1

N

16
17
18
19
20

23

24
25

FULL SPLITTING ALGORITHMS FOR FRACTIONAL PROGRAMS
WITH STRUCTURED NUMERATORS AND DENOMINATORS *

RADU IOAN BOT T, GUOYIN LI ¥, AND MIN TAO §

Abstract. In this paper, we consider a class of nonconvex and nonsmooth fractional program-
ming problems that involve the sum of a convex, possibly nonsmooth function composed with a
linear operator and a differentiable, possibly nonconvex function in the numerator and a convex,
possibly nonsmooth function composed with a linear operator in the denominator. These problems
have applications in various fields. We present a framework for a full-splitting proximal subgradi-
ent algorithm with two versions: (i) a smoothing-based version (S-FSPS) that uses carefully chosen
smoothing parameters and step sizes; and (ii) an adaptive version (Adaptive FSPS) which incor-
porates extrapolation and backtracking to ensure the nonnegativity of the merit sequence. Both
versions address the difficulty of decoupling the nonsmooth composition in the numerator. We prove
that S-FSPS converges subsequentially to an exact lifted stationary point, and that Adaptive FSPS
converges globally to an approximate lifted stationary point under the Kurdyka-Lojasiewicz prop-
erty. Further discussions are provided on the tightness of the Adaptive FSPS convergence results
and the reasoning behind aiming for an approximate lifted stationary point. We construct a series of
counterexamples to demonstrate that the Adaptive FSPS algorithm may diverge when seeking exact
solutions. We also developed practical versions incorporating a non-monotone line search to enhance
performance. Our theoretical findings are validated through simulations involving limited-angle CT
reconstruction and the robust sharp-ratio-type minimization problem.

Key words. structured fractional programs, full splitting algorithm, convergence analysis, lifted
stationary points, Kurdyka-Lojasiewicz property, nonmonotone line search

MSC codes. 90026, 90C32, 49M27, 65K05

1. Introduction. In this paper, we consider the following class of nonsmooth
and nonconvex fractional programs:

(1.1) I){}ElgF(X) = T Ex)

where S is a nonempty convex and compact subset of R?, f : R? — R :=R U {+w0}
and g : R®* — R are proper, nonsmooth convex and lower semicontinuous functions;
A:R" - R® and K : R® — RP are linear operators; h : R® — R is a (possibly
nonconvex) differentiable function over an open set containing S and its derivative
Vh is Lipschitz continuous over this open set with a Lipschitz constant Ly;. To
ensure (1.1) is well-defined, we assume for the denominator that Kx € domf and
f(Kx) > 0 for all x € S. For more detailed assumptions, we direct the reader to our
subsequent sections.

Problem (1.1) falls into the category of single-ratio fractional programming prob-
lems. However, its structure is more intricate than that of the problems discussed in
[8] and [10]. When the linear operators A and K are identity mappings (represented
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2 RADU IOAN BOT, GUOYIN LI, AND MIN TAO

as I), the model (1.1) simplifies to the problem addressed in [21]. Model (1.1) encom-
passes a variety of optimisation problems, such as limited-angle CT reconstruction
[19, 29], robust Sharpe ratio minimization [13], the single-period optimal portfolio
selection problem [23], the sparse signal reconstruction problem [28, 21, 34], and so
on. Subsequently, we offer two examples to demonstrate the nature of (1.1).

(a) The limited-angle CT reconstruction problem aims at reconstructing the true
image from limited-angle scanning measurements. By representing an image as an
(n x m) matrix, it can be mathematically formulated as

7|Vl + 3 Px — £?

(1.2) :
xeB HVX”p

Let 1 < p < o0, P be the projection operator, f the oberved data, and 7 > 0 a regular-
ization parameter. The linear operator V : R"*" — R™*™ x R"*™ denotes the discrete
gradient operator, defined as Vv = (Vxv,Vy,Vv), where V,V, : R™*" — R"*" are
the forward horizontal and vertical difference operators, respectively. Regarding the
box constraint B := [l,u] € R™*"™, which represents the range of pixel values of the
true image [29], we assume that B n span(E) = ¢J, where E is the matrix with all
entries equal to one. By identifying the matrix space R™*™ as the FEuclidean space

R"’, problem (1.2) can be written as a special case of (1.1) with g(x) := 7|x|1,
f(x) :=|x[p, A=K =V, h(x) := 3|Px —f|?, and S := B. Here, | - |, denotes the
usual £,-norm for 1 < p < oo, while for p = 2 we will simply write | - | for | - |2.

(b) The robust sharp-ratio-type optimization problem under scenario data uncer-
tainty, which arises in finance, takes the following form:

T
. MaXi1<i< r, —a; X

(1.3) min <ismy {1 = i }'7
x€EA  MaX|g<i<my X CiX

where A = {x e R"|e'x = 1,x > 0} with e = (1,...,1) € R", (a;,r;) € R" x R,
i=1,...,my, are such that r; —a/x > 0 for all x € A, and C;, i = 1,...,ma, are
positive definite matrices. The standard Sharpe ratio optimization problem without

data uncertainty reads as (see [13]) maxxea \‘};’T‘% Another closely related equivalent

. T — . . o, . . .
model is maxyea 225, where C' e R"*" is a symmetric positive definite matrix and

(a,r) e R" x R. ﬁere, without loss of generality, we assume that a’x —r > 0 for
all x € A. Suppose that the data (a,r) and C are subject to scenario uncertainty,
that is, (a,r) € Uy = {(a1,71),.-., (Qm,,Tm,)} and C € Us = {C4,...,Cp,}, where
(a;,7;) e R" x R, i = 1,...,my, are such that a/x —7; > 0 for all x € A and Cj,
i = 1,...,mg, are positive definite matrices. Then, the robust counterpart of the
above Sharpe ratio optimization problem is

T . T p—
. oax-—r ming <;<m, {a; X —7i}
max min ———-— =max +
X€A (a,r)ely, X Cx xXEA  MAX]Li<my X Cix
CEUQ

maxi<i<m, {Ti — &, X}

which can be further equivalently rewritten as min - . By adding
x€EA  MaX]gi<my X Cix

a positive constant if necessary (without affecting the solutions), we obtain (1.3). The

problem of (1.3) is a special case of (1.1) with f(x1, "+ ,Xm,) = MaxXi<i<m, ||Xi|3,
K:xw— (011/2X7._. ,C%fx), 9(x) = |lr — x| With v := (rq,...,7m,), 4 : x —
(ajx,ajx,--,al x)T, h(x) =0 and S := A.

The conventional approach to tackling single ratio fractional programming prob-
lems commonly involves utilizing Dinkelbach’s method or its variants [15, 18]. The
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FULL SPLITTING ALGORITHMS FOR STRUCTURED FRACTIONAL PROGRAMS 3

recent monograph [14] comprehensively explores Dinkelbach’s algorithm, incorporat-
ing surrogation mechanism to overcome the inherent nonconvexity of the resultant
subproblems. For solving simple single ratio problems, where compositions of non-
smooth functions with linear operators do not occur, various splitting algorithms have
been proposed in recent works [8, 9, 10, 21, 35]. These methods share the feature that
instead of invoking an inner loop aimed at solving the resulting Dinkelbach’s scalariza-
tion of the fractional program, they execute only one iteration of a suitable splitting
algorithm and update the sequence of function values. On the other hand, direct
adaptations of these techniques for solving (1.1) often lead to double-loop algorithms.

Our goal is to develop a single-loop, full-splitting algorithm with convergence
guarantees for efficiently solving problem (1.1). By fully splitting, we mean that the
algorithm relies solely on the proximity operators of either g or ¢g*, and either f or
f*. To address this challenge, inspired by [12, 21], we propose a framework for the
Fully Splitting Proximal Subgradient (FSPS) algorithm. Specifically, we introduce
two iterative schemes. The first one is based on a smoothing approach with carefully
selected step sizes and smoothing parameters to ensure (subsequential) convergence
to an exact lifted stationary point. The second one is an adaptive algorithm with an
extrapolated step that enjoys global convergence guarantees, albeit with the trade-off
of convergence to an approximate lifted stationary point.

The smoothing-based algorithm, called S-FSPS, uses a smooth approximation of
the nonsmooth function g through the Moreau envelope g., (defined in (2.2)) asy | 0
[5]. By carefully choosing the step sizes and the smoothing parameters, we show that
a cluster point of S-FSPS is an exact lifted stationary point. On the other hand, this
scheme need not exhibit global convergence for the whole sequence. To address this
issue, we propose an adaptive algorithm, called Adaptive FSPS, that approximates
g o A from below using the conjugate function of g. Adaptive FSPS incorporates a
backtracking strategy to maintain the positivity of the augmented function sequence
— a crucial property for convergence analysis. Additionally, an extrapolated step
[36, 37] is introduced to maintain positivity in the augmented function values. We
establish sequential convergence to an exact lifted stationary point for Adaptive FSPS
when ¢ is smooth and satisfies the KL property. When ¢ is nonsmooth, we demon-
strate sequential convergence to an approximate lifted stationary point under the KL
property. We justify the convergence of the adaptive FSPS to an approximate lifted
stationary point when g is nonsmooth. The approximation error can be set to an ar-
bitrarily small value. Counterexamples are constructed to demonstrate that Adaptive
FSPS may diverge to an exact stationary point, regardless of whether the smoothing
parameter 7y tends to zero as k — +00 or is set to zero. Unlike existing splitting
methods for nonconvex problems [11, 17, 20, 24, 30], global convergence for Adaptive
FSPS is guaranteed without requiring full-rank assumptions on the linear operators.
Furthermore, we propose practical versions of these algorithms by incorporating a
nonmonotone line search [32, 35] to improve performance.

The remainder is organized as follows. Section 2 presents the necessary notions
and results. Section 3 introduces the stationarity concepts and investigates their in-
terrelationships. In Section 4, we develop a framework of fully splitting proximal
subgradient (FSPS) algorithm, propose a smoothing-based version (S-FSPS), and es-
tablish its subsequential convergence to an exact lifted stationary point—although
without a guarantee of global convergence. Section 6 is devoted to the development
of an adaptive FSPS algorithm and the establishment of its global convergence to
an approximate lifted stationary point under the Kurdyka—FLojasiewicz (KL) assump-
tion. In Section 7, we discuss several important aspects related to the conceptual
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4 RADU IOAN BOT, GUOYIN LI, AND MIN TAO

FSPS algorithm and its variants. Section 8 introduces practical adaptations via the
integration of a nonmonotone line search strategy, and presents numerical results
demonstrating their effectiveness. Finally, Section 9 concludes the paper.

2. Preliminaries and calculus rules. Finite-dimensional spaces within the
paper will be equipped with the Euclidean norm, denoted by || - |, while (-, ) will
represent the Euclidean scalar product. Given a set ¢ € R™, ri(C), int(C) and cl(C)
denote its relative interior, interior and closure, respectively. The function (¢ : R® —
R := R u {4}, defined by t¢(x) = 0, for x € C, and 1c(x) = +00, otherwise, denotes
the indicator function of the set C.

