
The Fenchel duality in set-valued vector

optimization

Author:
Radu-Ioan Boţ
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Introduction

Since many optimization problems encountered in economics and other fields
involve set-valued mappings constraints and set-valued mappings objectives, set-
valued optimization problems have received an increasing amount of attention
in recent years(see Corley[3], Luc[10], Jahn and Rauh[10], Postolica[12] and the
references cited here).

For the studying of the set-valued optimization problems it has been developed
a very interesting duality theory. The first researches of the Lagrangian dual-
ity for vector optimization problems had been made by Corley[2], Dolecki and
Malivert[4] and by Song in [15] and [16].

In the same time it has been developed a theory which represents a generaliza-
tion of the Fenchel duality for set-valued mappings. This theory is based, like
in the scalar optimization, on the very elegant concept of perturbed problems
and conjugate mappings. On the other hand, it is interesting to observe the di-
versity of generalizations of the Fenchel duality theory, caused by the different
definitions of the notion of efficiency. Postolica[13] has developed such a general-
ization for efficiency of set-valued mappings by using the concept of nuclear cone.
Malivert[11] has considered Fenchel type duality for weak efficiency of set-valued
mappings and recently, Song[18] has also considered Fenchel duality by using of
a new concept of weak efficiency, appeared in the last decade.

In the first part of this work we present the Fenchel duality theory for set-valued
mappings developed by Song[18] and give a generalization for a stability criterion.
In the second part we formulate and solve the set-valued optimization problem
with constraints and finally, by considering of a particular case, we rediscover
some results from the scalar optimization.

I would like to thank Prof. Dr. Gert Wanka for the helpful suggestions, indica-
tions and the disponible material necessary for the elaboration of this work.
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1 Preliminaries and weak supremum properties

Let Y be a real topological vector space partially ordered by a closed, convex
and pointed cone S with a nonempty interior intS in Y . We use the following
notations

y = y′ iff y − y′ ∈ S,
y ≥ y′ iff y − y′ ∈ S \ {0},
y > y′ iff y − y′ ∈ intS.

We add two imaginary points +∞ and −∞ to Y and denote the extended space
by Y . Let consider, by convention, that Ø is a subset of Y . We also consider
that for any y ∈ Y , −∞ < y < +∞. We can now extend the addition and the
scalar multipilcation of Y to Y by using the following conventions

(±∞) + y = y + (±∞) = (±∞), for all y ∈ Y
(±∞) + (±∞) = (±∞)
λ(±∞) = (±∞), for λ > 0
λ(±∞) = (∓∞), for λ < 0.

For a given set Z ⊂ Y we define A(Z), the set of all points above Z, and B(Z),
the set of all points below Z, by

A(Z) = {y ∈ Y |∃y′ ∈ Z s.t. y > y′}

and
B(Z) = {y ∈ Y |∃y′ ∈ Z s.t. y < y′}

respectively. Clearly, A(Z) ⊂ Y ∪{+∞} and B(Z) ⊂ Y ∪{−∞}. We define weak
maximal points and weak supremal points as follows(see Postolica[13], Tanino[20],
Dolecki and Malivert[4])

Definition 1.1
Given a set Z ⊂ Y , a point p ∈ Y is said to be a weak maximal point of Z if
p ∈ Z and p /∈ B(Z), that is, if p ∈ Z and there is no y ∈ Z such that p < y.
The set of all weak maximal points of Z is called the weak maximum of Z
and is denoted by WMaxZ. The weak minimum of Z, WMinZ is defined
analogously.

Definition 1.2
Given a set Z ⊂ Y , a point p ∈ Y is said to be a weak supremal point of Z if
p /∈ B(Z) and B({p}) ⊂ B(Z), that is, if there is no y ∈ Z such that p < y and
if y′ < p for y′ ∈ Y implies that there exists a point y ∈ Z such that y′ < y . The
set of all weak supremal points of Z is called the weak supremum of Z and is
denoted by WSupZ. The weak infimum of Z, WInfZ is defined analogously.
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Remark 1.1
(i) WMax Ø = Ø and WSup Ø = {−∞}.
(ii) −WMax(−Z) = WMin(Z) and −WSup(−Z) = WInf(Z).
(iii) ∀Z ⊂ Y , −A(−Z) = B(Z).

Tanino[20] has proved the following properties of weak maximum and weak supre-
mum in the case when Y = Rp. They are also valid in the general case, considered
by us.

Proposition 1.1
WMaxZ = Z ∩ WSupZ.

Propositon 1.2
(i) WSupZ = {−∞} if and only if B(Z) = Ø. This is the case when and only
when Z = Ø or Z = {−∞}.
(ii) WSupZ = {+∞} if and only if B(Z) = Y ∪ {−∞}.
(iii)Except the above cases, WSupZ ⊂ Y .

The following definition of the closure of B(Z) in Y has been given by Kawasaki[8]
and is useful to characterize the set WSupZ.

Definition 1.3
For a set Z ⊂ Y , let the closure of B(Z) in Y be:

clB(Z) =





{−∞}, if B(Z) = Ø
Y , if B(Z) = Y ∪ {−∞}
cl[B(Z) ∩ Y ] ∪ {−∞}, otherwise.

The symbol ”cl” in the right-hand side means the usual closure in Y .

Proposition 1.3
If Z ⊂ Y , then B(clB(Z)) = B(Z).

Proof. If B(Z) = Ø or B(Z) = Y ∪ {−∞}, then the result is obviously true.
The point −∞ is contained in both sets. Thus let y ∈ B(Z) and y 6= −∞. Then,
there exists y′ ∈ Z ∩ Y such that y < y′. Hence,

αy + (1 − α)y′ ∈ B(Z), for all α, 0 < α < 1.

Taking the limit when α → 0, it follows that y′ ∈ clB(Z) and so y ∈ B(cl(B(Z)).

Conversely, suppose that y ∈ B(clB(Z)) and that y 6= −∞. Then, there exists
y′ ∈ clB(Z) such that y′ − y ∈ intS. This implies that there exists V ⊂ S such
that V + y is a neighbourhood of y′ and then, we have, (V + y) ∩ B(Z) 6= Ø.
Therefore, it follows that y ∈ B(Z).
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Proposition 1.4
If Z ⊂ Y , then WSupZ = [clB(Z)] \ B(Z) = WMax[clB(Z)].

Proof. Using that for all Z ⊂ Y , WMaxZ = Z \ B(Z), it’s obviously true that
WMax[clB(Z)] = [clB(Z)] \ B(clB(Z)) = [clB(Z)] \ B(Z).

Let p ∈ [clB(Z)]\B(Z). Since the other cases are trivial, we will consider the case
when p ∈ cl[B(Z) ∩ Y ]. Let y ∈ Y such that y < p or equivalent, p − y ∈ intS.
There exists, then, V ⊂ S such that V + y is a neighbourhood of p. From
(V + y) ∩ B(Z) 6= Ø it follows that there exists z ∈ Z such that y < z. Hence,
B({p}) ⊂ B(Z) and so p ∈ WSupZ.

Conversely, suppose that p ∈ WSupZ. This means that p /∈ B(Z) and B({p}) ⊂
B(Z). Let consider an arbitrary s ∈ intS. Then,

p − αs ∈ B({p}), ∀ α > 0.

By taking the limit when α → 0, it follows that p ∈ clB(Z). Hence, p ∈
[clB(Z)] \ B(Z).

The last two propositions conduce us to the following corollary.

Corollary 1.1
If Z ⊂ Y , then WSupZ = WSup(B(Z)) = WSup(clB(Z)).

Proposition 1.5
If y ∈ Y and d ∈ intS, then there exists α0 ≥ 0 such that y+αd ∈ intS, ∀α ≥ α0.

