t)

)
= 0 (64)

where τ : [t0,+∞[→ R++ is an increasing function, continuously differentiable, and satisfying limt→+∞ τ(t) =
+∞.
Then, we have the convergence rate of the values: as t→ +∞

f (x(t))− infH f = o

(
ln (τ (t))

τ (t)

)
, (65)

and the solution trajectory x(t) converges weakly as t→ +∞, and its limits belongs to S = argmin f .
Suppose moreover that there exists some θ > 0 and C1 > 0 such that for t sufficiently large

(A)asymp τ(t) ≥ C1 (t− t0)θ . (66)

Then, we have the fast convergence of values: as t→ +∞

f (x(t))− infH f = o

(
ln (t)

tθ

)
. (67)

When specialized to the closed-loop control of the velocity, we obtain

f (x(t))− infH f = o

(
ln (t)

t1+q−
1
p

)
, (68)

and in the case of the closed-loop control of the gradient

f (x(t))− infH f = o

(
ln (t)

tpq

)
. (69)

So, the convergence rates are in this limiting case a little worse because of the logarithm term.

4. Associated proximal algorithms

4.1. A proximal-explicit discretization

In the following, we present a numerical approach based on a proximal-explicit temporal discretization
of the closed-loop systems investigated in this paper. By proximal-explicit we mean that the function f is
evaluated using a proximal step while the step size sequence (λk)k≥0 and the time scaling sequence (τk)k≥0
are computed explicitly. This makes our numerical scheme much easier implementable than the numerical
algorithm proposed in [23] as well as the large-step A HPE approach by Monteiro and Svaiter [29] which are
in fact approximations of a proximal-implicit discrete time method. We restrict ourselves to the case q = 1,
which gives τ̇ (t) = λ (t). In this case, the continuous time closed-loop dynamical system is written as followsẏ (t) + λ (t)∇f (y (t)) = 0

[λ (t)]
p
[G (y (t))]p−1 = 1.

(70)

Let us describe the general structure of the algorithm which is obtained by a proximal-explicit discretization
of the continuous system (70).
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Given yk, yk−1 in H, we first define λk by

[λk]
p
[G (yk, yk−1)]p−1 = 1.

and consider then an implicit finite difference scheme for the first equation of (70)

yk+1 − yk + λk∇f (yk+1) = 0. (71)

This gives the following algorithm, called (PEAS) for Proximal Explicit Algorithm with Adaptive Step Size.
Note that (λk)k≥0 is computed explicitly in terms of (yk)k≥0. In other words, the definition of the sequence

Algorithm 1: Proximal-explicit algorithm with adaptive step size (PEAS)

Input: y0 6= y−1 ∈ H
1 for k = 0, 1, · · · do
2 λk := [G (yk, yk−1)]−

p−1
p

3 yk+1 := proxλkf (yk)

4 end

(λk)k≥0 is decoupled from the computation of (yk)k≥0. This is different from the method in [23], which
ultimately leads to the large-step A HPE approach by Monteiro and Svaiter in [29].

Let us now specify the link between λk and τk. We start from the relation (recall that we take q = 1)

τ̇ (t) = λ (t) . (72)

Then, for every k ≥ 0 we discretize (72) as follows

τk+1 − τk = λk ⇐⇒ τk+1 = λk + τk (73)

with the convention λ0 := t0 and τ0 := 0, which then yields τk =
∑k−1
i=0 λi. Drawing inspiration from

continuous analysis, we will first show that the function value f (yk) − infH f attains the o
(

1
τk+1

)
rate of

convergence, and the sequence (yk)k≥0 converges weakly to a solution. Then, as a crucial result, we will
derive a lower bound of τk+1 in terms of k.

The following result emphasizes that the rate of convergence and summability results holds for (yk)k≥0
for arbitrary step sizes λk that satisfy

∑
k≥0 λk = +∞. The proof is an adaptation of [4, Theorem 4.1].