For a function f : R® — R, we denote by dom f := {x € R" : f(x) < +o0} its
effective domain and say that it is proper if dom f # . For X € dom f, the set

f(X) = {v € R™ : liminf fx) = f(x) —<v,x = %) > O}

- XX XAK |x — x|

is the so-called Fréchet subdifferential of f at X. The limiting subdifferential of f at X
is defined as

0f (%) i= {v eR™:I {x) 5%, f(xF) - f(X), (VF} - vas k- +o0, vEe éf(xk)} .
If f is proper, convex and lower semicontinuous function and € > 0, we denote by
(2.1) Oef(X)i={veR": f(x) = fX) + (v,x —X)— ¢ Vx e R"}

the e-subdifferential of f at X. It holds v € . f(X) if and only if f*(v)+ f(X) —(v,X) <
e, where f* : R" — R, f*(v) = supyepn{(v,x) — f(x)}, denotes the (Fenchel)
conjugate function of f. The convex subdifferential of f at X is defined by 0f(X) :=
0o f(X). The domain of the convex subdifferential is defined as dom(df) := {x e R™ :
0f(x) # &}. For a proper, convex lower semicontinuous function f : R® — R, its
prozimal operator of modulus v > 0 is defined as

1
Prox,s : R" — R", Prox,f(x) = arg min {f(y) + o~y - XHQ}.
yeR™ 2’}/

The Moreau envelope of f with modulus v > 0 is defined as

22) BB R £00 min {10) + oIy - xP

For all x € R", it holds that
23) 560 = (£ 211) 00 = sup {vy— o) = 2IvIE}-

The Moreau envelope of f with modulus v > 0 is Fréchet differentiable on R", and its

gradient satisfies, for all x € R", V(f,)(x) = I (x — Prox,(x)) = Proxys, (%) A

proper function f :R™ — R is called essentially strictly convez if it is strictly convex
on every convex subset of dom(df). For a proper, convex and lower semicontinuous
function f, f is essentially strictly convex if and only if its conjugate f* is essentially
smooth [26]. Given a linear operator A : R™ — R™, we denote by A* : R™ — R" its
adjoint operator. We also use o4 := ||A| = sup{|Ax]| : |x]| = 1} to denote its norm.
Given r > 0 and x € R", B(x,7) denotes the closed ball centered at x with radius
r. Next, we review the Kurdyka-Lojasiewicz (KL) property [3, 6] and the concept of
calmness [27].
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FULL SPLITTING ALGORITHMS FOR STRUCTURED FRACTIONAL PROGRAMS 5

DEFINITION 2.1. A proper and lower semicontinuous function f : R™ — R is said
to satisfy the Kurdyka-Lojasiewicz (KL) property at a point X € dom(0f) if there
exist a constant p € (0, +0], an open neighborhood U of X, and a desingularization
function ¢ = [0,u) — [0,400), which is continuous and concave, and continuously
differentiable on (0, p) with ¢(0) =0 and ¢’ > 0 on (0, ), such that for every x € U
with f(X) < f(x) < f(%x) 4+ w it holds ¢'(f(x) — f(x))dist(0, df(x)) = 1.

DEFINITION 2.2. A proper function f : R* — R is said to be calm at x € domf if
there exist € > 0 and k > 0 such that |f(y) — f(x)| < k|y — x| for all y € B(x,¢) :=
{zeR": |z —x| <e}.

LEMMA 2.3. Let O € R" be an open set, and f1 : O — R and f3 : O — R be two
functions which are finite at x € O with fo(x) > 0. Suppose that fi is continuous at

x relative to domfy, that fa is calm at x, and denote «; := f;(x), i = 1,2.
(i) Then

(2.4) 3 (fl> (x) = (ozfi — a1 f2)(x)

f2 fa(x)?

(i) If, in addition, fa is convex and ay = 0, then

51 _ a2 fi)(x) — a10fa(x)
’ <f2> () < fa(x)? '

Proof. (i) The proof is similar to [35, Proposition 2.2]. (ii) If f; is convex and
a1 = 0, then d(ay f2)(x) # & thanks to x € int(domfs). According to [22, eq. (1.6)],
this further leads to d(aafi — a1f2)(X) € (anf1)(x) — d(a1fe)(x) = 0(asfi)(x) —
OéléfQ(X). O

Next, we present a lemma that will be useful in establishing approximate stationarity.

(2.5)

LEMMA 2.4. Let g : R™ — R be a proper, convex and lower semicontinuous func-
tion, and w € int(domg). Let ¢ > 0 and K be a compact set such that B(w,e) <
K <€ int(domg) and g is Lipschitz continuous on K with constant x > 0. Further, let
z € R™ be such that dist(w, 0¢g*(z)) := inf{|w —n| : n € dg*(z)} < e. Then, one has
z € O:g(wW), where € := 2ke.

Proof. First, as B(w,e) € K and g is Lipschitz continuous on K with constant
# > 0, we observe that sup{|&] : £ € dg(w +u), [u] < e} < k. For j := Projags ,) (W),
the projection of w on d¢g*(z) (which exists and is unique), it holds |7 — w| < e.
Therefore, for W := 7 — w, we have || < ¢, w + U € dg*(z) or, equivalently,
z € dg(w + ). Next, we claim that

(2.6) g(w) —g(w+1) + (U, z) <é,

where ¢ is defined in the statement of the lemma. Since (w+1,2z)—g*(z) = g(w+1),
thanks to the fact z € dg(w + @), this is equivalent to g(w) + ¢*(z) < € + (w, z), and
so, the conclusion follows. Now we will prove that (2.6) is true. By direct calculations,
we have g(w) — g(w + 1) + (U, z) < k|u|| + £|T] < 2ke =& a

3. Basic assumptions and stationary points of fractional programs. We
introduce the basic assumptions and present notions of stationary points.

AssuMPTION 3.1. Throughout this paper, we assume that
(a) S € R™ is a nonempty convex and compact set;

This manuscript is for review purposes only.
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(b) g is a proper, convex and lower semicontinuous function;

(c) h is differentiable with Lipschitz continuous gradient over an open set containing
the compact set S with a Lipschitz constant Lyp;

(d) f is a proper, convex and lower semicontinuous function with K(S) < int(domf)
and f(Kx) >0 for allxe S;

(e) S n A= (domg) # & and « := infyes{g(Ax) + h(x)} > 0;

(f) It holds that A(S) < dom(dg) and there exists a constant £ > 0 such that
dist(0, 0g(Ax)) < £ for allx e S.

The assumption S n A~1(domg) # & ensures that the objective function F is
not identically +o0. The second condition in Assumption 3.1(e) can be satisfied by
augmenting the objective with a suitable positive constant!, noting from Assumption
3.1(a)-(d) that infyes F'(x) > —oo. Assumption 3.1(f) is automatically satisfied when
the compact set A(S) is a subset of the interior of dom g.

Remark 3.2. In the illustrative examples of (a) and (b) provided in Section 1,
the functions f and ¢ have a full domain — therefore Assumption 3.1(a)-(f) are
fulfilled. In example (a), it holds a := infxes{g(Ax)+h(x)} > 0 owing the assumption
B nspan(E) = . In example (b), it holds a := infxes{g(Ax) + h(x)} = 0, however,
one could then augment the objective by adding a positive constant in order to make
the inequality strict.

DEFINITION 3.3. For the optimization problem (1.1), we say that X € R™ is
(i) a Fréchet stationary point if 0 € 0 (%) (X);
(ii) a limiting lifted stationary point if

0 € (A*0g(AX) + Vh(X) + dus(X)) f(KX) — (9(AX) + h(X))K*0f (KX).

Any local minimizer X € R™ of (1.1) is a Fréchet stationary point. If X € R"
is a Fréchet stationary point of (1.1) such that KX € int(domf), and either X €
1i(S) N A~ 1ri(domg) or S is polyhedral and X € S n A~ 'ri(domg), then, according
to Lemma 2.3, X € R™ is also a limiting lifted stationary point of (1.1). Example
3.1 in [8] also illustrates that a limiting lifted stationary point may not be a Fréchet
stationary point.

Next, we introduce the notion of an approximate lifted stationary point for prob-
lem (1.1).

DEFINITION 3.4. Given €1, €z = 0, we say that X € R" is a limiting (e1, €2)-lifted
stationary point of the problem (1.1) if there exists W € R with |[¥—(g(AX)+h(X))| < €2
such that 0 € (A*0., g(AX) + VA(X) + dis(X)) f(KX) — ¥ K*0f(KX).

If €4 = €5 = 0, then this notion reduces to the limiting lifted stationary point. Below,
we provide a lemma stating that there are positive uniform lower/upper bounds on
the denominator values of (1.1) under Assumption 3.1. The proof is omitted due to
its simplicity.

LEMMA 3.5. Suppose Assumption 3.1 holds. Then, there exist two positive scalars
m and M such that m < f(Kx) < M for allxe S.

4. Full splitting proximal subgradient algorithm. We first propose a con-
ceptual algorithmic framework for solving (1.1) which we call full splitting proximal
subgradient algorithm with an extrapolated step (FSPS).

IDifferent choices of the constant o may affect numerical performance.

This manuscript is for review purposes only.



231
232
233

235

236

238

239

240

241

[\]
g
[\

FULL SPLITTING ALGORITHMS FOR STRUCTURED FRACTIONAL PROGRAMS 7

Let 0 < 8 < 2, the sequences of scalars {7} and {x} such that v > 0 and 6 > 0
for all k > 0, 6y > 0 and a given starting point (x°,2°,u") with x’ € S. For all k > 0,
we consider the following update rule:

yk+1 e af(KXk)
xF*l = Projg <uk + g—:K*yk“ — éith(xk) — éA*zk) ,
(4 1) uktt = (1 _ 6)uk + ﬁxlﬂ—l7
zF1 = argmin, [g*(z) — (AxFHL ) + %’“HZHQ] ,
+o f(KX’”l) )

where W(x, 2,u,8,7) =z, Ax) — g*(2) + h(x) + ts(x) + 3|x — u*~ ¥ |2]2.

4.1. Smoothing-based FSPS algorithm. In this section, we consider a vari-
ant of FSPS, which we refer to as the S-FSPS algorithm. This algorithm assumes
that 8 =1 in (4.1), and therefore uses

W(x,7i7) = (2, A%) = g*(2) + h(x) + 1s(x) = 2%

ALGORITHM 4.1 (S-FSPS algorithm). Let {v} be a positive and nonincreasing
2
sequence with klim Y =0 and Yook = +0, x > 1, and 0, = x (LVh + i—:) for
—+®0 =
allk =0, 6y > 0, and a given starting point (x°,2z%). For all k > 0, we consider the

following update rule:

Choose y* 1 € 0 f (Kx¥).

0 1 1
Update x* 1 := Projs ( x* + EREyE _ ZUh(xF) — —A*ZF ).

Ok Ok Ok

A k+1

Update 2" := Proxgs# /., (X> .

Yk

W(xM 2 )

Update 041 := FlIxrT)

Remark 4.2. For the sequence {(x*,y", z¥)} generated by Algorithm 4.1, we have
forall k =0

\Ij(xk+1,zk+1;,yk) — <zk+1’Axk+1> 79*(Zk+1) o V?k”ZkJrlHQ + h(karl) + LS(XkJrl)
(4.2) = gy (AXT) 4 G s (x5,

k+1

where the last equality is due to (2.3) and z
k+1

Axk+1
= Proxgs /., ( ’;k )
In addition, the update of x can be equivalently written as, for all k£ > 0,

xFFl = Projs x4 %K*yk+1 - th(Xk) - iv (g“/k—l °© A) (Xk) :
Ok Ok Ok

This shows that Algorithm 4.1 can be reformulated using the Moreau envelope of g.
As a result, one can interpret it as a smoothing-based proximal-subgradient method.

