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1 Introduction

Born on July 24, 1950 Walter Schachermayer lived his childhood in Linz, Aus-
tria. He attended the Akademisches Gymnasium in Linz, where also Ludwig
Boltzmann learned Latin, Greek, Physics and Mathematics about 100 years be-
fore him. Walter studied Mathematics, Economics and Computer Science in Vi-
enna and completed his PhD under Johann Cigler’s supervision on “Cylindrical
measures and the Radon-Nikodym-property of Banach spaces” in 1976. He chose
this PhD topic inspired by Johann Cigler’s unique lectures, in particular his pre-
sentation of the theory of distributions. This experience opened his eyes for the
true nature of mathematics, as Walter describes it himself, and stimulated him
to study a year in Paris where he attended the Séminaire Maurey-Schwartz. After
finishing his PhD he continued his career in Clermont-Ferrand, Mexico City, Linz,
Vienna and Paris and is now Professor Emeritus of Mathematics at the University
of Vienna.

Walter has received many prizes, among which the prestigious Wittgenstein
Award from the Austrian Science Foundation in 1998 and an advanced ERC grant
2009 are outstanding. He received honorary doctorates from the Université Paris-
Dauphine in 2011 and Universidad de Murcia in 2018. He is member of the
Leopoldina and Academia Europaea. In 2016 he was awarded the prize for Natu-
ral Sciences of the city of Vienna. He has supervised and mentored a great num-
ber of students and post-docs in Vienna, including the authors of this article. For
many of them the years spent in Walter’s group had a lasting influence to pursue
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a scientific career, which was often crowned by professorships in distinguished
universities worldwide.

Several ground-breaking results in mathematical finance are inseparably con-
nected with his name. They paved the way towards today’s mathematical un-
derstanding of arbitrage [24, 9, 10, 11, 12, 1], utility optimization [19, 20], trans-
actions costs [25, 14, 6] or martingale optimal transport [2], to name only a few.

In his mathematical reasoning abstract functional analysis and stochastic analysis
meet in a unique way with questions from finance and Viennese charm. Unforget-
table are talks at conferences where he illustrates most abstract functional analytic
results with the simplest possible example. He is also known as a smiling advocat
of mathematical rigor in every detail, which is the only way to create results which
are still true tomorrow.

Walter is also famous for eloquent, sharp and clear contributions to public dis-
cussions in Austria: he demonstrated impressively the salient difference between
“possible” and “likely” on the example of the (probabilistically) pointless rerun of
the last presidential election. He also contributed to discussions on public debts of
European countries by pointing to the fact that every debitor has to have a creditor
as counterpart, thus presenting questions about goverment’s debts in the proper
light.

To exemplifiy Walter’s approach to mathematical problems we shall focus on a
preeminent contribution, a joint work with Freddy Delbaen in Mathematische
Annalen, 1994, see [9]. Needless to say that our guided tour through this im-
pressive work would also qualify as a laudatio for Freddy Delbaen. In this article
they solved an open problem in the foundations of mathematical finance, namely
how to characterize the absence of arbitrage in an economically convincing way
and how to fully establish its workable probabilistic counterpart. The result itself
requires, although clearly rooted in financial practice, a deep understanding of
stochastic and functional analysis, which brought the theory of semimartingales
as well as geometry of Banach spaces in the arena of finance: an instance of the
maxim “there is nothing more practical than a good theory”.

Let us first state the result in non-formal terms. The question which models are ad-
equate to describe prices in financial markets has many layers of answers. Should
models be deterministic or stochastic, chosen by methods from partial differen-
tial equations, statistics, econometrics or economics, should they be analytically
tractable, or rather robust? Within all these categories profound answers can be
formulated, but the most far reaching answer, solving the problem in utmost gen-
erality, can be given when prices are modeled by continuous time stochastic pro-
cesses. This is the Fundamental Theorem of Asset Pricing (FTAP).