Theorem 4.1. Let y0 ∈ H, (λk)k≥0 be a given positive sequence satisfying
∑
k≥0

λk = +∞, τ0 = 0 and

τk =
∑k−1
i=0 λi for every k ≥ 1. Then, for any sequence (yk)k≥0 generated by the proximal algorithm

yk+1 := proxλkf (yk) ∀k ≥ 0, (74)

the following properties are satisfied:

(i) (summability of function values)
∑
k≥0

λk (f (yk+1)− infH f) < +∞;

(ii) (summability of gradients)
∑
k≥0

τkλk ‖∇f (yk+1)‖2 < +∞;

(iii) (summability of velocities)
∑
k≥0

τk
λk
‖yk+1 − yk‖2 < +∞;

(iv) (convergence of function values) f (yk+1)− infH f = o

(
1

τk+1

)
as k → +∞;

(v) (convergence of gradient) ‖∇f (yk+1)‖ = o

 1√∑k
l=0 τlλl

 as k → +∞;

(vi) the sequence of iterates (yk)k≥0 converges weakly as k → +∞, and its limit belongs to S = argminH f .
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Proof. Let k ≥ 0 be fixed. Take z∗ ∈ S = argmin f . According to (71) and the convexity of f , we deduce
that

1

2
‖yk+1 − z∗‖2 =

1

2
‖yk − z∗‖2 + 〈yk+1 − z∗, yk+1 − yk〉 −

1

2
‖yk+1 − yk‖2

=
1

2
‖yk − z∗‖2 − λk 〈yk+1 − z∗,∇f (yk+1)〉 −

1

2
λ2k ‖∇f (yk+1)‖2

≤ 1

2
‖yk − z∗‖2 − λk (f (yk+1)− infH f)−

1

2
λ2k ‖∇f (yk+1)‖2 . (75)

Statement (i) follows from [14, Lemma 5.31]. In addition, the limit limk→+∞ ‖yk − z∗‖ ∈ R exists, which
means that the first condition of the discrete Opial’s lemma is fulfilled.

On the other hand, the sequence (f (yk)− infH f)k≥0 is nonincreasing. Precisely, we have for every k ≥ 0

(f (yk)− infH f)− (f (yk+1)− infH f) ≥ 〈∇f (yk+1) , yk − yk+1〉 = λk ‖∇f (yk+1)‖2 ≥ 0. (76)

According to [6, Lemma 22] we get

f (yk+1)− infH f = o

(
1∑k
i=0 λi

)
,

which proves (iv).
Let k ≥ 1. Multiplying both sides of (76) by τk =

∑k−1
i=0 λi > 0, then adding the result into (75), we get

τk+1 (f (yk+1)− infH f) +
1

2
‖yk+1 − z∗‖2 ≤ τk (f (yk)− infH f) +

1

2
‖yk − z∗‖2

− 1

2
λ2k ‖∇f (yk+1)‖2 − τkλk ‖∇f (yk+1)‖2 .

This implies ∑
k≥0

λ2k ‖∇f (yk+1)‖2 < +∞ and
∑
k≥1

τkλk ‖∇f (yk+1)‖2 < +∞,

which yields (ii). From (71), we infer (iii). To deduce (v), it suffices to show that the sequence (‖∇f (yk) ‖)k≥0
is nonincreasing. Indeed, it follows from (74) and the cocoercivity of ∇f that

1

2
‖∇f (yk+1)‖2 =

1

2
‖∇f (yk)‖2 + 〈∇f (yk+1) ,∇f (yk+1)−∇f (yk)〉 −

1

2
‖∇f (yk+1)−∇f (yk)‖2

=
1

2
‖∇f (yk)‖2 −

1

λk
〈yk+1 − yk,∇f (yk+1)−∇f (yk)〉 −

1

2
‖∇f (yk+1)−∇f (yk)‖2

≤ 1

2
‖∇f (yk)‖2 .

Taking into account also (ii), we obtain (v).
Finally, according to the assumption

∑
k≥0 λk = +∞, and (iv), we have that limk→+∞ f (yk) = infH f .

Since f is convex and lower semicontinuous, the second condition of Opial’s lemma is also fulfilled. This
gives the weak convergence of the sequence (yk)k≥0 to an element in S = argmin f . �

Then, we give a statement which can be seen as a discrete counterpart of Lemma 2.1. The result is more
complex not only because we are in the discrete setting, but also because it allows an explicit choice of the
stepsize, as we will see later.

