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Abstract. We consider the dynamical system{
v(t) ∈ ∂φ(x(t))
λẋ(t) + v̇(t) + v(t) + ∇ψ(x(t)) = 0,

where φ : Rn → R ∪ {+∞} is a proper, convex and lower semicontinuous
function, ψ : Rn → R is a (possibly nonconvex) smooth function and λ > 0 is
a parameter which controls the velocity. We show that the set of limit points
of the trajectory x is contained in the set of critical points of the objective
function φ + ψ, which is here seen as the set of the zeros of its limiting
subdifferential. If the objective function is smooth and satisfies the Kurdyka-
 Lojasiewicz property, then we can prove convergence of the whole trajectory x
to a critical point. Furthermore, convergence rates for the orbits are obtained
in terms of the  Lojasiewicz exponent of the objective function, provided the
latter satisfies the  Lojasiewicz property.
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1. Introduction and preliminaries

The dynamical system {
v(t) ∈ T (x(t))
λ(t)ẋ(t) + v̇(t) + v(t) = 0,

(1.1)

where λ : [0,+∞) → [0,+∞) and T : Rn ⇒ Rn is a (set-valued) maximally
monotone operator, has been introduced and investigated in [10] as a continuous
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version of Newton and Levenberg-Marquardt-type algorithms. It has been shown
that under mild conditions on λ the trajectory x(t) converges weakly to a zero of
the operator T , while v(t) converges to zero as t→ +∞.

These investigations have been continued in [2] in the context of solving
optimization problems of the form

inf
x∈Rn
{φ(x) + ψ(x)}, (1.2)

where φ : Rn → R∪ {+∞} is a proper, convex and lower semicontinuous function
and ψ : Rn → R is a convex and differentiable function with locally Lipschitz-
continuous gradient. More precisely, problem (1.2) has been approached via the
dynamical system {

v(t) ∈ ∂φ(x(t))
λ(t)ẋ(t) + v̇(t) + v(t) +∇ψ(x(t)) = 0,

(1.3)

where ∂φ is the convex subdifferential of φ. It has been shown in [2] that if the
set of minimizers of (1.2) is nonempty and some mild conditions on the damping
function λ are satisfied, then the trajectory x(t) converges to a minimizer of (1.2)
as t→ +∞. Further investigations on dynamical systems of similar type have been
reported in [1] and [21].

The aim of this paper is to perform an asymptotic analysis of the dynamical
system (1.3) in the absence of the convexity of ψ, for constant damping func-
tion λ and by assuming that the objective function of (1.2) satisfies the Kurdyka-
 Lojasiewicz property, in other words is a KL function. To the class of KL functions
belong semialgebraic, real subanalytic, uniformly convex and convex functions sat-
isfying a growth condition. The convergence analysis relies on methods of real al-
gebraic geometry introduced by  Lojasiewicz [30] and Kurdyka [28] and developed
recently in the nonsmooth setting by Attouch, Bolte and Svaiter [7] and Bolte,
Sabach and Teboulle [16].

Optimization problems involving KL functions have attracted the interest
of the community since the works of  Lojasiewicz [30], Simon [34], Haraux and
Jendoubi [26]. The most important contributions of the last years in the field
include the works of Alvarez, Attouch, Bolte and Redont [3, Section 4] and Bolte,
Daniilidis and Lewis [12, Section 4]. Ever since the interest in this topic increased
continuously (see [5, 6, 7, 15, 16, 20, 18, 19, 23, 24, 27, 32]).

In the first part of the paper we show that the set of limit points of the
trajectory x generated by (1.3) is entirely contained in the set of critical points
of the objective function φ + ψ, which is seen as the set of zeros of its limit-
ing subdifferential. Under some supplementary conditions, including the Kurdyka-
 Lojasiewicz property, we prove the convergence of the trajectory x to a critical
point of φ+ψ. Furthermore, convergence rates for the orbits are obtained in terms
of the  Lojasiewicz exponent of the objective function, provided the latter satisfies
the  Lojasiewicz property.



Newton-like dynamics associated to nonconvex optimization problems 3

In the following we recall some notions and results which are needed through-
out the paper. We consider on Rn the Euclidean scalar product and the correspond-
ing norm denoted by 〈·, ·〉 and ‖ · ‖, respectively.

The domain of the function f : Rn → R∪ {+∞} is defined by dom f = {x ∈
Rn : f(x) < +∞} and we say that f is proper, if it has a nonempty domain. For
the following generalized subdifferential notions and their basic properties we refer
to [17, 31, 33]. Let f : Rn → R ∪ {+∞} be a proper and lower semicontinuous
function. The Fréchet (viscosity) subdifferential of f at x ∈ dom f is the set

∂̂f(x) =

{
v ∈ Rn : lim inf

y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖

≥ 0

}
.

If x /∈ dom f , we set ∂̂f(x) := ∅. The limiting (Mordukhovich) subdifferential is
defined at x ∈ dom f by

∂Lf(x)={v ∈ Rn :∃xk → x, f(xk)→ f(x) and∃vk ∈ ∂̂f(xk), vk → v as k → +∞},

while for x /∈ dom f , we set ∂Lf(x) := ∅. Obviously, ∂̂f(x) ⊆ ∂Lf(x) for each
x ∈ Rn.