To illustrate the key idea in a simple setup, imagine a discrete time model for the
next time instant in a financial market with d assets. This is a model, which has
known prices S0 ∈ R

d and random prices S1 in the next time step. If we want
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to compare prices, we should quote them in discounted terms, that is relative to
some riskfree, i.e. non-defaultable quantity (for instance an Austrian bond). An
investment is just a choice φ∈R

d , where each component of the investment vector
φ corresponds to the number of shares held in the respective asset. Apparently
the value of this investment now is 〈φ,S0〉, in the next instant 〈φ,S1〉, its change
(by virtue of being discounted) is just 〈φ,S1− S0〉. Such an investment should
not produce a riskless gain, a reasonable economic assumption called Absence of

Arbitrage. A riskless gain or arbitrage just means that with probability 1, we do
not loose anything and with positive probability we gain something. Absence of

Arbitrage can therefore be formulated as follows: there does not exist φ∈R
d such

that
0 6= 〈φ,S1−S0〉 ≥ 0

almost surely. Turning to mathematics, this implies that S0 must lie in the relative
interior of the convex hull of the support of the law of S1. Indeed, otherwise 0
would not lie in the relative interior of the convex hull of the support of the law of
S1−S0, whence a separating hyperplane provides us with a vector φ, an arbitrage.

Recall now the non-trivial result that the expectation of a random variable X with
values in R

d actually lies in the relative interior of the convex hull of the support
of its law (sharpening the easy result that it lies in the closed convex hull) and
that every point in the relative interior of the convex hull of the support of the law
is an expectation of X with respect to some equivalent measure. This together
with the Absence of Arbitrage condition then implies the existence of a martin-

gale measure, i.e. Q ∼ P such that EQ[S1] = S0 . The simpler converse direction
then yields equivalence between these two properties. Note that for this and the
subsequent analysis the set of nullsets is always fixed but not necessarily the mea-
sure P. Relaxing this assumption led to an important strand of research, robust
finance, to which Walter contributed with several co-authors. We refer in partic-
ular to a model-free version of the FTAP, see [1], with Beatrice Acciaio, Mathias
Beiglböck and Friedrich Penkner.

Going from the one period case towards a dynamic picture, namely making S0 a
random variable itself measurable with respect to today’s information (modeled
by a σ-algebra), is a bit delicate. Either one goes for a conditional version of the
previous argument, which of course exists, or one brings in a new aspect: duality.
This also reveals the actual nature of the measure Q. Consider the set of outcomes
of investmentsC0 at zero initial wealth, i.e. the set of all f = 〈φ,S1−S0〉−gwhere
φ is now a random variable measurable with respect to the initial information and
g ≥ 0 corresponds to consumption. Then, clearly, every martingale measure Q

yields EQ[ f ]≤ 0 with the understanding that 0≤ EQ[g]≤∞. Absence of arbitrage
just means that

C0∩L0
≥0 = {0} ,

where L0 denotes the space of (equivalence classes of) all random variables. If
C0 is appropriately closed, then Q can just be understood as a strictly positive
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element of the dual cone of C0. Of course C0 is closed in probability, which actu-
ally is enough to guarantee the existence of a strictly positive dual element. This
now constitutes on a one period level the assertion of the fundamental theorem of
asset pricing. The question is whether there is a continuous time version of this
argument.

When we see these arguments, several problems in view of a fully time-continuous
theorem become apparent:

• Since we do not want to impose artificial moment conditions on discounted
prices, we have to work in L0 with respect to convergence in probability.
Even though being a topological vector space, L0 in general is not locally
convex and generically its dual space is just {0}. This points towards some
problems when speaking about polar cones and duality, to say the least.

• Even if we are able to work with an appropriate duality, the polar cone will
generically not be generated a single measure Q but have multiple dimen-
sions. This means when passing from a one period level to continuous time
one has to concatenate not-uniquely given measures Q, which are condi-
tionally dual elements. This points towards the use of measurable selection
theorems, which is often delicate and cumbersome, and a road which has
not been taken by Freddy Delbaen and Walter Schachermayer.

• They rather first revealed the nature of discounted price processes, namely
that they have to be semimartingales. This in turn led to intricate questions
in stochastic analysis, precisely how to define and analyze spaces of termi-
nal values of stochastic integrals.

It is the goal of this article to present Walter’s and Freddy’s solution to all the
above problems. Before doing so, let us put their result, which can be seen as the
single most important result of mathematical finance, in a historical context.