Proof. If α0 does not exist, then we can consider a sequence {αk} such that
αk ≥ 0, ∀k ∈ N , αk → +∞ and y + αkd /∈ intS. Since intS is a cone, y

αk
+ d /∈

intS. Using that (intS)c is a closed set and taking the limit when k → +∞, we
have that d /∈ intS which is a contradiction.

Proposition 1.6
If Z ⊂ Y , then B(Z) = B(WSupZ).

Proof. It is clear that B(WSupZ) ⊂ B(Z). If WSupZ = {+∞} or {−∞}, then
the converse inclusion is obvious. Because −∞ is contained in both sets we can
choose an element y′ ∈ B(Z), y′ 6= −∞. This means that there exists y ∈ Y ∩Z
such that y′ < y. Let take an arbitrary d ∈ intS. It follows that there exists
α0 ≥ 0 such that y + αd /∈ clB(Z), ∀α > α0, since otherwise Y ⊂ clB(Z). Let
now define a nonnegative number ᾱ by

ᾱ = sup{α| y + αd ∈ clB(Z)}.

It’s clear that y + ᾱd ∈ WSupZ = WMax[clB(Z)]. Since y ′ < y 5 y + ᾱd we
have proved that B(Z) ⊂ B(WSupZ).

Corollary 1.2
If Z ⊂ Y , then A(Z) = A(WInfZ).
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For Proposition 1.4 and Proposition 1.6 results the next corollary.

Corollary 1.3
If Z ⊂ Y , then Z ⊂ clB(Z) = (WSupZ) ∪ B(Z) = WSupZ ∪ B(WSupZ).

Proposition 1.7
If Z ⊂ Y , then Y = WSupZ ∪ A(WSupZ) ∪ B(WSupZ) and the three sets in
the right-hand side are disjoint.

Proof. It is obvious that the three sets are disjoint. Since WSupZ∪B(WSupZ)
= clB(Z), from Corollary 1.3, we have to prove that y ∈ A(WSupZ) if y /∈
clB(Z). When WSupZ = {−∞} or {+∞}, the above statement is true. Since
{+∞} ∈ A(WSupZ) we consider y 6= +∞ such that y /∈ clB(Z) and we will
prove that y ∈ A(WSupZ). Let take an arbitrary d ∈ intS. By Proposition 1.5,
y−αd ∈ B(Z) for a sufficiently large α > 0. Let ᾱ = inf{α > 0| y−αd ∈ B(Z)}
and ȳ = y − ᾱd. We have to show that ȳ ∈ WSupZ or equivalent, using that
ȳ ∈ clB(Z), we have to show that ȳ /∈ B(Z).
Supposing that ȳ ∈ B(Z) it follows that y−αd ∈ B(Z) for some α smaller then ᾱ.
This contradicts the definition of ᾱ. Therefore, ȳ /∈ B(Z) and so y ∈ A(WSupZ).

Using the definition of B(Z), the following results are obviuos.

Proposition 1.8
(i) B(Z1 + Z2) = B(Z1) + B(Z2), for Z1, Z2 ⊂ Y , where it is assumed that the
sum +∞−∞ does not occur.
(ii)B(

⋃
i∈I Zi) =

⋃
i∈I B(Zi), for Zi ∈ Y (i ∈ I).

Proposition 1.9
Let F1 and F2 be set-valued mappings from a space X to Y . Then

WSup
⋃

x∈X

[F1(x) + F2(x)] = WSup
⋃

x∈X

[F1(x) + WSupF2(x)]

where it is assumed that the sum +∞−∞ does not occur.

Proof. By using Proposition 1.6, Proposition 1.8 and Corollary 1.1 we obtain

WSup
⋃

x∈X

[F1(x) + F2(x)] = WSupB(
⋃

x∈X

[F1(x) + F2(x)]) =

WSup
⋃

x∈X

[B(F1(x)) + B(F2(x))] = WSup
⋃

x∈X

[B(F1(x)) + B(WSupF2(x))] =

WSupB(
⋃

x∈X

[F1(x) + WSupF2(x)]) = WSup
⋃

x∈X

[F1(x) + WSupF2(x)].

From Proposition 1.9, we obtain the following corollaries, which will be very
important for this work.
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Corollary 1.4
For Z1, Z2 ⊂ Y , WSup(Z1 + Z2) = WSup(WSupZ1 + WSupZ2).

Corollary 1.5
If F is a set-valued mapping from X to Y , then

WSup
⋃

x∈X

F (x) = WSup
⋃

x∈X

WSupF (x).

Corollary 1.6
For Z1, Z2 ⊂ Y , WSup(Z1 ∪ Z2) = WSup(WSupZ1 ∪ WSupZ2).

Corollary 1.7
For Z ⊂ Y , WSupZ = WSup(WSupZ).

Proposition 1.10
If Z ⊂ Y , then Z ∩ Y ⊂ Z ∩ Y + intS ⊂ WInfZ ∪ A(Z).

Proof. Let z ∈ Z ∩Y and let V be a neighbourhood of z in Y . This implies that
V −z is a neighbourhood of 0 in Y . From 0 ∈ intS it follows that (V −z)∩intS 6=
Ø or, equivalent, that V ∩(Z∩Y +intS) 6= Ø. This means that z ∈ Z ∩ Y + intS.
To prove that Z ∩ Y + intS ⊂ WInfZ ∪A(Z) we use Corollary 1.3 and Remark
1.1 . These give us the following relation

Z ∩ Y + intS ⊂ WInf(Z ∩ Y + intS) ∪ A(Z ∩ Y + intS) ⊂ WInfZ ∪ A(Z).

The last proposition of this chapter provides a characterization of the weak supre-
mum of a set by scalarization under the convexity assumption. The proof of this
proposition has been given by Sawaragi,Nakayama,Tanino[14].

Propositon 1.11
Let Y and Y ∗ be put in duality by the bilinear pairing < ·, · > and let

S∗ = {µ ∈ Y ∗| < µ, s >≥ 0 ∀s ∈ S}

be the dual cone of S. Let assume now that < µ,±∞ >= ±∞ for any µ ∈ S∗.
Then

WSupZ ⊃
⋃

µ∈S∗\{0}

{ŷ ∈ clB(Z)| < µ, ŷ >= supy∈Z < µ, y >}

for any arbitrary set Z ⊂ Y , and the converse inclusion is also valid if clB(Z) is
a convex set.

Remark 1.2
Analogous results hold for weak minimum and weak supremum of a set.
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2 The conjugate mapping and subdifferentiabil-

ity of a set-valued mapping

In this chapter we define two new notions which will be very important for the
development of this theory. Let X and Y be topological vector spaces and let
L(X,Y ) be the space of all linear and continuos operators from X to Y . Let F
be a set-valued mapping from X to Y .

Definition 2.1
The set domF = {x ∈ X|F (x) 6= Ø, F (x) 6= {+∞}} is called the effective
domain of F .

Remark 2.1
(i)For any set A ⊂ X, F (A) =

⋃
x∈A F (x).

(ii)We can admit that F (x0) = Ø for some x0 ∈ X, if we adopt the convetion
that for any set Z ⊂ Y , Ø + Z = Ø and λØ = Ø.

Definition 2.2
The set-valued mapping F ∗ from L(X,Y ) to Y defined by

F ∗(T ) = WSup
⋃

x∈X

[Tx − F (x)], for T ∈ L(X,Y )

is called the conjugate mapping of F . Moreover, the set-valued mapping F ∗∗

from X to Y defined by

F ∗∗(x) = WSup
⋃

T∈L(X,Y )

[Tx − F ∗(T )], for x ∈ X

is called the biconjugate mapping of F .

Remark 2.2
Let consider X = Y = R2, S = R2

+ and let F : R2 → R2 be the vector-valued
norm,

F (x) = |||x||| =

(
|x1|
|x2|

)
, x = (x1, x2) ∈ R2.