When f is convex, these subdifferential notions coincide with the convex

subdifferential, thus ∂̂f(x) = ∂Lf(x) = ∂f(x) = {v ∈ Rn : f(y) ≥ f(x) +
〈v, y − x〉 ∀y ∈ Rn} for all x ∈ Rn.

The following closedness criterion of the graph of the limiting subdifferential
will be used in the convergence analysis: if (xk)k∈N and (vk)k∈N are sequences in
Rn such that vk ∈ ∂Lf(xk) for all k ∈ N, (xk, vk) → (x, v) and f(xk) → f(x) as
k → +∞, then v ∈ ∂Lf(x).

The Fermat rule reads in this nonsmooth setting as follows: if x ∈ Rn is a
local minimizer of f , then 0 ∈ ∂Lf(x). We denote by

crit(f) = {x ∈ Rn : 0 ∈ ∂Lf(x)}

the set of (limiting)-critical points of f .
When f is continuously differentiable around x ∈ Rn we have ∂Lf(x) =

{∇f(x)}. We will also make use of the following subdifferential sum rule: if f :
Rn → R ∪ {+∞} is proper and lower semicontinuous and h : Rn → R is a
continuously differentiable function, then ∂L(f + h)(x) = ∂Lf(x) +∇h(x) for all
x ∈ Rn.

Further, we recall the notion of a locally absolutely continuous function and
state two of its basic properties.

Definition 1.1. (see [10, 2]) A function x : [0,+∞) → Rn is said to be locally
absolutely continuous, if it absolutely continuous on every interval [0, T ] for T > 0.

Remark 1.2. (a) An absolutely continuous function is differentiable almost ev-
erywhere, its derivative coincides with its distributional derivative almost
everywhere and one can recover the function from its derivative ẋ = y by
integration.
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(b) If x : [0, T ] → Rn is absolutely continuous for T > 0 and B : Rn → Rn is
L-Lipschitz continuous for L ≥ 0, then the function z = B ◦ x is absolutely
continuous, too. Moreover, z is differentiable almost everywhere on [0, T ] and
the inequality ‖ż(t)‖ ≤ L‖ẋ(t)‖ holds for almost every t ∈ [0, T ].

The following two results, which can be interpreted as continuous versions
of the quasi-Fejér monotonicity for sequences, will play an important role in the
asymptotic analysis of the trajectories of the dynamical system (1.3). For their
proofs we refer the reader to [2, Lemma 5.1] and [2, Lemma 5.2], respectively.

Lemma 1.3. Suppose that F : [0,+∞) → R is locally absolutely continuous and
bounded from below and that there exists G ∈ L1([0,+∞)) such that for almost
every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t).

Then there exists limt→∞ F (t) ∈ R.

Lemma 1.4. If 1 ≤ p <∞, 1 ≤ r ≤ ∞, F : [0,+∞)→ [0,+∞) is locally absolutely
continuous, F ∈ Lp([0,+∞)), G : [0,+∞) → R, G ∈ Lr([0,+∞)) and for almost
every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t),

then limt→+∞ F (t) = 0.

The following result, which is due to Brézis ([22, Lemme 3.3, p. 73]; see also
[8, Lemma 3.2]), provides an expression for the derivative of the composition of
convex functions with absolutely continuous trajectories.

Lemma 1.5. Let f : Rn → R ∪ {+∞} be a proper, convex and lower semi-
continuous function. Let x ∈ L2([0, T ],Rn) be absolutely continuous such that
ẋ ∈ L2([0, T ],Rn) and x(t) ∈ dom f for almost every t ∈ [0, T ]. Assume that there
exists ξ ∈ L2([0, T ],Rn) such that ξ(t) ∈ ∂f(x(t)) for almost every t ∈ [0, T ]. Then
the function t 7→ f(x(t)) is absolutely continuous and for almost every t such that
x(t) ∈ dom ∂f we have

d

dt
f(x(t)) = 〈ẋ(t), h〉 ∀h ∈ ∂f(x(t)).

2. Asymptotic analysis

In this paper we investigate the dynamical system v(t) ∈ ∂φ(x(t))
λẋ(t) + v̇(t) + v(t) +∇ψ(x(t)) = 0
x(0) = x0, v(0) = v0 ∈ ∂φ(x0),

(2.1)

where x0, v0 ∈ Rn and λ > 0. We assume that φ : Rn → R ∪ {+∞} is proper,
convex and lower semicontinuous and ψ : Rn → R is possibly nonconvex and
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Fréchet differentiable with L-Lipschitz continuous gradient, for L > 0; in other
words, ‖∇ψ(x)−∇ψ(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

In the following we specify what we understand under a solution of the dy-
namical system (2.1).

Definition 2.1. Let x0, v0 ∈ Rn and λ > 0 be such that v0 ∈ ∂φ(x0). We say that
the pair (x, v) is a strong global solution of (2.1) if the following properties are
satisfied:

(i) x, v : [0,+∞)→ Rn are locally absolutely continuous functions;
(ii) v(t) ∈ ∂φ(x(t)) for every t ∈ [0,+∞);
(iii) λẋ(t) + v̇(t) + v(t) +∇ψ(x(t)) = 0 for almost every t ∈ [0,+∞);
(iv) x(0) = x0, v(0) = v0.

The existence and uniqueness of the trajectories generated by (2.1) has been
investigated in [2]. A careful look at the proofs in [2] reveals the fact that the
convexity of ψ is not used in the mentioned results on the existence, but the
Lipschitz-continuity of its gradient.

