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Abstract

We give a review of classical and recent results on maximization of
expected utility for an investor who has the possibility of trading in a
financial market. Emphasis will be given to the duality theory related
to this convex optimization problem.

For expository reasons we first consider the classical case where the
underlying probability space Ω is finite. This setting has the advantage
that the technical difficulties of the proofs are reduced to a minimum,
which allows for a clearer insight into the basic ideas, in particular the
crucial role played by the Legendre-transform. In this setting we state
and prove an existence and uniqueness theorem for the optimal invest-
ment strategy, and its relation to the dual problem; the latter consists
in finding an equivalent martingale measure optimal with respect to the
conjugate of the utility function. We also discuss economic interpreta-
tions of these theorems.

We then pass to the general case of an arbitrage-free financial market
modeled by an Rd-valued semi-martingale. In this case some regularity
conditions have to be imposed in order to obtain an existence result
for the primal problem of finding the optimal investment, as well as for
a proper duality theory. It turns out that one may give a necessary
and sufficient condition, namely a mild condition on the asymptotic
behavior of the utility function, its so-called reasonable asymptotic elas-
ticity. This property allows for an economic interpretation motivating
the term “reasonable”. The remarkable fact is that this regularity con-
dition only pertains to the behavior of the utility function, while we
do not have to impose any regularity conditions on the stochastic pro-
cess modeling the financial market (to be precise: of course, we have
to require the arbitrage-freeness of this process in a proper sense; also
we have to assume in one of the cases considered below that this pro-
cess is locally bounded; but otherwise it may be an arbitrary Rd-valued
semi-martingale).
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gram Z36-MAT and grant SFB#010 and by the Austrian National Bank under grant ’Ju-
biläumsfondprojekt Number 8699’ is gratefully acknowledged.
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We state two general existence and duality results pertaining to the
setting of optimizing expected utility of terminal consumption. We
also survey some of the ramifications of these results allowing for in-
termediate consumption, state-dependent utility, random endowment,
non-smooth utility functions and transaction costs.
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1 Introduction

A basic problem of mathematical finance is the problem of an economic agent,
who invests in a financial market so as to maximize the expected utility of her
terminal wealth. As we shall see in (16) below, this problem can be written in
an abstract way as

E

[
U

(
x+

∫ T

0

HudSu

)]
−→ max!, (1)

where we optimize over all “admissible” trading strategies H. In the frame-
work of a continuous-time model the problem was studied for the first time by
R. Merton in two seminal papers [M 69] and [M 71] (see also [M 90] as well as
[S 69] for a treatment of the discrete time case). Using the methods of stochas-
tic optimal control Merton derived a non-linear partial differential equation
(Bellman equation) for the value function of the optimization problem. He
also produced the closed-form solution of this equation, when the utility func-
tion is a power function, the logarithm, or of the form −e−γx for γ > 0.

The Bellman equation of stochastic programming is based on the assump-
tion of Markov state processes. The modern approach to the problem of
expected utility maximization, which permits us to avoid the assumption of
Markovian asset prices, is based on duality characterizations of portfolios pro-
vided by the set of martingale measures. For the case of a complete financial
market, where the set of martingale measures is a singleton, this “martingale”
methodology was developed by Pliska [P 86], Cox and Huang [CH 89], [CH 91]
and Karatzas, Lehoczky and Shreve [KLS 87]. It was shown that the marginal
utility of the terminal wealth of the optimal portfolio is proportional to the
density of the martingale measure; this key result naturally extends the classi-
cal Arrow-Debreu theory of an optimal investment derived in a one-step, finite
probability space model.

Considerably more difficult is the case of incomplete financial models. It
was studied in a discrete-time, finite probability space model by He and Pear-
son [HP 91], and, in a continuous-time diffusion model, by He and Pearson
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[HP 91a], and by Karatzas, Lehoczky, Shreve and Xu in their seminal paper
[KLSX 91]. The central idea here is to solve a dual variational problem and
then to find the solution of the original problem by convex duality, the latter
step being similar as in the case of a complete model.

We now formally assemble the ingredients of the optimization problem.
We consider a model of a security market which consists of d + 1 assets.

We denote by S = ((Sit)0≤t≤T )0≤i≤d the price process of the d stocks and
suppose that the price of the asset S0, called the “bond” or “cash account”,
is constant, S0

t ≡ 1. The latter assumption does not restrict the generality of
the model as we always may choose the bond as numéraire (c.f., [DS 95]). In
other words, ((Sit)0≤t≤T )1≤i≤d, is an Rd-valued semi-martingale modeling the
discounted price process of d risky assets.

The process S is assumed to be a semimartingale based on and adapted to
a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions
of saturatedness and right continuity. As usual in mathematical finance, we
consider a finite horizon T , but we remark that our results can also be extended
to the case of an infinite horizon.

In section 2 we shall consider the case of finite Ω, in which case the paths
of S are constant except for jumps at a finite number of times. We then can
write S as (St)

T
t=0 = (S0, S1, . . . , ST ), for some T ∈ N.

The assumption that the bond is constant is mainly chosen for notational
convenience as it allows for a compact description of self-financing portfolios: a
self-financing portfolio Π is defined as a pair (x,H), where the constant x is the
initial value of the portfolio and H = (H i)1≤i≤d is a predictable S-integrable
process specifying the amount of each asset held in the portfolio. The value
process X = (Xt)0≤t≤T of such a portfolio Π at time t is given by

Xt = X0 +

∫ t

0

HudSu, 0 ≤ t ≤ T, (2)

where X0 = x and the integral refers to stochastic integration in Rd.
In order to rule out doubling strategies and similar schemes generating

arbitrage-profits (by going deeply into the red) we follow Harrison and Pliska
([HP 81], see also [DS 94]), calling a predictable, S-integrable process admissi-
ble, if there is a constant C ∈ R+ such that, almost surely, we have

(H ·S)t :=

∫ t

0

HudSu ≥ −C, for 0 ≤ t ≤ T. (3)

Let us illustrate these general concepts in the case of an Rd-valued process
S = (St)

T
t=0 in finite, discrete time adapted to the filtration (Ft)Tt=0. In this

case each Rd-valued process (Ht)
T
t=1, which is predictable (i.e. each Ht is Ft−1-

measurable), is S-integrable, and the stochastic integral reduces to a finite
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sum

(H ·S)t =

∫ t

0

HudSu (4)

=
t∑

u=1

Hu∆Su (5)

=
t∑

u=1

Hu(Su − Su−1), (6)

whereHu∆Su denotes the inner product of the vectorsHu and ∆Su = Su−Su−1

in Rd. Of course, each such trading strategy H is admissible if the underlying
probability space Ω is finite.

Passing again to the general setting of an R
d-valued semi-martingale

S = (St)0≤t≤T we denote as in [KS 99] by Me(S) (resp. Ma(S)) the set of
probability measures Q equivalent to P (resp. absolutely continuous with re-
spect to P) such that for each admissible integrand H, the process H ·S is a
local martingale under Q.

Throughout the paper we assume the following version of the no-arbitrage
condition on S:

Assumption 1.1 The set Me(S) is not empty.1

We note that in this paper we shall mainly be interested in the case when
Me(S) is not reduced to a singleton, i.e., the case of an incomplete financial
market.

After having specified the process S modeling the financial market we now
define the function U(x) modeling the utility of an agent’s wealth x at the
terminal time T .

We make the classical assumptions that U : R → R ∪ {−∞} is increasing
on R, continuous on {U > −∞}, differentiable and strictly concave on the
interior of {U > −∞}, and that marginal utility tends to zero when wealth
tends to infinity, i.e.,

U ′(∞) := lim
x→∞

U ′(x) = 0. (7)

1If follows from [DS 94] and [DS 98a] that Assumption 1.1 is equivalent to the condition
of “no free lunch with vanishing risk”. This property can also be equivalently characterised
in terms of the existence of a measure Q ∼ P such that the process S itself (rather than the
integrals H·S for admissible integrands) is “something like a martingale”. The precise notion
in the general semi-martingale setting is that S is a sigma-martingale under Q (see [DS 98a]);
in the case when S is locally bounded (resp. bounded) the term “sigma-martingale” may be
replaced by the more familiar term “local martingale” (resp. “martingale”).