Our aim is to calculate the conjugate mapping of F . By Definition 2.2, we have

F ∗(T ) = WSupx∈R2

{
Tx −

(
|x1|
|x2|

)}
, for T ∈ L(R2, R2).

T can be then represented like a 2× 2 matrix. Let T =

(
t11 t12
t21 t22

)
. We obtain

F ∗(T ) = WSupx∈R2

(
t11x1 + t12x2 − |x1|
t21x1 + t22x2 − |x2|

)
.
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If t21 6= 0 or t21 6= 0, then F ∗(T ) = +∞. If t12 = t21 = 0, then

F ∗(T ) = WSupx∈R2

(
t11x1 − |x1|
t22x2 − |x2|

)
.

It’s easy to observe that if |t11| > 1 or |t22| > 1, then the weak supremum is also
+∞ and that otherwise the weak supremum is 0. In conclusion,

F ∗(T ) =





0, if T =

(
t11 0
0 t22

)
, |t11| ≤ 1, |t22| ≤ 1

+∞, otherwise.

The concept of conjugate mapping of a set-valued mapping has been introduced
by Postolica[13] basing on supremum and by Luc[9] basing on Pareto maximum.

Remark 2.3
If there exists some x0 ∈ X such that −∞ ∈ F (x0), then F ∗ ≡ +∞. Conversely,
if exists T0 ∈ L(X,Y ) such that F ∗(T0) = {−∞}, then F ≡ Ø or F ≡ +∞. We
shall only consider the case when domF 6= Ø.

Remark 2.4
When f is single-valued from X to Y , then its conjugate and biconjugate map-
pings can be defined by identifying f with the set-valued mapping x −→ {f(x)}.

We will present now few interesting properties of the conjugate and biconjugate
mapping of a set-valued mapping.

Proposition 2.1
Let x0 ∈ X. If we define a new set-valued mapping G from X to Y by G(x) =
F (x + x0), ∀x ∈ X, then
(i) G∗(T ) = F ∗(T ) − Tx0, ∀ T ∈ L(X,Y )
(ii)G∗∗(x) = F ∗∗(x + x0), ∀ x ∈ X.

Proposition 2.2
Let y0 ∈ Y . Then,
(i)(F + y0)

∗(T ) = F ∗(T ) − y0, ∀ T ∈ L(X,Y )
(ii)(F + y0)

∗∗(x) = F ∗∗(x) + y0, ∀ x ∈ X.

Proposition 2.3
Let WInfF be another set-valued mapping from X to Y , defined by (WInfF )(x)
= WInfF (x). Then F ∗(T ) = (WInfF )∗(T ), for any T ∈ L(X,Y ) and F ∗∗(x) =
(WInfF )∗∗(x), for any x ∈ X.

The proves of these three propositions are based on the definitions of the conju-
gate and biconjugate mapping and has been given by Tanino[21].
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Proposition 2.4(Extension of Fenchel’s Inequality)
For any x0 ∈ X and any T ∈ L(X,Y ),

[F (x0) − Tx0]
⋂

B(−F ∗(T )) = Ø.

Proof. Since F ∗(T ) = WSup
⋃

x∈X [Tx − F (x)], it results from Corollary 1.2
that

Tx0−F (x0) ⊂
⋃

x∈X

[Tx−F (x)] ⊂ WSup
⋃

x∈X

[Tx−F (x)]
⋃

B(WSup
⋃

x∈X

[Tx−F (x)])

= F ∗(T ) ∪ B(F ∗(T )).

From Proposition 1.7 it follows that [Tx0 − F (x0)]
⋂

A(F ∗(T )) = Ø, which is
equivalent, by Remark 1.1(ii), with [F (x0) − Tx0]

⋂
B(−F ∗(T )) = Ø.

Corollary 2.1
If y ∈ F (0) and y′ ∈ −F ∗(T ) for T ∈ L(X,Y ), then y 6< y′.

Corollary 2.2
If y0 ∈ F (x0) and y′

0 ∈ F ∗∗(x0), then y0 6< y′
0. In other words, F (x0) ⊂

F ∗∗(x0)
⋃

A(F ∗∗(x0)).

Proof. From Proposition 2.4 we have, ∀ T ∈ L(X,Y ),

F (x0)
⋂

B(Tx0 − F ∗(T )) = Ø.

However, by Proposition 1.6, it follows

B(
⋃

T∈L(X,Y )

[Tx0 − F ∗(T )]) = B(WSup
⋃

T∈L(X,Y )

[Tx0 − F ∗(T )]) = B(F ∗∗(x0))

and further, by Proposition 1.8(ii), it follows that F (x0)
⋂

B(F ∗∗(x0)) = Ø. From
the definition of the biconjugate mapping and from Proposition 1.7 follows that
F (x0) ⊂ F ∗∗(x0)

⋃
A(F ∗∗(x0)), which is the conclusion of the corollary.

Definition 2.3
Let x0 ∈ X and y0 ∈ F (x0). An operator T ∈ L(X,Y ) is called subgradient of
F at (x0, y0) if

Tx0 − y0 ∈ WMax
⋃

x∈X

[Tx − F (x)].

The set of all subgradients of F at (x0, y0) is called the subdifferential of F at
(x0, y0) and is denoted by ∂F (x0, y0). Moreover, let ∂F (x0) =

⋃
y∈F (x0) ∂F (x0, y).

F is said to be subdifferentiable at x0 when ∂F (x0, y0) 6= Ø, ∀ y0 ∈ F (x0).

Remark 2.5
Postolica[12] observed that there exists a strong connection between the classical
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subdifferential and the subdifferential defined for set-valued mappings. Indeed,
if X is a real topological vector space and ϕ : X −→ R is a point-valued real
function, then we can define the set-valued mapping ϕ̃ from X to R by

ϕ̃(x) =

{
{t| t ≥ ϕ(x)}, x ∈ domϕ
Ø, x ∈ X \ domϕ,

where domϕ = {x ∈ X| ϕ(x) < +∞}. If x0 ∈ domϕ, then we shall prove that
∂ϕ(x0) = ∂ϕ̃(x0). We have

∂ϕ̃(x0) = {T ∈ L(X,R)| ∃y0 ≥ ϕ(x0) s.t. y0−y ≤ Tx0−Tu, ∀u ∈ X, ∀y ≥ ϕ(u)},

by Definition 2.3, and

∂ϕ(x0) = {T ∈ L(X,R)|ϕ(x0) − ϕ(u) ≤ Tx0 − Tu, ∀ u ∈ X}.

Let T ∈ ∂ϕ̃(x0). Then, there exists y0 ≥ 0 such that y0−y ≤ Tx0−Tu, ∀ u ∈ X,
∀ y ≥ ϕ(u). Therefore, for all u ∈ X, taking y = ϕ(u), we obtain ϕ(x0)−ϕ(u) ≤
Tx0 − Tu and this means that T ∈ ∂ϕ(x0).
Conversely, let T ∈ ∂ϕ(x0). For all u ∈ X we have ϕ(x0) − ϕ(u) ≤ Tx0 − Tu. It
follows that ∀ u ∈ X, ∀ y ≥ ϕ(u),

ϕ(x0) − y ≤ ϕ(x0) − ϕ(u) ≤ Tx0 − Tu.

Thus we obtain the contrary inclusion ∂ϕ(x0) ⊆ ∂ϕ̃(x0) and so is the equality
∂ϕ(x0) = ∂ϕ̃(x0) proved.

Proposition 2.5
If F is a set valued mapping from X to Y , then y0 ∈ F (x0) is in WMin

⋃
x∈X F (x)

if and only if 0 ∈ ∂F (x0, y0).

The proof of Proposition 2.5 results from the definition of the subgradient.

Proposition 2.6
Let x0 ∈ X and y0 ∈ F (x0). Then, T ∈ ∂F (x0, y0) if and only if Tx0−y0 ∈ F ∗(T ).

