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Abstract. In this paper, we consider a class of nonconvex and nonsmooth fractional program-4
ming problems that involve the sum of a convex, possibly nonsmooth function composed with a5
linear operator and a differentiable, possibly nonconvex function in the numerator and a convex,6
possibly nonsmooth function composed with a linear operator in the denominator. These problems7
have applications in various fields. We present a framework for a full-splitting proximal subgradi-8
ent algorithm with two versions: (i) a smoothing-based version (S-FSPS) that uses carefully chosen9
smoothing parameters and step sizes; and (ii) an adaptive version (Adaptive FSPS) which incor-10
porates extrapolation and backtracking to ensure the nonnegativity of the merit sequence. Both11
versions address the difficulty of decoupling the nonsmooth composition in the numerator. We prove12
that S-FSPS converges subsequentially to an exact lifted stationary point, and that Adaptive FSPS13
converges globally to an approximate lifted stationary point under the Kurdyka- Lojasiewicz prop-14
erty. Further discussions are provided on the tightness of the Adaptive FSPS convergence results15
and the reasoning behind aiming for an approximate lifted stationary point. We construct a series of16
counterexamples to demonstrate that the Adaptive FSPS algorithm may diverge when seeking exact17
solutions. We also developed practical versions incorporating a non-monotone line search to enhance18
performance. Our theoretical findings are validated through simulations involving limited-angle CT19
reconstruction and the robust sharp-ratio-type minimization problem.20
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1. Introduction. In this paper, we consider the following class of nonsmooth24

and nonconvex fractional programs:25

min
xPS

F pxq :“
gpAxq ` hpxq

fpKxq
,(1.1)26

where S is a nonempty convex and compact subset of Rn, f : Rp Ñ R :“ R Y t`8u27

and g : Rs Ñ R are proper, nonsmooth convex and lower semicontinuous functions;28

A : Rn Ñ Rs and K : Rn Ñ Rp are linear operators; h : Rn Ñ R is a (possibly29

nonconvex) differentiable function over an open set containing S and its derivative30

∇h is Lipschitz continuous over this open set with a Lipschitz constant L∇h. To31

ensure (1.1) is well-defined, we assume for the denominator that Kx P domf and32

fpKxq ą 0 for all x P S. For more detailed assumptions, we direct the reader to our33

subsequent sections.34

Problem (1.1) falls into the category of single-ratio fractional programming prob-35

lems. However, its structure is more intricate than that of the problems discussed in36

[8] and [10]. When the linear operators A and K are identity mappings (represented37
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2 RADU IOAN BOŢ, GUOYIN LI, AND MIN TAO

as I), the model (1.1) simplifies to the problem addressed in [21]. Model (1.1) encom-38

passes a variety of optimisation problems, such as limited-angle CT reconstruction39

[19, 29], robust Sharpe ratio minimization [13], the single-period optimal portfolio40

selection problem [23], the sparse signal reconstruction problem [28, 21, 34], and so41

on. Subsequently, we offer two examples to demonstrate the nature of (1.1).42

(a) The limited-angle CT reconstruction problem aims at reconstructing the true43

image from limited-angle scanning measurements. By representing an image as an44

pn ˆ nq matrix, it can be mathematically formulated as45

min
xPB

τ}∇x}1 ` 1
2}Px ´ f}2

}∇x}p
,(1.2)46

Let 1 ă p ă 8, P be the projection operator, f the oberved data, and τ ą 0 a regular-47

ization parameter. The linear operator ∇ : Rnˆn Ñ RnˆnˆRnˆn denotes the discrete48

gradient operator, defined as ∇v “ p∇xv,∇yvq, where ∇x,∇y : Rnˆn Ñ Rnˆn are49

the forward horizontal and vertical difference operators, respectively. Regarding the50

box constraint B :“ rl,us Ď Rnˆn, which represents the range of pixel values of the51

true image [29], we assume that B X spanpEq “ H, where E is the matrix with all52

entries equal to one. By identifying the matrix space Rnˆn as the Euclidean space53

Rn2

, problem (1.2) can be written as a special case of (1.1) with gpxq :“ τ}x}1,54

fpxq :“ }x}p, A “ K “ ∇, hpxq :“ 1
2}Px ´ f}2, and S :“ B. Here, } ¨ }p denotes the55

usual ℓp-norm for 1 ă p ă 8, while for p “ 2 we will simply write } ¨ } for } ¨ }2.56

(b) The robust sharp-ratio-type optimization problem under scenario data uncer-57

tainty, which arises in finance, takes the following form:58

(1.3) min
xP∆

max1ďiďm1tri ´ aJ
i xu

max1ďiďm2
xJCix

,59

where ∆ “ tx P Rn | eJx “ 1,x ě 0u with e “ p1, . . . , 1q P Rn, pai, riq P Rn ˆ R,
i “ 1, . . . ,m1, are such that ri ´ aJ

i x ě 0 for all x P ∆, and Ci, i “ 1, . . . ,m2, are
positive definite matrices. The standard Sharpe ratio optimization problem without

data uncertainty reads as (see [13]) maxxP∆
aJx´r?
xJCx

. Another closely related equivalent

model is maxxP∆
aJx´r
xJCx , where C P Rnˆn is a symmetric positive definite matrix and

pa, rq P Rn ˆ R. Here, without loss of generality, we assume that aJx ´ r ě 0 for
all x P ∆. Suppose that the data pa, rq and C are subject to scenario uncertainty,
that is, pa, rq P U1 “ tpa1, r1q, . . . , pam1

, rm1
qu and C P U2 “ tC1, . . . , Cm2

u, where
pai, riq P Rn ˆ R, i “ 1, . . . ,m1, are such that aJ

i x ´ ri ě 0 for all x P ∆ and Ci,
i “ 1, . . . ,m2, are positive definite matrices. Then, the robust counterpart of the
above Sharpe ratio optimization problem is

max
xP∆

min
pa,rqPU1,
CPU2

aJx ´ r

xJCx
“ max

xP∆

min1ďiďm1
taJ

i x ´ riu

max1ďiďm2 x
JCix

,

which can be further equivalently rewritten as min
xP∆

max1ďiďm1
tri ´ aJ

i xu

max1ďiďm2
xJCix

. By adding60

a positive constant if necessary (without affecting the solutions), we obtain (1.3). The61

problem of (1.3) is a special case of (1.1) with fpx1, ¨ ¨ ¨ ,xm2
q :“ max1ďiďm2

}xi}
2
2,62

K : x ÞÑ pC
1{2
1 x, ¨ ¨ ¨ , C

1{2
m2 xq, gpxq :“ }r ´ x}8 with r :“ pr1, . . . , rm1

q, A : x ÞÑ63

paJ
1 x,a

J
2 x, ¨ ¨ ¨ ,aJ

m1
xqJ, hpxq “ 0 and S :“ ∆.64

The conventional approach to tackling single ratio fractional programming prob-65

lems commonly involves utilizing Dinkelbach’s method or its variants [15, 18]. The66
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FULL SPLITTING ALGORITHMS FOR STRUCTURED FRACTIONAL PROGRAMS 3

recent monograph [14] comprehensively explores Dinkelbach’s algorithm, incorporat-67

ing surrogation mechanism to overcome the inherent nonconvexity of the resultant68

subproblems. For solving simple single ratio problems, where compositions of non-69

smooth functions with linear operators do not occur, various splitting algorithms have70

been proposed in recent works [8, 9, 10, 21, 35]. These methods share the feature that71

instead of invoking an inner loop aimed at solving the resulting Dinkelbach’s scalariza-72

tion of the fractional program, they execute only one iteration of a suitable splitting73

algorithm and update the sequence of function values. On the other hand, direct74

adaptations of these techniques for solving (1.1) often lead to double-loop algorithms.75

Our goal is to develop a single-loop, full-splitting algorithm with convergence76

guarantees for efficiently solving problem (1.1). By fully splitting, we mean that the77

algorithm relies solely on the proximity operators of either g or g˚, and either f or78

f˚. To address this challenge, inspired by [12, 21], we propose a framework for the79

Fully Splitting Proximal Subgradient (FSPS) algorithm. Specifically, we introduce80

two iterative schemes. The first one is based on a smoothing approach with carefully81

selected step sizes and smoothing parameters to ensure (subsequential) convergence82

to an exact lifted stationary point. The second one is an adaptive algorithm with an83

extrapolated step that enjoys global convergence guarantees, albeit with the trade-off84

of convergence to an approximate lifted stationary point.85

The smoothing-based algorithm, called S-FSPS, uses a smooth approximation of86

the nonsmooth function g through the Moreau envelope gγ (defined in (2.2)) as γ Ó 087

[5]. By carefully choosing the step sizes and the smoothing parameters, we show that88

a cluster point of S-FSPS is an exact lifted stationary point. On the other hand, this89

scheme need not exhibit global convergence for the whole sequence. To address this90

issue, we propose an adaptive algorithm, called Adaptive FSPS, that approximates91

g ˝ A from below using the conjugate function of g. Adaptive FSPS incorporates a92

backtracking strategy to maintain the positivity of the augmented function sequence93

— a crucial property for convergence analysis. Additionally, an extrapolated step94

[36, 37] is introduced to maintain positivity in the augmented function values. We95

establish sequential convergence to an exact lifted stationary point for Adaptive FSPS96

when g is smooth and satisfies the KL property. When g is nonsmooth, we demon-97

strate sequential convergence to an approximate lifted stationary point under the KL98

property. We justify the convergence of the adaptive FSPS to an approximate lifted99

stationary point when g is nonsmooth. The approximation error can be set to an ar-100

bitrarily small value. Counterexamples are constructed to demonstrate that Adaptive101

FSPS may diverge to an exact stationary point, regardless of whether the smoothing102

parameter γk tends to zero as k Ñ `8 or is set to zero. Unlike existing splitting103

methods for nonconvex problems [11, 17, 20, 24, 30], global convergence for Adaptive104

FSPS is guaranteed without requiring full-rank assumptions on the linear operators.105

Furthermore, we propose practical versions of these algorithms by incorporating a106

nonmonotone line search [32, 35] to improve performance.107

The remainder is organized as follows. Section 2 presents the necessary notions108

and results. Section 3 introduces the stationarity concepts and investigates their in-109

terrelationships. In Section 4, we develop a framework of fully splitting proximal110

subgradient (FSPS) algorithm, propose a smoothing-based version (S-FSPS), and es-111

tablish its subsequential convergence to an exact lifted stationary point—although112

without a guarantee of global convergence. Section 6 is devoted to the development113

of an adaptive FSPS algorithm and the establishment of its global convergence to114

an approximate lifted stationary point under the Kurdyka– Lojasiewicz (KL) assump-115

tion. In Section 7, we discuss several important aspects related to the conceptual116
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4 RADU IOAN BOŢ, GUOYIN LI, AND MIN TAO

FSPS algorithm and its variants. Section 8 introduces practical adaptations via the117

integration of a nonmonotone line search strategy, and presents numerical results118

demonstrating their effectiveness. Finally, Section 9 concludes the paper.119

2. Preliminaries and calculus rules. Finite-dimensional spaces within the120

paper will be equipped with the Euclidean norm, denoted by } ¨ }, while x¨, ¨y will121

represent the Euclidean scalar product. Given a set C Ď Rn, ripCq, intpCq and clpCq122

denote its relative interior, interior and closure, respectively. The function ιC : Rn Ñ123

R :“ R Y t`8u, defined by ιCpxq “ 0, for x P C, and ιCpxq “ `8, otherwise, denotes124

the indicator function of the set C.125

For a function f : Rn Ñ R, we denote by dom f :“ tx P Rn : fpxq ă `8u its126

effective domain and say that it is proper if dom f ‰ H. For x P dom f , the set127

B̂fpxq :“

"

v P Rn : lim inf
xÑx x‰x

fpxq ´ fpxq ´ xv,x ´ xy

}x ´ x}
ě 0

*

128

is the so-called Fréchet subdifferential of f at x. The limiting subdifferential of f at x129

is defined as130

Bfpxq :“
!

v P Rn :D txku Ñ x, fpxkq Ñ fpxq, tvku Ñ v as k Ñ `8, vk P B̂fpxkq

)

.131

If f is proper, convex and lower semicontinuous function and ε ě 0, we denote by132

(2.1) Bεfpxq :“ tv P Rn : fpxq ě fpxq ` xv,x ´ xy ´ ε @x P Rn
u133

the ε-subdifferential of f at x. It holds v P Bεfpxq if and only if f˚pvq`fpxq´xv,xy ď

ε, where f˚ : Rn
Ñ R, f˚pvq “ supxPRntxv,xy ´ fpxqu, denotes the (Fenchel)

conjugate function of f . The convex subdifferential of f at x is defined by Bfpxq :“
B0fpxq. The domain of the convex subdifferential is defined as dompBfq :“ tx P Rn :
Bfpxq ‰ Hu. For a proper, convex lower semicontinuous function f : Rn Ñ R, its
proximal operator of modulus γ ą 0 is defined as

Proxγf : Rn
Ñ Rn, Proxγf pxq “ arg min

yPRn

!

fpyq `
1

2γ
}y ´ x}2

)

.