Readers who are not too enthusiastic about the rather subtle distinctions between mar-
tingales, local martingales and sigma-martingales may find some relief by noting that, in the
case of finite Ω, or, more generally, for bounded processes, these three notions coincide. Also
note that in the general semi-martingale case, when S is locally bounded (resp. bounded),
the set Me(S) as defined above coincides with the set of equivalent measures Q ∼ P such
that S is a local martingale (resp. martingale) under Q (see [E 80] and [AS 94]).

4



These assumptions make good sense economically and it is clear that the
requirement (7) of marginal utility decreasing to zero, as x tends to infinity, is
necessary, if one is aiming for a general existence theorem for optimal invest-
ment. Indeed, if U ′(∞) > 0, then even in the case of the Black-Scholes model
the solution to the optimization problem (1) fails to exist.

As regards the behavior of the (marginal) utility at the other end of the
wealth scale we shall distinguish throughout the paper two cases.

Case 1 (negative wealth not allowed): in this setting we assume that U
satifies the conditions U(x) = −∞, for x < 0, while U(x) > −∞, for x > 0,
and that

U ′(0) := lim
x↘0

U ′(x) =∞. (8)

Case 2 (negative wealth allowed): in this case we assume that U(x) >
−∞, for all x ∈ R, and that

U ′(−∞) := lim
x↘−∞

U ′(x) =∞. (9)

Typical examples for case 1 are

U(x) = ln(x) (10)

or

U(x) =
xα

α
, 0 < α < 1, (11)

whereas a typical example for case 2 is

U(x) = −e−γx, γ > 0. (12)

We again note that it is natural from economic considerations to require
that the marginal utility tends to infinity when the wealth x tends to the
infimum of its allowed values.

For later reference we summarize our assumptions on the utility function:

Assumption 1.2 Throughout the paper the utility function U : R → R ∪
{−∞} is increasing on R, continuous on {U > −∞}, differentiable and strictly
concave on the interior of {U > −∞}, and satisfies

U ′(∞) := lim
x→∞

U ′(x) = 0. (13)

Denoting by dom(U) the interior of {U > −∞}, we assume that we have
one of the two following cases.

Case 1: dom(U) =]0,∞[ in which case U satisfies the condition

U ′(0) := lim
x↘0

U ′(x) =∞. (14)

Case 2: dom(U) = R in which case U satisfies

U ′(−∞) := lim
x↘−∞

U ′(x) =∞. (15)
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We now can give a precise meaning to the expression (1) at the beginning
of this section. Define the value function

u(x) := sup
H∈H

E [U(x+ (H ·S)T )] , x ∈ dom(U), (16)

where H ranges through the admissible S-integrable trading strategies. To
exclude trivial cases we shall assume throughout the paper that the value
function u is not degenerate:

Assumption 1.3

u(x) < sup
ξ
U(ξ), for some x ∈ dom(U). (17)

One easily verifies that this assumption implies that

u(x) < sup
ξ
U(ξ), for all x ∈ dom(U), (18)

and that, in the case of finite Ω, Assumptions 1.1 and 1.2 already imply As-
sumption 1.3.

2 Utility Maximization on Finite Probability

Spaces

In this section we consider an Rd+1-valued process (St)
T
t=0 = (S0

t , S
1
t , . . . , S

d
t )Tt=0

with S0
t ≡ 1, based on and adapted to the finite filtered probability space

(Ω,F , (Ft)Tt=0,P), which we write as Ω = {ω1, . . . , ωN}. Without loss of gen-
erality we assume that F0 is trivial, that FT = F is the power set of Ω, and
that P[ωn] > 0, for all 1 ≤ n ≤ N .

Assumption 1.1 is the existence a measure Q ∼ P, i.e., Q[ωn] > 0, for
1 ≤ n ≤ N , such that S is a Q-martingale.

2.1 The complete case (Arrow-Debreu)

As a first case we analyze the situation of a financial market which is complete,
i.e., the set Me(S) of equivalent probability measures under which S is a
martingale is reduced to a singleton {Q}. In this setting consider the Arrow-
Debreu assets 1{ωn}, which pay 1 unit of the numéraire at time T , when ωn
turns out to be the true state of the world, and 0 otherwise. In view of our
normalization of the numéraire S0

t ≡ 1, we get for the price of the Arrow-
Debreu assets at time t = 0 the relation

EQ

[
1{ωn}

]
= Q[ωn], (19)

and each Arrow-Debreu asset 1{ωn} may be represented as 1{ωn} = Q[ωn] +
(H ·S)T , for some predictable trading strategy H ∈ H.
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Hence, for fixed initial endowment x ∈ dom(U), the utility maximization
problem (16) above may simply be written as

EP [U(XT )] =
N∑
n=1

pnU(ξn)→ max! (20)

EQ[XT ] =
N∑
n=1

qnξn ≤ x. (21)

To verify that (20) and (21) indeed are equivalent to the original problem
(16) above (in the present finite, complete case), note that a random variable
XT (ωn) = ξn can be dominated by a random variable of the form x+(H·S)T =
x +

∑T
t=1 Ht∆St iff EQ[XT ] =

∑N
n=1 qnξn ≤ x. This basic relation has a

particularly evident interpretation in the present setting, as qn is simply the
price of the Arrow-Debreu asset 1{ωn}.

Let us fix some notation for the domain over which the problem (20) is
optimized:

C(x) =
{
XT ∈ L0(Ω,FT ,P) : EQ[XT ] ≤ x

}
. (22)

The notation L0(Ω,FT ,P) only serves to indicate that XT is an FT -measurable
random variable at this stage, as for finite Ω all the Lp-spaces coincide. But we
have chosen the notation to be consistent with that of the general case below.

We have written ξn for XT (ωn) to stress that (20) simply is a concave
maximization problem in RN with one linear constraint. To solve it, we form
the Lagrangian

L(ξ1, . . . , ξN , y) =
N∑
n=1

pnU(ξn)− y

(
N∑
n=1

qnξn − x

)
(23)

=
N∑
n=1

pn

(
U(ξn)− y qn

pn
ξn

)
+ yx. (24)

We have used the letter y ≥ 0 instead of the usual λ ≥ 0 for the Lagrange
multiplier; the reason is the dual relation between x and y which will become
apparent in a moment.

Writing

Φ(ξ1, . . . , ξN) = inf
y>0

L(ξ1, . . . , ξN , y), ξn ∈ dom(U), (25)

and
Ψ(y) = sup

ξ1,...,ξN

L(ξ1, . . . , ξN , y), y ≥ 0, (26)

it is straight forward to verify that we have

sup
ξ1,...,ξN

Φ(ξ1, . . . , ξN) = sup
ξ1,...,ξN∑N
n=1 qnξn≤x

N∑
n=1

pnU(ξn) = u(x). (27)
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As regards the function Ψ(y) we make the following pleasant observation
which is the basic reason for the efficiency of the duality approach: using
the form (24) of the Lagrangian and fixing y > 0, the optimization problem
appearing in (26) splits into N independent optimization problems over R

U(ξn)− y qn
pn
ξn 7→ max!, ξn ∈ R. (28)

In fact, these one-dimensional optimization problems are of a very conve-
nient form: recall (see, e.g., [R 70], [ET 76] or [KLSX 91]) that, for a concave
function U : R → R ∪ {−∞}, the conjugate function V (which — up to the
sign — is just the Legendre-transform) is defined by

V (η) = sup
ξ∈R

[U(ξ)− ηξ] , η > 0. (29)

The following facts are well known (and easily verified by one-dimensional
calculus): if U satisfies Assumption 1.2, we have that V is finitely valued,
differentiable, strictly convex on ]0,∞[, and satisfies

V ′(0) := lim
y↘0

V ′(y) = −∞, V (0) := lim
y↘0

V (y) = U(∞). (30)

As regards the behavior of V at infinity, we have to distinguish between
case 1 and case 2 in Assumption 1.2 above:

case 1: lim
y→∞

V (y) = lim
x→0

U(x) and lim
y→∞

V ′(y) = 0 (31)

case 2: lim
y→∞

V (y) =∞ and lim
y→∞

V ′(y) =∞ (32)

We also note that these properties of the conjugate function V are, in fact,
equivalent to the properties of U listed in Assumption 1.2. We also have the
inversion formula to (29)

U(ξ) = inf
η

[V (η) + ηξ] , ξ ∈ dom(U) (33)

and that −V ′(y), denoted by I(y) for “inverse function” in [KLSX 91], is the
inverse function of U ′(x); of course, U ′ has a good economic interpretation as
the marginal utility of an economic agent modeled by the utility function U .