Proof. From the definition of the subgradient, T ∈ ∂F (x0, y0) if and only if
Tx0 − y0 ∈ WMax

⋃
x∈X [Tx−F (x)]. By Proposition 1.1, this is equivalent with

Tx0 − y0 ∈
⋃

x∈X

[Tx − F (x)]
⋂

WSup
⋃

x∈X

[Tx − F (x)]

which is equivalent, from the definition of the conjugate mapping, with

Tx0 − y0 ∈
⋃

x∈X

[Tx − F (x)]
⋂

F ∗(T ).
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Hence, the proposition is obviously true.

Finally, we will show that the subdifferentiability of a set-valued mapping guaran-
tees an inclusion relationship between the mapping and its biconjugate mapping
(see Tanino[21]).

Theorem 2.1
Let F be a set valued mapping from X to Y . If F is subdifferentiable at x0,
then F (x0) ⊂ F ∗∗(x0). Moreover, if, in addition, F (x0) = WInfF (x0), then
F (x0) = F ∗∗(x0).

Proof. In view of Proposition 2.1 it suffices to prove the case when x0 = 0.
Let y0 ∈ F (0). Since F is subdifferentiable at 0, there exists T0 ∈ L(X,Y ) such
that y0 ∈ −F ∗(T0). Then, from Corollary 2.1, it follows that it doesn’t exist any
T ∈ L(X,Y ) and y ∈ −F ∗(T ) such that y0 < y. This is equivalent with

y0 ∈ WMax
⋃

T∈L(X,Y )

[−F ∗(T )] ⊂ WSup
⋃

T∈L(X,Y )

[−F ∗(T )] = F ∗∗(0).

Thus we have proved that F (0) ⊂ F ∗∗(0).
Next, we assume that F (0) = WInfF (0) and take an arbitrary y0 ∈ F ∗∗(0). By
Proposition 1.7,

Y = F (0) ∪ A(F (0)) ∪ B(F (0)).

In view of Corollary 2.2, y0 /∈ A(F (0)). If y0 /∈ B(F (0)), then it follows that
y0 ∈ F (0) which ends our proof.
Let suppose that y0 ∈ B(F (0)). Then, there exists y′ ∈ F (0) such that y0 < y′.
Since F is assumed to be subdifferentiable at 0, exists T ′ ∈ L(X,Y ) such that
y′ ∈ −F ∗(T ′). However, this implies that y0 ∈ B(−F ∗(T ′)) and hence contradicts
the assumption y0 ∈ F ∗∗(0) = WSup

⋃
T∈L(X,Y )[−F ∗(T )].
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3 The set-valued optimization problem

Let X,Y be real Hausdorff topological vector spaces and S ⊂ Y be a closed,
convex and pointed cone, with a nonempty interior in Y. Let F be a set-valued
mapping from X to Y ∪ {+∞} with domF 6= Ø and let consider the vector
optimization problem

(P) min
x∈X

F (x).

To solve this problem means to find the set WInf(P) = WInfF (X) or the set
WMin(P) = WMinF (X).

In order to formulate the dual problem of (P), Song[18] and Tanino[21] had used
the Fenchel-Rockafellar method and their results represent a generalization for
the case of the point-valued real functions, treated by Ekeland and Temam[5].

Let us introduce a perturbation parameter z ∈ Z and imbed the primal prob-
lem (P) into a family of vector optimization problems, where Z is another real
Hausdorff topological vector space. Let Φ be a set-valued mapping from X × Z
to Y ∪ {+∞} such that

Φ(x, 0) = F (x), ∀x ∈ X.

By using of the so-called perturbation mapping Φ, we can now formulate, for all
z ∈ Z, a new optimization problem

(Pz) min
x∈X

Φ(x, z).

Definition 3.1
The set-valued mapping W from Z to Y defined by

W (z) = WInf(Pz) = WInf
⋃

x∈X

Φ(x, z)

is called the value mapping of the problem (P).

Remark 3.1
It is clear that W (0) = WInf(P).

In accordance with Definition 2.2, the conjugate mapping of Φ is the set-valued
mapping Φ∗ from L(X,Y ) × L(Z, Y ) to Y defined by

Φ∗(T, Λ) = WSup
⋃

(x,z)∈X×Z

(Tx + Λz − Φ(x, z)),
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for T ∈ L(X,Y ) and Λ ∈ L(Z, Y ). Therefore, by Remark 1.1(ii),

−Φ∗(0, Λ) = −WSup
⋃

(x,z)∈X×Z

(Λz − Φ(x, z)) = WInf
⋃

(x,z)∈X×Z

(Φ(x, z) − Λz).

We define the dual problem to (P) as

(D) max
Λ∈L(Z,Y )

−Φ∗(0, Λ).

For the problems (P) and (D) we have the following duality results.

Proposition 3.1(weak duality)
For any x ∈ X and Λ ∈ L(Z, Y ),

−Φ∗(0, Λ) ∩ A(Φ(x, 0)) = Ø

and hence
WSup(D) ∩ A(WInf(P)) = Ø.

Proof. Let suppose that there exist y1 ∈ Φ(x, 0) and y2 ∈ −Φ∗(0, Λ) such that
y1 < y2. As we proved, −Φ∗(0, Λ) = WInf

⋃
(x,z)∈X×Z(Φ(x, z) − Λz), which

means that y2 ∈ WInf
⋃

(x,z)∈X×Z(Φ(x, z) − Λz). From

y1 ∈ Φ(x, 0) ⊂
⋃

(x,z)∈X×Z

(Φ(x, z) − Λz)

we obtain the contradiction.

Corollary 3.1

WMin
⋃

x∈X

Φ(x, 0)
⋂

WMax
⋃

Λ∈L(Z,Y )

−Φ∗(0, Λ) 6= Ø

if and only if there exist x0 ∈ domF and Λ0 ∈ L(Z, Y ) such that

0 ∈ Φ(x0, 0) + Φ∗(0, Λ0),

or equivalent,
(0, Λ0) ∈ ∂Φ(x0, 0).

Proof. If y0 ∈ WMin
⋃

x∈X Φ(x, 0)
⋂

WMax
⋃

Λ∈L(Z,Y ) −Φ∗(0, Λ),then there

exist x0 ∈ domF and Λ0 ∈ L(Z, Y ) such that y0 ∈ Φ(x0, 0) and −y0 ∈ Φ∗(0, Λ0),
which implies that 0 ∈ Φ(x0, 0) + Φ∗(0, Λ0).
Conversely, let y0 ∈ Φ(x0, 0) ∩ (−Φ∗(0, Λ0)). If y0 /∈ WMin

⋃
x∈X Φ(x, 0), then

there exist x1 ∈ X and y1 ∈ Φ(x1, 0) such that y0 > y1. This contradicts the result
of Proposition 3.1. Analogous we can prove that y0 ∈ WMax

⋃
Λ∈L(Z,Y ) −Φ∗(0, Λ).
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Similar weak duality assertions has been given by Luc[9] for Pareto minimality.

Proposition 3.2
For all Λ ∈ L(Z, Y ),

W ∗(Λ) = Φ∗(0, Λ).

Proof. By de definition of the conjugate mapping we have,

W ∗(Λ) = WSup
⋃

z∈Z

(Λz − W (z)) = WSup
⋃

z∈Z

(Λz − WInf
⋃

x∈X

Φ(x, z)) =

WSup
⋃

z∈Z

WSup
⋃

x∈X

(Λz − Φ(x, z)).

By Corollary 1.5, we obtain

W ∗(Λ) = WSup
⋃

(x,z)∈X×Z

(Λz − Φ(x, z)) = Φ∗(0, Λ).

Remark 3.2
Using Proposition 3.2 we can rewrite WSup(D) as

WSup(D) = WSup
⋃

Λ∈L(Z,Y )

[−W ∗(Λ)] = W ∗∗(0).