This manuscript is for review purposes only.



[\
S ot

283

284

285
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4.2. Convergence analysis of S-FSPS. We provide a convergence analysis
for Algorithm 4.1 and denote for simplicity V* := (x*, y*,2z*) for all k > 0.

THEOREM 4.3. Suppose Assumption 3.1 holds. Let ) be the set of the accumu-
lation points of the sequence {V'*} generated by Algorithm j.1. Then, the following
statements hold:

(i) For all k =1 it holds

T (xEH R ) + 0, [f(ka) _ (<KXk+1,yk+1> _ f*(ka))]
(43) < U255 ym0) — opfx® — XM ERT

where

_1— -1 y
kil Jhol 7 Ok 12 Tk |1ZTH2 =0 and ¢ = x=1) (LVh + 2‘:) > 0.

(1]

(ii) The sequence {V*} is bounded.
(iii) There exists an index K1 = 1 such that 0 = 0 for all k = K.

(iv) limg_, 1o 0, = 0 for some 0 > 0.

(v) It holds that lgr_r}irgcskuxk“ —x*| = 0.
Below, we further assume that A(S) < int(dom g). >

(vi) For every (X,¥,z) € §2, it holds that AR +h(E) Fis () _ 0, where 0 is given

J(K%)
as in ().
(vii) Let {x*i} be a subsequence of x* such that jETw Ok, X"t —xFi || = 0 (whose

existence is guaranteed by (vi)). Then, any accumulation point X of it is a
limiting lifted stationary point for the optimization problem (1.1).

Proof. (i) Let k = 1. According to the properties of the projection, the x-update
in Algorithm 4.1 gives us that

xF* = arg mig [(zk, Ax) — 0 (Kx, y* ) + (Vh(xF), x — x*) + %Hx — Xk|2] .
P
The objective function of the above optimization problem is strongly convex with
modulus dg, therefore,
<AXk+l, zk> + <Xk+l _ ch7 Vh(xk)> o 0k<ka+17 yk+l>
)
< <AXk, zk> B 9k<KXk7 yk+1> . Ekak . Xk+1H2'

Combined this with (K (x* —x*T1), yk 15 = f(Kx") — ((KxMTL y*+h) — f(yF))
leads to

<Axk+1,Zk> + <xk+1 _ Xk7 Vh(xk)> + 0y, [f(KXk) _ (<ka+1’yk+l> _ f* (yk+1))]
(4.4)

1)
< (Axt2h) = Tt - xR,

Since Vh is Lipschitz continuous with constant Ly, it holds that

L
(4.5) B = h(t) < G =t V() 4+ TR R xR

2We note that the conditions A(S) C int(dom g) is satisfied with our motivation examples. Also,

it ensures that Assumption 3.1(f) holds.

This manuscript is for review purposes only.



286

287

288

289

290

291

293

294

295

296

297

298

FULL SPLITTING ALGORITHMS FOR STRUCTURED FRACTIONAL PROGRAMS 9

Combining (4.5) with (4.4), we obtain
UM 2P ) + O [FEXR) — (B y R — (v )]
1
(4.6) < W(x"2p) - 20k = Lyn)[x"1 = x*|2.
From the z-update in (4.1) it follows that Ax* —~,_,z* € dg*(z*), therefore
—g*(2") < —g*(2") — (AxF =y 12F 2T =2,

Combining this inequality with the identity

k— k— k—

— P = T ) - -t gt T g

2 2 2

it yields
<Axk+1,zk+1> _ g*(zk+1) _ '7k271 sz+1H2

<(AXH )= g (2h) — T 2| 4 Ax = Axh g = ) - T gk — g

(4.7)

2
< AT — gt P

where the last estimate follows from the Cauchy-Schwarz inequality and ~; < vg—1.

Therefore,

— Yk k12
L

2
o Vk—1
(xFH 2R ) S WP 2R ) + 72;1 [xFHt — XkHQ‘Fiz

By combining the above inequality with (4.6) and recalling the choice of dy, assertion
(i) follows.

[(ii) & (iii)] Since S is a compact set, the sequence {x*} < S is bounded. The
sequence {y*} is bounded due to Assumption 3.1(d) and the local boundedness prop-
erty of the convex subdifferential. Let k& > 1. According to Assumption 3.1(f), there
exists z¥ € 0g(Ax**1) with ||z*|| < ¢ + 1. Invoking the definition of z**1, we have

g*(szrl) _ <Axk+1,zk+1> + ’;i|‘zk+1”2
~ ~ Vi | ~ Vi |~
< g (") — (AT )+ P = —g(AXMT) + 2

In particular, we see that ||z**!| < |2*|| < £+ 1 for all k > 0. So, the sequence {z"}
is also bounded, and hence, (ii) follows. Now, according to Assumption 3.1(e),

<AXk+1,zk+1> o g*(zk-H) + h(Xk-H) o %sz-&-lHQ > g(AXk-H) + h(xk+1) _’;i|‘ik|‘2
Yo%

Since limg_, 100 V& 0, there exists an index K7 > 1 such that, for all k£ > Ki,
we have 2=|z"| < &. Therefore, (iii) holds by combining the above inequality with
Assumption 3.1(d) and (e).

(iv) Invoking (4.3) and 6 f(Kx"®) = ¥(x*,z* 44_1), for all k > K, we have

&
2

\If(Xk+1,Zk+1;’yk) < ak (<ka+1’yk+1> o f*(ykJrl)) o CkHXk o Xk+1H2 + Ek:+1

This manuscript is for review purposes only.
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(x — 1)éy

< O (XM — 2o
X

”Xk _ XkJrlHQ + EkJrl.

From here it follows that for all £ > K;

—1)8 gt
(x )0k ka _ Xk+1H2 +

4. <O — ,
(4.8) Opr1 < 0 T i

where M > 0 is given by Lemma 3.5. The boundedness of {z*} guarantees the
summability of {Z*}, therefore, from [4, Lemma 5.31] it yields limj 4o 0 := 6 > 0
for some 6 > 0, and ;% 0 x* — x*1|? < +o0.
(v) In the proof of statement (iv), we have seen that >, 3 (O xF = xFH1])2 <
+00. On the other hand, ZZZOO i = +o00, thus lgm inf 8 [x" 1 — x¥| = 0.
—+00

(vi) Let (X,¥,2) € Q, {(x*7,y"%,2%/)} be a subsequence of {(x*,y",z"*)} such that
(xFi, yki zki) — (X,¥,Z) as j — +oo. Clearly, {x*} € S and X € S.

For convenience, we denote \; := ;1 — 0 as j — +00, and write [AxFi| AX] =
{tAx¥i + (1 —t)AX : t € [0,1]}. We claim that, for all w*i € [Ax*i, AX] < A(S), one
has Prox)\].g(wkj) — AX as j — 4. To see this, we observe from our assumption
that w* € A(S) < int(dom g), AX € A(S) C int(dom g) and

| Proxy, o (Wh7) — AX| < || Proxy, (W) — Proxy,4(AX)| + | Prox,, (A%) — AX|

< |
< |wh — A| + | Proxy, ¢ (A%) — AX|
<|

|Ax" — AR + | Prox,, (AX) — AX|,

where the second inequality follows from the non-expansiveness of the proximal oper-
ator of convex functions. Then, the claim follows by noting that, as j — +o0, x*
and Proxy,¢(AX) — AX (thanks to [25, Proposition 2.2] and AX € int(dom g)).

From the claim and the assumption A(S) < int(dom g), it follows that there exist
an index jo and a bounded set U with A(S) < ¢l (U) < int(dom g) such that

i — X

Prox,\jg(wkj) eU forall j > jy and for all w" e [Ax" AX].

Note that the function g is Lipschitz continuous (with some Lipschitz constant L, > 0)
on cl(U). It follows that for all j > jo and for all wh e [Ax*i, AX], sup{|u| : u €
dg(Proxy,q(W"))|} < Ly. As Vgu,(whi) € dg(Proxy,q(w"7)), we further deduce
that [|Vgx, (wh)[| < Ly for all j > jo and for all w* € [Ax*/, AX]. This, together
with the mean value theorem, implies that, for all j > jo,

|9, (Ax™) = g(AR)| < |gx, (Ax"7) — gx, (AK)| + |gx, (AK) — g(A%)|
< Ly Ax™ — A + |gx, (AX) — g(A)|.
Since g, (AX) — g(AX) (see [4, Proposition 12.33(ii)]), it implies that
(4.9) g%rl(Axkj) =0 (Axkf) — g(AX) as j — +00.3
U(xFi 2"y
Now, recall that ), = (f(K—xkjl;Jl)

Assumption 3.1(d), assertion (vi) follows.

. Letting j — oo, and using (4.2), (4.9) and

31In the case where g is a finite-valued convex function, the assertion (4.9) follows directly by [1,
Proposition 1(d)] . Here, we establish this under the weaker assumption that A(S) € int(dom g).
We also note that, if g is a proper lower semicontinuous (possibly) nonconvex function with the
additional assumption that inf g > —o0, then this also follows from [16, Lemma 1].

This manuscript is for review purposes only.
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(vii) From the x-update in (4.1) we also have for all k > 1

N A*zF + Vh(xF) — 0, K*yk+!

0 € dus(xFTh) + xFrt — xV

Ok
\% A)(xF) + Vh(xF) — 0, K*y*+!
(4.10) = abs(ka) +xFtl xRy (901 © A)(X) 5 (%) REY .
k
Let {x*1} be a subsequence of {x*} such that 41irJ£1 Ok, [|x" Tt — xMi | = 0 and let
J—+ao

X € S be an accumulation point of it. Then there exists a further subsequence {x*:}
of {x*i} that converges to X as s — +00. Since §; > xLyy for all k > 0, we have
lim,_, ;o [xFs+! — xFs| = 0, thus x**! — X as s — +00. By passing to a further
subsequence if necessary, without loss of generality, we assume that y**! — ¥ as
s — +00, for some y. From (4.10) and V(g _, o A)(x) = A*Vg,, _ (AxFs), for
all s > 0, there exists £Fs*1 € dis(x*s*1) such that

(4.11) 0= ¢gr+1 4 0. (xFatl — xkey 4 A*Vgy, (AxFs) + Vh(xFe) — GkSK*ykSH.

Next, we see that {¢¥+*1} is bounded. To see this, using a similar proof as in (vi)
and the assumption A(S) < int(dom g), one can deduce that there exist an index K
and Ly > 0 such that [|Vg,, _, (Ax")| < L, for all s > K. So, |[A*Vg,, _, (Ax")| <
o4 Ly for all s > K. This together with (4.11) implies that the sequence {¢¥*1} is
bounded.