Here are some concrete examples of pairs of conjugate functions:

U(x) = ln(x), x > 0, V (y) = − ln(y)− 1, (34)

U(x) = xα

α
, x > 0, V (y) = 1−α

α
y

α
α−1 , 0 < α < 1, (35)

U(x) = − e−γx

γ
, x ∈ R, V (y) = y

γ
(ln(y)− 1), γ > 0. (36)

We now apply these general facts about the Legendre transformation to
calculate Ψ(y). Using definition (29) of the conjugate function V and (24),
formula (26) becomes

Ψ(y) =
N∑
n=1

pnV
(
y qn
pn

)
+ yx (37)

= EP

[
V
(
y dQ
dP

)]
+ yx. (38)
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Denoting by v(y) the dual value function

v(y) := EP

[
V
(
y dQ
dP

)]
=

N∑
n=1

pnV
(
y qn
pn

)
, y > 0, (39)

the function v clearly has the same qualitative properties as the function V
listed above. Hence by (30), (31), and (32) we find, for fixed x ∈ dom(U), a
unique ŷ = ŷ(x) > 0 such that v′(ŷ(x)) = −x, which therefore is the unique
minimizer to the dual problem

Ψ(y) = EP

[
V
(
y dQ
dP

)]
+ yx = min! (40)

Fixing the critical value ŷ(x) of the Lagrange multiplier, the concave func-
tion

(ξ1, . . . , ξN) 7→ L(ξ1, . . . , ξN , ŷ(x)) (41)

defined in (24) assumes its unique maximum at the point (ξ̂1, . . . , ξ̂N) satisfying

U ′(ξ̂n) = ŷ(x) qn
pn

or, equivalently, ξ̂n = I
(
ŷ(x) qn

pn

)
, (42)

so that we have

inf
y>0

Ψ(y) = inf
y>0

(v(y) + xy) (43)

= v(ŷ(x)) + xŷ(x) (44)

= L(ξ̂1, . . . , ξ̂N , ŷ(x)). (45)

Note that ξ̂n are in dom(U), for 1 ≤ n ≤ N , so that L is continuously differen-

tiable at (ξ̂1, . . . , ξ̂N , ŷ(x)), which implies that ∂
∂y
L(ξ1, . . . , ξN , y)|(ξ̂1,...,ξ̂N ,ŷ(x)) =

0; hence we infer from (23) and the fact that ŷ(x) > 0 that the constraint (21)
is binding, i.e.,

N∑
n=1

qnξ̂n = x, (46)

and that
N∑
n=1

pnU(ξ̂n) = L(ξ̂1, . . . , ξ̂N , ŷ(x)). (47)

In particular, we obtain that

u(x) =
N∑
n=1

pnU(ξ̂n). (48)

Indeed, the inequality u(x) ≥
∑N

n=1 pnU(ξ̂n) follows from (46) and (27), while
the reverse inequality follows from (47) and the fact that for all ξ1, . . . , ξN
verifying the constraint (21)

N∑
n=1

pnU(ξn) ≤ L(ξ1, . . . , ξN , ŷ(x)) ≤ L(ξ̂1, . . . , ξ̂N , ŷ(x)). (49)
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We shall write X̂T (x) ∈ C(x) for the optimizer X̂T (x)(ωn) = ξ̂n, n = 1, . . . , N .
Combining (43), (47) and (48) we note that the value functions u and v

are conjugate:

inf
y>0

(v(y) + xy) = v(ŷ(x)) + xŷ(x) = u(x), x ∈ dom(U), (50)

which, by the remarks after equations (32) and (39), implies that u inherits the
properties of U listed in Assumption 1.2. The relation v′(ŷ(x)) = −x which
was used to define ŷ(x), therefore translates into

u′(x) = ŷ(x), for x ∈ dom(U). (51)

Let us summarize what we have proved:

Theorem 2.1 (finite Ω, complete market) Let the financial market S =
(St)

T
t=0 be defined over the finite filtered probability space (Ω,F , (F)Tt=0,P) and

satisfy Me(S) = {Q}, and let the utility function U satisfy Assumption 1.2.
Denote by u(x) and v(y) the value functions

u(x) = sup
XT∈C(x)

E[U(XT )], x ∈ dom(U), (52)

v(y) = E
[
V
(
y dQ
dP

)]
, y > 0. (53)

We then have:

(i) The value functions u(x) and v(y) are conjugate and u inherits the qual-
itative properties of U listed in Assumption 1.2.

(ii) The optimizer X̂T (x) in (52) exists, is unique and satisfies

X̂T (x) = I(y dQ
dP

), or, equivalently, y dQ
dP

= U ′(X̂T (x)), (54)

where x ∈ dom(U) and y > 0 are related via u′(x) = y or, equivalently,
x = −v′(y).

(iii) The following formulae for u′ and v′ hold true:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ
[
V ′
(
y dQ
dP

)]
(55)

xu′(x) = EP

[
X̂T (x)U ′(X̂T (x))

]
, yv′(y) = EP

[
y dQ
dP
V ′
(
y dQ
dP

)]
.(56)

Proof Items (i) and (ii) have been shown in the preceding discussion, hence
we only have to show (iii). The formulae for v′(y) in (55) and (56) immediately
follow by differentiating the relation

v(y) = EP

[
V
(
y dQ
dP

)]
=

N∑
n=1

pnV
(
y qn
pn

)
. (57)
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Of course, the formula for v′ in (56) is an obvious reformulation of the one
in (55). But we write both of them to stress their symmetry with the formulae
for u′(x).

The formula for u′ in (55) translates via the relations exhibited in (ii) into
the identity

y = EP

[
y dQ
dP

]
, (58)

while the formula for u′(x) in (56) translates into

v′(y)y = EP

[
V ′
(
y dQ
dP

)
y dQ
dP

]
, (59)

which we just have seen to hold true.

Remark 2.2 Firstly, let us recall the economic interpretation of (54)

U ′
(
X̂T (x)(ωn)

)
= y

qn
pn
, n = 1, . . . , N. (60)

This equality means that, in every possible state of the world ωn, the marginal
utility U ′(X̂T (x)(ωn)) of the wealth of an optimally investing agent at time T
is proportional to the ratio of the price qn of the corresponding Arrow-Debreu
security 1{ωn} and the probability of its success pn = P[ωn]. This basic rela-
tion was analyzed in the fundamental work of K. Arrow and G. Debreu and
allows for a convincing economic interpretation: considering for a moment the
situation where this proportionality relation fails to hold true, one immedi-
ately deduces from a marginal variation argument that the investment of the
agent cannot be optimal. Hence for the optimal investment the proportionality
must hold true. The above result also identifies the proportionality factor as
y = u′(x), where x is the initial endowment of the investor.

Theorem 2.1 indicates an easy way to solve the utility maximization at
hand: calculate v(y) by (53), which reduces to a simple one-dimensional com-
putation; once we know v(y), the theorem provides easy formulae to calculate

all the other quantities of interest, e.g., X̂T (x), u(x), u′(x) etc.
Another message of the above theorem is that the value function x 7→ u(x)

may be viewed as a utility function as well, sharing all the qualitative features
of the original utility function U . This makes sense economically, as u(x)
denotes the expected utility at time T of an agent with initial endowment x,
after having optimally invested in the financial market S.