Since WInf(P) = W (0), the relationship between the primal problem WInf(P)
and the dual problem WSup(D) is nothing else but the relationship between
W (0) and W ∗∗(0).

Definition 3.2
The primal problem (P) is said to be stable if the value mapping W is subdif-
ferentiable at 0.

The following theorem has been proved by Song[17] and represents a sufficient
condition for strong duality between (P) and (D).

Theorem 3.1
If the problem (P) is stable, then

WInf(P) = WSup(D) = WMax(D).

Proof. If the problem (P) is stable, then the value mapping W is subdifferen-
tiable at 0 and, by Theorem 2.1, implies that W (0) ⊂ W ∗∗(0).
From the definition of W , Corollary 1.7 and Remark 1.1(ii),

WInfW (0) = WInf WInf
⋃

x∈X

Φ(x, 0) = WInf
⋃

x∈X

Φ(x, 0) = W (0)
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and, by using of the second part of Theorem 2.1, we obtain that W (0) = W ∗∗(0).
By Remark 3.2, this is equivalent to WInf(P) = WSup(D).
From WMax(D) ⊂ WSup(D) = WInf(P) it results that it remains to prove that
WInf(P) ⊂ WMax(D). Let ȳ ∈ WInf(P) = W (0). Since W is subdifferentiable
at 0, there exists Λ̄ ∈ L(Z, Y ) such that Λ̄ ∈ ∂W (0, ȳ). Thus,

−ȳ ∈ WMax
⋃

z∈Z

(Λ̄z − W (z)) ⊂ W ∗(Λ̄) = Φ∗(0, Λ̄).

If ȳ /∈ WMax(D), then there exist Λ0 ∈ L(Z, Y ) and y0 ∈ −Φ∗(0, Λ0) such that
ȳ < y0. From the definition of the weak supremum, by using that ȳ ∈ W (0) =
WInf

⋃
x∈X Φ(x, 0) and that ȳ < y0, it follows that there exist x1 ∈ X and

y1 ∈ Φ(x1, 0) such that y1 < y0. This is a contradiction with Proposition 3.1.
Thus, WInf(P) ⊂ WMax(D).

For the case of point-valued functions the first part of the Theorem 3.1 has been
proved by Tanino[21]. Duality assesrtions for Pareto minimality under similar
assumptions has also been obtained by Luc[9] and by Isac and Postolica[6].

16



4 Sufficient criteria for stability

In the following we shall present some sufficient criteria for stability, in the sense
of weak minimality.

Definition 4.1
Let F be a set-valued mapping from X to Y . The set

epiF = {(x, y) ∈ X × Y | y ∈ (F (x) + S) ∪ A(F (x))}

is called the epigraph of F .

Proposition 4.1
Let F be a set-valued mapping from X to Y and x0 ∈ X. It holds:

{y|y ∈ (F (x0) + S) ∪ A(F (x0))} =

{
{y|y ∈ (F (x0) + S)}, if −∞ /∈ F (x0)
Y, if −∞ ∈ F (x0).

The proof of Proposition 4.1 is evident. This last result is one of the reasons why
we will consider, starting from now, the mapping F as a set-valued mapping from
X to Y ∪ {+∞}. The epigraph of F will be then

epiF = {(x, y) ∈ X × Y | y ∈ F (x) + S}.

Definition 4.2
A set-valued mapping F from X to Y is said to be S-convex if its epigraph is
convex. If F is a set-valued mapping from X to Y ∪ {+∞}, then F is S-convex
if and only if for all t ∈ [0, 1] and all x1, x2 ∈ X,

tF (x1) ∩ Y + (1 − t)F (x2) ∩ Y ⊂ F (tx1 + (1 − t)x2) ∩ Y + S.

Definition 4.2
A set-valued mapping F from X to Y is said to be weakly S-upper bounded
on a set A ⊂ X if there exists a point b ∈ Y such that (x, b) ∈ epiF , for every
x ∈ A.

Remark 4.1
If F is a set-valued mapping from X to Y ∪ {+∞}, then F is weakly S-upper
bounded on a set A ⊂ X if and only if ∃ b ∈ Y such that F (x)∩ (b−S) 6= Ø, for
all x ∈ A.

At this point we will define the set-valued mapping Ψ from Z to Y ∪ {+∞} as

Ψ(z) =
⋃

x∈X

Φ(x, z) = Φ(X, z).
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Proposition 4.1
If Φ is S-convex, then also Ψ is S-convex.

Proof. Let consider t ∈ [0, 1] and z1, z2 ∈ Z. We have

tΨ(z1) ∩ Y + (1 − t)Ψ(z2) ∩ Y =
⋃

x∈X

tΦ(x, z1) ∩ Y +
⋃

x∈X

(1 − t)Φ(x, z2) ∩ Y =

⋃

(x,y)∈X×X

[tΦ(x, z1)∩Y +(1−t)Φ(x, z2)∩Y ⊂
⋃

(x,y)∈X×X

Φ(tx+(1−t)y, tz1+(1−t)z2)

∩ Y + S =
⋃

u∈X

tΦ(u, tz1 + (1 − t)z2) ∩ Y + S = Ψ(tz1 + (1 − t)z2) + S.

By Definition 4.2, we have that Ψ is S-convex.

Proposition 4.2
Let Ψ be a S-convex set-valued mapping from Z to Y ∪ {+∞}. Then, the value
mapping W is a S-convex set-valued mapping from X to Y .

Proof. Since W is defined from X to Y , to prove that W is S-convex means to
prove that epiW is a convex set. Let (z1, y1), (z2, y2) ∈ epiW and t ∈ [0, 1]. From
the definition of the epigraph, it follows that yi ∈ (W (zi) + S) ∪ A(W (zi)), i =
1, 2. From the definition of the weak infimum, for every ε ∈ intS, there exist
ȳi ∈ Ψ(zi) ∩ Y, i = 1, 2, such that yi + ε > ȳi, i = 1, 2.
Since Ψ is S-convex and t ∈ [0, 1],

tȳ1 + (1 − t)ȳ2 ∈ tΨ(z1) ∩ Y + (1 − t)Ψ(z2) ∩ Y ⊂ Ψ(tz1 + (1 − t)z2) ∩ Y + S.

Hence,

ty1+(1−t)y2+ε ∈ Ψ(tz1+(1−t)z2)∩Y +intS+S ⊂ Ψ(tz1+(1−t)z2)∩Y +intS.

This is equivalent with ty1 + (1 − t)y2 + ε ∈ A(Ψ(tz1 + (1 − t)z2) ∩ Y ). From
Corollary 1.2 and the definition of the value mapping we obtain that

ty1 + (1 − t)y2 + ε ∈ A(W (tz1 + (1 − t)z2)) ∩ Y )

or equivalent,

ty1 + (1 − t)y2 + ε ∈ W (tz1 + (1 − t)z2) ∩ Y + intS.

Since ε is arbitrary, by Proposition 1.10,

ty1 + (1 − t)y2 ∈ W (tz1 + (1 − t)z2) ∩ Y + intS ⊂ W (tz1 + (1 − t)z2)

∪ A(W (tz1 + (1 − t)z2)).

Thus, (tz1 + (1 − t)z2, ty1 + (1 − t)y2) ∈ epiW and so W is S-convex.
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We note that Ψ and W satisfy the following relation.

Proposition 4.3
epiΨ ⊂ epiW ⊂ epiΨ.

Proof. Let (z, y) ∈ epiΨ. Since Ψ is a set-valued mapping from Z to Y ∪{+∞},
implies that y ∈ Ψ(z) + S. By Proposition 1.10 and Corollary 1.2, we have

y ∈ Ψ(z) + S ⊂ (W (z) + S) ∪ A(W (z)).