Now, from the boundness of {¢**1} and {4*Vg,, _, (Ax"")}, by further pass-
ing to subsequence, we can assume that &*+!1 — € and A*Vg%rl(Aka) — a for
some ¢ and @. Using £5T1 € dug(xM 1), Vg, _, (Ax":) 6g(Prox(%571)g(Aka)),
Prox(,, ) 4(AxF:) — AX and the outer semicontinuity (OSC) of subdifferentials [27,

Proposition 8.7], we have £ € dis(X) and @ € A*dg(AX). By passing to the limit in
(4.11), and noting that Vh(x"*:) — Vh(X) and y*™' — § as s — +00, we conclude
that 0 € dis(X) + A*0g(AX) + Vh(X) — 0K*y, as desired. O

In the previous theorem, we have derived a subsequential convergence for the S-
FSPS algorithm in the sense that there exists a subsequence whose cluster point is a
lifted stationary point of the problem. On the other hand, there is no guarantee of the
convergence of the full sequence. Indeed, to the best of our knowledge, obtaining con-
vergence of the full sequence generated by smoothing-based algorithms is non-trivial
in general. It has been recently derived for some special structured non-fractional
optimization problems involving cardinality functions (see, for example, [5]).

This motivates us to develop an alternative algorithm in the next section, which
enjoys global convergence guarantees under some commonly used and mild assump-
tions, such as the KL property.

5. Adaptive FSPS algorithm. We present an adaptive version of FSPS, called
the Adaptive FSPS algorithm, which determines the parameter sequences {73} and
{0k} in a self-adapting manner and ensures the positivity of the sequence {0y }.

ALGORITHM 5.1 (Adaptive FSPS algorithm). Let 0 < 8 < 2, x > 1,0 < g < 1,
80,00 >0, 70 =1 and € > 0, and given a starting point (x°,2°,u°). For all k = 0, consider
the following update rule:

Choose y"™ e af(Kx").

Update x**' := Projg (uk + e—kK*ka — th(xk) — iA*zk) .

Ok Ok Ok

This manuscript is for review purposes only.
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Update u"** := (1 — B)u* + Bx"*1.
Set Yk,0 1= Yk-
Find the smallest ji, € {0,1,2,...} such that for vk j, := Yk0q’* and
Axk+1)
Ve,
W (xhH ZF e gkt S )
F(Kxk+1)

k41,5
Z" Tk = Proxg*/wkj (
Ik

it holds Ox41 := > 0.
Update yi11 := Vi, jp -
2

2
Update 641 := x (LVh + ga ) .
Yk+1

k+1 k+1,55
Update z°" := 2"k,

2
If |2°T | > min( < , < > , then
Ye+1 Ye+1

Update Yi+1 := Ye+14G.

952
Update §k+1 := x (LVh + ga ) .
Ye+1

End If

LEMMA 5.2 (Well-definedness of Algorithm 5.1). Suppose Assumption 3.1 holds.
Then the following statements are true:
(i) It holds |z**1| < €+ 1 for all k > 0.
(ii) The procedure of finding the smallest j € {0,1,2,...} such that 011 > 0 is
executed in every iteration of Algorithm 5.1 a finite number of times, and so
the algorithm is well-defined. Moreover, Y11 < Y for all k = 0.
(iii) There exists a constant v > 0, x > 1 and an index Koy = 0 such that v, =
v >0, 0 =06 :=x(Lun + @), and |zF*1| < min (%, \/272> for all k = K.
Proof. (i) From the construction of the algorithm, x* € S for all k& > 0. So, by
Assumption 3.1(f), for all k > 0 there exists z* € dg(Ax**1) with |z*| < £+ 1.
Taking into account the definitions of z*+1J* and the proximal operator, for all
k = 0, we have

g*(ZkJrl,jk) B <Axk+1’zk+1,jk> + VE,jk ”ZkJrl,j;C H2
(5.1) < g*(E) - AxF ) ¢ T2 = —g(axt) 4 Ttk gt
< g*(ZkJrl,jk) _ <Axk+1’zk+1,jk> + ’Wféjk ||ik||2

Since 7y j, > 0, it follows that ||zFT17% |2 < |2¥|2 < (€ + 1)2, consequently, |z*+1] <
¢+ 1 forall k> 0.
(ii) Let k = 0 and j; € {0,1,2,...}. From (5.1) and Assumption 3.1(e), it holds

k+1 _k+1,jp 4 k+1
\II(X )y 2 jkvu a(;k,,'yk,jk)

) ) ) . )
— <Axk+17zk+1,]k> _ g*(zk-‘rl,jk) + h(Xk-H) + 3’9‘|Xk+1 _ uk+1”2 _ %sz-‘-l,]kHQ

5 , ,
> g(AXk-H) + h(xk+1> + éﬂka-&-l o uk+1H2 . %%HikHQ > — ’yk%”ikHZ

Since |z*|| < £+1, it is evident that after finitely many increases of j; with 1 we obtain

Mk |zR|2 < & and, therefore, W(x**1 zF+1ir uk+l 5y~ 5 ) > 0. Consequently,

This manuscript is for review purposes only.
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Algorithm 5.1 is well-defined. Finally, from the formulation of the algorithm we
easily see that ;11 < % for all k£ > 0.

(iii) In order to prove the statement, it is sufficient to show that there exist v > 0
and Ky = 0 such that 74 = v > 0 for all k > Ky. Assuming the contrary, there
exists a strictly decreasing subsequence {7;, } such that 7;, — 0 as s — +00. As
|z > 0 such that inequality in the “If-End If”
statement is not verlﬁed for all s = sg. Therefore as {7k, } is strictly decreasing, for
all s > sg there exists k e N with kg k:S < kgyq such that Gk 410

similar argument as in (ii), this implies that Y. = Vioo = (£+1)2 > 0 for all s > sg.

< 0. Using a

The monotonicity of the sequence {v;} leads to 73 — 0 as s — 400, and further to
a contradiction. 0

6. Convergence analysis of Adaptive FSPS. We provide the convergence
analysis for Algorithm 5.1.

6.1. Subsequential convergence. To simplify the presentation, we denote
Wk .= (x¥,y*,z¥, u*) for all k > 0.

THEOREM 6.1. Suppose Assumption 3.1 holds. Let 0 < 8 <2, v>0, x > 1 and
Koy = 0 satisfy v = >0, 0 =6 := x(Lvp + %), and |z < mln( \/7) for
k = Ky, as indicated by Lemma 5.2 (iii). Let

(x—1) (LVh + 26“‘)

c1 = 5 , c2:=0(2-70)/208, c3:=7/2.

Then, for all k = Ko + 1, the following statements are true:
(i) W(x"H 2P uh L 6 ) 4 0 f(KXR) = 0 (CRXFHL y R0 — fr(y )
< U(xF, 25, uk,0,9) —afxt = xFH? = euf — a2 = egfh — 2R
(”) \Il(xk+1,zk+1,uk+1, (5, 7) _ ekf(karJrl)
< _Cluxk Xk+1H2 _ CQ”uk uk+1H2 _ CSHZk

Proof. Let k = Ko + 1. (i) Similar to the proof of (i) in Theorem 4.3, we obtain:

Zk+1 H2

UM 2P b, 6,9) + 6 [f(ExF) — (KX yR ) - (yR )]

60— L
(61) < WM aF b 6) - T P
Similar to the proof for the inequality (4.7), we get

<Zk+1’Axk+1> _ g*(zk+1) _ %HZIC+IH2

(6.2) < @ A — g (@) - 21t + S

k+1 k2
e

X

Using AxF+! — 4zF*1 € 9g*(2"+1) and Ax* — yz*F € dg*(z*), and the monotonicity
of the subdifferential operator, it yields

2
Yy g
,YHZIC o zk+1”2 < _<Z/c _ zk+1’ A(XkJrl _ Xk)> < 7sz _ Zk+1H2 + 2A ka _ XkJrlH27
and further, in combination with (6.2),

2
(63) qj(xk+17zk+17uka6a ’Y) < \I’(XkJrlaZkauk;& 7)+0’7A“Xk+1_xk“2_%|‘zk_zk+1”2'
0
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Using the extrapolation step, we get

O ksl k12 _ Ok k12 01 —(1 -5)% k k+1)2
5”“ —x :§Hu —x" —THU —u"
which leads to
6(2 —
W2 6 ) < W b b - 22 % D -t

Finally, by adding (6.1), (6.3) with the above, the assertion follows by using the
definition of 4.
(ii) Follows from (i) by using that f(Kx*+1) > (KxF+1l yk+15— #(yk+l) g, > 0,
and 0y f(Kx*) = U(x*, 2", u* §,7). O
Let v and ¢ be the constants indicated in Lemma 5.2 (iii), and the merit function
II: R x domg* x R® — R defined by

U(x,2,u,6,7) _ (& Ax) — g*(2) + h(x) + ts(x) + §[x — u|*—F|z|?
f(Kx) f(Kx) '

THEOREM 6.2 (Subsequential convergence). Suppose Assumption 3.1 holds. Let
0<fB <2, x>1,v>0and Ko = 0 satisfy vy, = v >0, 0p = 6 := (x —

1) (LVh + %), and ||z**1| < min (5, A/ 27—5) for k = Ky, as indicated by Lemma 5.2

I(x,z,u) =

¥
(iii). Let Q be the set of the accumulation points of the sequence {W*}. Then, the
following statements are true:

k k .k
(i) The sequence {Gk = W = II(x*, z*, uk)} is nonincreasing and there

exists a scalar @ = 0 such that limg 1 op O = 6.

(ii) The sequence {W*} is bounded.

(iii) For every (X,¥,z, 1) € Q it holds T1(X,z,0) = 0.

() If K. := {x|dist(x, A(S)) < ¢} € int(domg), then g is Lipschitz continuous
on the compact set K. with some Lipschitz constant k > 0. In this case, any
accumulation point of the sequence {x*} is a limiting (2xe, (2k + 1)¢)-lifted
approximate stationary point of (1.1).

) <ka+l,yk+1> _ f*(yk-H)

(v) It holds that kgrfoo P
an index K1 = Ky + 1 such that

= 1. Furthermore, there exists

(6.4) 0 <m <{(KxF y*y — f*(y*) < f(KxF) < M Yk = K,

where m and M are the bounds from Lemma 3.5.
Proof. (i) Tt follows from Theorem 6.1 (ii) that for all k > Ky + 1

1
(6.5) 9k+1 < 6 — M (ClHXk _ xk+1”2 + cg“uk _ uk+1”2 + chzk — Zk-HHZ) 7

where M > 0 is the constant provided by Lemma 3.5. Thus,

(6.6) [x" —x"" =0, [u* —u"*| >0, 2" — 2" - 0, [x*T —u*| >0,

as k — 400 and the sequence {6} is nonincreasing. Thus, 6 := limy,_, 6}, = 0 exists.
(ii) Since S is a compact set, the sequence {x*} is bounded by construction, which,
according to (6.6), guarantees that {u”*} is bounded. The sequence {y*} is bounded

This manuscript is for review purposes only.
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due to Assumption 3.1(d), and the sequence {z*} is bounded due to Assumption
3.1(f).

(iii) Let W = (X,¥,%,1) be an accumulation pomt of the sequence and {W*}
and {W*i} be a subsequence such that lim;_, ;o Wk = W.