Lemma 4.1. Let (λk)k≥0 be a positive sequence and (τk)k≥0 such that τ0 = 0 and τk =
∑k−1
i=0 λi for all

k ≥ 1. Suppose that there exist C2 > 0 and a, b, c ≥ 0 such that b+ c > a and∑
k≥0

τakλ
−b
k λ−ck+1 ≤ C2 < +∞

Then, there exists C3 > 0 such that for every k ≥ 1 it holds

τk+1 ≥ C3k
b+c+1
b+c−a . (77)
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Proof. By applying the Hölder inequality twice we get for all k ≥ 0

k∑
i=0

τ
a

b+c+1

i ≤

(
k∑
i=0

τai λ
−b
i λ−ci+1

) 1
b+c+1

(
k∑
i=0

λi

) b
b+c+1

(
k∑
i=0

λi+1

) c
b+c+1

≤ C
1

b+c+1

2

(
k+1∑
i=0

λi

) b+c
b+c+1

= C
1

b+c+1

2 τ
b+c
b+c+1

k+2 . (78)

If a = 0 then (77) follows immediately. From now on we suppose that a > 0. Inequality (78) becomes
k∑
i=0

τ
a

b+c+1

i ≤ C
1

b+c+1

2

(
τ

a
b+c+1

k+2

) b+c
a ∀k ≥ 0. (79)

Following the continuous counterpart, let us define

Cb+c := C
1

b+c+1

2 > 0 and Ak :=

k∑
i=0

τ
a

b+c+1

i ∀k ≥ 0

so that (79) becomes

Ak ≤ Cb+c (Ak+2 −Ak+1)
b+c
a ∀k ≥ 0.

From here,
C
− a
b+c

b+c ≤ A−
a
b+c

k (Ak+2 −Ak+1) ∀k ≥ 1. (80)

For convenience, we define the following function ψ : R++ → R++ as ψ (r) := r−
a
b+c . It is clear that

d

dr

(
b+ c

b+ c− a
r1−

a
b+c

)
= ψ (r) and ψ̇ (r) = − a

b+ c
r−

a
b+c−1 < 0.

Since (Ak)k≥0 is increasing, this means ψ (Ak+2) ≤ ψ (r) ≤ ψ(Ak) for every Ak ≤ r ≤ Ak+2.
Let k ≥ 1 fixed. We consider two separate cases.

Case 1: ψ (Ak) ≤ 2ψ (Ak+2). Then (80) leads to

C
− a
b+c

b+c ≤ A−
a
b+c

k (Ak+2 −Ak) = ψ (Ak) (Ak+2 −Ak)

≤ 2ψ (Ak+2) (Ak+2 −Ak) = 2ψ (Ak+2)

∫ Ak+2

Ak

1dr

≤ 2

∫ Ak+2

Ak

ψ (r) dr = 2
b+ c

b+ c− a

(
A

1− a
b+c

k+2 −A1− a
b+c

k

)
.

Case 2: ψ (Ak) > 2ψ (Ak+2). This is equivalent to Ak+2 > 2
b+c
a Ak. Since b+ c > a, we can deduce further

A
1− a

b+c

k+2 > 2
b+c
a −1A

1− a
b+c

k .

Consequently,
A

1− a
b+c

k+2 −A1− a
b+c

k >
(
2
b+c
a −1 − 1

)
A

1− a
b+c

k ≥
(
2
b+c
a −1 − 1

)
A

1− a
b+c

1 ,

recall that the last inequality follows from the increasing property of (Ak)k≥1.
In conclusion, for every k ≥ 0 we have

A
1− a

b+c

k+2 −A1− a
b+c

k ≥ C4 := min

{
1

2

(
1− a

b+ c

)
C
− a
b+c

b+c ,
(
2
b+c
a −1 − 1

)
A

1− a
b+c

1 , A
1− a

b+c

2

}
> 0.

Telescoping sum arguments combined with (79) imply for every k ≥ 1

C4k ≤ A
1− a

b+c

2k −A1− a
b+c

0 ≤ A1− a
b+c

2k ≤ C
b+c−a

(b+c)(b+c+1)

2 τ
b+c−a
b+c+1

2k+2 .

This gives for every k ≥ 1

τ2k+3 ≥ τ2k+2 ≥ C̃3k
b+c+1
b+c−a ,
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where C̃3 > 0. We therefore deduce that there exists C3 > 0 such that

τk+1 ≥ C3k
b+c+1
b+c−a ∀k ≥ 1,

which gives (77). �

Following a plan identical to the continuous case, we successively consider the case where the control by
feedback is formulated in terms of speed, then of gradient.