Let us also give an economic interpretation of the formulae for u′(x) in
item (iii) along these lines: suppose the initial endowment x is varied to x+h,
for some small real number h. The economic agent may use the additional
endowment h to finance, in addition to the optimal pay-off function X̂T (x), h

units of the cash account, thus ending up with the pay-off function X̂T (x)+h at
time T . Comparing this investment strategy to the optimal one corresponding
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to the initial endowment x+ h, which is X̂T (x+ h), we obtain

lim
h→0

u(x+ h)− u(x)

h
= lim

h→0

E[U(X̂T (x+ h))− U(X̂T (x))]

h
(61)

≥ lim
h→0

E[U(X̂T (x) + h)− U(X̂T (x))]

h
(62)

= E[U ′(X̂T (x))]. (63)

Using the fact that u is differentiable, and that h may be positive as well
as negative, we have found another proof of formula (55) for u′(x); the eco-
nomic interpretation of this proof is that the economic agent, who is optimally
investing, is indifferent of first order towards a (small) additional investment
into the cash account.

Playing the same game as above, but using the additional endowment h ∈ R
to finance an additional investment into the optimal portfolio X̂T (x) (assuming,

for simplicity, x 6= 0), we arrive at the pay-off function x+h
x
X̂T (x). Comparing

this investment with X̂T (x + h), an analogous calculation as in (61) leads
to the formula for u′(x) displayed in (56). The interpretation now is, that
the optimally investing economic agent is indifferent of first order towards a
marginal variation of the investment into the optimal portfolio.

It now becomes clear that formulae (55) and (56) for u′(x) are just special
cases of a more general principle: for each f ∈ L∞(Ω,F ,P) we have

EQ[f ]u′(x) = lim
h→0

EP[U(X̂T (x) + hf)− U(X̂T (x))]

h
. (64)

The proof of this formula again is along the lines of (61) and the interpreta-
tion is the following: by investing an additional endowment hEQ[f ] to finance
the contingent claim hf , the increase in expected utility is of first order equal
to hEQ[f ]u′(x); hence again the economic agent is of first order indifferent
towards an additional investment into the contingent claim f .

2.2 The Incomplete Case

We now drop the assumption that the set Me(S) of equivalent martingale
measures is reduced to a singleton (but we still remain in the framework of
a finite probability space Ω) and replace it by Assumption 1.1 requiring that
Me(S) 6= ∅.

In this setting it follows from basic linear algebra that a random variable
XT (ωn) = ξn may be dominated by a random variable of the form x+(H·S)T iff
EQ[XT ] =

∑N
n=1 qnξn ≤ x, for each Q = (q1 . . . , qN) ∈Ma(S) (or equivalently,

for every Q ∈ Me(S)). This basic result is proved in [KQ 95], [J 92], [AS 94],
[DS 94] and [DS 98a] in varying degrees of generality; in the present finite-
dimensional case this fact is straightforward to prove, using elementary linear
algebra (see, e.g, [S 00a]).
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In order to reduce the infinitely many constraints, where Q runs through
Ma(S), to a finite number, make the easy observation that Ma(S) is a
bounded, closed, convex polytope in RN and therefore the convex hull of its
finitely many extreme points {Q1, . . . , QM}. Indeed,Ma(S) is given by finitely
many linear constraints. For 1 ≤ m ≤M , we identify Qm with its probabilites
(qm1 , . . . , q

m
N ).

Fixing the initial endowment x ∈ dom(U), we therefore may write the
utility maximization problem (16) similarly as in (20) as a concave optimization
problem over RN with finitely many linear constraints:

(Px) EP [U(XT )] =
N∑
n=1

pnU(ξn)→ max! (65)

EQm [XT ] =
N∑
n=1

qmn ξn ≤ x, for m = 1, . . . ,M. (66)

Writing again

C(x) =
{
XT ∈ L0(Ω,F ,P) : E[XT ] ≤ x, for all Q ∈Ma(S)

}
(67)

we define the value function

u(x) = sup
H∈H

E [U (x+ (H ·S)T )] = sup
XT∈C(x)

E[U(XT )], x ∈ dom(U). (68)

The Lagrangian now is given by

L(ξ1, . . . , ξN , η1, . . . , ηM) (69)

=
N∑
n=1

pnU(ξn)−
M∑
m=1

ηm

(
N∑
n=1

qmn ξn − x

)
(70)

=
N∑
n=1

pn

(
U(ξn)−

M∑
m=1

ηmq
m
n

pn
ξn

)
+

M∑
m=1

ηmx, (71)

where (ξ1, . . . , ξN) ∈ dom(U)N , (η1, . . . , ηM) ∈ RM+ . (72)

Writing y = η1 + . . .+ ηM , µm = ηm
y

, µ = (µ1, . . . , µm) and

Qµ =
M∑
m=1

µmQ
m, (73)

note that, when (η1, . . . , ηM) runs trough RM+ , the pairs (y,Qµ) run through
R+ ×Ma(S). Hence we may write the Lagrangian as

L(ξ1, . . . , ξN , y, Q) =

= EP[U(XT )]− y (EQ[XT − x])

=
N∑
n=1

pn

(
U(ξn)− yqn

pn
ξn

)
+ yx,

where ξn ∈ dom(U), y > 0, Q = (q1, . . . , qN) ∈Ma(S). (74)
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This expression is entirely analogous to (24), the only difference now being that
Q runs through the set Ma(S) instead of being a fixed probability measure.
Defining again

Φ(ξ1, . . . , ξn) = inf
y>0,Q∈Ma(S)

L(ξ1, . . . , ξN , y, Q), (75)

and
Ψ(y,Q) = sup

ξ1,...,ξN

L(ξ1, . . . , ξN , y, Q), (76)

we obtain, just as in the complete case,

sup
ξ1,...,ξN

Φ(ξ1, . . . , ξN) = u(x), x ∈ dom(U), (77)

and

Ψ(y,Q) =
N∑
n=1

pnV

(
yqn
pn

)
+ yx, y > 0, Q ∈Ma(S), (78)

where (q1, . . . , qN) denotes the probabilities of Q ∈Ma(S). The minimization
of Ψ will be done in two steps: first we fix y > 0 and minimize over Ma(S),
i.e.,

Ψ(y) := inf
Q∈Ma(S)

Ψ(y,Q), y > 0. (79)

For fixed y > 0, the continuous function Q→ Ψ(y,Q) attains its minimum

on the compact set Ma(S), and the minimizer Q̂(y) is unique by the strict

convexity of V . Writing Q̂(y) = (q̂1(y), . . . , q̂N(y)) for the minimizer, it follows

from V ′(0) = −∞ that q̂n(y) > 0, for each n = 1, . . . , N ; in other words, Q̂(y)
is an equivalent martingale measure for S.

Defining the dual value function v(y) by

v(y) = inf
Q∈Ma(S)

N∑
n=1

pnV

(
y
qn
pn

)
(80)

=
N∑
n=1

pnV

(
y
q̂n(y)

pn

)
(81)

we find ourselves in an analogous situation as in the complete case above:
defining again ŷ(x) by v′(ŷ(x)) = −x and

ξ̂n = I

(
ŷ(x)

q̂n(y)

pn

)
, (82)

similar arguments as above apply to show that (ξ̂1, . . . , ξ̂N , ŷ(x), Q̂(y)) is the
unique saddle-point of the Lagrangian (74) and that the value functions u and
v are conjugate.

Let us summarize what we have found in the incomplete case:
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Theorem 2.3 (finite Ω, incomplete market) Let the financial market
S = (St)

T
t=0 defined over the finite filtered probability space (Ω,F , (F)Tt=0,P)

and let Me(S) 6= ∅, and the utility function U satisfies Assumptions 1.2.
Denote by u(x) and v(y) the value functions

u(x) = supXT∈C(x) E[U(XT )], x ∈ dom(U), (83)

v(y) = infQ∈Ma(S) E
[
V
(
y dQ
dP

)]
, y > 0. (84)

We then have:

(i) The value functions u(x) and v(y) are conjugate and u shares the quali-
tative properties of U listed in Assumption 1.2.