We start our convergence analysis with the following technical result.

Lemma 2.2. Let x0, v0 ∈ Rn and λ > 0 be such that v0 ∈ ∂φ(x0). Let (x, v) :
[0,+∞) → Rn × Rn be the unique strong global solution of the dynamical system
(2.1). Then the following statements are true:

(i) 〈ẋ(t), v̇(t)〉 ≥ 0 for almost every t ∈ [0,+∞);
(ii) d

dtφ(x(t)) = 〈ẋ(t), v(t)〉 for almost every t ∈ [0,+∞).

Proof. (i) See [10, Proposition 3.1]. The proof relies on the first relation in (2.1)
and the monotonicity of the convex subdifferential.

(ii) The proof makes use of Lemma 1.5. This relation has been already stated
in [2, relation (51)] without making use in its proof of the convexity of ψ. �

Lemma 2.3. Let x0, v0 ∈ Rn and λ > 0 be such that v0 ∈ ∂φ(x0). Let (x, v) :
[0,+∞) → Rn × Rn be the unique strong global solution of the dynamical system
(2.1). Suppose that φ + ψ is bounded from below. Then the following statements
are true:

(i) d
dt (φ+ ψ)(x(t)) + λ‖ẋ(t)‖2 + 〈ẋ(t), v̇(t)〉 = 0 for almost every t ≥ 0;

(ii) ẋ, v̇, v+∇ψ(x) ∈ L2([0,+∞);Rn), 〈ẋ(·), v̇(·)〉 ∈ L1([0,+∞);R) and limt→+∞
ẋ(t) = limt→+∞ v̇(t) = limt→+∞

(
v(t) +∇ψ(x(t))

)
= 0;

(iii) the function t→ (φ+ψ)(x(t)) is decreasing and ∃ limt→+∞(φ+ψ)
(
x(t)

)
∈ R.

Proof. (i) The statement follows by inner multiplying the both sides of the second
relation in (2.1) by ẋ(t) and by taking afterwards into consideration Lemma 2.2(ii).

(ii) After integrating the relation (i) and by taking into account that φ + ψ
is bounded from below, we easily derive ẋ ∈ L2([0,+∞);Rn) and 〈ẋ(·), v̇(·)〉 ∈
L1([0,+∞);R) (see also Lemma 2.2(i)). Further, by using the second relation in
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(2.1), Remark 1.2(b) and Lemma 2.2(i), we obtain for almost every t ≥ 0:

d

dt

(
1

2
‖v(t) +∇ψ(x(t))‖2

)
=

〈
v̇(t) +

d

dt
∇ψ(x(t)), v(t) +∇ψ(x(t))

〉
=

〈
v̇(t) +

d

dt
∇ψ(x(t)),−λẋ(t)− v̇(t)

〉
= −λ〈v̇(t), ẋ(t)〉 −‖v̇(t)‖2 −λ

〈
d

dt
∇ψ(x(t)), ẋ(t)

〉
−
〈
d

dt
∇ψ(x(t)), v̇(t)

〉
≤ −‖v̇(t)‖2 − λ

〈
d

dt
∇ψ(x(t)), ẋ(t)

〉
−
〈
d

dt
∇ψ(x(t)), v̇(t)

〉
≤ −‖v̇(t)‖2 + λL‖ẋ(t)‖2 + L‖ẋ(t)‖ · ‖v̇(t)‖

≤ −‖v̇(t)‖2 + λL‖ẋ(t)‖2 + L2‖ẋ(t)‖2 +
1

4
‖v̇(t)‖2,

hence
d

dt

(
1

2
‖v(t) +∇ψ(x(t))‖2

)
+

3

4
‖v̇(t)‖2 ≤ L(λ+ L)‖ẋ(t)‖2. (2.2)

Since ẋ ∈ L2([0,+∞);Rn), by a simple integration argument we obtain v̇ ∈
L2([0,+∞);Rn). Considering the second equation in (2.1), we further obtain that
v +∇ψ(x) ∈ L2([0,+∞);Rn). This fact combined with Lemma 1.4 and (2.2) im-
plies that limt→+∞

(
v(t) +∇ψ(x(t))

)
= 0. From the second equation in (2.1) we

obtain

lim
t→+∞

λẋ(t) + v̇(t) = 0. (2.3)

Further, from Lemma 2.2(i) we have for almost every t ≥ 0

‖v̇(t)‖2 ≤ λ2‖ẋ(t)‖2 + 2λ〈ẋ(t), v̇(t)〉+ ‖v̇(t)‖2 = ‖λẋ(t) + v̇(t)‖2,

hence from (2.3) we get limt→+∞ v̇(t) = 0. Combining this with (2.3) we conclude
that limt→+∞ ẋ(t) = 0.

(iii) From (i) and Lemma 2.2(i) it follows that

d

dt
(φ+ ψ)(x(t)) ≤ 0 (2.4)

for almost every t ≥ 0. The conclusion follows by applying Lemma 1.3. �

Lemma 2.4. Let x0, v0 ∈ Rn and λ > 0 be such that v0 ∈ ∂φ(x0). Let (x, v) :
[0,+∞) → Rn × Rn be the unique strong global solution of the dynamical system
(2.1). Suppose that φ + ψ is bounded from below. Let (tk)k∈N be a sequence such
that tk → +∞ and x(tk)→ x ∈ Rn as k → +∞. Then

0 ∈ ∂L(φ+ ψ)(x).