4.2. Adaptive stepsize rules resulting from the discretization of the velocity based sys-
tem

In this subsection we specialize the algorithm (PEAS) to the case where G(yk, yk−1) = ‖yk − yk−1‖.

Algorithm 2: Proximal algorithm with adaptive step size defined via velocity

Input: y0 6= y−1 ∈ H
1 for k = 0, 1, · · · do
2 if ∇f (yk) = 0 then
3 stop
4 else
5 λk := ‖yk − yk−1‖−

p−1
p

6 yk+1 := proxλkf (yk)

7 end
8 end

Theorem 4.2. Let (yk)k≥0 be the sequence generated by Algorithm 2. Then, it holds

f (yk)− infH f = o

(
1

k2−
1
p

)
as k → +∞,

and the sequence of iterates (yk)k≥0 converges weakly as k → +∞, and its limit belongs to S = argminH f .

Proof. By the choice of the step size, we have from Theorem 4.1 (iii) that∑
k≥0

τk
λk
‖yk+1 − yk‖2 =

∑
k≥0

τkλ
−1
k λ

− 2p
p−1

k+1 < +∞,

where τ0 = 0 and τk :=
∑k−1
i=0 λi for every k ≥ 1. We are in position to apply Lemma 4.1 with (a, b, c) :=(

1, 1, 2p
p−1

)
. We get

τk+1 ≥ C3k
2− 1

p ∀k ≥ 1. (81)
Therefore

∑
k≥0 λk = limk→+∞ τk = +∞, and we can apply Theorem 4.1 to obtain the conclusion. �

4.3. Adaptive stepsize resulting from the discretization of the gradient based system

Now let us specialize the algorithm (PEAS) to the case where G(yk, yk−1) = ‖∇f(yk)‖.

Theorem 4.3. Let (yk)k≥0 be the sequence generated by Algorithm 3. Then, it holds

f (yk+1)− infH f = o

(
1

k2−
1
p

)
as k → +∞

and the sequence of iterates (yk)k≥0 converges weakly as k → +∞, and its limit belongs to S = argminH f .

Proof. In this case we have from Theorem 4.1 (ii)∑
k≥0

τkλk ‖∇f (yk+1)‖2 =
∑
k≥0

τkλkλ
− 2p
p−1

k+1 < +∞, (82)
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Algorithm 3: Proximal algorithm with adaptive step size defined via gradient
Input: y0 ∈ H

1 for k = 0, 1, · · · do
2 if ∇f (yk) = 0 then
3 stop
4 else
5 λk := ‖∇f (yk)‖−

p−1
p

6 yk+1 := proxλkf (yk)

7 end
8 end

where τ0 = 0 and τk :=
∑k−1
i=0 λi for every k ≥ 1.

Let us establish an inequality of the type

‖∇f (yk)‖ ≤ Ck ‖∇f (yk+1)‖ ,
for some sequence Ck > 0 which is to be precised. We have for all k ≥ 0

‖∇f (yk)‖2 = ‖∇f (yk+1)‖2 − 2 〈∇f (yk+1) ,∇f (yk+1)−∇f (yk)〉+ ‖∇f (yk+1)−∇f (yk)‖2

= ‖∇f (yk+1)‖2 +
2

λk
〈yk+1 − yk,∇f (yk+1)−∇f (yk)〉+ ‖∇f (yk+1)−∇f (yk)‖2

≤ ‖∇f (yk+1)‖2 +
(
2L

λk
+ L2

)
‖yk+1 − yk‖2 = (1 + Lλk)

2 ‖∇f (yk+1)‖2

≤ (1 + Lλk+1)
2 ‖∇f (yk+1)‖2 (83)

where L > 0 denotes the Lipschitz constant of ∇f on a bounded set containing the sequence (yk)k≥0.
Combining (82) and (83), we get∑

k≥0

τkλk
1

(1 + Lλk+1)
2 ‖∇f (yk)‖

2
=
∑
k≥0

τkλk
1

(1 + Lλk+1)
2λ
− 2p
p−1

k < +∞. (84)

Let us now show that limk→+∞ λk = +∞. According to the decreasing property of the sequence (f (yk)− infH f)k≥0,
by summing inequalities (76) we get ∑

k≥0

λk ‖∇f (yk+1)‖2 < +∞. (85)

From the closed-loop rule we deduce that ∑
k≥0

λkλ
− 2p
p−1

k+1 < +∞. (86)

Therefore
lim

k→+∞
λkλ

− 2p
p−1

k+1 = 0.