U(x"5 2" uPi 5,~)
! (kaj)
f(KX) > 0, which holds due to Assumption 3.1(d), by noting that {Kx"*} = K(S)

int(domf) and K(S) is closed, we have that the following limit exists:

From lim;_, = limj 4000k, = 0 and lim;j_ o f(Kx") =

N

(6.7) W= lim W(x*, 2% uk, §,~)eR.

Jj—©

Next, we show that ¥ = ¥(X,%,1,6,v). From (6.7), x* € S, g* is lower semicontinu-
ous and the definition of ¥(,-,-,d,v), we have that \I!( 7,1, 6,7) = V. Invoking the
update scheme, for every j > 0 such that k; > Ko + 1 it holds

9*(@) — (2, Ax") + %Hill2 > g*(a") — (@, AxM) + S HZ {5
and, further,
—g*(2) + (2, Ax") — %HEH2 +h(x") < —g*(2") + (2", Ax") — HZ'“" [+ n(x"™).
We let j — 400 and get

—9"(2) + (2, AX) — %HZH2 +h(x) < jﬂrfoo(—g (2"7) + (2", AxM) — szfHQ +h(xM)),

so, ¥(X,%,1,d,v) < ¥. In conclusion, \II( ,, 'y) =V and 11(X,2z,0) = 0.
(iv) Invoking the update rules for x**1 yk*+1 zF+1 and ub*! for all k > Ko+ 1
it yields
e oI,
0 € dus(xFt1) + A*2F + Vh(xF) — 0, K¥y* 1 4 §(xb+! —ub),
Axk+1 _ 'yzk'H e ésg>x<(zlc+1)7
uktl = (1 —ﬂ)uk + ﬁxk'H.

(6.8)

Let W = (x y,z u) be an accumulation point of the sequence of {W*}, and let
(Wki = (xFi yks z’“ﬂ u”s)} be a subsequence converging to W as j — +oo. From
(6.6), we see that x*~1 — X and u*~! — W as j — +o0. Then, letting k = k; — 1
and j — 400 in the above system and taking into account the fact that the graph of
the convex subdifferential is closed, we obtain

y € 0f(KX),
0 € dus(X) + A*Z + Vh(X) — 0K*y,
AX — vz € 0g*(Z),

=X.

(6.9)

=]

Since ||z**1| < min ('v A /%) for all k = Ky, it yields |Z| < min (%, A /%‘5) . The third

inclusion relation in (6.9) guarantees that dist(dg*(z), AX) < €. Therefore, according
to Lemma 2.4, Z € 02,g(AX), which, combined with the first two inclusion relations
n (6.9), leads to 0 € (A*02x:9(AX) + VA(X) + dvs(X)) f(KX) — VK*0f(KX).

This manuscript is for review purposes only.
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As seen in the proof of statement (iii), we have ¥ = (AX,z)—g*(z) + h(X) — %[Z|?,
therefore

[T = (9(A%) + h(®)| = (9(A%) + h(®) — ((A%.Z) - ¢*(2) + h(x) - 2|2
— g(AR) + ¢* (2) — (A%, Z) + %HZ\P < 2me +e = (26 + 1)e.

Thus, X is a limiting (2ke, (2 + 1)e)-lifted approximate stationary point of (1.1).
(v) Invoking the first inclusion relation in (6.8) and Lemma 3.5, we obtain for all
k = KO +1

|f(xR) — (CKxEFLy R — (") | Kyt K (xE —xB )|
fExF) fKXF)
|<yk+1, K(Xk _ Xk+1)>| .

m

<

k+1 0 as k — +00 and the boundedness of {y*}, we obtain

|f(Bx®) — (KxEHL y ™ — f*(yH) |

Using that x* — x

1 li =0.
(6.10) plm FR=) 0
The second statement is a direct consequence of (6.10). d

Let m > 0 be the scalar introduced in Lemma 3.5, v and § the constants indicated in
Lemma 5.2 (iii), and the following modified merit function I' : {(x,y) € R" x domf* :
(Kx,y)— f*(y) > m/2} x domg* x R™ — R defined by

I(x,y,z,u)= Y(x,2,u,6,7) :<Z’AX> —9%(z) + h(x) + 1s(x) + %HX - uH2_%HZH2
T (Exy) = [ (y) (Kx,y) — f*(y) :

In the following we show that values of I along the sequence {(x*, y*, z*, u*)} converge
to 0 as k — +o0 and that it takes this value at every point of €.

THEOREM 6.3. Suppose Assumption 3.1 holds. Let 0 < <2, v>0, x > 1 and
Ko >0 satisfy yo =7 >0, 0 = 6 := x(Lyp + %), and |z*+1| < min (%, \/%) for
k = Ko, as indicated by Lemma 5.2 (iii), and K1 = Ko + 1 such that (6.4) holds, as
indicated by Theorem 6.2 (v). Then, the following statements are true:
(i) There exists ¢ > 0 such that for all k = K
F(xk+1,yk+1,zk+1,uk+1)

(6.11) < T(x",y" 2" u") —cx" —x"7 = cJu® — "2 — 2" — 2"
(ii) limg_, oo D(x*, y*, 2% u*) exists and it is equal to 0 = limy_, o0 O;

(iii) For every (X,¥,Z,u) € Q it holds I'(X,y,z, 1) = 6.

Proof. (i) By using the fact of 0 f(Kx*) = W(x* z* u¥,§, ), from Theorem 6.1
(i) we obtain for all k > K;

\I/(Xk+1,zk+1,uk+1,57 ’Y) < Hk: (<ka+17yk+1> _ f*<yk+1))

_ ClHXk _ Xk+1||2 _ CZHUk _ uk+1H2 _ CSHZk _ Zk+1H2'

Since 0 < m < (KxF+L yk+15 — f*(yk+1) < M for all k > K;, it yields

(612) s < 0 — TpxF - xFP - T ut - ub - - g,

This manuscript is for review purposes only.
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wt

_ k41 ok+1 k41 k+1y _ PR ZRT uk 5 )
- F(X Y ,Z ,u ) = <ka+17yk+1>_f>k(yk+1)'

choose ¢ := ﬁ min(cq, 2, ¢3) and the conclusion follow as 6y < ny for all k = K. The
proofs of (ii) and (iii) follow similarly to items (i) and (iii) of Theorem 6.2 and are
therefore omitted. d

544  where ng41 : Then one can

oot Ot
N
S Ot

=~
-3

6.2. Global convergence. To this end, we will provide two different settings in
which we can bound the distance between the origin and the limiting subdifferential
of T" and II, respectively. The two settings are considered below by supposing that
Assumption 3.1 holds, 0 < 8 < 2, v > 0, x > 1 and Ky > 0 satisfy v = v > 0,
0 = 0 = x(Lvp + @) for all k£ > K, as indicated by Lemma 5.2 (iii), and
K, = Ky + 1 is such that (6.4) holds, as indicated by Theorem 6.2 (v).

S IS, IS B
T Ut B
= O © o

o
W W

w

oot

=

Case I: f* satisfies the calm condition over its effective domain and
g is essentially strictly convex. The following characterization of the Fréchet
subdifferential of the merit function I" follows from Lemma 2.3.

[ S B
(SN G
t

Ut
S|

LEMMA 6.4. Suppose Assumption 3.1 holds. Let f* satisfy the calm condition at
58y € domf*, X € S be such that (KX,y)— f*(¥) > m/2, and g* be differentiable at
559z € int(domg™*). Denote ay := ¥(X,Z,10,9,7) and as := (KX, ¥)— [*(¥), and suppose
560 that ay > 0. Then, there exist open sets Oy, i = 1,2, such that {KX,¥)— f*(§) > m/2
561 for all (X,¥) € O1 x O3, and

ot Ot

¢, o @A+ Vh(R) + As(R) +5(% 1)) —a K*Y
- (KR -B)?
¢, e (1" )~ %)

02 OR92E Enbybabn)|  {ERD LN

“= K%y 6)
£u = o(u—x)
"R -G
563 THEOREM 6.5. Suppose that f* satisfies the calm condition over its effective do-

564 main and g is essentially strictly conver. Then there exists ( > 0 such that for all

565 k=K,

566 dist(0, oD (xF Ty ZF L b)) < ¢(xF — 3P| 4 Juf — o+ 28 — 2.
567 Proof. Let k > K be fixed. It holds

568 dist(0, o7 (x*+1 y*+1 2F+1 uF+1)) < dist(0, 5F(xk+1,yk+1,zk+1, uFthy).

69 Since g is essentially strictly convex, ¢g* is essentially smooth [26, Theorem 26.3].
0 According to the third inclusion relation in (6.8), we have Ax*+1 —~zF+1l € 0g* (zF+1),
I which means zF*! € int(domg*). In addition, m < (KxF*+1 y*+1) — f*(yk+1) < M
2 and W(xF+l zF+1 ub*+1 5 4) > 0. Thus, one can make use of the formula provided
3 in Lemma 6.4 to characterize the subdifferential of T' at (xF*1,yF+1 zh+l uk+1),
i Invoking again (6.8), we have —(A*z* + Vh(x*) — 0 K*y* ! + §(xF1 — uk)) €
5 Ous(xFTY) and yFt1 e df(Kx*) or, equivalently, Kx* € of*(y**1), and AxF+1 —
6 (Vg*(z"t1) + yzFt1) = 0.

7 Thus, for

_A*Zchrl + Vh(XkJrl) + 5(Xk+1 _ uk+1) B A*gF + Vh(xk) _ QkK*ykJrl + 5(Xk+1 _ uk)

oo gkl
TR e e ) (RXE T,y ) — Pr(yRe)
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\Il(xkﬂ, Zk+17 uk“, 5’ ’y)K*ka
(<ka+1,yk+1>— f*<yk+1))2
\I/(Xk+17 Zk-H7 u]’”'l, (5, ’y)(—KXk+1 4 ka)
((ExhFL, yhtl) — fx(yk+1))2 ’
k1 Axk-H _ (Vg*(zk'H) + 'yzk'H)
£ = (KxFHT yhtTy — fa(yhtl)

k+1
§y+.