Newton-like dynamics associated to nonconvex optimization problems 7

Proof. From the first relation in (2.1) and the subdifferential sum rule of the
limiting subdifferential we derive for any k ∈ N

v(tk) +∇ψ(x(tk)) ∈ ∂φ(x(tk)) +∇ψ(x(tk)) = ∂L(φ+ ψ)(x(tk)). (2.5)

Further, we have

x(tk)→ x as k → +∞ (2.6)

and (see Lemma 2.3(ii))

v(tk) +∇ψ(x(tk))→ 0 as k → +∞. (2.7)

According to the closedness property of the limiting subdifferential, the proof is
complete as soon as we show that

(φ+ ψ)(x(tk))→ (φ+ ψ)(x) as k → +∞. (2.8)

From (2.6), (2.7) and the continuity of ∇ψ we get

v(tk)→ −∇ψ(x) as k → +∞. (2.9)

Further, since v(tk) ∈ ∂φ(x(tk)), we have

φ(x) ≥ φ(x(tk)) + 〈v(tk), x− x(tk)〉 ∀k ∈ N.

Combining this with (2.6) and (2.9) we derive

lim sup
k→+∞

φ(x(tk)) ≤ φ(x).

A direct consequence of the lower semicontinuity of φ is the relation

lim
k→+∞

φ(x(tk)) = φ(x),

which combined with (2.6) and the continuity of ψ yields (2.8). �

We define the limit set of x as

ω(x) := {x ∈ Rn : ∃tk → +∞ such that x(tk)→ x as k → +∞}.

We use also the distance function to a set, defined for A ⊆ Rn as dist(x,A) =
infy∈A ‖x− y‖ for all x ∈ Rn.

Lemma 2.5. Let x0, v0 ∈ Rn and λ > 0 be such that v0 ∈ ∂φ(x0). Let (x, v) :
[0,+∞) → Rn × Rn be the unique strong global solution of the dynamical sys-
tem (2.1). Suppose that φ+ ψ is bounded from below and x is bounded. Then the
following statements are true:

(i) ω(x) ⊆ crit(φ+ ψ);
(ii) ω(x) is nonempty, compact and connected;

(iii) limt→+∞ dist
(
x(t), ω(x)

)
= 0;

(iv) φ+ ψ is finite and constant on ω(x).
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Proof. Statement (i) is a direct consequence of Lemma 2.4.

Statement (ii) is a classical result from [25]. We also refer the reader to the
proof of Theorem 4.1 in [3], where it is shown that the properties of ω(x) of
being nonempty, compact and connected hold for bounded trajectories fulfilling
limt→+∞ ẋ(t) = 0.

Statement (iii) follows immediately since ω(x) is nonempty.

(iv) According to Lemma (2.3)(iii), there exists limt→+∞(φ+ ψ)
(
x(t)

)
∈ R.

Let us denote by l ∈ R this limit. Take x ∈ ω(x). Then there exists tk → +∞
such that x(tk) → x as k → +∞. From the proof of Lemma 2.4 we have that
(φ+ ψ)(x(tk))→ (φ+ ψ)(x) as k → +∞, hence (φ+ ψ)(x) = l. �

Remark 2.6. Suppose that φ+ ψ is coercive, in other words,

lim
‖u‖→+∞

(φ+ ψ)(u) = +∞.

Let x0, v0 ∈ Rn and λ > 0 be such that v0 ∈ ∂φ(x0). Let (x, v) : [0,+∞)→ Rn×Rn
be the unique strong global solution of the dynamical system (2.1). Then φ+ψ is
bounded from below and x is bounded.

Indeed, since φ+ ψ is a proper, lower semicontinuous and coercive function,
it follows that infu∈Rn [φ(u) + ψ(u)] is finite and the infimum is attained. Hence
φ+ ψ is bounded from below. On the other hand, from Lemma 2.3(iii) it follows

(φ+ ψ)(x(T )) ≤ (φ+ ψ)(x0) ∀T ≥ 0.

Since φ+ψ is coercive, the lower level sets of φ+ψ are bounded, hence the above
inequality yields that x is bounded. Notice that in this case v is bounded too, due
to the relation limt→+∞

(
v(t) +∇ψ(x(t))

)
= 0 (Lemma 2.3(ii)) and the Lipschitz

continuity of ∇ψ.

3. Convergence of the trajectory when the objective function
satisfies the Kurdyka- Lojasiewicz property

In order to enforce the convergence of the whole trajectory x(t) to a critical point of
the objective function as t→ +∞ more involved analytic features of the functions
have to be considered.

A crucial role in the asymptotic analysis of the dynamical system (2.1) is
played by the class of functions satisfying the Kurdyka- Lojasiewicz property. For
η ∈ (0,+∞], we denote by Θη the class of concave and continuous functions
ϕ : [0, η)→ [0,+∞) such that ϕ(0) = 0, ϕ is continuously differentiable on (0, η),
continuous at 0 and ϕ′(s) > 0 for all s ∈ (0, η).

Definition 3.1. ( Kurdyka- Lojasiewicz property) Let f : Rn → R ∪ {+∞} be a
proper and lower semicontinuous function. We say that f satisfies the Kurdyka-
 Lojasiewicz (KL) property at x ∈ dom ∂Lf = {x ∈ Rn : ∂Lf(x) 6= ∅}, if there exist
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η ∈ (0,+∞], a neighborhood U of x and a function ϕ ∈ Θη such that for all x in
the intersection

U ∩ {x ∈ Rn : f(x) < f(x) < f(x) + η}
the following inequality holds

ϕ′(f(x)− f(x)) dist(0, ∂Lf(x)) ≥ 1.