The Moreau envelope of f with modulus γ ą 0 is defined as134

fγ : Rn Ñ R, fγpxq :“ min
yPRn

"

fpyq `
1

2γ
}y ´ x}2

*

.(2.2)135

For all x P Rn, it holds that136

fγpxq “

´

f˚ `
γ

2
} ¨ }2

¯˚

pxq “ sup
vPRn

!

xx,vy ´ f˚pvq ´
γ

2
}v}2

)

.(2.3)137

The Moreau envelope of f with modulus γ ą 0 is Fréchet differentiable on Rn, and its138

gradient satisfies, for all x P Rn, ∇pfγqpxq “ 1
γ px ´ Proxγf pxqq “ Proxf˚{γ

´

x
γ

¯

. A139

proper function f : Rn Ñ R is called essentially strictly convex if it is strictly convex140

on every convex subset of dompBfq. For a proper, convex and lower semicontinuous141

function f , f is essentially strictly convex if and only if its conjugate f˚ is essentially142

smooth [26]. Given a linear operator A : Rn Ñ Rm, we denote by A˚ : Rm Ñ Rn its143

adjoint operator. We also use σA :“ }A} “ supt}Ax} : }x} “ 1u to denote its norm.144

Given r ą 0 and x P Rn, Bpx, rq denotes the closed ball centered at x with radius145

r. Next, we review the Kurdyka- Lojasiewicz (KL) property [3, 6] and the concept of146

calmness [27].147
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FULL SPLITTING ALGORITHMS FOR STRUCTURED FRACTIONAL PROGRAMS 5

Definition 2.1. A proper and lower semicontinuous function f : Rn Ñ R is said148

to satisfy the Kurdyka- Lojasiewicz (KL) property at a point x̂ P dompBfq if there149

exist a constant µ P p0,`8s, an open neighborhood U of x̂, and a desingularization150

function ϕ : r0, µq Ñ r0,`8q, which is continuous and concave, and continuously151

differentiable on p0, µq with ϕp0q “ 0 and ϕ1 ą 0 on p0, µq, such that for every x P U152

with fpx̂q ă fpxq ă fpx̂q ` µ it holds ϕ1pfpxq ´ fpx̂qqdistp0, Bfpxqq ě 1.153

Definition 2.2. A proper function f : Rn Ñ R is said to be calm at x P domf if154

there exist ε ą 0 and κ ą 0 such that |fpyq ´ fpxq| ď κ}y ´ x} for all y P Bpx, εq :“155

tz P Rn : }z ´ x} ă εu.156

Lemma 2.3. Let O Ď Rn be an open set, and f1 : O Ñ R and f2 : O Ñ R be two157

functions which are finite at x P O with f2pxq ą 0. Suppose that f1 is continuous at158

x relative to domf1, that f2 is calm at x, and denote αi :“ fipxq, i “ 1, 2.159

(i) Then160

B̂

ˆ

f1
f2

˙

pxq “
B̂pα2f1 ´ α1f2qpxq

f2pxq2
.(2.4)161

(ii) If, in addition, f2 is convex and α1 ě 0, then162

B̂

ˆ

f1
f2

˙

pxq Ď
B̂pα2f1qpxq ´ α1B̂f2pxq

f2pxq2
.(2.5)163

Proof. (i) The proof is similar to [35, Proposition 2.2]. (ii) If f2 is convex and164

α1 ě 0, then B̂pα1f2qpxq ‰ H thanks to x P intpdomf2q. According to [22, eq. (1.6)],165

this further leads to B̂pα2f1 ´ α1f2qpxq Ď B̂pα2f1qpxq ´ B̂pα1f2qpxq “ B̂pα2f1qpxq ´166

α1B̂f2pxq.167

Next, we present a lemma that will be useful in establishing approximate stationarity.168

Lemma 2.4. Let g : Rn Ñ R be a proper, convex and lower semicontinuous func-169

tion, and w P intpdomgq. Let ε ą 0 and K be a compact set such that Bpw, εq Ď170

K Ď intpdomgq and g is Lipschitz continuous on K with constant κ ą 0. Further, let171

z P Rn be such that distpw, Bg˚pzqq :“ inft}w ´ η} : η P Bg˚pzqu ď ε. Then, one has172

z P Bε̂gpwq, where ε̂ :“ 2κε.173

Proof. First, as Bpw, εq Ď K and g is Lipschitz continuous on K with constant174

κ ą 0, we observe that supt}ξ} : ξ P Bgpw`uq, }u} ď εu ď κ. For η :“ ProjBg˚pzqpwq,175

the projection of w on Bg˚pzq (which exists and is unique), it holds }η ´ w} ď ε.176

Therefore, for u :“ η ´ w, we have }u} ď ε, w ` u P Bg˚pzq or, equivalently,177

z P Bgpw ` uq. Next, we claim that178

gpwq ´ gpw ` uq ` xu, zy ď ε̂,(2.6)179

where ε̂ is defined in the statement of the lemma. Since xw`u, zy´g˚pzq “ gpw`uq,180

thanks to the fact z P Bgpw ` uq, this is equivalent to gpwq ` g˚pzq ď ε̂ ` xw, zy, and181

so, the conclusion follows. Now we will prove that (2.6) is true. By direct calculations,182

we have gpwq ´ gpw ` uq ` xu, zy ď κ}u} ` κ}u} ď 2κε “ ε̂.183

3. Basic assumptions and stationary points of fractional programs. We184

introduce the basic assumptions and present notions of stationary points.185

Assumption 3.1. Throughout this paper, we assume that186

(a) S Ď Rn is a nonempty convex and compact set;187
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6 RADU IOAN BOŢ, GUOYIN LI, AND MIN TAO

(b) g is a proper, convex and lower semicontinuous function;188

(c) h is differentiable with Lipschitz continuous gradient over an open set containing189

the compact set S with a Lipschitz constant L∇h;190

(d) f is a proper, convex and lower semicontinuous function with KpSq Ď intpdomfq191

and fpKxq ą 0 for all x P S;192

(e) S X A´1pdomgq ‰ H and α :“ infxPStgpAxq ` hpxqu ą 0;193

(f) It holds that ApSq Ď dompBgq and there exists a constant ℓ ą 0 such that194

distp0, BgpAxqq ď ℓ for all x P S.195

The assumption S X A´1pdomgq ‰ H ensures that the objective function F is196

not identically `8. The second condition in Assumption 3.1(e) can be satisfied by197

augmenting the objective with a suitable positive constant1, noting from Assumption198

3.1(a)-(d) that infxPS F pxq ą ´8. Assumption 3.1(f) is automatically satisfied when199

the compact set ApSq is a subset of the interior of dom g.200

Remark 3.2. In the illustrative examples of (a) and (b) provided in Section 1,201

the functions f and g have a full domain — therefore Assumption 3.1(a)-(f) are202

fulfilled. In example (a), it holds α :“ infxPStgpAxq`hpxqu ą 0 owing the assumption203

B X spanpEq “ H. In example (b), it holds α :“ infxPStgpAxq ` hpxqu ě 0, however,204

one could then augment the objective by adding a positive constant in order to make205

the inequality strict.206

Definition 3.3. For the optimization problem (1.1), we say that x P Rn is207

(i) a Fréchet stationary point if 0 P B̂

´

g˝A`h`ιS
f˝K

¯

pxq;208

(ii) a limiting lifted stationary point if209

0 P pA˚BgpAxq ` ∇hpxq ` BιSpxqq fpKxq ´ pgpAxq ` hpxqqK˚BfpKxq.210

Any local minimizer x P Rn of (1.1) is a Fréchet stationary point. If x P Rn211

is a Fréchet stationary point of (1.1) such that Kx P intpdomfq, and either x P212

ripSq X A´1ripdomgq or S is polyhedral and x P S X A´1ripdomgq, then, according213

to Lemma 2.3, x P Rn is also a limiting lifted stationary point of (1.1). Example214

3.1 in [8] also illustrates that a limiting lifted stationary point may not be a Fréchet215

stationary point.216

Next, we introduce the notion of an approximate lifted stationary point for prob-217

lem (1.1).218

Definition 3.4. Given ϵ1, ϵ2 ě 0, we say that x P Rn is a limiting pϵ1, ϵ2q-lifted219

stationary point of the problem (1.1) if there exists Ψ P R with |Ψ´pgpAxq`hpxqq| ď ϵ2220

such that 0 P pA˚Bϵ1gpAxq ` ∇hpxq ` BιSpxqq fpKxq ´ ΨK˚BfpKxq.221

If ϵ1 “ ϵ2 “ 0, then this notion reduces to the limiting lifted stationary point. Below,222

we provide a lemma stating that there are positive uniform lower/upper bounds on223

the denominator values of (1.1) under Assumption 3.1. The proof is omitted due to224

its simplicity.225

Lemma 3.5. Suppose Assumption 3.1 holds. Then, there exist two positive scalars226

m and M such that m ă fpKxq ď M for all x P S.227

4. Full splitting proximal subgradient algorithm. We first propose a con-228

ceptual algorithmic framework for solving (1.1) which we call full splitting proximal229

subgradient algorithm with an extrapolated step (FSPS).230

1Different choices of the constant α may affect numerical performance.
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FULL SPLITTING ALGORITHMS FOR STRUCTURED FRACTIONAL PROGRAMS 7

Let 0 ă β ă 2, the sequences of scalars tγku and tδku such that γk ě 0 and δk ą 0231

for all k ě 0, θ0 ą 0 and a given starting point px0, z0,u0q with x0 P S. For all k ě 0,232

we consider the following update rule:233

(4.1)

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

yk`1 P BfpKxkq

xk`1 :“ ProjS

´

uk `
θk
δk
K˚yk`1 ´ 1

δk
∇hpxkq ´ 1

δk
A˚zk

¯

,

uk`1 :“ p1 ´ βquk ` βxk`1,

zk`1 :“ arg minz

“

g˚pzq ´ xAxk`1, zy `
γk

2 }z}2
‰

,

θk`1 :“
Ψpxk`1, zk`1,uk`1; δk, γkq

fpKxk`1q
,

234

where Ψpx, z,u, δ, γq :“xz, Axy ´ g˚pzq ` hpxq ` ιSpxq ` δ
2}x ´ u}2´

γ
2 }z}2.235

4.1. Smoothing-based FSPS algorithm. In this section, we consider a vari-
ant of FSPS, which we refer to as the S-FSPS algorithm. This algorithm assumes
that β “ 1 in (4.1), and therefore uses

Ψpx, z; γq :“ xz, Axy ´ g˚pzq ` hpxq ` ιSpxq ´
γ

2
}z}2.

Algorithm 4.1 (S-FSPS algorithm). Let tγku be a positive and nonincreasing236

sequence with lim
kÑ`8

γk “ 0 and
ř

kě0 γk “ `8, χ ą 1, and δk “ χ
´

L∇h `
σ2
A

γk

¯

for237

all k ě 0, θ0 ą 0, and a given starting point px0, z0q. For all k ě 0, we consider the238

following update rule:239

Choose yk`1 P BfpKxkq.240

Update xk`1 :“ ProjS

ˆ

xk `
θk
δk

K˚yk`1 ´
1

δk
∇hpxkq ´

1

δk
A˚zk

˙

.241

Update zk`1 :“ Proxg˚{γk

ˆ

Axk`1

γk

˙

.242

Update θk`1 :“
Ψpxk`1, zk`1; γkq

fpKxk`1q
.243

Remark 4.2. For the sequence tpxk,yk, zkqu generated by Algorithm 4.1, we have244

for all k ě 0245

Ψpxk`1, zk`1; γkq “ xzk`1, Axk`1y ´ g˚pzk`1q ´
γk
2

}zk`1}2 ` hpxk`1q ` ιSpxk`1q246

“ gγk
pAxk`1q ` hpxk`1q ` ιSpxk`1q,(4.2)247

where the last equality is due to (2.3) and zk`1 “ Proxg˚{γk

´

Axk`1

γk

¯

.248

In addition, the update of xk`1 can be equivalently written as, for all k ě 0,249

xk`1 “ ProjS

ˆ

xk `
θk
δk

K˚yk`1 ´
1

δk
∇hpxkq ´

1

δk
∇

`

gγk´1
˝ A

˘

pxkq

˙

.250

This shows that Algorithm 4.1 can be reformulated using the Moreau envelope of g.251

As a result, one can interpret it as a smoothing-based proximal-subgradient method.252
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4.2. Convergence analysis of S-FSPS. We provide a convergence analysis253

for Algorithm 4.1 and denote for simplicity V k :“ pxk,yk, zkq for all k ě 0.254

Theorem 4.3. Suppose Assumption 3.1 holds. Let Ω be the set of the accumu-255

lation points of the sequence tV ku generated by Algorithm 4.1. Then, the following256

statements hold:257

(i) For all k ě 1 it holds258

Ψpxk`1, zk`1; γkq ` θk
“

fpKxkq ´
`

xKxk`1,yk`1y ´ f˚pyk`1q
˘‰

259

ď Ψpxk, zk; γk´1q ´ ck}xk ´ xk`1}2 ` Ξk`1,(4.3)260

where261

Ξk`1 :“
γk´1 ´ γk

2
}zk`1}2 ě 0 and ck :“

pχ ´ 1q

2

ˆ

L∇h `
σ2
A

γk

˙

ą 0.262

(ii) The sequence tV ku is bounded.263

(iii) There exists an index K1 ě 1 such that θk ě 0 for all k ě K1.264

(iv) limkÑ`8 θk “ θ for some θ ě 0.265

(v) It holds that lim inf
kÑ`8

δk}xk`1 ´ xk} “ 0.266

Below, we further assume that ApSq Ď intpdom gq. 2267

(vi) For every px,y, zq P Ω, it holds that gpAxq`hpxq`ιSpxq

fpKxq
“ θ, where θ is given268

as in (iv).269

(vii) Let txkj u be a subsequence of xk such that lim
jÑ`8

δkj }xkj`1 ´xkj } “ 0 (whose270

existence is guaranteed by (vi)). Then, any accumulation point x of it is a271

limiting lifted stationary point for the optimization problem (1.1).272

Proof. (i) Let k ě 1. According to the properties of the projection, the x-update273

in Algorithm 4.1 gives us that274

xk`1 “ arg min
xPS

„

xzk, Axy ´ θkxKx,yk`1y ` x∇hpxkq,x ´ xky `
δk
2

}x ´ xk}2
ȷ

.275

The objective function of the above optimization problem is strongly convex with276

modulus δk, therefore,277

xAxk`1, zky ` xxk`1 ´ xk,∇hpxkqy ´ θkxKxk`1,yk`1y278

ď xAxk, zky ´ θkxKxk,yk`1y ´
δk
2

}xk ´ xk`1}2.279

Combined this with xKpxk ´xk`1q,yk`1y “ fpKxkq ´
`

xKxk`1,yk`1y ´ f˚pyk`1q
˘

,280

leads to281

xAxk`1, zky ` xxk`1 ´ xk,∇hpxkqy ` θk
“

fpKxkq ´ pxKxk`1,yk`1y ´ f˚pyk`1qq
‰

282

ď xAxk, zky ´
δk
2

}xk ´ xk`1}2.