This means that epiΨ ⊂ epiW .
For the second inclusion, let (z, y) ∈ epiW . If y ∈ A(W (z), then

y ∈ A(WInfΨ(z)) = A(Ψ(z))

and then (z, y) ∈ epiΨ. If y ∈ W (z)∩Y +S \ intS, then there exists s ∈ S \ intS
such that y − s ∈ W (z). Let {sα} be a sequence in intS such that sα converges
to s. This means that the sequence {y − s + sα} converges to y and for all α,
y−s+sα ∈ A(W (z)) = A(WInfΨ(z)) = A(Ψ(z)). It follows that {(z, y−s+sα)}
is a sequence which belongs to the epigraph of Ψ and converges to (z, y). In
conclusion, (z, y) ∈ epiΨ.

The next theorem gives an important stability criterion for the problem (P).
This criterion has been formulated by Tanino[21] and extended by Song[18] for
the more general case of the set-valued mappings.

Theorem 4.1
Suppose that Ψ is a S-convex set-valued mapping from X ×Z to Y ∪{+∞} and
that the value mapping W is weakly S-upper bounded on a neighbourhood of 0
in Z. Then the problem (P) is stable.

Proof. If W (0) = {−∞}, then W ∗ ≡ {+∞}. From Proposition 2.6 results that
W is subdifferentiable at 0. Hence we may assume that W (0) 6= {−∞}.
By Proposition 4.2, we have that W is S-convex. Since W is weakly S-upper
bounded on a neighbourhood of 0 in Z, we have 0 ∈ int(domW ).
For the beginning we will prove that W (z) 6= {−∞}, for all z ∈ domW . Indeed,
suppose that, there exists z0 ∈ domW such that W (z0) = {−∞}. Since 0 ∈
int(domW ), there exists ε > 0 such that z1 = −εz0 ∈ domW . Since W (z0) =
{−∞}, (z0, y) ∈ epiW , for all y ∈ Y . Let y1 ∈ Y , such that (z1, y1) ∈ epiW .
Because of the S-convexity of W or equivalent, because of the convexity of epiW ,

(
1

1 + ε
z1 +

ε

1 + ε
z0,

1

1 + ε
y1 +

ε

1 + ε
y) ∈ epiW, for all y ∈ Y.

Hence, by using that z1 = −εz0, it results that (0, y) ∈ epiW , for all y ∈ Y and
hence A(W (0)) = Y ∪ {+∞}. By Corollary 1.2 and Corollary 1.7,

W (0) = WInfW (0) = {−∞}.
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But this is a contradiction.
Let now U be a neighbourhood of 0 in Z such that W is weakly S-upper bounded
on U . There exists, then, b ∈ Y such that W (z)∩ (b−S) 6= Ø, for all z ∈ U . Let
consider an arbitrary s0 ∈ intS. There exists, then, V , a neighbourhood of 0 in
Y , such that s0 + V ⊂ S. It follows that, for all y ∈ b + s0 + V and for all z ∈ U ,
W (z) ∩ (b − S) 6= Ø. This means that (0, b + s0) ∈ int(epiW ).
Let ȳ ∈ W (0). Since W (0) = WInfW (0) and 0 ∈ int(domW ), then ȳ 6= +∞
and (0, ȳ) is a boundary point of the convex set epiW in Z × Y . By a standard
separation theorem, there exists (z∗, y∗) ∈ Z∗ × Y ∗ \ {(0, 0)} such that

< z∗, 0 > + < y∗, ȳ > ≤ < z∗, z > + < y∗, y >, for all (z, y) ∈ epiW.

Since (0, ȳ + s) ∈ epiW for all s ∈ S, we have < y∗, s > ≥ 0, for all s ∈ S. This
means that y∗ ∈ S∗. Let assume that y∗ = 0. Hence,

< z∗, z > ≥ 0, for all z ∈ domW.

From 0 ∈ int(domW ) it follows that there exists V1, a ballanced and absorbing
neighbourhood of 0, such that 0 ∈ V1 ⊂ domW . It implies that for all z ∈ V1,
< z∗, z >= 0. Since V1 is absorbing, < z∗, z >= 0, for all z ∈ Z or equivalent,
z∗ = 0. This is a contradiction with (z∗, y∗) 6= (0, 0). In conclusion, y∗ 6= 0.
Hence, there exists e ∈ intS such that < y∗, e >= 1. We can now define the
function T ∈ L(Z, Y ) such that Tz = − < z∗, z > e, for all z ∈ Z. It’s clear that
z∗ = −y∗T . Thus, we have

< y∗, ȳ − T0 > ≤ < y∗, y − Tz >, for all z ∈ Z, y ∈ W (z).

(For y = +∞ , < y∗, +∞ >= +∞ ∈ R.) From Proposition 1.11, it follows that
ȳ − T0 ∈ WInf

⋃
z∈Z [W (z) − Tz] and hence T0 − ȳ ∈ W ∗(T ). By Proposition

2.6, T ∈ ∂W (0, ȳ) and thus W is subdifferentiable at 0.

The next theorem shows under what conditions for a set-valued mapping F from
X to Y there exists at every point x ∈ X a neighbourhood Ux ⊂ X such that F
should be weakly S-upper bounded on Ux, for all x ∈ X.

Theorem 4.2
Let F be a S-convex set-valued mapping from X to Y . Let assume that F (x) 6= Ø,
for all x ∈ X. If there exist an x0 ∈ X and a neighbourhood Ux0 ⊂ X of x0

such that F is weakly S-upper bounded on Ux0 , then for every x ∈ X there
exists a neighbourhood Ux ⊂ X of x such that F is weakly S-upper bounded on
Ux, ∀x ∈ X.

Proof. For x0 ∈ X, since F is weakly S-upper bounded on Ux0 , it follows that
there exists bx0 ∈ Y such that bx0 ∈ F (x) + S, for all x ∈ Ux0 .
Let x̃ ∈ X and λ > 1. It’s clear that λ−1

λ
(Ux0 −x0)+ x̃ is a neighbourhood of x̃ in

X. Let Ux̃ be another neighbourhood of x̃ in X such that Ux̃ ⊂ λ−1
λ

(Ux0 −x0)+ x̃.
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It follows that ∀ x ∈ Ux̃, there exists y ∈ Ux0 − x0 such that x − x̃ = λ−1
λ

y. By
using that F (x0 + λ(x̃ − x0)) 6= Ø, it results that ∃ bx0+λ(x̃−x0) ∈ Y such that

bx0+λ(x̃−x0) ∈ F (x0 + λ(x̃ − x0)) + S.

Because F is a S-convex mapping, we have for all y ∈ Ux0 − x0,

1

λ
bx0+λ(x̃−x0)+(1−

1

λ
)bx0 ∈

1

λ
F (x0+λ(x̃−x0))∩Y +S+(1−

1

λ
)F (x0+y)∩Y +S ⊂

F (
1

λ
(x0 + λ(x̃ − x0)) + (1 −

1

λ
)(x0 + y)) ∩ Y + S = F (

λ − 1

λ
y + x̃) + S.

Then, for all x ∈ Ux̃,

1

λ
bx0+λ(x̃−x0) + (1 −

1

λ
)bx0 ∈ F (x) + S

and this means that F is weakly S-upper bounded on Ux̃, which is a neighbour-
hood of x̃ in X.

Remark 4.2
A sufficient condition which assures that a set-valued mapping F is weakly S-
upper bounded on a neighbourhood of a point x0 has been given by Song[17]. A
set-valued maping F from X to Y is said to be S-Hausdorff lower continous
(see Aubin and Frankowska[1]) at x0 ∈ X if, for every neighborhood V of zero in
Y , there exists a neighbourhood U of zero in X such that

F (x0) ⊂ F (x) + V + S, for all x ∈ (x0 + U) ∩ domF.