If f satisfies the KL property at each point in dom ∂Lf , then f is called KL
function.

The origins of this notion go back to the pioneering work of  Lojasiewicz [30],
where it is proved that for a real-analytic function f : Rn → R and a critical
point x ∈ Rn (that is ∇f(x) = 0), there exists θ ∈ [1/2, 1) such that the function
|f − f(x)|θ‖∇f‖−1 is bounded around x. This corresponds to the situation when
ϕ(s) = Cs1−θ for C > 0. The result of  Lojasiewicz allows the interpretation of the
KL property as a re-parametrization of the function values in order to avoid flatness
around the critical points. Kurdyka [28] extended this property to differentiable
functions definable in o-minimal structures. Further extensions to the nonsmooth
setting can be found in [12, 6, 13, 14].

One of the remarkable properties of the KL functions is their ubiquity in ap-
plications (see [16]). We refer the reader to [12, 6, 14, 16, 13, 7, 5] and the references
therein for more properties of the KL functions and illustrating examples.

In the analysis below the following uniform KL property given in [16, Lemma
6] will be used.

Lemma 3.2. Let Ω ⊆ Rn be a compact set and let f : Rn → R∪ {+∞} be a proper
and lower semicontinuous function. Assume that f is constant on Ω and that it
satisfies the KL property at each point of Ω. Then there exist ε, η > 0 and ϕ ∈ Θη

such that for all x ∈ Ω and all x in the intersection

{x ∈ Rn : dist(x,Ω) < ε} ∩ {x ∈ Rn : f(x) < f(x) < f(x) + η} (3.1)

the inequality

ϕ′(f(x)− f(x)) dist(0, ∂Lf(x)) ≥ 1. (3.2)

holds.

Due to some reasons outlined in Remark 3.6 below, we prove the convergence
of the trajectory x(t) generated by (2.1) as t → +∞ under the assumption that
φ : Rn → R is convex and differentiable with ρ−1-Lipschitz continuous gradient
for ρ > 0. In these circumstances the dynamical system (2.1) reads v(t) = ∇φ(x(t))

λẋ(t) + v̇(t) +∇φ(x(t)) +∇ψ(x(t)) = 0
x(0) = x0, v(0) = v0 = ∇φ(x0),

(3.3)

where x0, v0 ∈ Rn and λ > 0.
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Remark 3.3. We notice that we do not require second order assumptions for φ.
However, we want to notice that if φ is a twice continuously differentiable function,
then the dynamical system (3.3) can be equivalently written as{

λẋ(t) +∇2φ(x(t))(ẋ(t)) +∇φ(x(t)) +∇ψ(x(t)) = 0
x(0) = x0, v(0) = v0 = ∇φ(x0),

(3.4)

where x0, v0 ∈ Rn and λ > 0. This is a differential equation with a Hessian-driven
damping term. We refer the reader to [3] and [9] for more insights into dynamical
systems with Hessian-driven damping terms and for motivations for considering
them. Moreover, as in [9], the driving forces have been split as ∇φ +∇ψ, where
∇ψ stands for classical smooth driving forces and ∇φ incorporates the contact
forces.

In this context, an improved version of Lemma 2.2(i) can be stated.

Lemma 3.4. Let x0, v0 ∈ Rn and λ > 0 be such that v0 = ∇φ(x0). Let (x, v) :
[0,+∞) → Rn × Rn be the unique strong global solution of the dynamical system
(3.3). Then:

〈ẋ(t), v̇(t)〉 ≥ ρ‖v̇(t)‖2 for almost every t ∈ [0,+∞). (3.5)

Proof. Take an arbitrary δ > 0. For t ≥ 0 we have

〈v(t+ δ)− v(t), x(t+ δ)− x(t)〉 = 〈∇φ(x(t+ δ))−∇φ(x(t)), x(t+ δ)− x(t)〉
≥ ρ‖∇φ(x(t+ δ))−∇φ(x(t))‖2

= ρ‖v(t+ δ)− v(t)‖2, (3.6)

where the inequality follows from the Baillon-Haddad Theorem [11, Corollary
18.16]. The conclusion follows by dividing (3.6) by δ2 and by taking the limit
as δ converges to zero from above. �

We are now in the position to prove the convergence of the trajectories gen-
erated by (3.3).

Theorem 3.5. Let x0, v0 ∈ Rn and λ > 0 be such that v0 = ∇φ(x0). Let (x, v) :
[0,+∞) → Rn × Rn be the unique strong global solution of the dynamical system
(3.3). Suppose that φ+ ψ is a KL function which is bounded from below and x is
bounded. Then the following statements are true:

(i) ẋ, v̇,∇φ(x) +∇ψ(x) ∈ L2([0,+∞);Rn), 〈ẋ(·), v̇(·)〉 ∈ L1([0,+∞);R) and
limt→+∞ ẋ(t) = limt→+∞ v̇(t) = limt→+∞

(
∇φ(x(t)) +∇ψ(x(t))

)
= 0;

(ii) there exists x ∈ crit(φ+ψ) (that is ∇(φ+ψ)(x) = 0) such that limt→+∞ x(t) =
x.