(ii) The optimizers X̂T (x) and Q̂(y) in (83) and (84) exist, are unique,

Q̂(y) ∈Me(S), and satisfy

X̂T (x) = I

(
y
dQ̂(y)

dP

)
, y

dQ̂(y)

dP
= U ′(X̂T (x)), (85)

where x ∈ dom(U) and y > 0 are related via u′(x) = y or, equivalently,
x = −v′(y).

(iii) The following formulae for u′ and v′ hold true:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ̂

[
V ′
(
y dQ̂(y)

dP

)]
(86)

xu′(x) = EP[X̂T (x)U ′(X̂T (x))], yv′(y) = EP

[
y dQ̂(y)

dP
V ′
(
y dQ̂(y)

dP

)]
.(87)

Remark 2.4 Let us again interpret the formulae (86), (87) for u′(x) similarly
as in Remark 2.2 above. In fact, the interpretations of these formulae as well
as their derivations remain in the incomplete case exactly the same.

But a new and interesting phenomenon arises when we pass to the variation
of the optimal pay-off function X̂T (x) by a small unit of an arbitrary pay-off
function f ∈ L∞(Ω,F ,P). Similarly as in (64) we have the formula

EQ̂(y)[f ]u′(x) = lim
h→0

EP[U(X̂T (x) + hf)− U(X̂T (x))]

h
, (88)

the only difference being that Q has been replaced by Q̂(y) (recall that x and
y are related via u′(x) = y).

The remarkable feature of this formula is that it does not only pertain to
variations of the form f = x + (H · S)T , i.e, contingent claims attainable at
price x, but to arbitrary contingent claims f , for which — in general — we
cannot derive the price from no arbitrage considerations.

The economic interpretation of formula (88) is the following: the pricing
rule f 7→ EQ̂(y)[f ] yields precisely those prices, at which an economic agent with
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initial endowment x, utility function U and investing optimally, is indifferent
of first order towards adding a (small) unit of the contingent claim f to her

portfolio X̂T (x).
In fact, one may turn the view around, and this was done by M. Davis

[D 97] (compare also the work of L. Foldes [F 90]): one may define Q̂(y) by
(88), verify that this indeed is an equivalent martingale measure for S, and
interpret this pricing rule as “pricing by marginal utility”, which is, of course,
a classical and basic paradigm in economics.

Let us give a proof for (88) (under the hypotheses of Theorem 2.3). One
possibility, which also has the advantage of a nice economic interpretation, is
the idea of introducing “fictitious securities” as developed in [KLSX 91]: fix
x ∈ dom(U) and y = u′(x) and let (f 1, . . . , fk) be finitely many elements
of L∞(Ω,F ,P) such that the space K = {(H · S)T : H ∈ H}, the constant
function 1, and (f 1, . . . , fk) linearly span L∞(Ω,F ,P). Define the k processes

Sd+j
t = EQ̂(y)[f

j|Ft], j = 1, . . . , k, t = 0, . . . , T. (89)

Now extend the Rd+1-valued process S = (S0, . . . , Sd) to the Rd+k+1-valued
process S = (S0, . . . , Sd, Sd+1, . . . , Sd+k) by adding these new coordinates. By

(89) we still have that S is a martingale under Q̂(y), which now is the unique
probability under which S is a martingale, by our choice of (f 1, . . . , fk).

Hence we find ourselves in the situation of Theorem 2.1. By comparing
(54) and (85) we observe that the optimal pay-off function X̂T (x) has not
changed. Economically speaking this means that in the “completed” market
S the optimal investment may still be achieved by trading only in the first
d+ 1 assets and without touching the “fictitious” securities Sd+1, . . . , Sd+k.

In particular, we now may apply formula (64) to Q = Q̂(y) to obtain (88).

Finally remark that the pricing rule induced by Q̂(y) is precisely such that

the interpretation of the optimal investment X̂T (x) defined in (85) (given in
Remark 2.2 in terms of marginal utility and the ratio of Arrow-Debreu prices
q̂n(y) and probabilities pn) carries over to the present incomplete setting. The
above completion of the market by introducing “fictious securities” allows for
an economic interpretation of this fact.

3 The general case

In the previous section we have analyzed the duality theory of the optimization
problem (1) in detail and with full proofs, for the case when the underlying
probability space is finite.

We now pass to the question under which conditions the crucial features
of the above Theorem 2.3 carry over to the general setting. In particular one
is naturally led to ask: under which conditions

• are the optimizers X̂T (x) and Q̂(y) of the value functions u(x) and v(y)
attained?
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• does the basic duality formula

U ′
(
X̂T (x)

)
= ŷ(x)

dQ̂(ŷ(x))

dP
(90)

or, equivalently

X̂T (x) = I

(
ŷ(x)

dQ̂(ŷ(x))

dP

)
(91)

hold true?

• are the value functions u(x) and v(y) conjugate?

• does the value function u(x) still inherit the qualitative properties of U
listed in Assumption 1.2?

• do the formulae for u′(x) still hold true?

We shall see that we get affirmative answers to these questions under two
provisos: firstly, one has to make an appropriate choice of the sets in which
XT and Q are allowed to vary. This choice will be different for case 1, where
dom(U) = R+, and case 2, where dom(U) = R. Secondly, the utility function
U has to satisfy — in addition to Assumption 1.2 — a mild regularity condition,
namely the property of “reasonable asymptotic elasticity”.

The essential message of the theorems below is that, assuming that U has
“reasonable asymptotic elasticity”, the duality theory works just as well as
in the case of finite Ω. Note that we do not have to impose any regularity
conditions on the underlying stochastic process S, except for its arbitrage-
freeness in the sense made precise by Assumption 1.1. On the other hand,
the assumption of reasonable asymptotic elasticity on the utility function U
cannot be relaxed, even if we impose very strong assumptions on the process
S (e.g., having continuous paths and defining a complete financial market), as
we shall see below.

Before passing to the positive results we first analyze the notion of “rea-
sonable asymptotic elasticity” and sketch the announced counterexample.

Definition 3.1 A utility function U satisfying Assumption 1.2 is said to have
“reasonable asymptotic elasticity” if

lim sup
x→∞

xU ′(x)

U(x)
< 1, (92)

and, in case 2 of Assumption 1.2, we also have

lim inf
x→−∞

xU ′(x)

U(x)
> 1. (93)
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Let us discuss the economic meaning of this notion: as H.-U. Gerber ob-
served, the quantity xU ′(x)

U(x)
is the elasticity of the function U at x. We are

interested in its asymptotic behaviour. It easily follows from Assumption 1.2
that the limits in (92) and (93) are less (resp. bigger) than or equal to one.

What does it mean that xU ′(x)
U(x)

tends to one, for x 7→ ∞? It means that the ra-

tio between the marginal utility U ′(x) and the average utility U(x)
x

tends to one.
A typical example is a function U(x) which equals x

ln(x)
, for x large enough;

note however, that in this example Assumption 1.2 is not violated insofar as
the marginal utility still decreases to zero for x→∞, i.e., limx→∞ U

′(x) = 0.
If the marginal utility U ′(x) is approximately equal to the average utility

U(x)
x

for large x, this means that for an economic agent, modeled by the utility
function U , the increase in utility by varying wealth from x to x + 1, when
x is large, is approximately equal to the average of the increase of utility by
changing wealth from n to n + 1, where n runs through 1, 2, . . . , x − 1 (we
assume in this argument that x is a large natural number and, w.l.o.g., that
U(1) ≈ 0). We feel that the economic intuition behind decreasing marginal
utility suggests that, for large x, the marginal utility U ′(x) should be sub-

stantially smaller than the average utility U(x)
x

. Therefore we have denoted

a utility function, where the ratio of U ′(x) and U(x)
x

tends to one, as being
“unreasonable”. Another justification for this terminology will be the results
of Example 3.2 and Theorems 3.4 and 3.5 below.