Song[17] has proved that if intS 6= Ø and if a set-valued mapping F from X to
Y ∪ {+∞} is S-Hausdorff lower continous at x0 ∈ int(domF ), then F is weakly
S-upper bounded on some neighbourhood of x0.
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5 The set-valued optimization problem with con-

straints

Let U , W , (Xi)i=1,n, Y be real Hausdorff topological vector spaces, Si ∈ L(U,Xi),

i = 1, n be linear and continous mappings, (Fi)i=1,n be S-convex set-valued map-

pings from Xi to Y ∪ {+∞}, i = 1, n, xi ∈ Xi, i = 1, n be fixed points and
λi > 0, i = 1, n be fixed positive constants. Let consider V , a convex and closed
set in U , Q a closed, convex and pointed cone in W such that intQ 6= Ø and G
a Q-convex set-valued mapping from U to W .
In this chapter we will consider the following optimization problem

(Pc) min
u∈V

G(u)∩(−Q)6=Ø

n∑

i=1

λiFi(xi−Siu).

Let Z = X1 × . . .×Xn ×W be the perturbation space and let define the pertur-
bation mapping Φ from U × Z to Y ∪ {+∞}, for all (u, z1, . . . , zn, γ) ∈ U × Z =
U × X1 × . . . × Xn × W , as follows,

Φ(u, z1, . . . , zn, γ) =

{ ∑n

i=1 λiFi(xi − Siu + zi), if u ∈ V, G(u) ∩ (γ − Q) 6= Ø
Ø, otherwise.

By definition, its conjugate mapping will be

Φ∗(T, T1, . . . , Tn, Γ) = WSup
⋃

u∈U
(z,γ)∈Z

[
Tu +

n∑

i=1

Tizi + Γγ − Φ(u, z, γ)

]
,

for z = (z1, . . . , zn) ∈ X1×. . .×Xn, γ ∈ W, T ∈ L(U, Y ), Ti ∈ L(Xi, Y ), i = 1, n
and Γ ∈ L(W,Y ). From Remark 2.1(ii), follows that

Φ∗(T, T1, . . . , Tn, Γ) = WSup
⋃

u∈V
(z,γ)∈Z

G(u)∩(γ−Q)6=Ø

[
Tu +

n∑

i=1

Tixi + Γγ−

−
n∑

i=1

λiFi(xi − Siu + zi)

]
= WSup

⋃

u∈V
(z1,...,zn)∈X1×...Xn

⋃

γ∈G(u)+Q

[
Tu +

n∑

i=1

Tizi+

+ Γγ −

n∑

i=1

λiFi(xi − Siu + zi)

]
.

For all i = 1, n, we make the substitution yi = xi − Siu + zi and then we obtain

Φ∗(T, T1, . . . , Tn, Γ) = WSup
⋃

u∈V
(y1,...,yn)∈X1×...Xn

⋃

γ∈G(u)+Q

[
n∑

i=1

(Tiyi − λiFi(yi)) + Tu+
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+Γγ −
n∑

i=1

Tixi +
n∑

i=1

TiSiu

]
= WSup

⋃

u∈V

⋃

γ∈G(u)+Q

[
n∑

i=1

⋃

yi∈Xi

(Tiyi − λiFi(yi))+

+Tu + Γγ −

n∑

i=1

Tixi +
n∑

i=1

TiSiu

]
.

Further, we have

Φ∗(0, T1, . . . , Tn, Γ) = WSup
⋃

u∈V

[
n∑

i=1

⋃

yi∈Xi

(Tiyi − λiFi(yi)) + Γ(G(u) + Q)−

−
n∑

i=1

Tixi +
n∑

i=1

TiSiu

]
= WSup

[
n∑

i=1

⋃

yi∈Xi

(Tiyi − λiFi(yi)) + Γ(Q)−

−
n∑

i=1

Tixi + (
n∑

i=1

TiSi + Γ ◦ G)(V )

]
.

We denoted by Γ◦G the set-valued mapping from U to Y , defined by Γ◦G(x) =
{Γ(y)| y ∈ G(x)}, for all x ∈ U .

Remark 5.1
If F is a set-valued mapping from X to Y and G is a point-valued mapping from
X to Y , let define the sum of F and G, denoted by F + G, as the set-valued
mapping from X to Y such that

(F + G)(x) = F (x) + G(x) = {y + G(x)|y ∈ F (x)}, for all x ∈ X.

From Corollary 1.4, it follows

Φ∗(0, T1, . . . , Tn, Γ) = WSup

{
n∑

i=1

λiWSup
⋃

yi∈Xi

[
Ti

λi

yi − Fi(yi)] + WSupΓ(Q)−

−
n∑

i=1

Tixi + WSup[(
n∑

i=1

TiSi + Γ ◦ G)(V )]

}
.

By the definition of the conjugate mapping, it results

Φ∗(0, T1, . . . , Tn, Γ) = WSup

{
n∑

i=1

λiF
∗
i (

Ti

λi

) + WSupΓ(Q) −
n∑

i=1

Tixi+

+WSup[(
n∑

i=1

TiSi + Γ ◦ G)(V )]

}
.
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The dual problem of (Pc) will be

(Dc) max
Ti∈L(Xi,Y ), i=1,n

Γ∈L(W,Y )

−Φ∗(0, T1, . . . , Tn, Γ).

To solve this problem means to find the set

WSup
⋃

Ti∈L(Xi,Y ), i=1,n

Γ∈L(W,Y )

−Φ∗(0, T1, . . . , Tn, Γ).

The dual problem can be then written

(Dc) WSup
⋃

Ti∈L(Xi,Y ), i=1,n

Γ∈L(W,Y )

WInf

{
−

n∑

i=1

λiF
∗
i (

Ti

λi

) − WSupΓ(Q) +
n∑

i=1

Tixi−

−WSup[(
n∑

i=1

TiSi + Γ ◦ G)(V )]

}

or equivalent,

(Dc) WSup
⋃

Ti∈L(Xi,Y ), i=1,n

Γ∈L(W,Y )

WInf

{
n∑

i=1

λi [Tixi − F ∗
i (Ti)] − WSupΓ(Q)−

−WSup

[
(

n∑

i=1

λiTiSi + Γ ◦ G)(V )

]}
.

We want to present in the second part of this chapter a necessary condition for
the existence of the strong duality between the problems (Pc) and (Dc).

Proposition 5.1
The set-valued mapping Ψ from Z = X1× . . .×Xn ×W to Y ∪{+∞}, Ψ(z, γ) =⋃

u∈V Φ(u, z, γ) = Φ(V, z, γ) is S-convex. This will imply, by Proposition 4.2,

that the set-valued mapping W from Z to Y , W (z, γ) = WInfΨ(z, γ) is also
S-convex.

Proof. To prove that Ψ is S-convex means to prove that

tΨ(z1, γ1)∩Y +(1− t)Ψ(z2, γ2)∩Y ⊂ Ψ(tz1 +(1− t)z2, tγ1 +(1− t)γ2)∩Y +S,

for all (z1, γ1) = (z1
1 , . . . , z

1
n, γ1), (z2, γ2) = (z2

1 , . . . , z
2
n, γ2) ∈ Z = X1 × . . .×Xn ×

W and for all t ∈ [0, 1].
We have

tΨ(z1, γ1)∩Y +(1− t)Ψ(z2, γ2)∩Y = t
⋃

u∈V

G(u)∩(γ1−Q)6=Ø

n∑

i=1

λiFi(xi −Siu+ z1
i )∩Y +
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+(1 − t)
⋃

u∈V

G(u)∩(γ2−Q)6=Ø

n∑

i=1

λiFi(xi − Siu + z2
i ) ∩ Y =

=
⋃

(u,v)∈V ×V

G(u)∩(γ1−Q)6=Ø

G(v)∩(γ2−Q)6=Ø

n∑

i=1

λi

[
tFi(xi − Siu + z1

i ) ∩ Y + (1 − t)Fi(xi − Siu + z2
i ) ∩ Y

]
⊂

⊂
⋃

(u,v)∈V ×V

G(u)∩(γ1−Q)6=Ø

G(v)∩(γ2−Q)6=Ø

n∑

i=1

λiFi

(
xi + tz1

i + (1 − t)z2
i − Si(tu + (1 − t)v)

)
∩ Y + S ⊂

⊂
⋃

w∈V

G(w)∩(tγ1+(1−t)γ2−Q)6=Ø

n∑

i=1

λiFi

(
xi + tz1

i + (1 − t)z2
i − Siw

)
∩ Y + S =

= Ψ
(
tz1 + (1 − t)z2, tγ1 + (1 − t)γ2)

)
∩ Y + S.