Proof. According to Lemma 2.5, we can choose an element x ∈ crit(φ + ψ) (that
is ∇(φ + ψ)(x) = 0) such that x ∈ ω(x). According to Lemma 2.3(iii), the proof
of Lemma 2.4 and the proof of Lemma 2.5(iv), we have

lim
t→+∞

(φ+ ψ)(x(t)) = (φ+ ψ)(x).
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We consider the following two cases.
I. There exists t ≥ 0 such that

(φ+ ψ)(x(t)) = (φ+ ψ)(x).

From Lemma 2.3(iii) we obtain for every t ≥ t that

(φ+ ψ)(x(t)) ≤ (φ+ ψ)(x(t)) = (φ+ ψ)(x)

Thus (φ + ψ)(x(t)) = (φ + ψ)(x) for every t ≥ t. According to Lemma 2.3(i) and
(3.5), it follows that ẋ(t) = v̇(t) = 0 for almost every t ∈ [t,+∞), hence x and v
are constant on [t,+∞) and the conclusion follows.

II. For every t ≥ 0 it holds (φ+ ψ)(x(t)) > (φ+ ψ)(x). Take Ω := ω(x).
By using Lemma 2.5(ii), (iv) and the fact that φ + ψ is a KL function, by

Lemma 3.2, there exist positive numbers ε and η and a concave function ϕ ∈ Θη

such that for all u belonging to the intersection

{u ∈ Rn : dist(u,Ω) < ε} ∩ {u ∈ Rn : (φ+ ψ)(x) < (φ+ ψ)(u) < (φ+ ψ)(x) + η} ,
(3.7)

one has

ϕ′
(

(φ+ ψ)(u)− (φ+ ψ)(x)
)
· ‖∇φ(u) +∇ψ(u)‖ ≥ 1. (3.8)

Let t1 ≥ 0 be such that (φ + ψ)(x(t)) < (φ + ψ)(x) + η for all t ≥ t1. Since
limt→+∞ dist

(
x(t),Ω

)
= 0 (see Lemma 2.5(iii)), there exists t2 ≥ 0 such that for

all t ≥ t2 the inequality dist
(
x(t),Ω

)
< ε holds. Hence for all t ≥ T := max{t1, t2},

x(t) belongs to the intersection in (3.7). Thus, according to (3.8), for every t ≥ T
we have

ϕ′
(

(φ+ ψ)(x(t))− (φ+ ψ)(x)
)
· ‖∇φ(x(t)) +∇ψ(x(t))‖ ≥ 1. (3.9)

From the second equation in (3.3) we obtain for almost every t ∈ [T,+∞)

(λ‖ẋ(t)‖+ ‖v̇(t)‖) · ϕ′
(

(φ+ ψ)(x(t))− (φ+ ψ)(x)
)
≥ 1. (3.10)

By using Lemma 2.3(i), that ϕ′ > 0 and

d

dt
ϕ
(

(φ+ψ)(x(t))− (φ+ψ)(x)
)

= ϕ′
(

(φ+ψ)(x(t))− (φ+ψ)(x)
) d
dt

(φ+ψ)(x(t)),

we further deduce that for almost every t ∈ [T,+∞) it holds

d

dt
ϕ
(

(φ+ ψ)(x(t))− (φ+ ψ)(x)
)
≤ −λ‖ẋ(t)‖2 + 〈ẋ(t), v̇(t)〉

λ‖ẋ(t)‖+ ‖v̇(t)‖
. (3.11)

We invoke now Lemma 3.5 and obtain

d

dt
ϕ
(

(φ+ ψ)(x(t))− (φ+ ψ)(x)
)
≤ −λ‖ẋ(t)‖2 + ρ‖v̇(t)‖2

λ‖ẋ(t)‖+ ‖v̇(t)‖
. (3.12)

Let α > 0 (not depending on t) be such that

−λ‖ẋ(t)‖2 + ρ‖v̇(t)‖2

λ‖ẋ(t)‖+ ‖v̇(t)‖
≤ −α‖ẋ(t)‖ − α‖v̇(t)‖ ∀t ≥ 0. (3.13)
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One can for instance chose α > 0 such that 2αmax(λ, 1) ≤ min(λ, ρ). From (3.12)
we derive the inequality

d

dt
ϕ
(

(φ+ ψ)(x(t))− (φ+ ψ)(x)
)
≤ −α‖ẋ(t)‖ − α‖v̇(t)‖, (3.14)

which holds for almost every t ≥ T . Since ϕ is bounded from below, by integration
it follows ẋ, v̇ ∈ L1([0,+∞);Rn). From here we obtain that limt→+∞ x(t) exists
and the conclusion follows from the results obtained in the previous section. �

Remark 3.6. Taking a closer look at the above proof, one can notice that the
inequality (3.11) can be obtained also when φ : Rn → R ∪ {+∞} is a (possibly
nonsmooth) proper, convex and lower semicontinuous function. Though, in order
to conclude that ẋ ∈ L1([0,+∞);Rn) the inequality obtained in Lemma 2.2(i) is
not enough. The improved version stated in Lemma 3.4 is crucial in the convergence
analysis.