Since (λk)k≥0 is increasing, let us denote by l > 0 its limit. If l is finite then, by passing to the limit on the
above inequality we get l1−

2p
p−1 = 0, a clear contradiction with l > 0. Therefore

lim
k→+∞

λk = +∞.

In this case 1
(1+Lλk+1)

2 ∼ (Lλk+1)
−2, which gives∑

k≥0

τkλ
1− 2p

p−1

k λk+1
−2 < +∞. (87)

We are in position to apply Lemma 4.1 with (a, b, c) :=
(
1, 2p

p−1 − 1, 2
)
. We get

τk+1 ≥ C3k
2− 1

p ∀k ≥ 1.
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We have
∑
k≥0 λk = limk→+∞ τk = +∞, and we can apply Theorem 4.1 to obtain, as k → +∞

f (yk+1)− infH f = o

(
1

k2−
1
p

)
.

This completes the proof. �

Remark 4.1. Note that the closed-loop control of the velocity and the closed-loop control of the gradient
give the same convergence rate of the values. Clearly, we have obtained a faster convergence result compared
to the classical Proximal Point Algorithm (PPA), which we also cover since it coincides with p = 1 in both
cases.

5. Inertial proximal algorithms obtained by closed-loop damping

Let us now consider the convergence properties of the sequences (xk)k≥0 which are obtained by applying
the averaging process to the sequences generated by Algorithm 2. Indeed, we limit our investigation to the
closed loop control of the velocity, the case of the closed loop control of the gradient is very similar. Let us
discretize the continuous averaging relation

ẋ(t) +
τ̇(t)

τ(t)
(x(t)− y(t)) = 0

as follows (recall that, because of the choice q = 1, we have τ̇(t) = λ(t))

xk+1 − xk +
λk
τk+1

(xk − yk+1) = 0.

Equivalently

xk+1 =

(
1− λk

τk+1

)
xk +

λk
τk+1

yk+1.

This gives the following proximal inertial algorithm:

Algorithm 4: Proximal inertial algorithm with adaptive step size defined via velocity
Input: τ0 := 0 and x0, y0 6= y−1 ∈ H

1 for k = 0, 1, · · · do
2 if ∇f (yk) = 0 then
3 stop
4 else
5 λk := ‖yk − yk−1‖−

p−1
p

6 yk+1 := proxλkf (yk)

7 τk+1 := τk + λk

8 xk+1 :=

(
1− λk

τk+1

)
xk +

λk
τk+1

yk+1.

9 end
10 end

Theorem 5.1. Let (xk)k≥0 be the sequence generated by Algorithm 4. Then, it holds

f (xk)− infH f = O
(

1

k2−
1
p

)
as k → +∞

and the sequence of iterates (xk)k≥0 converges weakly as k → +∞, and its limit belongs to S = argminH f .

Proof. Let k ≥ 0. By definition of xk+1 we have

τk+1xk+1 = (τk+1 − λk)xk + λkyk+1
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which gives (recall that τk+1 =
∑k
i=0 λi)

τk+1xk+1 − τkxk = (τk+1 − λk)xk + λkyk+1 − τkxk = (τk+1 − τk − λk)xk + λkyk+1 = λkyk+1.

Therefore, by telescoping arguments we obtain

xk+1 =

∑k
i=0 λiyi+1

τk+1
∀k ≥ 0. (88)

By convexity of f we infer

f (xk+1)− infH f = (f − infH f) (xk+1) = (f − infH f)

(∑k
i=0 λiyi+1

τk+1

)

≤ 1

τk+1

k∑
i=0

λi (f − infH f) (yi+1) =
1

τk+1

k∑
i=0

λi (f (yi+1)− infH f) ,

By Theorem 4.1 (i), we have
∑
k≥0 λk (f (yk+1)− infH f) < +∞, and by (81) we have τk+1 ≥ k2−

1
p , which

gives the claim. The weak convergence of (xk)k≥0 to an element in S = argminH f follows from the weak
convergence of (yk)k≥0 and the Stolz-Cesáro Theorem. �

5.1. Geometric interpretation of Algorithm 4

First note that Algorithm 4 can be equivalently written as follows

xk+1 =

(
1− λk

τk+1

)
xk +

λk
τk+1

proxλkf

(
xk−1 +

τk
λk−1

(xk − xk−1)
)
. (89)

Since τk
λk−1

> 1, the algorithm first involves an extrapolation step (this is the inertial aspect), then a proximal
step, and finally a relaxation step which balances the inertia effect and dampens the oscillations. This is
shown in the figure below. We set θk = λk

τk+1
∈]0, 1[.

yk = xk−1 +
1

θk−1
(xk − xk−1)•

xk•

xk−1•

•xk+1 = (1− θk)xk + θk proxλkf (yk)

proxλkf (yk)

S

�
�
�
�

�
�
���

�
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Figure 1. A geometrical illustration of Algorithm 4.

Despite some analogies, Algorithm 4 is different from the relaxed inertial proximal algorithm (RIPA)
considered by Attouch and Cabot in [7], and which writes{

yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρk proxλkf (yk)
(90)

As main difference, in Algorithm 4 the relaxation is taken between xk and proxλkf (yk), while in (RIPA) it is
taken between yk and proxλkf (yk). Consequently, Algorithm 4 involves a Hessian damping effect which is not
present in (RIPA). Note in Algorithm 4 the balance between the extrapolation (inertial, acceleration) effect
and the relaxation effect. Moreover, our construction provides coefficients which are generated automatically
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in closed loop way, whereas in (RIPA) they require subtle adjustment. The importance of the relaxation
technique when combined with inertia has been put to the fore in [22]. According to (88), xk+1 can be
interpreted as an average of the {yn : 0 ≤ n ≤ k + 1}, which makes our approach somewhat analogous to
the nonlinear averaging technique developed in [33], where it is assumed that there is a unique minimizer.
Averaging techniques have also been used in [32] in the context of hybrid systems. Indeed, adjusting the
damping in a closed-loop ad hoc manner bears some analogy to restarting methods.

5.2. Extension to the nonsmooth setting

Since our proposed numerical algorithms are proximal methods, they can be used also to minimize non-
smooth and convex functions. Given an optimization problem

min {f(x) : x ∈ H} , (91)

where f : H → R ∪ {+∞} is a proper, lower semicontinuous, and convex function with S = argminH f 6= ∅,
one can equivalently consider the problem

min {fγ(x) : x ∈ H} , (92)

where fγ : H → R stands for the Moreau envelope of f with parameter γ > 0, defined as

fγ (x) = inf
y∈H

{
f (x) +

1

2γ
‖x− y‖2

}
.

The two problems share the same optimal value and solution set argminH f = argminH fγ , while the Moreau
envelope is convex and differentiable and it has a γ−1-Lipschitz continuous gradient ( [14,15]). The formulas
for the proximal operators of f and fγ are closely related by a simple convex combination, which makes
no difference when solving (91) and (92) conceptually. We can therefore exploit these premises to apply
our methods to a broader class of functions that are only assumed to be proper, lower semicontinuous, and
convex.

6. Numerical experiments

In this section, we carry out numerical experiments in order to demonstrate the effectiveness of the
methods we have proposed.

Let q ≥ 1 and X ∈ Rm×n. We denote by ‖·‖Sq the Schatten q-norm of X, which is defined as

‖X‖qSq =
∑
i

σqi (X) ,

where σi (X) denote the ith-singular value of X. In case q := 1 it gives the nuclear norm, which we denote
by ‖·‖∗, and in case q := 2 it gives the Frobenius norm, which we denote by ‖·‖F. Further, we denote by
Eλ−,λ+ (Rn×n) the set of positive semidefinite n × n matrices with eigenvalues belonging to [λ−, λ+]. The
logarithm of a matrix X ∈ Rn×n is the matrix Y := log (X) ∈ Rn×n such that

X = eY =
∑
i≥0

1

i!
Y i.