The main theorem of this chapter represents a stability criterion for the problem
(Pc).

Theorem 5.1
If there exists u0 ∈ V such that G(u0) ∩ −intQ 6= Ø and there exists Ui, a
neighbourhood of xi − Siu0, such that Fi is weakly S-upper bounded on Ui,
i = 1, n, then the problem (Pc) is stable.

Proof. From the definition of the weakly S-upper boundeness it follows that
there exists bi ∈ Y such that bi ∈ Fi(z

′
i) + S, for all z′

i ∈ Ui, i = 1, n. Let
Vi = Ui − (xi − Siu0), i = 1, n. This means that Vi is a neighbourhood of 0 in
Xi, i = 1, n. For all zi ∈ Vi we have

bi ∈ Fi(xi − Siu0 + zi) + S, i = 1, n

and further,
n∑

i=1

λibi ∈

n∑

i=1

λiFi(xi − Siu0 + zi) + S,

for all z = (z1, . . . , zn) ∈ V1 × . . . Vn.
Let y0 be an element from the intersection G(u0) ∩ −intQ. This is equivalent
with y0 ∈ G(u0) and −y0 ∈ intQ. There exists, then, Uy0 a neighbourhood of
−y0 in W such that Uy0 ⊂ Q. Let Vy0 = Uy0 + y0. Vy0 is a neighbourhood of 0 in
W and for all γ ∈ Vy0 we have γ ∈ Uy0 + y0 ⊂ G(u0) + Q or equivalent,

G(u0) ∩ (γ − Q) 6= Ø, for all γ ∈ Vy0 .
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We obtained, finally, Ṽ = V1 × . . . Vn × Vy0 , a neighbourhood of 0 in Z = X1 ×
. . . × Xn × W such that for all (z1, . . . , zn, γ) ∈ V1 × . . . Vn × Vy0 ,

G(u0) ∩ (γ − Q) 6= Ø∑n

i=1 λiFi(xi − Siu0 + zi) ∩ (
∑n

i=1 λibi − S) 6= Ø
u0 ∈ V

or equivalent,

Φ(u0, z, γ) ∩ (
n∑

i=1

λibi − S) 6= Ø,

for all (z, γ) = (z1, . . . , zn, γ) ∈ Ṽ = V1 × . . . Vn × Vy0 . This means that

Φ(V, z, γ) ∩ (
n∑

i=1

λibi − S) 6= Ø,

for all (z, γ) = (z1, . . . , zn, γ) ∈ Ṽ = V1 × . . . Vn × Vy0 . From Corollary 1.3 and
Remark 1.1, we have

Φ(V, z, γ) ⊂ WInfΦ(V, z, γ) ∪ A(WInfΦ(V, z, γ))

or equivalent,
Φ(V, z, γ) ⊂ W (z, γ) ∪ A(W (z, γ)),

for all (z, γ) ∈ Ṽ . Let assume, at first, that W (z, γ)∩ (
∑n

i=1 λibi −S) 6= Ø. Then
it’s clear that

n∑

i=1

λibi ∈ W (z, γ) + S.

In the other case, if A(W (z, γ)) ∩ (
∑n

i=1 λibi − S) 6= Ø, then there exists y ∈
A(W (z, γ)) such that

∑n

i=1 λibi ∈ y + S. By the definition of A(W (z, γ)) it
follows that there exists y′ ∈ W (z, γ) such that y ∈ y′ + intS. This implies that

n∑

i=1

λibi ∈ y′ + intS + S ⊂ W (z, γ) + S.

In conclusion, (
∑n

i=1 λibi − S) ∩ W (z, γ) 6= Ø, for all (z, γ) ∈ Ṽ and this means
thata W is weakly S-upper bounded on a neighbourhood of 0 in Z. By Theorem
4.1, it follows that the problem (Pc) is stable.

For the case when Fi are set-valued mappings from Xi to Y , i = 1, n, by using
Theorem 4.2, we can formulate another stability criterion for the problem (Pc).

26



Theorem 5.2
Let assume that there exists u0 ∈ V such that G(u0)∩−intQ 6= Ø. Let (Fi)i=1,n

be set-valued mappings from Xi to Y . If Fi(zi) 6= Ø, for all zi ∈ Xi, i = 1, n and
there exist x0

i ∈ Xi and U 0
i a neighbourhood of x0

i in Xi such that Fi is weakly
S-upper bounded on U 0

i , i = 1, n, then the problem (Pc) is stable.

Remark 5.2
Some particular cases of (Pc) had been studied by Song[18] and by Tanino and
Sawaragi[19]. For F , a set-valued mapping from U to Rn, and V a subset of U ,
the last two authors had also considered in their common paper the following
optimization problem

(P̃c)WMin
⋃

u∈V

F (u).

For (P̃c) the strong duality theorems are true just under compactness assertions
for the set V .

Remark 5.3
Finally, we will consider for the problem (Pc) a particular case and our aim is to
find its dual problem.
Let (Xi)i=1,n, U and W be Hausdorff topological vector spaces, Fi : Xi → R,

i = 1, n let be point-valued real convex functions, A ∈ L(U,W ) a linear and
continous operator and f ∈ W . Further, let V ⊂ U be a convex and closed set, Q
be a convex, closed and pointed cone in W with nonempty interior, Si ∈ L(U,Xi),
i = 1, n be linear and continous operators, xi ∈ Xi, i = 1, n be fixed points and
λi > 0, i = 1, n be fixed positive constants. Let consider the following problem

(Prc) min
u∈V

Au+f∈−Q

n∑

i=1

λiFi(xi−Siu).

Let now define the set-valued mappings F̃i from Xi to R, F̃i(x) = {Fi(x)}, i =
1, n and the set-valued mapping from U to W , G̃(u) = {Au + f}. Under this
assumptions the problem (Prc) is equivalent with

(P̃rc) min
u∈V

G̃(u)∩(−Q)6=Ø

n∑

i=1

λiF̃i(xi−Siu).

It is clear that F̃i are R+-convex, i = 1, n and that G̃ is Q-convex. The dual
problem of (P̃rc) will be

(D̃rc) WSup
⋃

Ti∈L(Xi,R), i=1,n

Γ∈W∗

WInf

{
n∑

i=1

λi

[
Tixi − F̃ ∗

i (Ti)
]
− WSupΓ(Q)−
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− < Γ, f > −WSup
⋃

u∈V

<
n∑

i=1

λiTiSi + Γ ◦ A, u >

}
.

Using that

WSupΓ(Q) =

{
0, if Γ 5Q∗ 0 ⇐⇒ Γ ∈ −Q∗

+∞, otherwise

we obtain for the dual of (Prc) the following form

(Drc) sup
Ti∈X∗

i
, i=1,n

Γ∈−Q∗

{
n∑

i=1

λi [Tixi − F ∗
i (Ti)]−

− < Γ, f > − sup
u∈V

<

n∑

i=1

λiS
∗
i Ti + A∗Γ, u >

}
.

The same dual problem for (Prc) was obtained by Wanka and Bot[22].
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