If one attempts to obtain in the nonsmooth setting the inequality stated in
Lemma 3.4, from the proof of Lemma 3.4 it becomes clear that one would need
the inequality

〈ξ∗1 − ξ∗2 , x1 − x2〉 ≥ ρ‖ξ∗1 − ξ∗2‖2

for all (x1, x2) ∈ Rn × Rn and all (ξ∗1 , ξ
∗
2) ∈ Rn × Rn such that ξ∗1 ∈ ∂φ(x1) and

ξ∗2 ∈ ∂φ(x2). This is nothing else than (see for example [11])

〈ξ∗1 − ξ∗2 , x1 − x2〉 ≥ ρ‖ξ∗1 − ξ∗2‖2

for all (x1, x2) ∈ Rn × Rn and all (ξ∗1 , ξ
∗
2) ∈ Rn × Rn such that x1 ∈ ∂φ∗(ξ∗1)

and x2 ∈ ∂φ∗(ξ∗2). Here φ∗ : Rn → R denotes the Fenchel conjugate of φ, defined
for all x∗ ∈ Rn by φ∗(x∗) = supx∈Rn{〈x∗, x〉 − φ(x)}. The latter inequality is
equivalent to ∂φ∗ is ρ-strongly monotone, which is further equivalent (see [35,
Theorem 3.5.10] or [11]) to φ∗ is is strongly convex. This is the same with asking
that φ is differentiable on the whole Rn with Lipschitz-continuous gradient (see
[11, Theorem 18.15]). In conclusion, the smooth setting provides the necessary
prerequisites for obtaining the result in Lemma 3.4 and, finally, Theorem 3.5.

4. Convergence rates

In this subsection we investigate the convergence rates of the trajectories(x(t), v(t))
generated by the dynamical system (3.3) as t→ +∞. When solving optimization
problems involving KL functions, convergence rates have been proved to depend
on the so-called  Lojasiewicz exponent (see [30, 12, 5, 24]). The main result of this
subsection refers to the KL functions which satisfy Definition 3.1 for ϕ(s) = Cs1−θ,
where C > 0 and θ ∈ (0, 1). We recall the following definition considered in [5].

Definition 4.1. Let f : Rn → R ∪ {+∞} be a proper and lower semicontinuous
function. The function f is said to have the  Lojasiewicz property, if for every
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x ∈ crit f there exist C, ε > 0 and θ ∈ (0, 1) such that

|f(x)− f(x)|θ ≤ C‖x∗‖ for every x fulfilling ‖x− x‖ < ε and every x∗ ∈ ∂Lf(x).
(4.1)

According to [6, Lemma 2.1 and Remark 3.2(b)], the KL property is auto-
matically satisfied at any noncritical point, fact which motivates the restriction to
critical points in the above definition. The real number θ in the above definition
is called  Lojasiewicz exponent of the function f at the critical point x.

The convergence rates obtained in the following theorem are in the spirit of
[12] and [5].

Theorem 4.2. Let x0, v0 ∈ Rn and λ > 0 be such that v0 = ∇φ(x0). Let (x, v) :
[0,+∞) → Rn × Rn be the unique strong global solution of the dynamical system
(3.3). Suppose that x is bounded and φ+ψ is a function which is bounded from below
and satisfies Definition 3.1 for ϕ(s) = Cs1−θ, where C > 0 and θ ∈ (0, 1). Then
there exists x ∈ crit(φ+ψ) (that is ∇(φ+ψ)(x) = 0) such that limt→+∞ x(t) = x
and limt→+∞ v(t) = ∇φ(x) = −∇ψ(x). Let θ be the  Lojasiewicz exponent of φ+ψ
at x, according to the Definition 4.1. Then there exist a1, b1, a2, b2 > 0 and t0 ≥ 0
such that for every t ≥ t0 the following statements are true:

(i) if θ ∈ (0, 12 ), then x and v converge in finite time;

(ii) if θ = 1
2 , then ‖x(t)− x‖+ ‖v(t)−∇φ(x)‖ ≤ a1 exp(−b1t);

(iii) if θ ∈ ( 1
2 , 1), then ‖x(t)− x‖+ ‖v(t)−∇φ(x)‖ ≤ (a2t+ b2)−( 1−θ

2θ−1 ).

Proof. According to the proof of Theorem 3.5, ẋ, v̇ ∈ L1([0,+∞);Rn) and there
exists x ∈ crit(φ+ψ), in other words ∇(φ+ψ)(x) = 0, such that limt→+∞ x(t) = x
and limt→+∞ v(t) = ∇φ(x) = −∇ψ(x). Let θ be the  Lojasiewicz exponent of φ+ψ
at x, according to the Definition 4.1.

We define σ : [0,+∞)→ [0,+∞) by (see also [12])

σ(t) =

∫ +∞

t

‖ẋ(s)‖ds+

∫ +∞

t

‖v̇(s)‖ds for all t ≥ 0.