P. Guasoni observed, that there is a close connection between the asymp-
totic behaviour of the elasticity of U , and the asymptotic behaviour of the rel-
ative risk aversion associated to U . Recall (see, e.g., [HL88]) that the relative
risk aversion of an agent with endowment x, whose preferences are described
by the utility function U , equals

RRA(U)(x) = −xU
′′(x)

U ′(x)
. (94)

A formal application of de l’Hôpital’s rule yields

lim
x 7→∞

xU ′(x)

U(x)
= lim

x 7→∞

U ′(x) + xU ′′(x)

U ′(x)
= 1− lim

x 7→∞

(
−xU

′′(x)

U ′(x)

)
(95)

which insinuates that the asymptotic elasticity of U is less than one iff the
“asymptotic relative risk aversion” is strictly positive.

Turning the above formal argument into a precise statement, one easily
proves the following result: if limx 7→∞(−xU ′′(x)

U ′(x)
) exists, then limx 7→∞

xU ′(x)
U(x)

exists
too, and the former is strictly positive iff the latter is less than one. Hence
“essentially” these two concepts coincide.

On the other hand, in general (i.e. without assuming that the above limit

exists), there is no way to characterize the condition lim supx 7→∞
xU ′(x)
U(x)

< 1 in

terms of the asymptotic behaviour of −xU ′′(x)
U ′(x)

, as x 7→ ∞. Firstly, for the sec-
ond expression to make sense, we have to assume that U is twice differentiable;
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but, even doing so, does not help, as it is easy to construct examples where
xU ′(x)
U(x)

converges (to 1 or to a number less than 1), while −xU ′′(x)
U ′(x)

oscillates

wildly in ]0,∞[, as x 7→ ∞.
We shall see that the assumption of reasonable asymptotic elasticity is

necessary and sufficient for several key results in the duality theory of utility
maximization to hold true. Hence in order to obtain these sharp results, we
cannot reformulate things in terms of the asymptotic relative risk aversion.
However, readers which are happy with sufficient conditions, may replace the
assumption lim supx 7→∞

xU ′(x)
U(x)

< 1 by the assumption lim infx 7→∞(−xU ′′(x)
U ′(x)

) > 0

below: it is easy to verify that the latter assumption implies the former (but
not vice versa).

Similar reasoning applies to the asymptotic behaviour of xU ′(x)
U(x)

, as x tends

to −∞, in case 2. In this context the typical counter-example is U(x) ∼
x ln(|x|), for x < x0; in this case one finds similarly

lim
x→−∞

U ′(x) =∞, while lim
x→−∞

xU ′(x)

U(x)
= 1. (96)

The message of Definition 3.1 above is — roughly speaking — that we
want to exclude utility functions U which behave like U(x) ∼ x

ln(x)
, as x→∞,

or U(x) ∼ x ln |x|, as x → −∞. Similar (but not quite equivalent) notions
comparing the behaviour of U(x) with that of power functions in the setting
of case 1, were defined and analyzed in [KLSX 91] (see [KS 99], lemma 6.5, for
a comparison of these concepts).

We start with a sketch of a counterexample showing the relevance of the
notion of asymptotic elasticity in the context of utility maximization: whenever
U fails to have reasonable asymptotic elasticity the duality theory breaks down
in a rather dramatic way. We only state the version of the counterexample
where both assumptions (92) and (93) are violated and refer to [KS 99] and
[S 00a] for the other cases.

Example 3.2 ([S 00], prop. 3.5) Let U be any utility function satisfying As-
sumption 1.2, case 2 and such that

lim
x→−∞

xU ′(x)

U(x)
= lim

x→∞

xU ′(x)

U(x)
= 1, (97)

Then there is an R-valued process (St)0≤t≤T of the form

St = exp (Bt + µt) , (98)

where B = (Bt)0≤t≤T is a standard Brownian motion, based on its natural
filtered probability space, and µt a predictable process, such that the following
properties hold true:

(i) Me(S) = {Q}, i.e., S defines a complete financial market.
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(ii) The primal value function u(x) fails to be strictly concave and to satisfy
u′(∞) = 0, u′(−∞) =∞ in a rather striking way: u(x) is a straight line
of the form u(x) = c+ x, for some constant c ∈ R.

(iii) The optimal investment X̂T (x) fails to exist, for all x ∈ R, except for
one point x = x0. In particular, for x 6= x0, the formula (91) does not

define the optimal investment X̂T (x).

(iv) The dual value function v fails to be a finite, smooth, strictly convex
function on R+ in a rather striking way: in fact, v(1) <∞ while v(y) =
∞, for all y > 0, y 6= 1.

We do not give a rigorous proof for these assertions but refer to [S 00,
Proposition 3.5], which in turn is a variant of [KS 99, Proposition 5.3].

We shall try to sketch the basic idea underlying the construction of the
example, in mathematical as well as economic terms. Arguing mathemati-
cally, one starts by translating the assumptions (97) on the utility function U
into equivalent properties of the conjugate function V : roughly speaking, the
corresponding property of V (y) is, that it increases very rapidly to infinity,
as y → 0 and y → ∞ (see [KS 99, Corolary 6.1] and [S 00, Proposition 4.1]).
Having isolated this property of V , it is an easy exercise to construct a function
f : [0, 1]→]0,∞[, E[f ] = 1 such that

E [V (f)] <∞ while E [V (yf)] =∞, for y 6= 1, (99)

where E denotes expectation with respect to Lebesque measure λ. In fact one
may find such a function f taking only the values (yn)∞n=−∞, for a suitable
chosen increasing sequence (yn)∞n=−∞, limn→−∞ yn = 0, limn→∞ yn =∞.

Next we construct a measure Q on the sigma algebra F = FT generated by
the Brownian motion B = (Bt)0≤t≤T which is equivalent to Wiener measure P,
and such that the distribution of dQ

dP
(under P) equals that of f (under Lebesgue

measure λ). There is no uniqueness in this part of the construction, but it is
straightforward to find some appropriate measure Q with this property.

By Girsanov’s theorem we know that we can find an adapted process
(µt)0≤t≤T , such that Q is the unique equivalent local martingale measure for
the process defined in (98), hence we obtain assertion (i).

This construction makes sure that we obtain property (iv), i.e.

v(y) = EP

[
V
(
y dQ
dP

)]
= Eλ [V (yf)] <∞ iff y = 1. (100)

Once this crucial property is established, most of the assertions made in
(ii) and (iii) above easily follow (in fact, for the existence of X̂T (x) for precisely
one x = x0, some extra care is needed).

Instead of elaborating further on the mathematical details of the construc-
tion sketched above, let us try to give an economic interpretation of what is
really happening in the above example. This is not easy, but we find it worth

20



trying. We concentrate on the behaviour of U as x → ∞, the case when
x→ −∞ being similar.

How is the “unreasonability” property of the utility function U used to
construct the pathologies in the above example? Here is a rough indication of
the underlying economic idea: the financial market S is constructed in such a
way that one may find positive numbers (xn)∞n=1, disjoint sets (An)∞n=1 in FT ,
with P[An] = pn and Q[An] = qn, such that for the contingent claims xn1An
we approximately have

EQ [xn1An ] = qnxn ≈ 1 (101)

and
EP [U(xn)1An ] = pnU(xn) ≈ 1. (102)

Hence qn
pn
≈ U(xn)

xn
.

It is easy to construct a complete, continuous market S over the Brownian
filtration such that this situation occurs and this is, in fact, what is done in
the above “mathematical” argument to define f and Q. We remark in passing
that one might just as well construct S as a complete, discrete time model
S = (St)

∞
t=0 over a countable probability space Ω displaying sets An and real

numbers xn having the properties listed above. But for esthetical reasons
we have prefered to do the construction in terms of an exponential Brownian
motion with drift.