5(uk+1 _ Xk+1)

=0, &+l .—
’ u : <ka+1’yk+1>7f*(yk+1)’

we have that (571, €571 ghH1 gty e OD(xF+1 yk+1 zh+1 yk+1) Consequently,

(6.13) dist(0, 0T (1, y" 1, M ut ) < €T+ eyt + R

Due to the boundedness of the four sequences, the values

| | |

By :=sup |x"|, By :=sup Iy*|l, By :=sup |z w :=sup |u
k k k k
are finite. Since {0} and {f(Kx*)} are bounded, the sequence {¥(x*, z* u* ¢ ~)}

is also bounded. Let By := sup|¥(x*,z* u* d,7)| < 4+oo. Further, as {zF} <
k

int(dom g*), ¢g* is Lipschitz continuous on the closure of {z*}. We denote by L« the
corresponding Lipschitz constant. This being given, it is evident that

(6.14) < oufx" = x|+ paf 2" — 2" + gsfutt —u,

where 91 := B,oa + 0(Bx + Bu) + Li, 02 := 04Bx + Lgx + 7B;, 03 := 6(Bx + Buy).
Since

A* (2L — 2F) + Vh(xF+) — VA(xF) + §(uF — ub )

& = E+1 yhtl ¥ (v RT1
k k ik (KxFTtyktty—phyhthy k41 k41 1 k+1
+\II(X yZ7, U 7&7) f(KxF) \II(X x4 yu aéav)K*ykJ’_l
(CHXPHL yhtl) — f*(ykt1))? ’
we obtain
&t < (LVhHX X 4+ ozt — 2" 4 0fut —ut )
B K k+1 k4+1N\ _ fx(k+1
yOQ'K \I/(Xk,Zk,uk,(s,"}/) < X Y > f (y ) -1
m F(KxF)
B
+ yUK }\II xP 28 u®, 6, 4) — U(x k+1,zk+1,uk+1,(5,7)|.
From
Foxcht1 yht1y (k1
\Il(xk,zk,uk,é,'y) < X Y > f (y ) —1
fKExF)
K(xkt1 —xF) y*+15 ByByog
= | k _k k 5 < ) < N k _ Jk+1
ot 5,y S B0k | i)
and (6.14), it yields X1 < [x" — ’““H +mpub — w4 a2t — 2"+, with
o= B+ Bwﬁzgk + 01 P my = L+ 03 PYEE and my = A 4 gy XK
In addition, we have that [£57!] < By W“X xF*+1|| and Hﬁﬁ“” < 6|1 B‘ [uk —uktt,
which, in the light of (6.13), leads to the conclusion. d
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Case II: f is differentiable with Lipschitz continuous gradient over an open
set containing K(S) and g is essentially strictly convex. The workhorse of our
analysis will be the merit function II. The following statement is a direct consequence
of [8, Lemma 2.1 (ii)].

LEMMA 6.6. Suppose Assumption 3.1 holds. Let f be differentiable at KX €
int(dom f) for X € S, and g* be differentiable at zZ € int(domg*). Denote ay =
U(X,2,0,0,7) and as := f(KX), and suppose that aq > 0. Then,

a2(A*% + VA(R) + dus(R) + 6(% — 0)) — ar K¥Vf(KR)

§xE o R (f(K)Ac))2
OTI(R, 2, 6) =4 (€x,€2,6u) | €2 = x—ff%;z))—wz

£u = @

YOf(KR)

THEOREM 6.7. Suppose that f is differentiable with Lipschitz continuous gradient
on an open set containing K(S), and g is essentially strictly convex. Then there exists
¢ > 0 such that for all k = K,

diSt(O,aH(Xk+1,Zk+1,uk+1)) < C(ka _ Xk+1H + Huk _ uk+1H + sz _ Zk+1H).
Proof. The proof is similar to Theorem 6.5, thus omitted here. ]

Remark 6.8 (Comments on the assumption of essential strict convexity). The
assumption of g being essentially strictly convex can be enforced by redefining the
functions g and h as §(x) := g(x) + 5]x|? and h(x) := h(x) — §|Ax|? with s > 0.
We noticed that, for small s > 0, the algorithm exhibits comparable (or simply the
same) numerical performance as for s = 0.

Remark 6.9. We require that either f* satisfies the calm condition over its effec-
tive domain or f is differentiable with Lipschitz continuous gradient over an open set
containing K (S). These conditions can be satisfied in many applications. For exam-
ple, if f is supercocercive, that is, lim|_ 4o J](Tx”) = 400, then f* is a real-valued
convex function with full domain [4, Proposition 14.15], and so, it is locally Lipschitz
(and, in particular, calm). This applies, for instance, to example (b) in the introduc-
tion. Regarding example (a), if p € (1, +o0), noting that K (S) is a compact set which
does not contain the origin, then f = || - |, is differentiable with Lipschitz continuous
gradient over an open set containing K (S).

Remark 6.10. According to Definition 2.1, the Kurdyka-Lojasiewicz (KL) prop-
erty requires that the underlying function is proper and lower semicontinuous. Sup-
pose that g is strictly convex; then its conjugate ¢g* is differentiable on int(dom g*).
Consequently, I" is lower semicontinuous on

{(X, y) € int(dom g) x dom f* : (Kx,y) — f*(y) > %} x int(dom g*) x R™.
Assume that I' satisfies the KL property at a point
W = (x,y,z,u) € {KE x dom f* : (Kx,y)— f*(y) > %} x int(dom ¢g*) x R™ < T

Then we can restrict the neighborhood U of W such that Proj,(U) n int(dom ¢g*) is
open, where Proj,(U) denotes the projection on the space where the block variable z
belongs to. Then, by shrinking U if necessary, we have

U=Un ({(x,y) € K. xdom f* : (Kx,y)— f*(y) > %} x int(dom g*) x }R”) ,

This manuscript is for review purposes only.
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on which T" remains lower semicontinuous. A similar argument applies to the merit
function II.

Finally, we provide the global convergence result which is in line with [20, Theorem
4] and [11, Theorem 3.4].

THEOREM 6.11. Let € > 0. Suppose Assumption 3.1 holds, K. < int(domg), g
is nonsmooth and essentially strictly conver and one of the following conditions are
fulfilled:

(1) f* satisfies the calm condition over its effective domain and T satisfies KL
property at every point of {(x,y) € K. x domf* : (Kx,y) — f*(y) > m/2} x
int(domg*) x R"™.

(ii) f is differentiable with Lipschitz continuous gradient over an open set contain-
ing K(S) and 11 satisfies KL property at every point of K. x int(domg*) x R™.

Let {WF = (xF, y* zF,u¥)} be the sequence generated by Algorithm 5.1. Then,
Dk (ka—kaH + [ub —ub |+ \|zk—zk+1||> < +o0, and {x*} converges to a limiting

(2ke, (2k + 1)e)-lifted stationary point of (1.1), where k is the Lipschilz constant of g
on K..

Proof. We prove the statement only in the setting of assumption (i). The proof
of the other case can be done analogously. The sequence {I'(x*,y*,z* u*)}r>x, is
nonincreasing and it converges to 0 as k — +co. Thus, I'(x*,y*, 2", u*) > @ for all k >
K4, which allows us to divide the proof into two cases. Case I. There exists Ko > K,
such that T'(x*, y* zF u*) = 0 for k > K,. Then, (x¥*! zF+1 uFtl) = (xF z*F u¥)
for all k > K, due to (6.11), and the conclusion follows. Case II. I'(x*, y*,z*, u*) > 0
for all k > K. Let © denote the set of accumulation points of {(x*,y*,z* u*)}. Then,
Q is compact. Invoking Theorem 6.2 (iii), according to the uniformized KL property
[7], there exist p > 0 and p > 0 and a desingularization function ¢ with the property
that for all (x,y,z,u) with dist((x,y,z,u),Q) < ¢ and 0 < I'(x,y,z,u) < 0 + p, it
holds ¢'(T'(x,y,2z,u) — )dist(0, 0T'(x,y,z,u)) > 1. Then, there exists Ky > K; such
that dist((x*,y*, 2", u*),Q) < p and 0 < T'(x*,y*, z¥,u¥) < 0 + p for all k > K>.

Thus, by using Theorem 6.3 and Theorem 6.5, for all £k > K5 it holds

S((x",y* 2" uh) = 0) — (D (x"F1 y 1 2 ut ) —9)
> ¢’(F(xk,yk7zk,uk) _5) (F(Xk,yk,zk,llk) _ F(Xk+1,yk+1,zk+1,uk+l))

¢ ko k12 kL ka1)2 k k412
: X=X +ju’—u + |z" —z
dlst(O, ar(xk’yk’zk’uk)) (H H ” ” H H )
¢ (Jxf = xF1 4 Juf — ub | 4 28 — 2k ))?
3¢ (i — xR+ JuF —ub T 2F - 2 1))

=

k

x,zu * ka -

where ¢ and ¢ are given as in Theorems 6.3 and 6.5. By denoting 4
xFH| 4 Ju® — uF Y| + ||2* — zF Y, it follows that for all k > K>

X,z,u >

20k < 2\/3C (BT (xF,yk, 2k, uk) — ) — ¢(D(xk+1, yk+1 zk+1 uk+l) — §)) o8
c

37 _

<O+ (GO0 yE 2R ) = B) — (DM y R 2R ) - 5)).

X,z,u + c

So, the conclusion follows. a

Remark 6.12. If S is a semialgebraic set, and f, g, and h are semialgebraic func-
tions (that is, their graphs can be written as a finite union or intersection of sets
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described by polynomial inequalities), then I' and IT are also semialgebraic functions.
So, they satisfy the KL property at every point of the domain of their subdifferential
[3]. We also remark that, in this case, the desingularization function ¢ of the KL
property takes the form of ¢(s) = cs!~? for some ¢ > 0 and 6 € [0,1). Here, 0 is
often called the corresponding KL exponent, see [33] for recent developments in esti-
mating the KL exponents. Then, (local) convergence rate analysis of the algorithm
can be deduced following the techniques used in [2] with the information of the KL
exponents. For brevity, we omit the details here.

Remark 6.13. (Tightness of the convergence results of the conceptual FSPS algo-
rithm) As seen in the proof of Theorem 6.2, every accumulation point (X,¥,z,u) of
the sequence (x*,y", z¥, u*) need to fulfill the system of optimality conditions (6.9).
Due to the existence of v > 0 in the third inclusion of (6.9), we cannot anticipate
X as an exact limiting lifted stationary point of (1.1). To ensure that the accumula-
tion point is an exact lifted stationary point, as the sequence {74} is non-increasing,
without loss of generality, we can assume that one of the following two must hold:

(1.) v, =0 for all k£ = K, for some finite index K, or

(2.) v | 0as k — oo.

The following example illustrates that, in general, our convergence results are sharp.

EXAMPLE 6.14. Consider problem (1.1) for S = [0,1]> € R*, A = K = I where
I is the identity mapping, and g,h, f : R> — R are given by g(x) = |x|1, h(x) =
Hx[? +e"x+ 3 and f(x) = e"x + 5, where e = (1,1)7T. We consider two cases:
(1.) i =0 for allk. Let B=1,0, =1, 60y :=2 and z° = u’ = x° := (1,0)". For
the fourth update block in FSPS, we will choose z°' as the minimum norm solution.
Then, FSPS generates a sequence (xk,yk, zF, uk) such that

k_ ok _ ok _ { (0,1)7, if k is odd, k

z" =u" =x (LOYT, ifk is even, =e and 0,=2 Vk=1

One can verify that neither (1,0)T nor (0,1)T is a limiting lifted stationary point of
Ezxample 6.14. Thus, the subsequential convergence to an exact limiting lifted station-
ary point cannot be guaranteed in this case.

(2.) v = k%—l for all k. We can show that any accumulation point of the se-
quence generated by the FSPS may not be an exact limiting lifted stationary point, see
Appendiz A for details. Note that, in this case, 0 = 1, which violates the choice in
Theorem 4.3, where 0, = x (LVh + %2:‘ — +00.

7. Discussion on its variants with counterexamples guided. It is inter-
esting to see when the basic algorithm FSPS can converge to an exact limiting lifted
stationary point. Consider the conceptual algorithm FSPS with ~; = 0 reads for all
k>=0:

([ y*tl e Of(KxF)
xF+1 = Projg (u’c + g—:K*ka — éVh(xk) — (%kA*zk) ,
(71)  { utt o= (1Bl 4 pxE
z"Tl = argmin, [g¥(z) — (Ax"T1,z)],
ék @(xk+1,zk+1,uk+1;§k)
+1 f(KXk+1) )

where U(x,2,u,0):=(z, Ax) — g*(2) + h(x) + ts(x) + $|x —u|>.!