(4.4)

283

Since ∇h is Lipschitz continuous with constant L∇h, it holds that284

hpxk`1q ´ hpxkq ď xxk`1 ´ xk,∇hpxkqy `
L∇h

2
}xk`1 ´ xk}2.(4.5)285

2We note that the conditions ApSq Ď intpdom gq is satisfied with our motivation examples. Also,
it ensures that Assumption 3.1(f) holds.
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Combining (4.5) with (4.4), we obtain286

Ψpxk`1, zk; γk´1q ` θk
“

fpKxkq ´ pxKxk`1,yk`1y ´ f˚pyk`1qq
‰

287

ď Ψpxk, zk; γk´1q ´
1

2
pδk ´ L∇hq}xk`1 ´ xk}2.(4.6)288

From the z-update in (4.1) it follows that Axk ´ γk´1z
k P Bg˚pzkq, therefore289

´g˚pzk`1q ď ´g˚pzkq ´ xAxk ´ γk´1z
k, zk`1 ´ zky.290

Combining this inequality with the identity291

´
γk´1

2
}zk`1}2 “ ´

γk´1

2
}zk}2 ´ γk´1xzk`1 ´ zk, zky ´

γk´1

2
}zk`1 ´ zk}2,292

it yields293

xAxk`1, zk`1y ´ g˚pzk`1q ´
γk´1

2
}zk`1}2294

ďxAxk`1, zky´ g˚pzkq ´
γk´1

2
}zk}2 `xAxk`1 ´ Axk, zk`1 ´ zky ´

γk´1

2
}zk ´ zk`1}2295

ď xAxk`1, zky ´ g˚pzkq ´
γk´1

2
}zk}2 `

σ2
A

2γk
}xk`1 ´ xk}2,

(4.7)

296

where the last estimate follows from the Cauchy-Schwarz inequality and γk ď γk´1.297

Therefore,298

Ψpxk`1, zk`1; γkq ď Ψpxk`1, zk; γk´1q `
σ2
A

2γk
}xk`1 ´ xk}2`

γk´1 ´ γk
2

}zk`1}2.299

By combining the above inequality with (4.6) and recalling the choice of δk, assertion300

(i) follows.301

[(ii) & (iii)] Since S is a compact set, the sequence txku Ď S is bounded. The302

sequence tyku is bounded due to Assumption 3.1(d) and the local boundedness prop-303

erty of the convex subdifferential. Let k ě 1. According to Assumption 3.1(f), there304

exists z̃k P BgpAxk`1q with }z̃k} ď ℓ ` 1. Invoking the definition of zk`1, we have305

g˚pzk`1q ´ xAxk`1, zk`1y `
γk
2

}zk`1}2306

ď g˚pz̃kq ´ xAxk`1, z̃ky `
γk
2

}z̃k}2 “ ´gpAxk`1q `
γk
2

}z̃k}2.307

In particular, we see that }zk`1} ď }z̃k} ď ℓ ` 1 for all k ě 0. So, the sequence tzku308

is also bounded, and hence, (ii) follows. Now, according to Assumption 3.1(e),309

xAxk`1, zk`1y ´ g˚pzk`1q ` hpxk`1q ´
γk
2

}zk`1}2 ě gpAxk`1q ` hpxk`1q
loooooooooooomoooooooooooon

ěα

´
γk
2

}z̃k}2.310

Since limkÑ`8 γk “ 0, there exists an index K1 ě 1 such that, for all k ě K1,311

we have γk

2 }z̃k} ď α
2 . Therefore, (iii) holds by combining the above inequality with312

Assumption 3.1(d) and (e).313

(iv) Invoking (4.3) and θkfpKxkq “ Ψpxk, zk, γk´1q, for all k ě K1 we have314

Ψpxk`1, zk`1; γkq ď θk
`

xKxk`1,yk`1y ´ f˚pyk`1q
˘

´ ck}xk ´ xk`1}2 ` Ξk`1
315
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ď θkfpKxk`1q ´
pχ ´ 1qδk

2χ
}xk ´ xk`1}2 ` Ξk`1.316

From here it follows that for all k ě K1317

θk`1 ď θk ´
pχ ´ 1qδk

2χM
}xk ´ xk`1}2 `

Ξk`1

M
,(4.8)318

where M ą 0 is given by Lemma 3.5. The boundedness of tzku guarantees the319

summability of tΞku, therefore, from [4, Lemma 5.31] it yields limkÑ`8 θk :“ θ ě 0320

for some θ ě 0, and
ř`8

k“0 δk}xk ´ xk`1}2 ă `8.321

(v) In the proof of statement (iv), we have seen that
ř`8

k“0
1
δk

pδk}xk ´ xk`1}q2 ă322

`8. On the other hand,
ř`8

k“0
1
δk

“ `8, thus lim inf
kÑ`8

δk}xk`1 ´ xk} “ 0.323

(vi) Let px,y, zq P Ω, tpxkj ,ykj , zkj qu be a subsequence of tpxk,yk, zkqu such that324

pxkj ,ykj , zkj q Ñ px,y, zq as j Ñ `8. Clearly, txkj u Ď S and x P S.325

For convenience, we denote λj :“ γkj´1 Ñ 0 as j Ñ `8, and write rAxkj , Axs “326

ttAxkj ` p1 ´ tqAx : t P r0, 1su. We claim that, for all wkj P rAxkj , Axs Ď ApSq, one327

has Proxλjgpwkj q Ñ Ax as j Ñ `8. To see this, we observe from our assumption328

that wkj P ApSq Ď intpdom gq, Ax P ApSq Ď intpdom gq and329

} Proxλjgpwkj q ´ Ax} ď } Proxλjgpwkj q ´ ProxλjgpAxq} ` } ProxλjgpAxq ´ Ax}330

ď }wkj ´ Ax} ` } ProxλjgpAxq ´ Ax}331

ď }Axkj ´ Ax} ` } ProxλjgpAxq ´ Ax},332

where the second inequality follows from the non-expansiveness of the proximal oper-333

ator of convex functions. Then, the claim follows by noting that, as j Ñ `8, xkj Ñ x334

and ProxλjgpAxq Ñ Ax (thanks to [25, Proposition 2.2] and Ax P intpdom gq).335

From the claim and the assumption ApSq Ď intpdom gq, it follows that there exist336

an index j0 and a bounded set U with ApSq Ď cl pUq Ď intpdom gq such that337

Proxλjgpwkj q P U for all j ě j0 and for all wkj P rAxkj , Axs.338

Note that the function g is Lipschitz continuous (with some Lipschitz constant Lg ą 0)339

on clpUq. It follows that for all j ě j0 and for all wkj P rAxkj , Axs, supt}u} : u P340

BgpProxλjgpwkj qq}u ď Lg. As ∇gλj pwkj q P Bg
`

Proxλjgpwkj q
˘

, we further deduce341

that }∇gλj
pwkj q} ď Lg for all j ě j0 and for all wkj P rAxkj , Axs. This, together342

with the mean value theorem, implies that, for all j ě j0,343

|gλj pAxkj q ´ gpAxq| ď |gλj pAxkj q ´ gλj pAxq| ` |gλj pAxq ´ gpAxq|344

ď Lg}Axkj ´ Ax} ` |gλj pAxq ´ gpAxq|.345

Since gλj
pAxq Ñ gpAxq (see [4, Proposition 12.33(ii)]), it implies that346

(4.9) gγkj´1
pAxkj q “ gλj pAxkj q Ñ gpAxq as j Ñ `8.3347

Now, recall that θkj
“

Ψpxkj ,zkj ;γkj´1q

fpKxkj
q

. Letting j Ñ 8, and using (4.2), (4.9) and348

Assumption 3.1(d), assertion (vi) follows.349

3In the case where g is a finite-valued convex function, the assertion (4.9) follows directly by [1,
Proposition 1(d)] . Here, we establish this under the weaker assumption that ApSq Ď intpdom gq.
We also note that, if g is a proper lower semicontinuous (possibly) nonconvex function with the
additional assumption that inf g ą ´8, then this also follows from [16, Lemma 1].
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(vii) From the x-update in (4.1) we also have for all k ě 1350

0 P BιSpxk`1q ` xk`1 ´ xk `
A˚zk ` ∇hpxkq ´ θkK

˚yk`1

δk
351

“ BιSpxk`1q ` xk`1 ´ xk `
∇pgγk´1

˝ Aqpxkq ` ∇hpxkq ´ θkK
˚yk`1

δk
.(4.10)352

Let txkj u be a subsequence of txku such that lim
jÑ`8

δkj }xkj`1 ´ xkj } “ 0 and let353

x P S be an accumulation point of it. Then there exists a further subsequence txksu354

of txkj u that converges to x as s Ñ `8. Since δk ě χL∇h for all k ě 0, we have355

limsÑ`8 }xks`1 ´ xks} “ 0, thus xks`1 Ñ x as s Ñ `8. By passing to a further356

subsequence if necessary, without loss of generality, we assume that yks`1 Ñ y as357

s Ñ `8, for some y. From (4.10) and ∇pgγks´1
˝ Aqpxksq “ A˚∇gγks´1

pAxksq, for358

all s ě 0, there exists ξks`1 P BιSpxks`1q such that359

0 “ ξks`1 ` δks
pxks`1 ´ xksq ` A˚∇gγks´1

pAxksq ` ∇hpxksq ´ θks
K˚yks`1.(4.11)360

Next, we see that tξks`1u is bounded. To see this, using a similar proof as in (vi)361

and the assumption ApSq Ď intpdom gq, one can deduce that there exist an index K362

and Lg ą 0 such that }∇gγks´1
pAxksq} ď Lg for all s ě K. So, }A˚∇gγks´1

pAxksq} ď363

σA Lg for all s ě K. This together with (4.11) implies that the sequence tξks`1u is364

bounded.365

Now, from the boundness of tξks`1u and {A˚∇gγks´1
pAxksq}, by further pass-366

ing to subsequence, we can assume that ξks`1 Ñ ξ and A˚∇gγks´1
pAxksq Ñ a for367

some ξ and a. Using ξks`1 P BιSpxks`1q, ∇gγks´1
pAxksq Ď Bg

`

Proxpγks´1qgpAxksq
˘

,368

Proxpγks´1qgpAxksq Ñ Ax and the outer semicontinuity (OSC) of subdifferentials [27,369

Proposition 8.7], we have ξ P BιSpxq and a P A˚BgpAxq. By passing to the limit in370

(4.11), and noting that ∇hpxksq Ñ ∇hpxq and yks`1 Ñ y as s Ñ `8, we conclude371

that 0 P BιSpxq ` A˚BgpAxq ` ∇hpxq ´ θK˚y, as desired.372

In the previous theorem, we have derived a subsequential convergence for the S-373

FSPS algorithm in the sense that there exists a subsequence whose cluster point is a374

lifted stationary point of the problem. On the other hand, there is no guarantee of the375

convergence of the full sequence. Indeed, to the best of our knowledge, obtaining con-376

vergence of the full sequence generated by smoothing-based algorithms is non-trivial377

in general. It has been recently derived for some special structured non-fractional378

optimization problems involving cardinality functions (see, for example, [5]).379

This motivates us to develop an alternative algorithm in the next section, which380

enjoys global convergence guarantees under some commonly used and mild assump-381

tions, such as the KL property.382

5. Adaptive FSPS algorithm. We present an adaptive version of FSPS, called383

the Adaptive FSPS algorithm, which determines the parameter sequences tγku and384

tδku in a self-adapting manner and ensures the positivity of the sequence tθku.385