We claim that, for any x ∈ R and any investment strategyXT = x+(H·S)T ,

we can find an investment strategy X̃T = (x+ 1) + (H̃ ·S)T such that

E

[
U(X̃T )

]
≈ E [U(XT )] + 1. (103)

The above relation should motivate why the value function u(x) becomes a
straight line with slope one, at least for x sufficiently large (for the correspond-
ing behaviour of u(x) on the left hand side of R one has to play in addition a
similar game as above with (xn)∞n=1 tending to −∞).

To present the idea behind (103), suppose that we have E [U(XT )] < ∞,
so that limn→∞ E[U(XT )1An ] = 0. Varying our initial endowment from x to
x + 1 e, we may use the additional e to add to the pay-off function XT the
function xn1An , for some large n; by (101) this may be financed (approxi-
mately) with the additional e and by (102) this will increase the expected
utility (approximately) by 1

E [U (XT + xn1An)] ≈ E

[
U(XT )1Ω\An

]
+ E [U(XT + xn)1An ]

≈ E [U(XT )] + pnU(xn)

≈ E [U(XT )] + 1, (104)

which was claimed in (103).
The above argument also gives a hint why we cannot expect that the opti-

mal strategy X̂T (x) = x+ (Ĥ ·S)T exists, as one cannot “pass to the limit as
n→∞” in the above reasoning.
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Observe that we have not yet used the assumption lim supx→∞
xU ′(x)
U(x)

= 1,

as it always is possible to construct things in such a way that (101) and (102)
hold true (provided only that limx→∞ U(x) = ∞, which we assume from now
on). How does the “unreasonable asymptotic elasticity” come into play? The
point is that we have to do the construction described in (101) and (102)
without violating Assumption 1.3, i.e.,

u(x) = sup
H∈H

E [U (x+ (H ·S)T )] <∞,

for some (equivalently, for all) x ∈ R. (105)

In order to satisfy Assumption 1.3 we have to make sure that

E

[
∞∑
n=1

U(µnxn)1An

]
=
∞∑
n=1

pnU(µnxn) (106)

remains bounded, when (µn)∞n=1 runs through all convex weights µn ≥ 0,∑∞
n=1 µn = 1, i.e., when we consider all investments into non-negative lin-

ear combinations of the contingent claims xn1An , which can be financed with
one e.

The message of Example 3.2 is that this is not possible, if and only if
lim supx→∞

xU ′(x)
U(x)

= 1 (for this part of the construction we only use the asymp-

totic behaviour of U(x), as x → ∞). To motivate this claim, think for a mo-
ment of the “reasonable” case, e.g., U(x) = xα

α
, for some 0 < α < 1, in which

case we have limx→∞
xU ′(x)
U(x)

= α < 1. Letting µn ≈ n−(1+ε), we get

∞∑
n=1

pnU(µnxn) ≈
∞∑
n=1

n−(1+ε)αpnU(xn) (107)

≈
∞∑
n=1

n−(1+ε)α, (108)

which equals infinity if ε > 0 is small enough, that (1+ε)α ≤ 1. This argument
indicates that in the case of the power utility U(x) = xα

α
it is impossible

to reconcile the validity of (101) and (102) with the requirement (106). On
the other hand, it turns out that in the “unreasonable” case, where we have
limx→∞

xU ′(x)
U(x)

= 1, we can do the construction in such a way that U(µnxn) is

sufficiently close to µnU(xn) such that we obtain a uniform bound on the sum
in (106).

Let us now stop our attempt at an economic interpretation. We hope that
the above informal arguments were of some use for the reader in developing her
intuition for the concept of “reasonable asymptotic elasticity” and that she now
has some background information to find her way through the corresponding
formal arguments in [KS 99] and [S 00].

We now pass to the positive results in the spirit of Theorem 2.1 and Theo-
rem 2.3 above. We first consider the case where U satisfies the Inada conditions
(7) and (8), which was studied in [KS 99].
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Case 1: dom(U) = R+.
The heart of the argument in the proof of Theorem 2.3 (which we now want

to extend to the general case) is the applicability of the minimax theorem,
which underlies the theory of Lagrange multipliers. We want to extend the
applicability of the minimax theorem to the situation. The infinite-dimensional
versions of the minimax theorem available in the literature (see, e.g, [ET 76]
or [St 85]) are along the following lines: Let 〈E,F 〉 be a pair of locally convex
vector spaces in separating duality, C ⊆ E, D ⊆ F a pair of convex subsets,
and L(x, y) a function defined on C×D, concave in the first and convex in the
second variable, having some (semi-)continuity property compatible with the
topologies of E and F (which in turn should be compatible with the duality
between E and F ). If one of the sets C and D is compact and the other is

complete, then one may assert the existence of a saddle point (ξ̂, η̂) ∈ C ×D
such that

L(ξ̂, η̂) = sup
ξ∈C

inf
η∈D

L(ξ, η) = inf
η∈D

sup
ξ∈C

L(ξ, η). (109)

We try to apply this theorem to the analogue of the Lagrangian encountered
in the proof of Theorem 2.3 above. Fixing x > 0 and y > 0 let us formally
write the Lagrangian (74) in the infinite-dimensional setting,

Lx,y(XT , Q) = EP[U(XT )]− y(EQ[XT − x]) (110)

= EP

[
U(XT )− y dQ

dP
XT

]
+ yx, (111)

where XT runs through “all” non-negative FT -measurable functions and Q
through the set Ma(S) of absolutely continuous local martingale measures.

To restrict the set of “all” nonnegative functions to a more amenable one
note that infy>0,Q∈Ma(S) L

x,y(XT , Q) > −∞ iff

EQ[XT ] ≤ x, for all Q ∈Ma(S). (112)

Using the basic result on the super-replicability of the contingent claim XT

(see [KQ 95], [J 92], [AS 94], [DS 94], and [DS 98b]), we have — as encountered
in the finite dimensional case — that a non-negative FT -measurable random
variable XT satisfies (112) iff there is an admissible trading strategy H such
that

XT ≤ x+ (H ·S)T . (113)

Hence let

C(x) =
{
XT ∈ L0

+(Ω,FT ,P) :

XT ≤ x+ (H ·S)T , for some admissible H} (114)

and simply write C for C(1) (observe that C(x) = xC).
We thus have found a natural set C(x) in which XT should vary when

we are mini-maxing the Lagrangian Lx,y. Dually, the set Ma(S) seems to be
the natural domain where the measure Q is allowed to vary (in fact, we shall
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see later, that this set still has to be slightly enlarged). But what are the
locally convex vector spaces E and F in separating duality into which C and
Ma(S) are naturally embedded? As regards Ma(S) the natural choice seems
to be L1(P) (by identifying a measure Q ∈ Ma(S) with its Radon-Nikodym
derivative dQ

dP
); note that Ma(S) is a closed subset of L1(P), which is good

news. On the other hand, there is no reason for C to be contained in L∞(P), or
even in Lp(P), for any p > 0; the natural space in which C is embedded is just
L0(Ω,FT ,P), the space of all real-valued FT -measurable functions endowed
with the topology of convergence in probability.

The situation now seems hopeless (if we don’t want to impose artificial
P-integrability assumptions on XT and/or dQ

dP
), as L0(P) and L1(P) are not

in any reasonable duality; in fact, L0(P) is not even a locally convex space,
hence there seems to be no hope for a good duality theory, which could serve
as a basis for the application of the minimax theorem. But the good news is
that the sets C and Ma(S) are in the positive orthant of L0(P) and L1(P)
respectively; the crucial observation is, that for f ∈ L0

+(P) and g ∈ L1
+(P), it

is possible to well-define

〈f, g〉 := EP[fg] ∈ [0,∞]. (115)

The spirit here is similar as in the very foundation of Lebesgue integration
theory: For positive measurable functions the integral is always defined, but
possibly +∞. This does not cause any logical inconsistency.

Similarly the bracket 〈·, ·〉 defined in (115) shares many of the usual proper-
ties of a scalar product. The difference is that 〈f, g〉 now may assume the value
+∞ and that the map (f, g) 7→ 〈f, g〉 is not continuous on L0

+(P)×L1
+(P), but

only lower semi-continuous (this immediately follows from Fatou’s lemma).
At this stage it becomes clear that the role of L1

+(P) is somewhat artificial,
and it is more natural to define (115) in the general setting where f and g are
both allowed to vary in L0

+(P). The pleasant feature of the space L0(P) in the
context of Mathematical Finance is, that it is invariant under the passage to
an equivalent measure Q, a property only shared by L∞(P), but by no other
Lp(P), for 0 < p <∞.