4Note that 4, = 0. Then, the function ¥ in (4.1) reduces to .
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Next, we show that the sequence {x*} generated by (7.1) converges to an exact
limiting lifted stationary point of (1.1) if g is ¢-smooth.

THEOREM 7.1. Suppose Assumption 3.1 holds, g is £-smooth (¢ > 0) and essen-
tially strictly convex, and one of the following conditions is fulfilled:
(i) f* satisfies the calm condition over its effective domain and T satisfies KL
property at every point of of {(x,y) € K. x domf* : (Kx,y) — f*(y) >
m/2} x int(domg*) x R™.
(ii) f is differentiable with Lipschitz continuous gradient over an open set contain-
ing K(S) and 11 satisfies KL property at every point of K x int(domg*) x R™.
Let0 < B <2, x> 1,0, = 8= x(Lyn +200?) fork =0, and {W* = (x*, y* zF uF)}
be the sequence generated by (7.1). Then, >, (|x* — x*F1| + [[uf — uF 1| + ||z —
z’““H) < 400, and {x*} converges to a limiting lifted stationary point of (1.1).

Proof. First, analogous to the proof to (6.1), one can show that for all kK > 0
WM 2Rk, 6) + 0 [f(ExD) — ((BxM R — (v )]

- §—L
< U(xF, 2", u”, ) — Twnxkﬂ — x¥|2.

Second, using the optimality condition of z**1 in (7.1), it yields
<Axk+1,zk+1> _ g*(zk+1) < <Axk+1,zk> _ g*(zk) + <zk+1 _ Zk7AXk+1 _ Axk>
Lok k412
——|z" —= .
i H
So, W(xF+1, zF+1 uk, §) < U(xF 1 2%, uP, §) + Lod | xF+! —xF|2 — L|zP —2F+1 |2 The
remaining proofs are similar to Theorems 6.1, 6.3 to establish the descent property of
the merit functions, and show the subsequential convergence by following the proof
routines in Theorem 6.2, and the global convergence routines in Theorem 6.11, thus
omitted here. ]

Another interesting question is to see what happens if we replace the updating step
of z8*1 in the conceptual FSPS (7.1) with the following:

(7.2) z"*1 = argmin {g*(z) — (AxFTL 2y 4 %Hz - zk||2} ,

where o > 0. We call this variant as P-FSPS. If g is nonsmooth, then P-FSPS can
also exhibit a cycling phenomenon, as illustrated by the following example.

EXAMPLE 7.2. Consider the problem (1.1) for S = [0,1]> € R?, A = iI, K =21
where I is the identity mapping, and g,h, f : R> — R given by g(x) = |x|1, h(x) =
x|+ 3e"x+3 and f(x) = Je'x+1. Let B=1,00=6 =3 fork >0, 6y := 3
and z° = (1,1)T, u® = x°%:= (1,0)". For any oy, > 0, P-FSPS generates a sequence
(x¥,y*, z¥, u*) such that for all k =0

k_ ok _ [ O, ifk is odd, w_ Lok _ g o_ 3
=X _{ (1,0)T, ifkiseven, Y — 2% % T° and 0k—2'
Direct verification shows that neither (1,0)" nor (0,1)7 is a limiting lifted stationary

point of Example 7.2.

8. Numerical results. We present numerical results to demonstrate the effi-
cacy of the proposed algorithmic framework. All algorithms are implemented using
MATLAB R2016a and executed on a desktop running Windows 10 equipped with an
Intel Core i7-7600U CPU processor (2.80GHz) and 16GB of memory.
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8.1. Implementation details. To allow for larger step sizes d; and mitigate
the dependence on the unknown parameter Lvj, we propose practical variants of Al-
gorithms 4.1 and 5.1 by incorporating a nonmonotone line search strategy [32]. These
variants are referred to as S-FSPS-nls and Adaptive FSPS-nls, respectively. Due to
space limitations, we only present the details of Adaptive FSPS-nls in Algorithm 8.1.

ALGORITHM 8.1 (Adaptive FSPS algorithm with nonmonotone line search). Let 0 <
<2, x>1,0<q<1l,00>0,v0=1,ande>0,n>1,0<pu<1 ¢>0,T¢teN.
Let (xo,uo) be a given starting point. We use Maxlt to indicate the maximal number of
iterations.

For k =0 : MaxIt do
Set Yi,0 1= Vk-
Forj=0:4—1 do

Set Yi,j = Yr.0d’-

; AxF
Set zFt1I .= Proxg*/wk’j (—) .

Vk,j
k _k+1,5 ..k .
If Opir = U(x" z f([(’)l:k)’ 8k, Yi,j) >0, then
Update vy, := vk j, 2" " = 2",
Break
End If
End For

252
Set 5;@’0 = X(Lvn + ﬂ)
Vi
Choose y* 11 e af (Kx").
Set d*t! = Gp K¥y" T — Vh(xF) — A*ZM T
Fors=0:t—-1
Set k.5 := un°Ox,0-
dk+1
Set X" := Projg (uk + 5 ) .
k,s

~k+1 J Cliok _ gk+1)2
< m _ =
IfFx") < [ka]féjsk F(x") 2||x "7, then

Update xF = xR
Break
End If.
End For.
Update u*' := u* — g(u* — x"*1).

Update Y41 := Y, Ok+1 1= Ok

2
If |2°*!| > min (i, —E) , then
Yk

Yk
202
Update Y11 := Viq, Oki1:= x(Lvn + —2).
YE+1
End If
End For
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8.2. Limited-angle CT reconstruction. We solved the problem (1.2) by com-
paring S-FSPS-nls, Adaptive FSPS-nls with the Extrapolated Proximal Subgradi-
ent algorithm (e-PSA) from [8], and the Proximity Gradient Subgradient algorithm
with Backtracked Extrapolation (PGSA_BE) from [21]. We set 7 = 0.1 and p = 2
n (1.2) throughout the numerical tests. Each algorithm was initialized with the
zero vector (with a safeguard mechanism of computing the denominator of (1.1) via
max(||Vx|2,eps)) and used the same stopping criterion defined by:

[ — x|

(8.1) <107°% or k> MaxTt,

max{eps, |x*|}
where eps represents the machine precision. We also adopted a two-stage approach
with a warm start strategy, where the last iterate of the first stage served as the initial
point for the second stage. The warm start will be beneficial for solving the imaging
processing problem, but it also requires careful parameter tuning for two phases.
When implementing Adaptive FSPS-nls, we set f(x) := [|x|2, A = K =V, and
followed Remark 6.8 by setting g(x) := 7[x|1+%|x|? and h(x) := | Px—f|*— 5| Ax|?
where s = 0.1. The superscripts () and ) represent the stage one and stage two,
respectively. The parameter settings were 3 = 1.1, 8 = 1.45, y() = 1.1, y® =
1.001, M = 42 = 0.4, nM = 5@ = 1.5, ¢V = ¢@ =0.999, TV = 72 =5 1) =
@ =1e4, tM =@ = 250, (V) = ¢ = 1000, MaxItH) = 50, MaxIt'®) = 5000, and
e = ¢® = 1e — 6. To implement S-FSPS-nls, we use the same parameters as those
in Adaptive FSPS-nls, except that we set 'yl(cl) = 7122) = k(fog, and y( =y =2,
When applying PGSA_BE (Algorithm 1 in [21]), we set f(x) := 7| Vx|, h(x) :=

1| Px —f|?, g(x) := ||[Vx]2. The inner loop amounts to solving in each iteration
1

8.9 k+1 _ : T _ k)2

(32) = argmin | 7|Vl + o x - o2

* k
with gF = uh*! — aP*(Pubt! — f) + ack%, b+l = xF 4 By (xF — xF~1) and

cp = %. We applied ADMM to (8.2) by introducing Vx = y and x = z,
and with p; and ps being the penalty parameters. For the outer loop parameters
we set ) = ¢ = 0,80 = g% = 01,00 = 0.0015,0® = 0.001, £V = @ =
le-3 (in the backtracking condition), MaxIt™® = 50, MaxIt® = 5000. For the inner
loop parameters we set Inner_tol” = Inner_tol® = le-6, and Inner MaxIt(!) =
1000, Tnner MaxIt® = 200,pg1) = pf) = le-4, pgl) = pg2) = le-2.

When applying e-PSA (Algorithm 4.1 in [8]), we set f"(x) := 7|Vx]1, f*(x) :=
[ Px —£|2, and g(x) := |[Vx]|2. Due to the absence of boundedness condition (BC),
i =% =0, and so, k, = pp = 0 and u* = v¥ = x* for all k¥ > 0. The inner loop
amounts to solving in each iteration
(8.3) xF*1 = argmin [T|VX|1 + iHX —p*? + gHX —xF|?,

xeB 27y 2

with p* = x* + 70 YeB — 7 P*(Px* — £) and 0 = FCOELED - We solved
(8.3) also via ADMM, with p; and py being the penalty parameters. For the outer
loop parameters we set f(1) = g2 = 0, (1) = ) = || Pxtrue| /|xbrue|, T,Sl) = 7',52) =
760, and MaxItH) = 50, MaxIt® = 5000. For the inner loop parameters we set
Inner_tol™ = Inner_tol®® = le-6, and Inner MaxIt™") = 1000, Inner MaxIt® =

1 2 1 2
200, pi) = p{? = pi) = pf?) = 1e-2,
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We assessed performance based on two metrics: the root mean squared error
(RMSE) [29] and the overall structural similarity index (SSIM) [31]. We conducted
tests on parallel beam CT reconstruction of the Shepp-Logan phantom using projec-
tion ranges of 90°, 120°, and 150°. We evaluated both noiseless and noisy scenarios,
where the Gaussian noise had a zero mean and standard deviations (o) of 0.001 and
0.005. The performance of the three algorithms is summarized in Table 1. The results
indicate that S-FSPS-nls and Adaptive FSPS-nls outperform the recently introduced
double-loop algorithms, PGSA_BE and e-PSA, in terms of SSIM, RMSE, and CPU
time (in seconds).

When comparing S-FSPS-nls and Adaptive FSPS-nls, we observe that S-FSPS-
nls requires less CPU time, primarily because Adaptive FSPS-nls needs to perform
backtracking to ensure the non-negativity of 6, whereas S-FSPS-nls does not neces-
sarily require this. However, S-FSPS-nls achieves slightly lower SSIM values in some
cases compared to Adaptive FSPS-nls.

8.3. Robust Sharpe ratio type minimization problem. We tested Adap-
tive FSPS-nls also on the robust sharp-ratio minimization problem (1.3), and com-
pared it with PGSA_BE, e-PSA and the Dinkelbach’s method with Surrogation (DLS)
[14, Algorithm 7.2.7]. The data ((r;)i2}, (a;)i, (C;);2% ) were generated as follows:
(1) each vector a; was generated such that each entry is drawn from a uniform distri-
bution over the interval [0, 1]; (2) r; was set to be greater than |a;|«; (3) each matrix
C; was generated such that each eigenvalue conforms to a uniform distribution over
the interval [1073,1 + 1073].