Algorithm 5.1 (Adaptive FSPS algorithm). Let 0 ă β ă 2, χ ą 1, 0 ă q ă 1,386

δ0, θ0 ą 0, γ0 “ 1 and ε ą 0, and given a starting point px0, z0,u0
q. For all k ě 0, consider387

the following update rule:388

Choose yk`1
P BfpKxk

q.389

Update xk`1 :“ ProjS

ˆ

uk
`

θk
δk

K˚yk`1
´

1

δk
∇hpxk

q ´
1

δk
A˚zk

˙

.390
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Update uk`1 :“ p1 ´ βquk
` βxk`1.391

Set γk,0 :“ γk.392

Find the smallest jk P t0, 1, 2, . . .u such that for γk,jk :“ γk,0q
jk and393

zk`1,jk :“ Proxg˚{γk,jk

ˆ

Axk`1

γk,jk

˙

394

it holds θk`1 :“
Ψpxk`1, zk`1,jk ,uk`1, δk, γk,jk q

fpKxk`1q
ą 0.395

Update γk`1 :“ γk,jk .396

Update δk`1 :“ χ

ˆ

L∇h `
2σ2

A

γk`1

˙

.397

Update zk`1 :“ zk`1,jk .398

If }zk`1
} ą min

ˆ

ε

γk`1
,

c

2ε

γk`1

˙

, then399

Update γk`1 :“ γk`1q.400

Update δk`1 :“ χ

ˆ

L∇h `
2σ2

A

γk`1

˙

.401

End If402

Lemma 5.2 (Well-definedness of Algorithm 5.1). Suppose Assumption 3.1 holds.403

Then the following statements are true:404

(i) It holds }zk`1} ď ℓ ` 1 for all k ě 0.405

(ii) The procedure of finding the smallest jk P t0, 1, 2, . . .u such that θk`1 ą 0 is406

executed in every iteration of Algorithm 5.1 a finite number of times, and so407

the algorithm is well-defined. Moreover, γk`1 ď γk for all k ě 0.408

(iii) There exists a constant γ ą 0, χ ą 1 and an index K0 ě 0 such that γk “409

γ ą 0, δk “ δ :“ χpL∇h `
2σ2

A

γ q, and }zk`1} ď min
´

ε
γ ,

b

2ε
γ

¯

for all k ě K0.410

Proof. (i) From the construction of the algorithm, xk P S for all k ě 0. So, by411

Assumption 3.1(f), for all k ě 0 there exists z̃k P BgpAxk`1q with }z̃k} ď ℓ ` 1.412

Taking into account the definitions of zk`1,jk and the proximal operator, for all413

k ě 0, we have414

g˚pzk`1,jkq ´ xAxk`1, zk`1,jky `
γk,jk

2
}zk`1,jk}2415

ď g˚pz̃kq ´ xAxk`1, z̃ky `
γk,jk

2
}z̃k}2 “ ´gpAxk`1q `

γk,jk
2

}z̃k}2(5.1)416

ď g˚pzk`1,jkq ´ xAxk`1, zk`1,jky `
γk,jk

2
}z̃k}2.417

Since γk,jk ą 0, it follows that }zk`1,jk}2 ď }z̃k}2 ď pℓ ` 1q2, consequently, }zk`1} ď418

ℓ ` 1 for all k ě 0.419

(ii) Let k ě 0 and jk P t0, 1, 2, ...u. From (5.1) and Assumption 3.1(e), it holds420

Ψpxk`1, zk`1,jk ,uk`1, δk, γk,jkq421

“ xAxk`1, zk`1,jky ´ g˚pzk`1,jkq ` hpxk`1q `
δk
2

}xk`1 ´ uk`1}2 ´
γk,jk

2
}zk`1,jk}2422

ě gpAxk`1q ` hpxk`1q `
δk
2

}xk`1 ´ uk`1}2 ´
γk,jk

2
}z̃k}2 ě α ´

γk,jk
2

}z̃k}2.423

Since }z̃k} ď ℓ`1, it is evident that after finitely many increases of jk with 1 we obtain424
γk,jk

2 }z̃k}2 ă α
2 and, therefore, Ψpxk`1, zk`1,jk ,uk`1, δk, γk,jkq ą 0. Consequently,425
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Algorithm 5.1 is well-defined. Finally, from the formulation of the algorithm we426

easily see that γk`1 ď γk for all k ě 0.427

(iii) In order to prove the statement, it is sufficient to show that there exist γ ą 0428

and K0 ě 0 such that γk “ γ ą 0 for all k ě K0. Assuming the contrary, there429

exists a strictly decreasing subsequence tγksu such that γks Ñ 0 as s Ñ `8. As430

}zks} ď ℓ ` 1 for all s ě 0, there exists s0 ě 0 such that inequality in the “If-End If”431

statement is not verified for all s ě s0. Therefore, as tγks
u is strictly decreasing, for432

all s ě s0 there exists pks P N with ks ď pks ď ks`1 such that θ
pks`1,0 ď 0. Using a433

similar argument as in (ii), this implies that γ
pks

“ γ
pks,0

ě 2α
pℓ`1q2

ą 0 for all s ě s0.434

The monotonicity of the sequence tγku leads to γ
pks

Ñ 0 as s Ñ `8, and further to435

a contradiction.436

6. Convergence analysis of Adaptive FSPS. We provide the convergence437

analysis for Algorithm 5.1.438

6.1. Subsequential convergence. To simplify the presentation, we denote439

W k :“ pxk,yk, zk,ukq for all k ě 0.440

Theorem 6.1. Suppose Assumption 3.1 holds. Let 0 ă β ă 2, γ ą 0, χ ą 1 and

K0 ě 0 satisfy γk “ γ ą 0, δk “ δ :“ χpL∇h `
2σ2

A

γ q, and }zk`1} ď min
´

ε
γ ,

b

2ε
γ

¯

for

k ě K0, as indicated by Lemma 5.2 (iii). Let

c1 :“
pχ ´ 1q

´

L∇h `
2σ2

A

γ

¯

2
, c2 :“ δp2 ´ βq{2β, c3 :“ γ{2.

Then, for all k ě K0 ` 1, the following statements are true:441

(i) Ψpxk`1, zk`1,uk`1, δ, γq ` θkfpKxkq ´ θk
`

xKxk`1,yk`1y ´ f˚pyk`1q
˘

442

ď Ψpxk, zk,uk, δ, γq ´ c1}xk ´ xk`1}2 ´ c2}uk ´ uk`1}2 ´ c3}zk ´ zk`1}2;443

(ii) Ψpxk`1, zk`1,uk`1, δ, γq ´ θkfpKxk`1q444

ď ´c1}xk ´ xk`1}2 ´ c2}uk ´ uk`1}2 ´ c3}zk ´ zk`1}2.445

Proof. Let k ě K0 ` 1. (i) Similar to the proof of (i) in Theorem 4.3, we obtain:446

Ψpxk`1, zk,uk, δ, γq ` θk
“

fpKxkq ´
`

xKxk`1,yk`1y ´ f˚pyk`1q
˘‰

447

ď Ψpxk, zk,uk, δ, γq ´
δ ´ L∇h

2
}xk`1 ´ xk}2.(6.1)448

Similar to the proof for the inequality (4.7), we get449

xzk`1, Axk`1
y ´ g˚

pzk`1
q ´

γ

2
}zk`1

}
2

450

ď xzk, Axk`1
y ´ g˚

pzkq ´
γ

2
}zk}

2
`

σ2
A

2γ
}xk`1

´ xk
}
2.(6.2)451

Using Axk`1 ´ γzk`1 P Bg˚pzk`1q and Axk ´ γzk P Bg˚pzkq, and the monotonicity
of the subdifferential operator, it yields

γ}zk ´ zk`1}2 ď ´xzk ´ zk`1, Apxk`1 ´ xkqy ď
γ

2
}zk ´ zk`1}2 `

σ2
A

2γ
}xk ´ xk`1}2,

and further, in combination with (6.2),452

(6.3) Ψpxk`1, zk`1,uk, δ, γq ď Ψpxk`1, zk,uk, δ, γq`
σ2
A

γ
}xk`1´xk}2´

γ

2
}zk´zk`1}2.453
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Using the extrapolation step, we get454

δ

2
}uk`1 ´ xk`1}2 “

δ

2
}uk ´ xk`1}2 ´

δp1 ´ p1 ´ βq2q

2β2
}uk ´ uk`1}2,455

which leads to456

Ψpxk`1, zk`1,uk`1, δ, γq ď Ψpxk`1, zk`1,uk, δ, γq ´
δp2 ´ βq

2β
}uk ´ uk`1}2.457

Finally, by adding (6.1), (6.3) with the above, the assertion follows by using the458

definition of δ.459

(ii) Follows from (i) by using that fpKxk`1q ě xKxk`1,yk`1y´f˚pyk`1q, θk ą 0,460

and θkfpKxkq “ Ψpxk, zk,uk, δ, γq.461

Let γ and δ be the constants indicated in Lemma 5.2 (iii), and the merit function462

Π : Rn ˆ domg˚ ˆ Rn Ñ R defined by463

Πpx, z,uq “
Ψpx, z,u, δ, γq

fpKxq
“

xz, Axy ´ g˚pzq ` hpxq ` ιSpxq ` δ
2}x ´ u}2´

γ
2 }z}2

fpKxq
.464

Theorem 6.2 (Subsequential convergence). Suppose Assumption 3.1 holds. Let465

0 ă β ă 2, χ ą 1, γ ą 0 and K0 ě 0 satisfy γk “ γ ą 0, δk “ δ :“ pχ ´466

1q

´

L∇h `
2σ2

A

γ

¯

, and }zk`1} ď min
´

ε
γ ,

b

2ε
γ

¯

for k ě K0, as indicated by Lemma 5.2467

(iii). Let Ω be the set of the accumulation points of the sequence tW ku. Then, the468

following statements are true:469

(i) The sequence
!

θk “
Ψpxk,zk,uk,δ,γq

fpKxkq
“ Πpxk, zk,ukq

)

is nonincreasing and there470

exists a scalar θ ě 0 such that limkÑ`8 θk “ θ.471

(ii) The sequence tW ku is bounded.472

(iii) For every px,y, z,uq P Ω it holds Πpx, z,uq “ θ.473

(iv) If Kε :“ tx | distpx, ApSqq ď εu Ď intpdomgq, then g is Lipschitz continuous474

on the compact set Kε with some Lipschitz constant κ ą 0. In this case, any475

accumulation point of the sequence txku is a limiting p2κε, p2κ ` 1qεq-lifted476

approximate stationary point of (1.1).477

(v) It holds that lim
kÑ`8

xKxk`1,yk`1y ´ f˚pyk`1q

fpKxkq
“ 1. Furthermore, there exists478

an index K1 ě K0 ` 1 such that479

(6.4) 0 ă m ď xKxk,yky ´ f˚pykq ď fpKxkq ď M @k ě K1,480

where m and M are the bounds from Lemma 3.5.481

Proof. (i) It follows from Theorem 6.1 (ii) that for all k ě K0 ` 1482

θk`1 ď θk ´
1

M

`

c1}xk ´ xk`1}2 ` c2}uk ´ uk`1}2 ` c3}zk ´ zk`1}2
˘

,(6.5)483

where M ą 0 is the constant provided by Lemma 3.5. Thus,484

}xk ´ xk`1} Ñ 0, }uk ´ uk`1} Ñ 0, }zk`1 ´ zk} Ñ 0, }xk`1 ´ uk} Ñ 0,(6.6)485

as k Ñ `8 and the sequence tθku is nonincreasing. Thus, θ :“ limkÑ8 θk ě 0 exists.486

(ii) Since S is a compact set, the sequence txku is bounded by construction, which,487

according to (6.6), guarantees that tuku is bounded. The sequence tyku is bounded488
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due to Assumption 3.1(d), and the sequence tzku is bounded due to Assumption489

3.1(f).490

(iii) Let W “ px,y, z,uq be an accumulation point of the sequence and tW ku491

and tW kj u be a subsequence such that limjÑ`8 W kj “ W .492

From limjÑ`8
Ψpxkj ,zkj ,ukj ,δ,γq

fpKxkj q
“ limjÑ`8 θkj

“ θ and limjÑ`8 fpKxkj q “493

fpKxq ą 0, which holds due to Assumption 3.1(d), by noting that tKxkj u Ď KpSq Ď494

intpdomf) and KpSq is closed, we have that the following limit exists:495

Ψ :“ lim
jÑ8

Ψpxkj , zkj ,ukj , δ, γq P R.(6.7)496

Next, we show that Ψ “ Ψpx, z,u, δ, γq. From (6.7), xkj P S, g˚ is lower semicontinu-
ous and the definition of Ψp¨, ¨, ¨, δ, γq, we have that Ψpx, z,u, δ, γq ě Ψ. Invoking the
update scheme, for every j ě 0 such that kj ě K0 ` 1 it holds

g˚pzq ´ xz, Axkj y `
γ

2
}z}2 ě g˚pzkj q ´ xzkj , Axkj y `

γ

2
}zkj }2

and, further,497

´g˚pzq ` xz, Axkj y ´
γ

2
}z}2 ` hpxkj q ď ´g˚pzkj q ` xzkj , Axkj y ´

γ

2
}zkj }2 ` hpxkj q.498

We let j Ñ `8 and get499

´g˚pzq ` xz, Axy ´
γ

2
}z}2 ` hpxq ď lim

jÑ`8
p´g˚pzkj q ` xzkj , Axkj y ´

γ

2
}zkj }2 ` hpxkj qq,500

so, Ψpx, z,u, δ, γq ď Ψ. In conclusion, Ψpx, z,u, δ, γq “ Ψ and Πpx, z,uq “ θ.501

(iv) Invoking the update rules for xk`1, yk`1, zk`1 and uk`1, for all k ě K0 ` 1502

it yields503

$

’

’

’

&

’

’

’

%

yk`1 P BfpKxkq,

0 P BιSpxk`1q ` A˚zk ` ∇hpxkq ´ θkK
˚yk`1 ` δpxk`1 ´ ukq,

Axk`1 ´ γzk`1 P Bg˚pzk`1q,

uk`1 “ p1 ´ βquk ` βxk`1.