2 Some historical remarks on the FTAP

Today’s most cited FTAP version proved by Freddy and Walter establishes in con-
tinuous time under a fairly weak assumption on a set X of admissible portfolio
wealth processes for self-financing, discounted portfolios, a property called No

Free Lunch with Vanishing Risk (NFLVR), the existence of an equivalent sepa-

rating measure Q∼ P. This rather technical sounding assertion is the correct and
sharp mathematical formulation of the vague “meta-theorem” stating that no ar-
bitrage is essentially equivalent to the existence of an equivalent martingale mea-
sure (as sketched in the one period model above) and has thus tremendous conse-
quences: first, models can be easily characterized to satisfy (NFLVR) by simply
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checking whether such a separating measure Q∼ P exists. Second, the statement
of FTAP is, mathematically speaking, the characterization of typical elements of
a polar cone, which in turn allows to look at optimization problems from a dual
point of view. Third, by simple economic arguments, separating measures Q∼ P

lead to pricing structures for general payoffs.

The long history of FTAP is widely ramified, as can be seen from the excellent
overview article [26] by Walter Schachermayer or the monograph “The Mathe-
matics of Arbitrage” [12] by Freddy Delbaen and Walter Schachermayer. Let us
here only briefly state the main milestones up to 1998. For further developments
after 1998 we refer to [5] and the references therein. The subsequent presentation
is also based to a large extent on this article.

The history of FTAP traces back to the work of Fisher Black and Myron Samuel
Scholes [4] as well as Robert Merton in 1973. Indeed, their formula was the
starting point for an investigation between the relation of pricing by no arbitrage
considerations and pricing by taking “risk neutral” expectations (with respect to
a martingale measure). In the late 1970s and early 1980s major advances in es-
tablishing a precise mathematical connection between those notions and proving
first versions of FTAP in different settings were achieved by Stephen Ross [23],
Michael Harrison, David Kreps and Stan Pliska [15, 16, 21]. These seminal pa-
pers have been generalized and further developed in many directions, in partic-
ular a first complete proof of FTAP in finite discrete time was given by Robert
Dalang, Andrew Morton and Walter Willinger [7] extending the Harrison-Pliska
result [16]. In continuous time, Christophe Stricker [27] combined the result of
David Kreps with a theorem by Jia-An Yan [28], which is now known under the
name Kreps-Yan theorem and which states the equivalence between No free lunch

(NFL) and the existence of an equivalent separating measure (see Theorem 2).

The remaining major challenge was to replace the strong condition of (NFL) (in-
volving closures in the weak-∗-topology in L∞) by an economically convincing
concept which only slightly strengthens the intuitive notion of absence of arbi-
trage. It turns out that the concept of (NFLVR) introduced by Freddy Delbaen
and Walter Schachermayer in [9] is precisely the right minimal and economically
meaningful requirement which still allows to conclude the existence of an equiv-
alent separating measure. Also the concept of No Free Lunch with Bounded Risk,
as applied by Walter Schachermayer in [24] in the discrete infinite time horizon
case, would serve this purpose, however, (NFLVR) is even weaker. Freddy and
Walter consider as set of admissible portfolio wealth processes X stochastic inte-
grals (φ•S), for admissible integrands φ with respect to a one dimensional locally
bounded semimartingale S. Their beautiful and impressive proof builds on deep
insights and is in some parts quite tricky. It was taken up by Youri Kabanov who
introduced, inspired also by [8], in a sharply focused paper [17], an abstract set-
ting of admissible portfolio wealth processes (see Remark 1 below) allowing for
convexity constraints and unbounded jumps: Youri Kabanov’s insight was that
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the proof of [9] transfers almost literally to this novel setup. This is another il-
lustration of the statement, that Freddy Delbaen and Walter Schachermayer have
chosen the simplest setting which contains all aspects and the complete proof of
the most general finite dimensional case. While cleverly working in a one di-
mensional setting for this general version of the FTAP, Walter considered more or
less at the same time with his first PhD student Irene Klein the setting of large fi-
nancial markets [18], which substantially differs from the finite dimensional case.
Finally in [11], Freddy and Walter considered the extension to unbounded contin-
uous time stochastic processes, where the relation between a separating measure
and a (generalized) martingale measure is more subtle, which has independently
been proved in [17], too.

3 The setting of the proof of FTAP

Cumulative gains and loss processes, which are ubiquitous in finance, appear as
discretizations of integrals. Hence it is completely natural to assume that dis-
counted price processes are actually good integrators, i.e. stochastic processes
where cumulative gains and loss processes satisfy a certain continuity property. It
is a deep result, the Bichteler-Dellacherie theorem, that good integrators are ac-
tually semimartingales, i.e. the sum of a local martingale and an adapted process
of finite total variation. Walter Schachermayer also contributed to this topic by
providing rather recently together with Mathias Beiglböck and Bezirgen Veliyev
another elementary proof of this important result under an even weaker and finan-
cially inspired assumption (see [3]).