The functions used in the numerical experiments were:
a) “ log det + Nuclear norm”

f : Rn×n → R ∪ {+∞} , f (X) :=

{
− log (det (X)) + µ ‖X‖∗ if X � 0,

+∞ otherwise,

b) “ log det + Squared Frobenius norm”

f : Rn×n → R ∪ {+∞} , f (X) :=

{
− log (det (X)) + µ ‖X‖2F if X � 0,

+∞ otherwise,
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c) “ log det + Bounds on eigenvalues”

f : Rn×n → R ∪ {+∞} , f (X) :=

{
− log (det (X)) if X ∈ Eλ−,λ+

(Rn×n) ,
+∞ otherwise,

d) “von Neumann entropy + Nuclear norm”

f : Rn×n → R ∪ {+∞} , f (X) :=

{
trace (X log (X)) + µ ‖X‖∗ if X � 0,

+∞ otherwise,

e) “von Neumann entropy + Squared Frobenius norm”

f : Rn×n → R ∪ {+∞} , f (X) :=

{
trace (X log (X)) + µ ‖X‖2F if X � 0,

+∞ otherwise,

f) “von Neumann entropy + Bounds on eigenvalues”

f : Rn×n → R ∪ {+∞} , f (X) :=

{
trace (X log (X)) if X ∈ Eλ−,λ+ (Rn×n) ,
+∞ otherwise,

g) “Ridge + Schatten q-penalty”

f : Rm×n → R, f (X) :=
1

2
‖X‖2F + µ ‖X‖qSq .

For all cases we considered µ := 10−1 and solved the optimization problem (92) for γ := 1. For this
purpose we used Algorithm 2 and Algorithm 3 when p := 2, the classical proximal point algorithm (PPA)
( [14, 15]) and the special case of FISTA obtained in the absence of the smooth term ( [16]), which we also
compared with each other. For the formulas of the proximal operators of the seven objective functions,
see [15,17,20].

We have set n := 102, and for the Ridge + Schatten q-penalty we have chosen m ∈
{
1, 102, 104

}
to see

to what extent the dimension of the matrix affects the numerical performance, also for different values of q.
The initial point Y0 has been generated randomly, whereas for Algorithm 2 we have simply added 1 to all
its entries to obtain Y−1.

We have stopped the algorithms either when
‖Yk+1 − Yk‖
‖Yk+1‖

< Tol

or if they a maximum allowed number of iterations Ite_max has been exceeded. We have set Tol := 10−16

and Ite_max := 103. The performance of the four algorithms has been compared in terms of f
(
proxf (Yk)

)
−

f∗ in logarithmic scale, where f∗ is the minimum value the objective function takes over all generated
sequences.

According to the main convergence theorems, for p = 2, Algorithm 2 and Algorithm 3 have rates of
convergence of o

(
k−3/2

)
as k → +∞, which is faster than that of PPA, but worse than that of FISTA. As

Figure 2 shows for the objective functions (a) - (f), Algorithm 2 and Algorithm 3 demonstrate competitive
performance against PPA and FISTA, outperforming them in many instances. On the other hand, they do
not exhibit oscillations, a phenomenon known to occur with momentum algorithms. The better convergence
properties of the algorithms presented in this paper are confirmed for the different instances considered in
the Figures 3 - 5 when minimizing the Ridge + Schatten q-penalty function, especially as the values for
q become larger. We believe that the consistent improvements in the convergence of the function values
observed for Algorithm 2 and Algorithm 3 are due to the fact that these algorithms make much better use
of local information and adjust the step size accordingly.

7. Conclusion and perspective

Our study proposes new fast adaptive optimization methods for convex optimization. We have shown
that the time scaling and averaging technique, previously developed by the authors in the context of non-
autonomous systems, can be developed by taking closed-loop time parameterization, giving rise to au-
tonomous dynamics. The method turns out to be flexible, because it is based on elementary mathematical
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(a) “ log det + Nuclear norm”

(b) “ log det + Squared Frobenius norm”

(c) “ log det + Bounds on eigenvalues”

(d) “von Neumann entropy + Nuclear norm”

(e) “von Neumann entropy + Squared Frobenius norm”

(f) “von Neumann entropy + Bounds on eigenvalues”

Figure 2. Numerical comparisons between PPA, FISTA, and Algorithm 2 and Algorithm
3 for n = 102.

tools, namely the dynamics of the steepest descent, and the operations of temporal parameterization and
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(a) “Ridge + Nuclear norm”

(b) “Ridge + Schatten 4/3-penalty”

(c) “Ridge + Schatten 3/2-penalty”

(d) “Ridge + Schatten 4-penalty”