(6.8)504

Let W “ px,y, z,uq be an accumulation point of the sequence of tW ku, and let505

tW kj “ pxkj ,ykj , zkj ,ukj qu be a subsequence converging to W as j Ñ `8. From506

(6.6), we see that xkj´1 Ñ x and ukj´1 Ñ u as j Ñ `8. Then, letting k “ kj ´ 1507

and j Ñ `8 in the above system and taking into account the fact that the graph of508

the convex subdifferential is closed, we obtain509

$

’

’

’

&

’

’

’

%

y P BfpKxq,

0 P BιSpxq ` A˚z ` ∇hpxq ´ θK˚y,

Ax ´ γz P Bg˚pzq,

u “ x.

(6.9)510

Since }zk`1} ď min
´

ε
γ ,

b

2ε
γ

¯

for all k ě K0, it yields }z} ď min
´

ε
γ ,

b

2ε
γ

¯

. The third511

inclusion relation in (6.9) guarantees that distpBg˚pzq, Axq ď ε. Therefore, according512

to Lemma 2.4, z P B2κεgpAxq, which, combined with the first two inclusion relations513

in (6.9), leads to 0 P pA˚B2κεgpAxq ` ∇hpxq ` BιSpxqq fpKxq ´ ΨK˚BfpKxq.514
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As seen in the proof of statement (iii), we have Ψ “ xAx, zy´g˚pzq`hpxq´
γ
2 }z}2,515

therefore516

|Ψ ´ pgpAxq ` hpxqq| “ pgpAxq ` hpxqq ´

´

xAx, zy ´ g˚pzq ` hpxq ´
γ

2
}z}2

¯

517

“ gpAxq ` g˚pzq ´ xAx, zy `
γ

2
}z}2 ď 2κε ` ε “ p2κ ` 1qε.518

Thus, x is a limiting p2κε, p2κ ` 1qεq-lifted approximate stationary point of (1.1).519

(v) Invoking the first inclusion relation in (6.8) and Lemma 3.5, we obtain for all520

k ě K0 ` 1521

|fpKxkq ´
`

xKxk`1,yk`1y ´ f˚pyk`1q
˘

|

fpKxkq
“

|xyk`1,Kpxk ´ xk`1qy|

fpKxkq
522

ď
|xyk`1,Kpxk ´ xk`1qy|

m
.523

Using that xk ´ xk`1 Ñ 0 as k Ñ `8 and the boundedness of tyku, we obtain524

lim
kÑ`8

|fpKxkq ´
`

xKxk`1,yk`1y ´ f˚pyk`1q
˘

|

fpKxkq
“ 0.(6.10)525

The second statement is a direct consequence of (6.10).526

Let m ą 0 be the scalar introduced in Lemma 3.5, γ and δ the constants indicated in
Lemma 5.2 (iii), and the following modified merit function Γ : tpx,yq P Rn ˆ domf˚ :
xKx,yy ´ f˚pyq ą m{2u ˆ domg˚ ˆ Rn Ñ R defined by

Γpx,y, z,uq“
Ψpx, z,u, δ, γq

xKx,yy ´ f˚pyq
“

xz, Axy ´ g˚pzq ` hpxq ` ιSpxq ` δ
2}x ´ u}2´

γ
2 }z}2

xKx,yy ´ f˚pyq
.

In the following we show that values of Γ along the sequence tpxk,yk, zk,ukqu converge527

to θ as k Ñ `8 and that it takes this value at every point of Ω.528

Theorem 6.3. Suppose Assumption 3.1 holds. Let 0 ă β ă 2, γ ą 0, χ ą 1 and529

K0 ě 0 satisfy γk “ γ ą 0, δk “ δ :“ χpL∇h `
2σ2

A

γ q, and }zk`1} ď min
´

ε
γ ,

b

2ε
γ

¯

for530

k ě K0, as indicated by Lemma 5.2 (iii), and K1 ě K0 ` 1 such that (6.4) holds, as531

indicated by Theorem 6.2 (v). Then, the following statements are true:532

(i) There exists c ą 0 such that for all k ě K1533

Γpxk`1,yk`1, zk`1,uk`1
q534

ď Γpxk,yk, zk,uk
q ´ c}xk

´ xk`1
}
2

´ c}uk
´ uk`1

}
2

´ c}zk ´ zk`1
}
2;(6.11)535

(ii) limkÑ`8 Γpxk,yk, zk,ukq exists and it is equal to θ “ limkÑ`8 θk;536

(iii) For every px,y, z,uq P Ω it holds Γpx,y, z,uq “ θ.537

Proof. (i) By using the fact of θkfpKxkq “ Ψpxk, zk,uk, δ, γq, from Theorem 6.1538

(i) we obtain for all k ě K1539

Ψpxk`1, zk`1,uk`1, δ, γq ď θk
`

xKxk`1,yk`1y ´ f˚pyk`1q
˘

540

´ c1}xk ´ xk`1}2 ´ c2}uk ´ uk`1}2 ´ c3}zk ´ zk`1}2.541

Since 0 ă m ď xKxk`1,yk`1y ´ f˚pyk`1q ď M for all k ě K1, it yields542

ηk`1 ď θk ´
c1
M

}xk ´ xk`1}2 ´
c2
M

}uk ´ uk`1}2 ´
c3
M

}zk ´ zk`1}2,(6.12)543
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where ηk`1 :“ Γpxk`1,yk`1, zk`1,uk`1q “
Ψpxk`1,zk`1,uk`1,δ,γq

xKxk`1,yk`1y´f˚pyk`1q
. Then one can544

choose c :“ 1
M minpc1, c2, c3q and the conclusion follow as θk ď ηk for all k ě K1. The545

proofs of (ii) and (iii) follow similarly to items (i) and (iii) of Theorem 6.2 and are546

therefore omitted.547

6.2. Global convergence. To this end, we will provide two different settings in548

which we can bound the distance between the origin and the limiting subdifferential549

of Γ and Π, respectively. The two settings are considered below by supposing that550

Assumption 3.1 holds, 0 ă β ă 2, γ ą 0, χ ą 1 and K0 ě 0 satisfy γk “ γ ą 0,551

δk “ δ :“ χpL∇h `
2σ2

A

γ q for all k ě K0, as indicated by Lemma 5.2 (iii), and552

K1 ě K0 ` 1 is such that (6.4) holds, as indicated by Theorem 6.2 (v).553

Case I: f˚ satisfies the calm condition over its effective domain and554

g is essentially strictly convex. The following characterization of the Fréchet555

subdifferential of the merit function Γ follows from Lemma 2.3.556

Lemma 6.4. Suppose Assumption 3.1 holds. Let f˚ satisfy the calm condition at557

py P domf˚, px P S be such that xKpx, pyy ´ f˚ppyq ą m{2, and g˚ be differentiable at558

pz P intpdomg˚q. Denote α1 :“ Ψppx,pz, pu, δ, γq and α2 :“ xKpx, pyy´f˚ppyq, and suppose559

that α1 ą 0. Then, there exist open sets Oi, i “ 1, 2, such that xKpx, pyy´f˚ppyq ą m{2560

for all ppx, pyq P O1 ˆ O2, and561

B̂Γppx, py,pz, puq“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pξξξx, ξξξy, ξξξz, ξξξuq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ξξξx P
α2pA˚

pz ` ∇hppxq ` BιSppxq ` δppx ´ puqq ´ α1K
˚

py

pxKpx, pyy ´ f˚ppyqq2

ξξξy P
α1pBf˚

ppyq ´ Kpxq

pxKpx, pyy ´ f˚ppyqq2

ξξξz “
Apx ´ ∇g˚

ppzq ´ γpz

xKpx, pyy ´ f˚ppyq

ξξξu “
δppu ´ pxq

xKpx, pyy ´ f˚ppyq

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

.562

Theorem 6.5. Suppose that f˚ satisfies the calm condition over its effective do-563

main and g is essentially strictly convex. Then there exists ζ ą 0 such that for all564

k ě K1565

distp0, BΓpxk`1,yk`1, zk`1,uk`1qq ď ζp}xk ´ xk`1} ` }uk ´ uk`1} ` }zk ´ zk`1}q.566

Proof. Let k ě K1 be fixed. It holds567

distp0, BΓpxk`1,yk`1, zk`1,uk`1qq ď distp0, B̂Γpxk`1,yk`1, zk`1,uk`1qq.568

Since g is essentially strictly convex, g˚ is essentially smooth [26, Theorem 26.3].569

According to the third inclusion relation in (6.8), we have Axk`1´γzk`1 P Bg˚pzk`1q,570

which means zk`1 P intpdomg˚q. In addition, m ď xKxk`1,yk`1y ´ f˚pyk`1q ď M571

and Ψpxk`1, zk`1,uk`1, δ, γq ą 0. Thus, one can make use of the formula provided572

in Lemma 6.4 to characterize the subdifferential of Γ at pxk`1,yk`1, zk`1,uk`1q.573

Invoking again (6.8), we have ´pA˚zk ` ∇hpxkq ´ θkK
˚yk`1 ` δpxk`1 ´ ukqq P574

B̂ιSpxk`1q and yk`1 P BfpKxkq or, equivalently, Kxk P Bf˚pyk`1q, and Axk`1 ´575

p∇g˚pzk`1q ` γzk`1q “ 0.576

Thus, for577

ξξξk`1
x :“

A˚zk`1 ` ∇hpxk`1q ` δpxk`1 ´ uk`1q

xKxk`1,yk`1y ´ f˚pyk`1q
´

A˚zk ` ∇hpxkq ´ θkK
˚yk`1 ` δpxk`1 ´ ukq

xKxk`1,yk`1y ´ f˚pyk`1q
578
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´
Ψpxk`1, zk`1,uk`1, δ, γqK˚yk`1

pxKxk`1,yk`1y ´ f˚pyk`1qq2
579

ξξξk`1
y :“

Ψpxk`1, zk`1,uk`1, δ, γqp´Kxk`1 ` Kxkq

pxKxk`1,yk`1y ´ f˚pyk`1qq2
,580

ξξξk`1
z :“

Axk`1 ´ p∇g˚pzk`1q ` γzk`1q

xKxk`1,yk`1y ´ f˚pyk`1q
“ 0, ξξξk`1

u :“
δpuk`1 ´ xk`1q

xKxk`1,yk`1y ´ f˚pyk`1q
,581

we have that pξξξk`1
x , ξξξk`1

y , ξξξk`1
z , ξξξk`1

u q P B̂Γpxk`1,yk`1, zk`1,uk`1q. Consequently,582

(6.13) distp0, B̂Γpxk`1,yk`1, zk`1,uk`1qq ď }ξξξk`1
x } ` }ξξξk`1

y } ` }ξξξk`1
u }.583

Due to the boundedness of the four sequences, the values

Bx :“ sup
k

}xk}, By :“ sup
k

}yk}, Bz :“ sup
k

}zk}, Bu :“ sup
k

}uk}

are finite. Since tθku and tfpKxkqu are bounded, the sequence tΨpxk, zk,uk, δ, γqu584

is also bounded. Let BΨ :“ sup
k

|Ψpxk, zk,uk, δ, γq| ă `8. Further, as tzku Ď585

intpdom g˚q, g˚ is Lipschitz continuous on the closure of tzku. We denote by Lg˚ the586

corresponding Lipschitz constant. This being given, it is evident that587

|Ψpxk, zk,uk, δ, γq ´ Ψpxk`1, zk`1,uk`1, δ, γq|588

ď ϱ1}xk ´ xk`1} ` ϱ2}zk ´ zk`1} ` ϱ3}uk`1 ´ uk},(6.14)589

where ϱ1 :“ BzσA ` δpBx ` Buq ` Lh, ϱ2 :“ σABx ` Lg˚ ` γBz, ϱ3 :“ δpBx ` Buq.590

Since591

ξξξk`1
x “

A˚pzk`1 ´ zkq ` ∇hpxk`1q ´ ∇hpxkq ` δpuk ´ uk`1q

xKxk`1,yk`1y ´ f˚pyk`1q
592

`
Ψpxk, zk,uk, δ, γq

xKxk`1,yk`1
y´f˚

pyk`1
q

fpKxkq
´ Ψpxk`1, zk`1,uk`1, δ, γq

pxKxk`1,yk`1y ´ f˚pyk`1qq2
K˚yk`1,593

we obtain594

}ξξξk`1
x } ď

1

m
pL∇h}xk ´ xk`1} ` σA}zk ´ zk`1} ` δ}uk ´ uk`1}q595

`
ByσK

m2

ˇ

ˇ

ˇ

ˇ

Ψpxk, zk,uk, δ, γq

ˆ

xKxk`1,yk`1y ´ f˚pyk`1q

fpKxkq
´ 1

˙
ˇ

ˇ

ˇ

ˇ

596

`
ByσK

m2

ˇ

ˇΨpxk, zk,uk, δ, γq ´ Ψpxk`1, zk`1,uk`1, δ, γq
ˇ

ˇ .597

From598
ˇ

ˇ

ˇ

ˇ

Ψpxk, zk,uk, δ, γq

ˆ

xKxk`1,yk`1y ´ f˚pyk`1q

fpKxkq
´ 1

˙
ˇ

ˇ

ˇ

ˇ

599

“

ˇ

ˇ

ˇ

ˇ

Ψpxk, zk,uk, δ, γq
xKpxk`1 ´ xkq,yk`1y

fpKxkq

ˇ

ˇ

ˇ

ˇ

ď
BΨByσK

m
}xk ´ xk`1},600

and (6.14), it yields }ξξξk`1
x } ď η1}xk ´ xk`1} ` η2}uk ´ uk`1} ` η3}zk ´ zk`1}, with601