It is immediate that

‖x(t)− x‖ ≤
∫ +∞

t

‖ẋ(s)‖ds ∀t ≥ 0. (4.2)

Indeed, this follows by noticing that for T ≥ t

‖x(t)− x‖ =

∥∥∥∥∥x(T )− x−
∫ T

t

ẋ(s)ds

∥∥∥∥∥
≤ ‖x(T )− x‖+

∫ T

t

‖ẋ(s)‖ds,

and by letting afterwards T → +∞.
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Similarly, we have

‖v(t)−∇φ(x)‖ ≤
∫ +∞

t

‖v̇(s)‖ds ∀t ≥ 0. (4.3)

From (4.2) and (4.3) we derive

‖x(t)− x‖+ ‖v(t)−∇φ(x)‖ ≤ σ(t) ∀t ≥ 0. (4.4)

We assume that for every t ≥ 0 we have (φ + ψ)(x(t)) > (φ + ψ)(x). As
seen in the proof of Theorem 3.5 otherwise the conclusion follows automatically.
Furthermore, by invoking again the proof of Theorem 3.5 , there exist ε > 0, t0 ≥ 0
and α > 0 such that for almost every t ≥ t0 (see (3.14))

α‖ẋ(t)‖+ α‖v̇(t)‖+
d

dt

[
(φ+ ψ)(x(t))− (φ+ ψ)(x)

]1−θ
≤ 0 (4.5)

and
‖x(t)− x‖ < ε.

We derive by integration for T ≥ t ≥ t0

α

∫ T

t

‖ẋ(s)‖ds+ α

∫ T

t

‖v̇(s)‖ds+
[
(φ+ ψ)(x(T ))− (φ+ ψ)(x)

]1−θ
≤
[
(φ+ ψ)(x(t))− (φ+ ψ)(x)

]1−θ
,

hence

ασ(t) ≤
[
(φ+ ψ)(x(t))− (φ+ ψ)(x)

]1−θ
∀t ≥ t0. (4.6)

Since θ is the  Lojasiewicz exponent of φ+ ψ at x, we have

|(φ+ ψ)(x(t))− (φ+ ψ)(x)|θ ≤ C‖∇(φ+ ψ)(x(t))‖
for every t ≥ t0. From the second relation in (3.3) we derive for almost every
t ∈ [t0,+∞)

|(φ+ ψ)(x(t))− (φ+ ψ)(x)|θ ≤ Cλ‖ẋ(t)‖+ C‖v̇(t)‖,
which combined with (4.6) yields

ασ(t) ≤
(
Cλ‖ẋ(t)‖+C‖v̇(t)‖

) 1−θ
θ ≤ (C max(λ, 1))

1−θ
θ ·(‖ẋ(t)‖+‖v̇(t)‖)

1−θ
θ . (4.7)

Since
σ̇(t) = −‖ẋ(t)‖ − ‖v̇(t)‖, (4.8)

we conclude that there exists α′ > 0 such that for almost every t ∈ [t0,+∞)

σ̇(t) ≤ −α′
(
σ(t)

) θ
1−θ . (4.9)

If θ = 1
2 , then

σ̇(t) ≤ −α′σ(t)

for almost every t ∈ [t0,+∞). By multiplying with exp(α′t) and integrating after-
wards from t0 to t, it follows that there exist a1, b1 > 0 such that

σ(t) ≤ a1 exp(−b1t) ∀t ≥ t0
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and the conclusion of (b) is immediate from (4.4).
Assume that 0 < θ < 1

2 . We obtain from (4.9)

d

dt

(
σ(t)

1−2θ
1−θ

)
≤ −α′ 1− 2θ

1− θ
for almost every t ∈ [t0,+∞).

By integration we obtain

σ(t)
1−2θ
1−θ ≤ −αt+ β ∀t ≥ t0,

where α > 0. Thus there exists T ≥ 0 such that

σ(T ) ≤ 0 ∀t ≥ T,

which implies that x and y are constant on [T,+∞).
Finally, suppose that 1

2 < θ < 1. We obtain from (4.9)

d

dt

(
σ(t)

1−2θ
1−θ

)
≥ α′ 2θ − 1

1− θ
for almost every t ∈ [t0,+∞). By integration we derive

σ(t) ≤ (a2t+ b2)−( 1−θ
2θ−1 ) ∀t ≥ t0,

where a2, b2 > 0. Statement (c) follows from (4.4). �
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[9] H. Attouch, P.-E. Maingé, P. Redont, A second-order differential system with
Hessian-driven damping; application to non-elastic shock laws, Differential Equa-
tions and Applications 4(1) (2012), 27–65.

[10] H. Attouch, B.F. Svaiter, A continuous dynamical Newton-like approach to solving
monotone inclusions, SIAM Journal on Control and Optimization 49(2) (2011), 574–
598.

[11] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, CMS Books in Mathematics, Springer, New York, 2011.

[12] J. Bolte, A. Daniilidis, A. Lewis, The  Lojasiewicz inequality for nonsmooth subana-
lytic functions with applications to subgradient dynamical systems, SIAM Journal on
Optimization 17(4) (2006), 1205–1223.

[13] J. Bolte, A. Daniilidis, A. Lewis, M. Shiota, Clarke subgradients of stratifiable func-
tions, SIAM Journal on Optimization 18(2) (2007), 556–572.

[14] J. Bolte, A. Daniilidis, O. Ley, L. Mazet, Characterizations of  Lojasiewicz inequali-
ties: subgradient flows, talweg, convexity, Transactions of the American Mathematical
Society 362(6) (2010), 3319–3363.

[15] J. Bolte, T.P. Nguyen, J. Peypouquet, B.W. Suter, From error bounds to the complex-
ity of first-order descent methods for convex functions, Mathematical Programming
165(2) (2017), 471–507.

[16] J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization for
nonconvex and nonsmooth problems, Mathematical Programming 146(1–2) (2014),
459–494.

[17] J.M. Borwein, Q.J. Zhu, Techniques of Variational Analysis, Springer, New York,
2005.
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