Figure 3. Numerical comparisons between PPA, FISTA, and Algorithm 2 and Algorithm
3 for (m,n) :=

(
1, 102

)
.

averaging. It is therefore not necessary to redo a Lyapunov analysis, one relies on the classic results for the
steepest descent. The results obtained for the continuous dynamics pass quite naturally to the correspond-
ing proximal algorithms, where the iterates are expressed in a direct way according to the proximal terms.
This study is one of the very first to develop an algorithmic framework based on autonomous dynamics and
which, when specialized, provides the convergence rates of the dynamical surrogate of the Nesterov accelera-
tion gradient method. Another important aspect of our analysis is that it exhibits Hessian-driven damping,
which plays a key role in damping oscillations. Our work opens up many perspectives, our method natu-
rally extending to gradient algorithms, proximal-gradient algorithms for composite optimization, cocercive
monotone operators, and the study of the stochastic version, to name only a few.

8. Appendix

8.1. Classical facts concerning the continuous steepest descent

Consider the classical continuous steepest descent

(SD) ż(t) +∇f(z(t)) = 0. (93)
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(a) “Ridge + Nuclear norm”

(b) “Ridge + Schatten 4/3-penalty”

(c) “Ridge + Schatten 3/2-penalty”

(d) “Ridge + Schatten 4-penalty”

Figure 4. Numerical comparisons between PPA, FISTA, and Algorithm 2 and Algorithm
3 for (m,n) :=

(
102, 102

)
.

Under the standing assumption (A) on f , we know that, for any z0 ∈ H there exists a unique classical global
solution z ∈ C1([t0,+∞[: H) of (SD) satisfying z(t0) = z0, see [5, Theorem 17.1.1]. We fix t0 as the origin of
time. Recall classical facts concerning the continuous steepest descent.

Theorem 8.1. Suppose that f : H → R satisfies (A). Let z : [t0,+∞[→ H be a solution trajectory of

ż(t) +∇f(z(t)) = g(t) (94)

where g : [t0,+∞[→ H is such that∫ +∞

t0

‖g (t)‖ dt < +∞ and
∫ +∞

t0

t ‖g (t)‖2 dt < +∞. (95)

Then, the following statements are satisfied:

(i) (convergence of gradients towards zero) ‖∇f (z (t))‖ = o

(
1√
t

)
as t→ +∞.

(ii) (integral estimate of the velocities)
∫ +∞

t0

t ‖ż (t)‖2 dt < +∞.

(iii) (integral estimate of the gradients)
∫ +∞

t0

t ‖∇f (z (t))‖2 dt < +∞.
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(a) “Ridge + Nuclear norm”

(b) “Ridge + Schatten 4/3-penalty”

(c) “Ridge + Schatten 3/2-penalty”

(d) “Ridge + Schatten 4-penalty”

Figure 5. Numerical comparisons between PPA, FISTA, and Algorithm 2 and Algorithm
3 for (m,n) :=

(
104, 102

)
.

(iv) (convergence of values) f (z (t))− infH f = o

(
1

t

)
as t→ +∞.

(v) (improved convergence rates of gradients) if g(t) ≡ 0, then ‖∇f (z (t))‖ = o

(
1

t

)
as t→ +∞.

(vi) The solution trajectory z(t) converges weakly as t→ +∞, and its limit belongs to S = argmin f .

If g(t) ≡ 0, we have that t 7→ ‖∇f (z (t))‖ is nonincreasing, since in this case

d

dt
‖∇f (z (t))‖2 = 2

〈
∇f (z (t)) , d

dt
∇f (z (t))

〉
= −2

〈
ż (t) ,

d

dt
∇f (z (t))

〉
≤ 0 ∀t ≥ t0.

Therefore, from the integral estimate of the gradients we deduce that ‖∇f (z (t))‖ = o
(
1
t

)
.

8.2. Auxiliary result

Opial’s Lemma is a basic ingredient of the convergence analysis.

Lemma 8.1. (Opial) Let S be a nonempty subset of H and let (xk)k≥0 be a sequence in H. Assume that
(i) for every z ∈ S, limk→+∞ ‖xk − z‖ exists;
(ii) every weak sequential limit point of (xk)k≥0, as k → +∞, belongs to S.
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Then, (xk)k≥0 converges weakly as k → +∞, and its limit belongs to S.
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