η1 :“ L∇h

m `
BΨB2

yσ
2
K

m3 ` ϱ1
ByσK

m2 , η2 :“ δ
m ` ϱ3

ByσK

m2 and η3 :“ σA

m ` ϱ2
ByσK

m2 .602

In addition, we have that }ξξξk`1
y } ď BΨ

σK

m2 }xk´xk`1} and }ξξξk`1
u } ď

δ|1´β|

mβ }uk´uk`1},603

which, in the light of (6.13), leads to the conclusion.604
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Case II: f is differentiable with Lipschitz continuous gradient over an open605

set containing KpSq and g is essentially strictly convex. The workhorse of our606

analysis will be the merit function Π. The following statement is a direct consequence607

of [8, Lemma 2.1 (ii)].608

Lemma 6.6. Suppose Assumption 3.1 holds. Let f be differentiable at Kpx P609

intpdom fq for px P S, and g˚ be differentiable at pz P intpdomg˚q. Denote α1 :“610

Ψppx,pz, pu, δ, γq and α2 :“ fpKpxq, and suppose that α1 ą 0. Then,611

B̂Πppx,pz, puq“

$

’

’

’

’

’

&

’

’

’

’

’

%

pξξξx, ξξξz, ξξξuq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ξξξx P
α2pA˚

pz ` ∇hppxq ` BιSppxq ` δppx ´ puqq ´ α1K
˚∇fpKpxq

pfpKpxqq2

ξξξz “
Apx ´ ∇g˚

ppzq ´ γpz

fpKpxq

ξξξu “
δppu ´ pxq

fpKpxq

,

/

/

/

/

/

.

/

/

/

/

/

-

.612

Theorem 6.7. Suppose that f is differentiable with Lipschitz continuous gradient613

on an open set containing KpSq, and g is essentially strictly convex. Then there exists614

ζ ą 0 such that for all k ě K1615

distp0, BΠpxk`1, zk`1,uk`1qq ď ζp}xk ´ xk`1} ` }uk ´ uk`1} ` }zk ´ zk`1}q.616

Proof. The proof is similar to Theorem 6.5, thus omitted here.617

Remark 6.8 (Comments on the assumption of essential strict convexity). The618

assumption of g being essentially strictly convex can be enforced by redefining the619

functions g and h as rgpxq :“ gpxq ` s
2}x}2 and rhpxq :“ hpxq ´ s

2}Ax}2 with s ą 0.620

We noticed that, for small s ą 0, the algorithm exhibits comparable (or simply the621

same) numerical performance as for s “ 0.622

Remark 6.9. We require that either f˚ satisfies the calm condition over its effec-623

tive domain or f is differentiable with Lipschitz continuous gradient over an open set624

containing KpSq. These conditions can be satisfied in many applications. For exam-625

ple, if f is supercocercive, that is, lim}x}Ñ`8
fpxq

}x}
“ `8, then f˚ is a real-valued626

convex function with full domain [4, Proposition 14.15], and so, it is locally Lipschitz627

(and, in particular, calm). This applies, for instance, to example (b) in the introduc-628

tion. Regarding example (a), if p P p1,`8q, noting that KpSq is a compact set which629

does not contain the origin, then f “ } ¨ }p is differentiable with Lipschitz continuous630

gradient over an open set containing KpSq.631

Remark 6.10. According to Definition 2.1, the Kurdyka- Lojasiewicz (KL) prop-632

erty requires that the underlying function is proper and lower semicontinuous. Sup-633

pose that g is strictly convex; then its conjugate g˚ is differentiable on intpdom g˚q.634

Consequently, Γ is lower semicontinuous on635

!

px,yq P intpdom gq ˆ dom f˚ : xKx,yy ´ f˚pyq ą
m

2

)

ˆ intpdom g˚q ˆ Rn.636

Assume that Γ satisfies the KL property at a point637

W :“ px,y, z,uq P

!

Kε ˆ dom f˚ : xKx,yy ´ f˚pyq ą
m

2

)

ˆ intpdom g˚q ˆRn Ď BΓ.638

Then we can restrict the neighborhood U of W such that ProjzpUq X intpdom g˚q is639

open, where ProjzpUq denotes the projection on the space where the block variable z640

belongs to. Then, by shrinking U if necessary, we have641

U “ U X

´

tpx,yq P Kε ˆ dom f˚ : xKx,yy ´ f˚pyq ą
m

2
u ˆ intpdom g˚q ˆ Rn

¯

,642
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on which Γ remains lower semicontinuous. A similar argument applies to the merit643

function Π.644

Finally, we provide the global convergence result which is in line with [20, Theorem645

4] and [11, Theorem 3.4].646

Theorem 6.11. Let ε ą 0. Suppose Assumption 3.1 holds, Kε Ď intpdom gq, g647

is nonsmooth and essentially strictly convex and one of the following conditions are648

fulfilled:649

(i) f˚ satisfies the calm condition over its effective domain and Γ satisfies KL650

property at every point of tpx,yq P Kε ˆ domf˚ : xKx,yy ´ f˚pyq ą m{2u ˆ651

intpdomg˚q ˆ Rn.652

(ii) f is differentiable with Lipschitz continuous gradient over an open set contain-653

ing KpSq and Π satisfies KL property at every point of Kεˆ intpdomg˚qˆRn.654

Let tW k “ pxk,yk, zk,ukqu be the sequence generated by Algorithm 5.1. Then,655
ř

k

´

}xk ´xk`1}`}uk ´uk`1}`}zk ´zk`1}

¯

ă `8, and txku converges to a limiting656

p2κε, p2κ` 1qεq-lifted stationary point of (1.1), where κ is the Lipschitz constant of g657

on Kε.658

Proof. We prove the statement only in the setting of assumption (i). The proof659

of the other case can be done analogously. The sequence tΓpxk,yk, zk,ukqukěK1
is660

nonincreasing and it converges to θ as k Ñ `8. Thus, Γpxk,yk, zk,ukq ě θ for all k ě661

K1, which allows us to divide the proof into two cases. Case I. There exists K2 ě K1662

such that Γpxk,yk, zk,ukq “ θ for k ě K2. Then, pxk`1, zk`1,uk`1q “ pxk, zk,ukq663

for all k ě K2 due to (6.11), and the conclusion follows. Case II. Γpxk,yk, zk,ukq ą θ664

for all k ě K1. Let Ω denote the set of accumulation points of tpxk,yk, zk,ukqu. Then,665

Ω is compact. Invoking Theorem 6.2 (iii), according to the uniformized KL property666

[7], there exist ϱ ą 0 and µ ą 0 and a desingularization function ϕ with the property667

that for all px,y, z,uq with distppx,y, z,uq,Ωq ă ϱ and θ ă Γpx,y, z,uq ă θ ` µ, it668

holds ϕ1pΓpx,y, z,uq ´ θqdistp0, BΓpx,y, z,uqq ě 1. Then, there exists K2 ě K1 such669

that distppxk,yk, zk,ukq,Ωq ă ϱ and θ ă Γpxk,yk, zk,ukq ă θ ` µ for all k ě K2.670

Thus, by using Theorem 6.3 and Theorem 6.5, for all k ě K2 it holds671

ϕpΓpxk,yk, zk,ukq ´ θq ´ ϕpΓpxk`1,yk`1, zk`1,uk`1q ´ θq672

ě ϕ1pΓpxk,yk, zk,ukq ´ θq
`

Γpxk,yk, zk,ukq ´ Γpxk`1,yk`1, zk`1,uk`1q
˘

673

ě
c

distp0, BΓpxk,yk, zk,ukqq

`

}xk ´ xk`1}2 ` }uk ´ uk`1}2 ` }zk ´ zk`1}2
˘

674

ě
c

3ζ

p}xk ´ xk`1} ` }uk ´ uk`1} ` }zk ´ zk`1}q2

p}xk ´ xk´1} ` }uk ´ uk´1} ` }zk ´ zk´1}q
,675

where c and ζ are given as in Theorems 6.3 and 6.5. By denoting δkx,z,u :“ }xk ´676

xk`1} ` }uk ´ uk`1} ` }zk ´ zk`1}, it follows that for all k ě K2677

2δkx,z,u ď 2

c

3ζ

c

`

ϕpΓpxk,yk, zk,ukq ´ θq ´ ϕpΓpxk`1,yk`1, zk`1,uk`1q ´ θq
˘

δk´1
x,z,u678

ď δk´1
x,z,u `

3ζ

c

`

ϕpΓpxk,yk, zk,ukq ´ θq ´ ϕpΓpxk`1,yk`1, zk`1,uk`1q ´ θq
˘

.679

So, the conclusion follows.680

Remark 6.12. If S is a semialgebraic set, and f , g, and h are semialgebraic func-681

tions (that is, their graphs can be written as a finite union or intersection of sets682
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described by polynomial inequalities), then Γ and Π are also semialgebraic functions.683

So, they satisfy the KL property at every point of the domain of their subdifferential684

[3]. We also remark that, in this case, the desingularization function ϕ of the KL685

property takes the form of ϕpsq “ c s1´θ for some c ą 0 and θ P r0, 1q. Here, θ is686

often called the corresponding KL exponent, see [33] for recent developments in esti-687

mating the KL exponents. Then, (local) convergence rate analysis of the algorithm688

can be deduced following the techniques used in [2] with the information of the KL689

exponents. For brevity, we omit the details here.690

Remark 6.13. (Tightness of the convergence results of the conceptual FSPS algo-691

rithm) As seen in the proof of Theorem 6.2, every accumulation point px,y, z,uq of692

the sequence pxk,yk, zk,ukq need to fulfill the system of optimality conditions (6.9).693

Due to the existence of γ ą 0 in the third inclusion of (6.9), we cannot anticipate694

x as an exact limiting lifted stationary point of (1.1). To ensure that the accumula-695

tion point is an exact lifted stationary point, as the sequence tγku is non-increasing,696

without loss of generality, we can assume that one of the following two must hold:697

(1.) γk ” 0 for all k ě K, for some finite index K, or698

(2.) γk Ó 0 as k Ñ 8.699

The following example illustrates that, in general, our convergence results are sharp.700

Example 6.14. Consider problem (1.1) for S “ r0, 1s2 Ď R2, A “ K “ I where
I is the identity mapping, and g, h, f : R2 Ñ R are given by gpxq “ }x}1, hpxq “
1
2}x}2 ` eJx ` 1

2 and fpxq “ eJx ` 1
2 , where e “ p1, 1qJ. We consider two cases:

(1.) γk ” 0 for all k. Let β “ 1, δk ” 1, θ0 :“ 2 and z0 “ u0 “ x0 :“ p1, 0qJ. For
the fourth update block in FSPS, we will choose zk`1 as the minimum norm solution.
Then, FSPS generates a sequence pxk,yk, zk,ukq such that

zk “ uk “ xk “

"

p0, 1qJ, if k is odd,
p1, 0qJ, if k is even,

yk “ e and θk “ 2 @k ě 1.