Let now S be the space of such good integrators, i.e. semimartingales X defined
on a finite interval [0,1] and starting from zero. The space S is equipped with the
Emery topology, named after Michel Emery and defined by the metric

dE(X1,X2) := sup
K∈bE ,‖K‖∞≤1

E
[
|(K • (X1−X2))|

∗
1∧1

]
,

where |X |∗1 = supt≤1 |Xt |, bE denotes the set of simple predictable strategies, that
is, K is of the form

K =
n

∑
i=0

Ki1]τi,τi+1] ,

with n ∈ N, stopping times 0 = τ0 ≤ τ1 ≤ ·· · ≤ τn ≤ τn+1 = 1 and Ki are Fτi-
measurable random variables.

The space of semimartingales is a complete topological vector space with the
Emery topology, which follows essentially from the Bichteler-Dellacherie Theo-
rem, see [13].
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Beside convergence in the Emery topology, pathwise uniform convergence in
probability plays an essential role. This type of convergence is metrized by

E[|X−Y |∗1∧1] = d(X ,Y ) ,

which makes the space of càdlàg processes a complete topological vector space.
Obviously uniform convergence in probability is a weaker topology than the
Emery topology.

Let now S be a one dimensional semimartingale. Then the set X of all stochastic
integrals (φ • S), where φ is S-integrable such that there exists a uniform bound
from below (φ•S)≥−λ, for some λ≥ 0, is a set of admissible wealth processes
generated by

X1 :=
{
(φ•S) | φ is S-integrable and(φ•S)≥−1

}
(8)

in the sense that X = ∪λ>0λX1.

Remark 1. Youri Kabanov suggests in [17] to work in the following more gen-

eral setting: we are just given a convex set X1 ⊂ S of semimartingales, which is

supposed to satisfy the following axiomatic properties

• starting at 0,
• bounded from below by −1,
• being closed in the Emery topology, and

• the concatenation property: for all bounded, predictable strategies H,G ≥
0, X ,Y ∈ X1 with HG = 0 and Z = (H •X)+ (G •Y ) ≥ −1, it holds that

Z ∈ X1.

Note that the set (8) satisfies precisely the properties stated in Remark 1. Con-
vexity and the concatenation property are both just facts of stochastic integration
theory, while the most crucial property namely closedness in the Emery topology
is a consequence of Jean Mémin’s theorem (see [22]).

We denote by X the set X = ∪λ>0λX1 and call its elements admissible portfolio

wealth processes. The elements of X1 are called 1-admissible wealth processes.
We denote by K0, respectively K1

0 the evaluations of elements of X , respectively
X1, at terminal time T = 1.

Let us introduce several notions of absence of arbitrage, for which we define the
following convex cones:

C0 := K0−L0
≥0, C := (K0−L0

≥0)∩L∞. (9)

(NA) The set X is said to satisfy No Arbitrage, if

(K0−L0
≥0)∩L0

≥0 =C0∩L0
≥0 = {0},

which can be easily shown to be equivalent to

((K0−L0
≥0)∩L∞)∩L∞

≥0 =C∩L∞
≥0 = {0}.
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(NFLVR) The set X is said to satisfy No Free Lunch with Vanishing Risk, if

C∩L∞
≥0 = {0},

whereC denotes the norm closure in L∞.

(NFL) The set X is said to satisfy No Free Lunch, if

C
∗
∩L∞

≥0 = {0},

whereC
∗
denotes the weak-∗-closure in L∞.

(NUPBR) The set X1 is said to satisfy No Unbounded Profit with Bounded Risk,
if K1

0 is a bounded subset of L0.

Remark 2. 1. (NFLVR) can be proved to be equivalent to (NA) and (NUPBR),

i.e., (NFLVR) ⇔ (NA) + (NUPBR) (see [9, Corollary 3.8]). This is an

essential insight.

2. (NFLVR) or even (NUPBR) are economically convincing minimal require-

ment for models, but only (NFL) allows to conclude relatively directly the

existence of an equivalent separating measure, defined below.