We measured the performance in terms of the objective value obj, the infeasibility
infea := || max(—x,0)[1 + |||x|l1 — 1|, and the lifted stationarity residual

stat := dist(0, (A*0g(Ax) + Vh(x) + dus(x)) f(Kx) — (9(Ax) + h(x))K*0f(Kx)).

All metrics are evaluated at the last iterate. We also used (8.1) as a stopping criterion.

When implementing Adaptive FSPS-nls, we set f, r, A, and K as in Section 1,
and set g(x) := |Ir — x|l + §[x]? and h(x) := —5|Ax|*> with s = 0.01, by following
Remark 6.8. We set the algorithm parameters as £ := 100, Ly, := s|A* 4], x := 1.1,
n = 1.15, ¢ := 0.999, p := 0.005, ¢ := 1074, T := 5, § := x(Lyn + 20%), t := 250,
MaxIt := 500, € := le — 8, and  := 1.6. To implement S-FSPS-nls, we use the same
parameters as those in Adaptive FSPS-nls, except that we set v = # and x = 1.5.

When implementing PGSA _BE, we defined f(x) := max;<;<m, {ri—a, X}, h(x) :=
0, and g(X) := maxXj<ij<m, X' C;x. The inner loop amounts to solving in each iteration

1
k+1 _ . AT - R k)2
(8.4) X' = argmin [1512%(11{7‘1 a; x} + % |x —u acky”|| ] ,

with y* € dg(-)(x*) and uF*! = x* + By (x* — x*~1). The inner loops of both e-PSA
and DLS amounts to solving in each iteration a similar problem as (8.4).

For fair comparisons, we solved the inner loop subproblems for all these double-
loop algorithms via ADMM. We used MaxIt = 500 for all these test algorithms.
In addition, we used for e-PSA as outer loop parameters 8 = 0, 7, = 0.5 and as
inner loop parameters p; = 0.1, ps = 0.1; we used for PGSA_BE as outer loop
parameters 8, = 0.5, a = 0.5, ¢ = 1 x 1073 (in the backtracking) and as inner
loop parameters p; = 0.5, ps = 0.5, and we used for DLS as inner loop parameters
p1 = p2 = 0.5. We conducted numerical tests by setting (n,mi, ms) to (100,5,20),
(100, 20, 5), (100,20, 20), (400, 20,10), (400, 10,20), and (400, 20,20). We performed
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TABLE 2
S-FSPS-nls and Adpative FSPS-nls versus double-loop algorithms for robust sharp-ratio Problem

(n,m1,ms) FSPS-nls S-FSPS  ePSG PGSA.BE  DLS

obj 1.52e+00 1.52e+00 1.56e+00  1.59e4-00  1.54e+00

infea 4.22e-09  3.56e-09  4.11e-07 3.98e-07 3.98e-05

(100, 5, 20) stat  2.53e-07  2.53e-07  2.21e-07 2.97e-07 1.50e-07
CPU 2.61le-02  2.74e-02  5.58e-02 5.17e-02 3.27e-01

obj 1.76e+00 1.76e+00 1.79e+00 1.79e4+-00  1.75e+00

infea 4.35e-09  4.70e-09  3.98e-07 4.95e-07 3.20e-05

(100, 20, 5) stat  3.20e-07  3.20e-07  5.04e-07 5.45e-07 3.88e-07
CPU 2.10e-02  2.60e-02  6.29e-02 9.34e-02 9.55e-01

obj 1.68e+00 1.68e+00 1.67e+00 1.69e4+-00  1.75e+00

infea 3.12e-09 4.47e-09  3.69e-07 5.82e-07 3.18e-05

(100, 20, 20) stat  4.07e-07  4.07e-07  4.16e-07 5.04e-07 2.62e-03
CPU 2.66e-02  3.28e-02  7.02e-02 6.32e-02  2.59e+-00

obj 1.88¢+00 1.88e+00 1.89e+00 1.88e+400  2.09e+00

infea 2.84e-09  2.57e-09  3.90e-07 4.29e-07 5.10e-05

(400, 20, 10) stat  6.30e-05  6.30e-05  6.28¢-05 6.02e-05 5.52e-03
CPU 5.41e-01  5.52e-01  8.26e-01 7.60e-01 1.03e+02

obj 1.70e4+00 1.70e4+-00 1.78e4+00  1.78e4+00  1.89e+00

infea 4.13e-09  4.29e-09  4.03e-07 4.32e-07 5.01e-05

(400, 10, 20) stat  3.02e-05  3.02¢-05  2.75e-05 2.88e-05 1.36e-02
CPU  1.33e+00 1.25e4+00 1.36e4+00 1.43e4+00  1.50e+02

obj 1.84e4+00 1.84e4+00 1.85e4+00  1.82e4+00  1.93e+00

infea 4.04e-09  3.42e-09  4.87e-07 3.90e-07 4.41e-05

(400, 20, 20) stat  4.32¢-05  4.32e-05  4.25e-05 3.86e-05 4.04e-04
CPU 6.24e-01  6.17e-01  7.34e-01 7.71e-01 1.01e+02

50 trials for each configuration. The average values of the considered performance
metrics, along with the CPU time (in seconds), are reported in Table 2.

As observed, S-FSPS-nls and Adaptive FSPS-nls outperform e-PSA, PGSA_BE,
and DLS by achieving smaller infeas, comparable stat, and obj values, while re-
quiring less computation time. Their performance is nearly identical, mainly due to
the choice ¢ =1 x 1078,

9. Conclusions. The paper focuses on a class of structural fractional programs
characterized by linear compositions with nonsmooth functions in both the numerator
and denominator. We develop a proximal subgradient algorithm framework with two
versions (S-FSPS and Adaptive FSPS) to overcome the challenges in computing the
proximal point of the linear composition with the nonsmooth component in the nu-
merator. Our contributions include establishing the subsequential convergence to an
exact lifted stationary point for the S-FSPS while establishing the global convergence
of Adaptive FSPS toward an approximate lifted stationary point under the KL prop-
erty, without imposing full-row rank assumptions. We explain the rationale behind
the convergence to an approximate lifted stationary point of the Adaptive FSPS and
construct counterexamples to show that pursuing an exact solution in the adaptive
version might lead to divergence. Finally, we demonstrate the superiority of these
practical versions of the newly proposed algorithms over the existing state-of-the-art
methods for two concrete applications.

This manuscript is for review purposes only.



887
888
889
890
891
892
893
894
895

896

897

898

28 RADU IOAN BOT, GUOYIN LI, AND MIN TAO

Appendix A. Accumulation points of the sequence generated by the
FSPS may fail to be a lifted stationary point when ~; | 0.

Consider the counter-example of Example 6.14. For § = 1, v := %H’ o =1,
0 := 2, and z° = u® = x% := (1,0)T, FSPS generates a sequence {(x*,y*,z* u*)}.
The sequence {x*} has two accumulation points: (1,0)T and (0,1)". Indeed, neither
(1,0)T nor (0,1)T is a limiting lifted stationary point of Example 6.14. We provide
the details in the following lemma.

LEMMA A.1. Let the sequence {(x*,y"* z* u*)} be generated by FSPS (}.1) for

solving Example 6.1/ with B = 1, v 1= kil, dp=1, 0y :=2, and z° = u® = x0 :=

(1,0)T. Then, we have y* = e for all k = 1 and the following statements hold:

(1)

DT, ifk is odd,
0)", ifk is even,

o -{
(ii)

©),: x* = (0, Op—1— 1), ifk is odd,
. (Or_1—1, 0)7, if k is even.

where 0, is given by

) Op_1—1+ (05 * (Gk_l — 1)2 + (ak—l — 1) + 05) — i
(A1) B),: Ok = Y .

(iii) limy_o 0 = 2, and hence, the sequence {x*} has two accumulation points:
(1,0)T and (0,1)T.

Proof. First, we define a sequence {by} via the following recurrence formula: by =

307 +0k — 5Dy
land, forall k > 0, bpy; = —F—5L

5 . For this sequence, we first use mathematical
e 1/2 J
induction to see that

(A.2) 1/2 <bp <1, Vk =1

By direct calculations, we see that by = 2/3, by = 23/42, by = 936.5/1848 and by =

936.57/(184842) £ 705.5 g, (A.2) holds with k = 1,2,3,4. Suppose that (A.2) holds

with k = ko for some ko > 4, that is, 1/2 < by, < 1. We now show that (A.2) holds

. . 341
with k& = ko + 1. To see this, we first note that byy41 = bk, + 2 — 5—=27>. Define a

bk0+1/2
E
one-variable function f(z) := $z + 3 — %’{%’1) Direct verification shows that f is
an increasing function. So, by,+1 = f(br,) = f(1/2) =5/8 — m > 1/2, where the

last strict inequality holds as kg = 4. Moreover, as by, < 1, bgy+1 = f(br,) < f(1) < 1.
Thus, (A.2) holds.

Next, we show the main results of this lemma. Clearly, from the definition of f
and the construction, y* = e for all k > 1.

[Proof of (i) & (ii)] We use mathematical induction to verify @k, @k and % A
hold for all k& > 1. A direct verification shows that the statements of (1), k
and @k hold for k = 1,2; Suppose that @k, @k and @k hold for k < ko with
ko = 2. Using (A.2) with by, = 0, — 1, we see that 3/2 < 6, < 2. Using the update
formula of x¥*1 in (4.1), a direct verification shows that @k holds with k = ko + 1.
(Ory—1, 0)7

Note from the update formula of z*! in (4.1) that z"*! := Projge (37—

) or
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zhotl .= Projpe (%) where BY° is the unit ball defined by the £,-norm. Since
3/2 < Oy, < 2, we have (1), holds with k = ko + 1. Finally, using the update formula
of 41 in (4.1), @k with k = kg + 1 also follows.

[Proof of (iii)] To see (iii), we first establish that b1 > by when k > 4. From the

definition of the sequence {by}, this is equivalent to

1 1 1 1
A3 (11— ) <bhp< = [ 144/1 - —
(A-3) 2 k+1 N k+1

Clearly, (A.3) is true with & = 4 by direct computation. Suppose now (A.3) holds
with k = ko with kg > 4. We now show that (A.3) holds with k = ko + 1, that is,

1 I\ @ 1 4
(11— ——= ) S g1 < 5 (1+4/1— :
2< k0+2> Fott 2<+ k0+2)

For (&), it holds obviously due to by > 1/2 for all k > 1. To prove (#), recall the

T4, /1— 2=
one-variable f defined as above. We have b1 = f(bg,) < f(—5—>—), where the

last inequality follows by the induction hypothesis and the fact that f is increasing.

14, /1— 24— 144 /1— 2 .
( ) < 5. By letting § := T

ﬁ and noting that x < 0. Let ¢:=+/1 —46 and d := +/1 — 4k. Thus we have

A=15 3,9
% < %cd + 5 — 5. Consequently, 1+ 1 19 1+§\J/r12_45 < l + l\/1 — 4k. With some

o /1— 2 144 /1—
elementary calculations, it leads to f( ) < e

Thus, it remains to show that f

R =

2
Therefore, the sequence of {b;} is monotone and bounded, thus khm by, exists.
—+
Consequently, lim 6 exists, and lim 6 = 2. 0
k— o0 k—+00
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