One can verify that neither p1, 0qJ nor p0, 1qJ is a limiting lifted stationary point of701

Example 6.14. Thus, the subsequential convergence to an exact limiting lifted station-702

ary point cannot be guaranteed in this case.703

(2.) γk “ 1
k`1 for all k. We can show that any accumulation point of the se-704

quence generated by the FSPS may not be an exact limiting lifted stationary point, see705

Appendix A for details. Note that, in this case, δk ” 1, which violates the choice in706

Theorem 4.3, where δk “ χ
´

L∇h `
σ2
A

γk

¯

Ñ `8.707

7. Discussion on its variants with counterexamples guided. It is inter-708

esting to see when the basic algorithm FSPS can converge to an exact limiting lifted709

stationary point. Consider the conceptual algorithm FSPS with γk ” 0 reads for all710

k ě 0:711

(7.1)

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

yk`1 P BfpKxkq

xk`1 “ ProjS

´

uk `
θ̃k
δk
K˚yk`1 ´ 1

δk
∇hpxkq ´ 1

δk
A˚zk

¯

,

uk`1 “ p1 ´ βquk ` βxk`1,

zk`1 “ arg minz

“

g˚pzq ´ xAxk`1, zy
‰

,

θ̃k`1 “
Ψ̃pxk`1, zk`1,uk`1; δkq

fpKxk`1q
,

712

where Ψ̃px, z,u, δq :“xz, Axy ´ g˚pzq ` hpxq ` ιSpxq ` δ
2}x ´ u}2.4713

4Note that γk ” 0. Then, the function Ψ in (4.1) reduces to Ψ̃.
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Next, we show that the sequence txku generated by (7.1) converges to an exact714

limiting lifted stationary point of (1.1) if g is ℓ-smooth.715

Theorem 7.1. Suppose Assumption 3.1 holds, g is ℓ-smooth (ℓ ą 0) and essen-716

tially strictly convex, and one of the following conditions is fulfilled:717

(i) f˚ satisfies the calm condition over its effective domain and Γ satisfies KL718

property at every point of of tpx,yq P Kε ˆ domf˚ : xKx,yy ´ f˚pyq ą719

m{2u ˆ intpdomg˚q ˆ Rn.720

(ii) f is differentiable with Lipschitz continuous gradient over an open set contain-721

ing KpSq and Π satisfies KL property at every point of Kεˆ intpdomg˚qˆRn.722

Let 0 ă β ă 2, χ ą 1, δk ” δ:“ χpL∇h `2ℓσ2
Aq for k ě 0, and tW k “ pxk,yk, zk,ukqu723

be the sequence generated by (7.1). Then,
ř

k

`

}xk ´ xk`1} ` }uk ´ uk`1} ` }zk ´724

zk`1}
˘

ă `8, and txku converges to a limiting lifted stationary point of (1.1).725

Proof. First, analogous to the proof to (6.1), one can show that for all k ě 0726

Ψ̃pxk`1, zk,uk, δq ` θ̃k
“

fpKxkq ´ pxKxk`1,yk`1y ´ f˚pyk`1qq
‰

727

ď Ψ̃pxk, zk,uk, δq ´
δ ´ L∇h

2
}xk`1 ´ xk}2.728

Second, using the optimality condition of zk`1 in (7.1), it yields729

xAxk`1, zk`1y ´ g˚pzk`1q ď xAxk`1, zky ´ g˚pzkq ` xzk`1 ´ zk, Axk`1 ´ Axky730

´
1

2ℓ
}zk ´ zk`1}2.731

So, Ψ̃pxk`1, zk`1,uk, δq ď Ψ̃pxk`1, zk,uk, δq`ℓσ2
A}xk`1 ´xk}2 ´ 1

4ℓ}zk ´zk`1}2. The732

remaining proofs are similar to Theorems 6.1, 6.3 to establish the descent property of733

the merit functions, and show the subsequential convergence by following the proof734

routines in Theorem 6.2, and the global convergence routines in Theorem 6.11, thus735

omitted here.736

Another interesting question is to see what happens if we replace the updating step737

of zk`1 in the conceptual FSPS (7.1) with the following:738

(7.2) zk`1 “ arg min
z

!

g˚pzq ´ xAxk`1, zy `
αk

2
}z ´ zk}2

)

,739

where αk ą 0. We call this variant as P-FSPS. If g is nonsmooth, then P-FSPS can740

also exhibit a cycling phenomenon, as illustrated by the following example.741

Example 7.2. Consider the problem (1.1) for S “ r0, 1s2 Ď R2, A “ 1
2I, K “ 2I

where I is the identity mapping, and g, h, f : R2 Ñ R given by gpxq “ }x}1, hpxq “
1
2}x}2 ` 1

2e
Jx ` 3

2 and fpxq “ 1
2e

Jx ` 1. Let β “ 1, δk ” δ “ 1
2 for k ě 0, θ̃0 :“ 3

2
and z0 “ p1, 1qJ, u0 “ x0 :“ p1, 0qJ. For any αk ą 0, P-FSPS generates a sequence
pxk,yk, zk,ukq such that for all k ě 0

uk “ xk “

"

p0, 1qJ, if k is odd,
p1, 0qJ, if k is even,

yk “
1

2
e, zk “ e and θ̃k “

3

2
.

Direct verification shows that neither p1, 0qJ nor p0, 1qJ is a limiting lifted stationary742

point of Example 7.2.743

8. Numerical results. We present numerical results to demonstrate the effi-744

cacy of the proposed algorithmic framework. All algorithms are implemented using745

MATLAB R2016a and executed on a desktop running Windows 10 equipped with an746

Intel Core i7-7600U CPU processor (2.80GHz) and 16GB of memory.747
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8.1. Implementation details. To allow for larger step sizes δk and mitigate748

the dependence on the unknown parameter L∇h, we propose practical variants of Al-749

gorithms 4.1 and 5.1 by incorporating a nonmonotone line search strategy [32]. These750

variants are referred to as S-FSPS-nls and Adaptive FSPS-nls, respectively. Due to751

space limitations, we only present the details of Adaptive FSPS-nls in Algorithm 8.1.752

Algorithm 8.1 (Adaptive FSPS algorithm with nonmonotone line search). Let 0 ă753

β ă 2, χ ą 1, 0 ă q ă 1, δ0 ą 0, γ0 “ 1, and ε ą 0, η ą 1, 0 ă µ ă 1, c ą 0, T, ℓ, t P N.754

Let px0,u0
q be a given starting point. We use MaxIt to indicate the maximal number of755

iterations.756

For k “ 0 : MaxIt do757

Set γk,0 :“ γk.758

For j “ 0 : ℓ ´ 1 do759

Set γk,j :“ γk,0q
j .760

Set zk`1,j :“ Proxg˚{γk,j

ˆ

Axk

γk,j

˙

.761

If θk`1 :“
Ψpxk, zk`1,j ,uk, δk, γk,jq

fpKxkq
ą 0, then762

Update γk :“ γk,j , zk`1 :“ zk`1,j .763

Break764

End If765

End For766

Set δk,0 :“ χpL∇h `
2σ2

A

γk
q.767

Choose yk`1
P BfpKxk

q.768

Set dk`1 :“ θk`1K
˚yk`1

´ ∇hpxk
q ´ A˚zk`1.769

For s “ 0 : t ´ 1770

Set δk,s :“ µηsδk,0.771

Set x̃k`1 :“ ProjS

ˆ

uk
`

dk`1

δk,s

˙

.772

If F px̃k`1
q ď max

rk´T s`ďjďk
F pxj

q ´
c

2
||xk

´ x̃k`1
||
2, then773

Update xk`1 :“ x̃k`1.774

Break775

End If.776

End For.777

Update uk`1 :“ uk
´ βpuk

´ xk`1
q.778

Update γk`1 :“ γk, δk`1 :“ δk.779

If }zk`1
} ą min

ˆ

ε

γk
,

c

2ε

γk

˙

, then780

Update γk`1 :“ γkq, δk`1 :“ χpL∇h `
2σ2

A

γk`1
q.781

End If782

End For783
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24 RADU IOAN BOŢ, GUOYIN LI, AND MIN TAO

8.2. Limited-angle CT reconstruction. We solved the problem (1.2) by com-784

paring S-FSPS-nls, Adaptive FSPS-nls with the Extrapolated Proximal Subgradi-785

ent algorithm (e-PSA) from [8], and the Proximity Gradient Subgradient algorithm786

with Backtracked Extrapolation (PGSA BE) from [21]. We set τ “ 0.1 and p “ 2787

in (1.2) throughout the numerical tests. Each algorithm was initialized with the788

zero vector (with a safeguard mechanism of computing the denominator of (1.1) via789

maxp}∇x}2, epsq) and used the same stopping criterion defined by:790

}xk`1 ´ xk}

maxteps, }xk}u
ă 10´6 or k ą MaxIt,(8.1)791

where eps represents the machine precision. We also adopted a two-stage approach792

with a warm start strategy, where the last iterate of the first stage served as the initial793

point for the second stage. The warm start will be beneficial for solving the imaging794

processing problem, but it also requires careful parameter tuning for two phases.795

When implementing Adaptive FSPS-nls, we set fpxq :“ }x}2, A “ K “ ∇, and796

followed Remark 6.8 by setting gpxq :“ τ}x}1` s
2}x}2 and hpxq :“ 1

2}Px´f}2´ s
2}Ax}2797

where s “ 0.1. The superscripts p1q and p2q represent the stage one and stage two,798

respectively. The parameter settings were βp1q “ 1.1, βp2q “ 1.45, χp1q “ 1.1, χp2q “799

1.001, µp1q “ µp2q “ 0.4, ηp1q “ ηp2q “ 1.5, qp1q “ qp2q “ 0.999, T p1q “ T p2q “ 5, cp1q “800

cp2q “ 1e-4, tp1q “ tp2q “ 250, ℓp1q “ ℓp2q “ 1000, MaxItp1q
“ 50, MaxItp2q

“ 5000, and801

εp1q “ εp2q “ 1e ´ 6. To implement S-FSPS-nls, we use the same parameters as those802

in Adaptive FSPS-nls, except that we set γ
p1q

k “ γ
p2q

k “ 1
k0.05 and χp1q “ χp2q “ 2.803

When applying PGSA BE (Algorithm 1 in [21]), we set fpxq :“ τ}∇x}1, hpxq :“804
1
2}Px ´ f}2, gpxq :“ }∇x}2. The inner loop amounts to solving in each iteration805

xk`1 “ arg min
xPB

„

τ}∇x}1 `
1

2α
}x ´ qk}2

ȷ

,(8.2)806

with qk “ uk`1 ´ αP˚pPuk`1 ´ fq ` αck
∇˚

p∇xk
q

}∇xk}2
, uk`1 “ xk ` βkpxk ´ xk´1q and807

ck “
fpxk

q`hpxk
q

gpxkq
. We applied ADMM to (8.2) by introducing ∇x “ y and x “ z,808

and with ρ1 and ρ2 being the penalty parameters. For the outer loop parameters809

we set ℓp1q “ ℓp2q “ 0, β
p1q

k “ β
p2q

k ” 0.1, αp1q “ 0.0015, αp2q “ 0.001, εp1q “ εp2q “810

1e-3 (in the backtracking condition), MaxItp1q
“ 50, MaxItp2q

“ 5000. For the inner811

loop parameters we set Inner tolp1q
“ Inner tolp2q

“ 1e-6, and Inner MaxItp1q
“812

1000, Inner MaxItp2q
“ 200, ρ

p1q

1 “ ρ
p2q

1 “ 1e-4, ρ
p1q

2 “ ρ
p2q

2 “ 1e-2.813

When applying e-PSA (Algorithm 4.1 in [8]), we set fnpxq :“ τ}∇x}1, fspxq :“814
1
2}Px ´ f}2, and gpxq :“ }∇x}2. Due to the absence of boundedness condition (BC),815

µ “ κ “ 0, and so, κk “ µk “ 0 and uk “ vk “ xk for all k ě 0. The inner loop816

amounts to solving in each iteration817

xk`1 “ arg min
xPB

„

τ}∇x}1 `
1

2τk
}x ´ pk}2 `

ℓ

2
}x ´ xk}2

ȷ

,(8.3)818

with pk “ xk ` τkθk
∇˚∇xk

}∇xk}
´ τkP

˚pPxk ´ fq and θk “
fn

pxk
q`fs

pxk
q

gpxkq
. We solved819

(8.3) also via ADMM, with ρ1 and ρ2 being the penalty parameters. For the outer820

loop parameters we set βp1q “ βp2q “ 0, ℓp1q “ ℓp2q “ }Pxtrue}{}xtrue}, τ
p1q

k “ τ
p2q

k ”821

760, and MaxItp1q
“ 50, MaxItp2q

“ 5000. For the inner loop parameters we set822

Inner tolp1q
“ Inner tolp2q

“ 1e-6, and Inner MaxItp1q
“ 1000, Inner MaxItp2q

“823

200, ρ
p1q

1 “ ρ
p2q

1 “ ρ
p1q

2 “ ρ
p2q

2 “ 1e-2.824
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We assessed performance based on two metrics: the root mean squared error825

(RMSE) [29] and the overall structural similarity index (SSIM) [31]. We conducted826

tests on parallel beam CT reconstruction of the Shepp-Logan phantom using projec-827

tion ranges of 90˝, 120˝, and 150˝. We evaluated both noiseless and noisy scenarios,828

where the Gaussian noise had a zero mean and standard deviations (σ) of 0.001 and829

0.005. The performance of the three algorithms is summarized in Table 1. The results830

indicate that S-FSPS-nls and Adaptive FSPS-nls outperform the recently introduced831

double-loop algorithms, PGSA BE and e-PSA, in terms of SSIM, RMSE, and CPU832

time (in seconds).833

When comparing S-FSPS-nls and Adaptive FSPS-nls, we observe that S-FSPS-834

nls requires less CPU time, primarily because Adaptive FSPS-nls needs to perform835

backtracking to ensure the non-negativity of θk, whereas S-FSPS-nls does not neces-836

sarily require this. However, S-FSPS-nls achieves slightly lower SSIM values in some837

cases compared to Adaptive FSPS-nls.838

8.3. Robust Sharpe ratio type minimization problem. We tested Adap-839

tive FSPS-nls also on the robust sharp-ratio minimization problem (1.3), and com-840

pared it with PGSA BE, e-PSA and the Dinkelbach’s method with Surrogation (DLS)841

[14, Algorithm 7.2.7]. The data ppriq
m1
i“1, paiq

m1
i“1, pCiq

m2

i“1q were generated as follows:842

(1) each vector ai was generated such that each entry is drawn from a uniform distri-843

bution over the interval r0, 1s; (2) ri was set to be greater than }ai}8; (3) each matrix844

Ci was generated such that each eigenvalue conforms to a uniform distribution over845

the interval r10´3, 1 ` 10´3s.846

We measured the performance in terms of the objective value obj, the infeasibility
infea :“ } maxp´x, 0q}1 ` |}x}1 ´ 1|, and the lifted stationarity residual

stat :“ dist
`

0, pA˚BgpAxq ` ∇hpxq ` BιSpxqq fpKxq ´ pgpAxq ` hpxqqK˚BfpKxq
˘

.