Definition 1. The set X satisfies the (ESM) (equivalent separating measure) prop-

erty, if there exists an equivalent measure Q ∼ P such that EQ[X1] ≤ 0 for all

X ∈ X .

Under (NFL), the (ESM) property is a consequence of the Kreps-Yan Theorem,
which in turn follows directly from Hahn-Banach’s Theorem. For convenience
we provide a proof here following [17]:

Theorem 2. Fix p ∈ [1,∞] and set q conjugate to p. Suppose C ⊆ Lp is a convex

cone with C ⊇ −L
p
≥0 and C∩L

p
≥0 = {0}. If C is closed in σ(Lp,Lq), then there

exists Q∼ P with
dQ
dP
∈ Lq(P) and EQ[Y ]≤ 0 for all Y ∈C.

Proof. Any x ∈ L
p
≥0\{0} is disjoint from C, so we can apply the Hahn-Banach-

theorem to strictly separate x from C by some zx ∈ Lq. The cone property gives
us E[zxY ]≤ 0, for all Y ∈C andC ⊃−L

p
≥0 gives zx ≥ 0. Strict separation implies

zx 6= 0, so that we can normalize to E[zx] = 1.

We next form the family of sets {Γx := {zx > 0}|x∈ L
p
≥0\{0}}. Then one can find

a countable subfamily (Γxi)i∈N with P[∪iΓxi ] = 1. For suitably chosen weights
γi > 0, i ∈N, one gets that Z := ∑∞

i=1 γizxi is Z > 0 almost surely with respect to P,
Z ∈ Lq and E[ZY ] ≤ 0, for all Y ∈C. Through normalization we get to E[Z] = 1,
then dQ := ZdP does the job.
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Apparently we have

(NFL)=⇒ (NFLVR)=⇒ (NA) ,

but it is an astonishing and deep insight of Walter Schachermayer and Freddy
Delbaen that under (NFLVR) it holds thatC=C

∗
, i.e. the coneC is already weak-

∗-closed and (NFL) holds.

The fundamental theorem of asset pricing then reads as follows:

Theorem 3. Under (NFLVR) the cone C is weak ∗-closed, hence (NFL) holds,

which is equivalent to (ESM). In other words: (NVLVR)⇔ (ESM).

4 A guided tour through the proof of FTAP

In this section we comment on the main steps of the proof of FTAP as presented
in [9]. The proof actually splits into two parts: First a series of conclusions are
presented, which can be easily motivated with financial (trading) arguments. Sec-
ondly five lemmas follow, whose content is more technical and which are consid-
erably harder to prove.

The first series of conclusions is the following:

1. The convex cone C defined in (9) is closed with respect to the weak-∗-
topology, if and only if C0 is Fatou-closed, i.e. for any sequence ( fn)
in C0 uniformly bounded from below and converging almost surely to f

it holds that f ∈ C0, see [9, Theorem 2.1] essentially tracing back to
A. Grothendieck. Notice that this step, whose core is the Krein-Smulian
theorem, reduces the calculation of the weak-∗-closure to a calculation with
sequences.

2. Take now −1 ≤ fn ∈ C0 converging almost surely to f . Then we can find
fn ≤ gn = Y n

1 with Y n ∈ X .

3. By (NA) it follows that each Y n ∈ X1 by a simple trading argument.

4. By (NUPBR) it follows that there are forward-convex combinations Ỹ n ∈

conv(Y n,Y n+1, . . .) such that Ỹ n
1 → h̃0 ≥ f almost surely. This is another

appearance of Komlos lemma, which is a crucial tool in the proof.

5. This implies that the set K̂1
0 ∩{g∈ L0 |g≥ f}, where K̂1

0 denotes the closure
of K1

0 in L0, is non-empty. Since it is also bounded by (NUPBR) and closed,

a maximal element h0 exists (see [9, Lemma 4.3]). Since h0 ∈ K̂1
0 , we can

find a sequence of semimartingales Xn ∈X1 such that Xn
1 → h0 almost surely

and h0 is maximal above f with this property.
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6. The previously constructed “maximal” sequence of semimartingales Xn ∈
X1 converges pathwise uniformly in probability, i.e. |Xn−X |∗1→ 0 in prob-
ability, to some càdlàg process X (see [9, Lemma 4.5]). This is again a
beautiful trading argument, where financial intuition meets topology.

Even though the processes Xn are just semimartingales, they behave in several
respects like martingales, in particular when convergence of terminal values leads
to uniform convergence in probability. This phenomenon is of course not true
for finite variation processes. At this point one could conjecture that a sort of
martingality with respect to an equivalent measure could hold, but it is not at all
clear how to even formulate this.

Since it is of crucial importance we devote a proper definition to maximality as
given before Lemma 4.3 in [9]:

Definition 2. An element h0 ∈ K̂1
0 (where K̂1

0 denotes the closure of elements of K1
0

which dominate f ) is called maximal, if it is maximal with respect to the pointwise

(partial) ordering in L0.

It is now the goal to show that the sequence (Xn) constructed in 6. above converges
to X in the Emery topology, an apparently much stronger statement. From this it
follows that h0 = limn→∞Xn

1 = X1 ∈ K1
0 , since X1 is closed in the Emery topology.

This in turn implies that f ∈C0, which finishes the proof by step (i) above.

Convergence in the Emery topology can be shown with respect to any equivalent
measure Q∼ P, since this notion of convergence only depends on the equivalence
class of probability measures. By the basic convergence result 6. we know that
ξ := supn |X

n|∗1 ∈ L0 (after passing to a subsequence). We can therefore find a
measure Q∼ P (take, e.g., dQ/dP= cexp(−ξ)) such that Xn ∈ L2(Q), hence we
can continue the analysis with L2-methods, in order to prove Emery convergence
with respect to Q. This is an old trick, which works due to Bichteler-Dellacherie
or Girsanov-Meyer for semimartingales.

Now the series of more technical lemmas starts: assume (NUPBR), take a se-
quence of (special thanks to an appropriate change of measure) semimartingales
Xn = An+Mn whose sup-processes |Xn|∗1 are uniformly bounded in L2(Q).

1. First key lemma: the sequence |Mn|∗1 is bounded in L0 (see [9, Lemma
4.7]). Several trading arguments take place here. In general it is difficult to
estimate the martingale part when just knowing that a sum with some total
variation process converges uniformly in probability.

2. Second key lemma: define τnc := inf{t | |Mn|∗t > c} for some c > 0, Xn
c :=

(1[τnc ,∞[ •X
n), then for every ε > 0 there is c0 > 0 such that for all

X̃ ∈ ∪c≥c0 conv(X
1
c , . . . ,X

n
c , . . .)
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it holds that Q[|M̃|
∗

1 > ε]≤ ε (see [9, Lemma 4.8]). If |Mn|∗ is getting large,
not much of the martingale part is left anymore.

3. Third key lemma: for every δ > 0 there is c0 > 0 such that for all X̃ ∈
∪c≥c0 conv(X

1
c , . . . ,X

n
c , . . .) it holds that dE(M̃,0)≤ δ (see [9, Lemma 4.9]).

Here the previous statement is sharpened: even the Emery metric of the
above martingale part is small.

4. Fourth key lemma: there exists X̃n ∈ conv(Xn, . . .) such that M̃n converges
in the Emery topology (see Lemma 4.10 in [9]). Forward convex combina-
tions then lead to a sequence of semimartingales, still with the same limit of
terminal values such that the martingales parts converge in the Emery topol-
ogy: if |Mn

t |
∗ stays small, we can conclude by Burkholder-Davis-Gundy in-

equality, and when it gets large by the previous considerations. It converges
to 0 in the Emery topology anyway.

Proposition 1. Let X1 satisfy (NUPBR). Let X̃n = M̃n+ Ãn ∈ X1 be a sequence

of special semimartingales, whose terminal values Xn
1 converge to a maximal el-

ement h0 in probability such that M̃n converges in the Emery topology. Then Ãn

converges in the Emery topology as well.

Proof. See [9, Lemma 4.11]. This is again a beautiful trading argument, where
the still unclear Emery convergence of the finite variation part is proved. Here
the concatenation property is used in full strength, in particular we need it for all
predictable dynamic trades.

As already argued above, this proposition together with the key Lemma (iv) im-
plies that f ∈C0 yielding that C is in fact weak ∗-closed by step (i) above. Hence
the assumptions of the Kreps-Yan Theorem 2 are satisfied and we can conclude
(ESM), i.e. the existence of a separating measure.

If the proof was a movie, it would win an Oscar for maintaining tension up to the
end, which turns out to be a happy one, since the desired Emery convergence can
finally indeed be achieved.
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