All metrics are evaluated at the last iterate. We also used (8.1) as a stopping criterion.847

When implementing Adaptive FSPS-nls, we set f , r, A, and K as in Section 1,848

and set gpxq :“ }r ´ x}8 ` s
2}x}2 and hpxq :“ ´ s

2}Ax}2 with s “ 0.01, by following849

Remark 6.8. We set the algorithm parameters as ℓ :“ 100, L∇h :“ s}A˚A}, χ :“ 1.1,850

η :“ 1.15, q :“ 0.999, µ :“ 0.005, c :“ 10´4, T :“ 5, δ0 :“ χpL∇h ` 2σ2
Aq, t :“ 250,851

MaxIt :“ 500, ε :“ 1e ´ 8, and β :“ 1.6. To implement S-FSPS-nls, we use the same852

parameters as those in Adaptive FSPS-nls, except that we set γk “ 1
k1{3 and χ “ 1.5.853

When implementing PGSA BE, we defined fpxq :“ max1ďiďm1
tri´aJ

i xu, hpxq :“854

0, and gpxq :“ max1ďiďm2 x
JCix. The inner loop amounts to solving in each iteration855

xk`1 “ arg min
xP∆

„

max
1ďiďm1

tri ´ aJ
i xu `

1

2α
}x ´ uk`1 ´ αcky

k}2
ȷ

,(8.4)856

with yk P Bgp¨qpxkq and uk`1 “ xk ` βkpxk ´ xk´1q. The inner loops of both e-PSA857

and DLS amounts to solving in each iteration a similar problem as (8.4).858

For fair comparisons, we solved the inner loop subproblems for all these double-859

loop algorithms via ADMM. We used MaxIt “ 500 for all these test algorithms.860

In addition, we used for e-PSA as outer loop parameters β “ 0, τk ” 0.5 and as861

inner loop parameters ρ1 “ 0.1, ρ2 “ 0.1; we used for PGSA BE as outer loop862

parameters βk ” 0.5, α “ 0.5, ε “ 1 ˆ 10´3 (in the backtracking) and as inner863

loop parameters ρ1 “ 0.5, ρ2 “ 0.5, and we used for DLS as inner loop parameters864

ρ1 “ ρ2 “ 0.5. We conducted numerical tests by setting pn,m1,m2q to p100, 5, 20q,865

p100, 20, 5q, p100, 20, 20q, p400, 20, 10q, p400, 10, 20q, and p400, 20, 20q. We performed866
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Table 2
S-FSPS-nls and Adpative FSPS-nls versus double-loop algorithms for robust sharp-ratio Problem

pn,m1,m2q FSPS-nls S-FSPS e-PSG PGSA BE DLS

(100, 5, 20)

obj 1.52e+00 1.52e+00 1.56e+00 1.59e+00 1.54e+00
infea 4.22e-09 3.56e-09 4.11e-07 3.98e-07 3.98e-05
stat 2.53e-07 2.53e-07 2.21e-07 2.97e-07 1.50e-07
CPU 2.61e-02 2.74e-02 5.58e-02 5.17e-02 3.27e-01

(100, 20, 5)

obj 1.76e+00 1.76e+00 1.79e+00 1.79e+00 1.75e+00
infea 4.35e-09 4.70e-09 3.98e-07 4.95e-07 3.20e-05
stat 3.20e-07 3.20e-07 5.04e-07 5.45e-07 3.88e-07
CPU 2.10e-02 2.60e-02 6.29e-02 5.34e-02 9.55e-01

(100, 20, 20)

obj 1.68e+00 1.68e+00 1.67e+00 1.69e+00 1.75e+00
infea 3.12e-09 4.47e-09 3.69e-07 5.82e-07 3.18e-05
stat 4.07e-07 4.07e-07 4.16e-07 5.04e-07 2.62e-03
CPU 2.66e-02 3.28e-02 7.02e-02 6.32e-02 2.59e+00

(400, 20, 10)

obj 1.88e+00 1.88e+00 1.89e+00 1.88e+00 2.09e+00
infea 2.84e-09 2.57e-09 3.90e-07 4.29e-07 5.10e-05
stat 6.30e-05 6.30e-05 6.28e-05 6.02e-05 5.52e-03
CPU 5.41e-01 5.52e-01 8.26e-01 7.60e-01 1.03e+02

(400, 10, 20)

obj 1.70e+00 1.70e+00 1.78e+00 1.78e+00 1.89e+00
infea 4.13e-09 4.29e-09 4.03e-07 4.32e-07 5.01e-05
stat 3.02e-05 3.02e-05 2.75e-05 2.88e-05 1.36e-02
CPU 1.33e+00 1.25e+00 1.36e+00 1.43e+00 1.50e+02

(400, 20, 20)

obj 1.84e+00 1.84e+00 1.85e+00 1.82e+00 1.93e+00
infea 4.04e-09 3.42e-09 4.87e-07 3.90e-07 4.41e-05
stat 4.32e-05 4.32e-05 4.25e-05 3.86e-05 4.04e-04
CPU 6.24e-01 6.17e-01 7.34e-01 7.71e-01 1.01e+02

50 trials for each configuration. The average values of the considered performance867

metrics, along with the CPU time (in seconds), are reported in Table 2.868

As observed, S-FSPS-nls and Adaptive FSPS-nls outperform e-PSA, PGSA BE,869

and DLS by achieving smaller infeas, comparable stat, and obj values, while re-870

quiring less computation time. Their performance is nearly identical, mainly due to871

the choice ε “ 1 ˆ 10´8.872

9. Conclusions. The paper focuses on a class of structural fractional programs873

characterized by linear compositions with nonsmooth functions in both the numerator874

and denominator. We develop a proximal subgradient algorithm framework with two875

versions (S-FSPS and Adaptive FSPS) to overcome the challenges in computing the876

proximal point of the linear composition with the nonsmooth component in the nu-877

merator. Our contributions include establishing the subsequential convergence to an878

exact lifted stationary point for the S-FSPS while establishing the global convergence879

of Adaptive FSPS toward an approximate lifted stationary point under the KL prop-880

erty, without imposing full-row rank assumptions. We explain the rationale behind881

the convergence to an approximate lifted stationary point of the Adaptive FSPS and882

construct counterexamples to show that pursuing an exact solution in the adaptive883

version might lead to divergence. Finally, we demonstrate the superiority of these884

practical versions of the newly proposed algorithms over the existing state-of-the-art885

methods for two concrete applications.886
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Appendix A. Accumulation points of the sequence generated by the887

FSPS may fail to be a lifted stationary point when γk Ó 0.888

Consider the counter-example of Example 6.14. For β “ 1, γk :“ 1
k`1 , δk ” 1,889

θ0 :“ 2, and z0 “ u0 “ x0 :“ p1, 0qJ, FSPS generates a sequence tpxk,yk, zk,ukqu.890

The sequence txku has two accumulation points: p1, 0qJ and p0, 1qJ. Indeed, neither891

p1, 0qJ nor p0, 1qJ is a limiting lifted stationary point of Example 6.14. We provide892

the details in the following lemma.893

Lemma A.1. Let the sequence tpxk,yk, zk,ukqu be generated by FSPS (4.1) for894

solving Example 6.14 with β “ 1, γk :“ 1
k`1 , δk ” 1, θ0 :“ 2, and z0 “ u0 “ x0 :“895

p1, 0qJ. Then, we have yk “ e for all k ě 1 and the following statements hold:896

(i)

1○
k

: zk “

#

p0, 1qJ, if k is odd,
p1, 0qJ, if k is even,

897
(ii)

2○
k

: xk “

#

p0, θk´1 ´ 1qJ, if k is odd,
pθk´1 ´ 1, 0qJ, if k is even.

where θk is given by898

3○k : θk “
θk´1 ´ 1 ` p0.5 ˚ pθk´1 ´ 1q2 ` pθk´1 ´ 1q ` 0.5q ´ 1

2k

θk´1 ´ 1{2
.(A.1)899

900
(iii) limkÑ8 θk “ 2, and hence, the sequence txku has two accumulation points:901

p1, 0qJ and p0, 1qJ.902

Proof. First, we define a sequence tbku via the following recurrence formula: b0 “903

1 and, for all k ě 0, bk`1 “
1
2 b

2
k`bk´ 1

2pk`1q

bk`1{2 . For this sequence, we first use mathematical904

induction to see that905

1{2 ă bk ă 1, @k ě 1.(A.2)906

By direct calculations, we see that b1 “ 2{3, b2 “ 23{42, b3 “ 936.5{1848 and b4 “907
936.52{p1848˚2q`705.5

1860.5 . Thus, (A.2) holds with k “ 1, 2, 3, 4. Suppose that (A.2) holds908

with k “ k0 for some k0 ě 4, that is, 1{2 ă bk0
ă 1. We now show that (A.2) holds909

with k “ k0 ` 1. To see this, we first note that bk0`1 “ 1
2bk0

` 3
4 ´

3
8 ` 1

2pk0`1q

bk0
`1{2 . Define a910

one-variable function fpxq :“ 1
2x ` 3

4 ´
3
8 ` 1

2pk0`1q

x`1{2 . Direct verification shows that f is911

an increasing function. So, bk0`1 “ fpbk0
q ě fp1{2q “ 5{8 ´ 1

2pk0`1q
ą 1{2, where the912

last strict inequality holds as k0 ě 4. Moreover, as bk0
ă 1, bk0`1 “ fpbk0

q ď fp1q ă 1.913

Thus, (A.2) holds.914

Next, we show the main results of this lemma. Clearly, from the definition of f915

and the construction, yk “ e for all k ě 1.916

[Proof of (i) & (ii)] We use mathematical induction to verify 1○k, 2○k and 3○k917

hold for all k ě 1. A direct verification shows that the statements of 1○k, 2○k918

and 3○
k

hold for k “ 1, 2; Suppose that 1○
k
, 2○

k
and 3○

k
hold for k ď k0 with919

k0 ě 2. Using (A.2) with bk0 “ θk0 ´ 1, we see that 3{2 ă θk0 ă 2. Using the update920

formula of xk`1 in (4.1), a direct verification shows that 2○k holds with k “ k0 ` 1.921

Note from the update formula of zk`1 in (4.1) that zk0`1 :“ ProjB8
1

p
pθk0

´1, 0q
J

1{pk0`1q
q or922
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zk0`1 :“ ProjB8
1

p
p0, θk0

´1q
J

1{pk0`1q
q where B8

1 is the unit ball defined by the ℓ8-norm. Since923

3{2 ă θk0
ă 2, we have 1○k holds with k “ k0 ` 1. Finally, using the update formula924

of θk`1 in (4.1), 3○
k

with k “ k0 ` 1 also follows.925

[Proof of (iii)] To see (iii), we first establish that bk`1 ě bk when k ě 4. From the926

definition of the sequence tbku, this is equivalent to927

1

2

˜

1 ´

c

1 ´
4

k ` 1

¸

ď bk ď
1

2

˜

1 `

c

1 ´
4

k ` 1

¸

.(A.3)928

Clearly, (A.3) is true with k “ 4 by direct computation. Suppose now (A.3) holds929

with k “ k0 with k0 ě 4. We now show that (A.3) holds with k “ k0 ` 1, that is,930

1

2

ˆ

1 ´

c

1 ´
4

k0 ` 2

˙

p♣q

ď bk0`1

p♠q

ď
1

2

ˆ

1 `

c

1 ´
4

k0 ` 2

˙

.931

For p♣q, it holds obviously due to bk ą 1{2 for all k ě 1. To prove p♠q, recall the932

one-variable f defined as above. We have bk0`1 “ fpbk0q ď fp
1`

b

1´ 4
k0`1

2 q, where the933

last inequality follows by the induction hypothesis and the fact that f is increasing.934

Thus, it remains to show that fp
1`

b

1´ 4
k0`1

2 q ď
1`

b

1´ 4
k0`2

2 . By letting δ :“ 1
k0`1 ,935

κ :“ 1
k0`2 and noting that κ ď δ. Let c :“

?
1 ´ 4δ and d :“

?
1 ´ 4κ. Thus we have936

c2

4 ď 1
4cd ` d

2 ´ c
2 . Consequently, 1 `

?
1´4δ
4 ´

3
8 ` δ

2

1` 1
2

?
1´4δ

ď 1
2 ` 1

2

?
1 ´ 4κ. With some937

elementary calculations, it leads to fp
1`

b

1´ 4
k0`1

2 q ď
1`

b

1´ 4
k0`2

2 .938

Therefore, the sequence of tbku is monotone and bounded, thus lim
kÑ`8

bk exists.939

Consequently, lim
kÑ`8

θk exists, and lim
kÑ`8

θk “ 2.940
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