We now can turn to the polar relation between the sets C andMa(S). By
(113) we have, for an element XT ∈ L0

+(Ω,F ,P),

XT ∈ C ⇔ EQ[XT ] = EP[XT
dQ
dP

] ≤ 1, for Q ∈Ma(S). (116)

Denote by D the closed, convex, solid hull of Ma(S) in L0
+(P). It is easy

to show (using, e.g., Lemma 3.3 below), that D equals

D = {YT ∈ L0
+(Ω,FT ,P) : there is

(Qn)∞n=1 ∈Ma(S) s.t. YT ≤ lim
n→∞

dQn
dP
}, (117)

where the limn→∞
dQn
dP

is understood in the sense of almost sure convergence.
We have used the letter YT for the elements of D to stress the dual relation
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to the elements XT in C. In further analogy we write, for y > 0, D(y) for
yD, so that D = D(1). By (117) and Fatou’s lemma we again find that, for
XT ∈ L0

+(Ω,F ,P)

XT ∈ C ⇔ EP[XTYT ] ≤ 1, for YT ∈ D. (118)

Why did we pass to this enlargement D of the set Ma(S)? The reason is
that we now obtain a more symmetric relation between C and D: for YT ∈
L0

+(Ω,F ,P) we have

YT ∈ D ⇔ EP[XTYT ] ≤ 1, for XT ∈ C. (119)

The proof of (119) relies on an adaption of the “bipolar theorem” from
the theory of locally convex spaces (see, e.g., [Sch 66]) to the present duality
〈L0

+(P), L0
+(P)〉, which was worked out in [BS 99].

Why is it important to define the enlargement D of Ma(S) in such a way
that (119) holds true? After all, Ma(S) is a nice, convex, closed (w.r.t. the
norm of L1(P)) set and we also have that, for g ∈ L1(P) such that EP[g] = 1,

g ∈Ma(S)⇔ EP[XTg] ≤ 1, for XT ∈ C. (120)

The reason is that, in general, the saddle point (X̂T , Q̂) of the Lagrangian

will not be such that Q̂ is a probability measure; it will only satisfy E
[
dQ̂
dP

]
≤ 1,

the inequality possibly being strict. But it will turn out that Q̂, which we

identify with dQ̂
dP

, is always in D. In fact, the passage fromMa(S) to D is the
crucial feature in order to make the duality work in the present setting: we shall
see below that even for nice utility functions U , such as the logarithm, and for
nice processes, such as a continuous process (St)0≤t≤T based on the filtration
of two Brownian motions, the above described phenomenon can occur: the
saddle point of the Lagrangian leads out of Ma(S).

The set D can be characterized in several equivalent manners. We have de-
finedD above in the abstract way as the convex, closed, solid hull ofMa(S) and
mentioned the description (117). Equivalently, one may define D as the set of
random variables YT ∈ L0

+(Ω,F ,P) such that there is a process (Yt)0≤t≤T start-
ing at Y0 = 1 with (YtXt)0≤t≤T a P-supermartingale, for every non-negative
process (Xt)0≤t≤T = (x+ (H ·S)t)0≤t≤T , where x > 0 and H is predictable and
S-integrable. This definition was used in [KS 99]. Another equivalent charac-
terization was used in [CSW 00]: Consider the convex, solid hull of Ma(S),
and embed this subset of L1(P) into the bidual L1(P)∗∗ = L∞(P)∗; denote by
Ma(S) the weak-star closure of the convex solid hull of Ma(S) in L∞(P)∗.
Each element of Ma(S) may be decomposed into its regular part µr ∈ L1(P)
and its purely singular part µs ∈ L∞(P)∗. It turns out that D equals the set
{µr ∈ L1(P) : µ ∈ Ma(S)}, i.e. consists of the regular parts of the elements
of Ma(S). This description has the advantage that we may associate to the
elements µr ∈ D a singular part µs, and it is this extra information which is
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crucial when extending the present results to the case of random endowment
(see [CSW 00]).

Why are the sets C and D hopeful candidates for the minimax theorem to
work out properly for a function L defined on C×D? Both are closed, convex
and bounded subsets of L0

+(P). But recall that we still need some compactness
property to be able to localize the mini-maximizers (resp. maxi-minimizers)
on C (resp. D). In general, neither C nor D is compact (w.r.t. the topology of
convergence in measure), i.e., for a sequence (fn)∞n=1 in C (resp. (gn)∞n=1 in D)
we cannot pass to a subsequence converging in measure. But C and D have a
property which is close to compactness and in many applications turns out to
serve just as well.

Lemma 3.3 Let A be a closed, convex, bounded subset of L0
+(Ω,F ,P). Then

for each sequence (hn)∞n=1 ∈ A there exists a sequence of convex combinations
kn ∈ conv(hn, hn+1, . . .) which converges almost surely to a function k ∈ A.

This easy lemma (see, e.g., [DS 94, Lemma A.1.1], for a proof) is in the
spirit of the celebrated theorem of Komlos [Kom 67], stating that for a bounded
sequence (hn)∞n=1 in L1(P) there is a subsequence converging in Cesaro-mean
almost surely. The methodology of finding pointwise limits by using convex
combinations has turned out to be extremely useful as a surrogate for com-
pactness. For an extensive discussion of more refined versions of the above
lemma and their applications to Mathematical Finance we refer to [DS 99].

The application of the above lemma is the following: by passing to convex
combinations of optimizing sequences (fn)∞n=1 in C (resp. (gn)∞n=1 in D), we can
always find limits f ∈ C (resp. g ∈ D) w.r.t. almost sure convergence. Note
that the passage to convex combinations does not cost more than passing to a
subsequence in the application to convex optimization.

We have now given sufficient motivation to state the central result of
[KS 99], which is the generalization of Theorem 2.3 to the semi-martingale
setting under Assumption 1.2, case 1, and having reasonable asymptotic elas-
ticity.

Theorem 3.4 ([KS 99], th. 2.2) Let the semi-martingale S = (St)0≤t≤T and
the utility function U satisfy Assumptions 1.1, 1.2 case 1 and 1.3; suppose in
addition that U has reasonable asymptotic elasticity. Define

u(x) = sup
XT∈C(x)

E[U(XT )], v(y) = inf
YT∈D(y)

E[V (YT )]. (121)

Then we have:

(i) The value functions u(x) and v(y) are conjugate; they are continuously
differentiable, strictly concave (resp. convex) on ]0,∞[ and satisfy

u′(0) = −v′(0) =∞, u′(∞) = v′(∞) = 0. (122)
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(ii) The optimizers X̂T (x) and ŶT (y) in (121) exist, are unique and satisfy

X̂T (x) = I(ŶT (y)), ŶT (y) = U ′(X̂T (x)), (123)

where x > 0, y > 0 are related via u′(x) = y or equivalently x = −v′(y).

(iii) We have the following relations between u′, v′ and X̂T , ŶT respectively:

u′(x) = E
[
X̂T (x)U ′(X̂T (x))

x

]
, x > 0, v′(y) = E

[
ŶT (y)V ′(ŶT (y))

y

]
, y > 0.

(124)

For the proof of the theorem we refer to [KS 99].
We finish the discussion of utility functions satisfying the Inada conditions

(7) and (8) by briefly indicating an example, when the dual optimizer ŶT (y)

fails to be of the form ŶT (y) = y dQ̂(y)
dP

, for some probability measure Q̂(y).
It suffices to consider a stock-price process of the form

St =
(
exp

(
Bt + t

2

))τ
(125)

= exp
(
Bt∧τ + t∧τ

2

)
, t ≥ 0,

where (Bt)t≥0 is Brownian motion based on (Ω,F , (Ft)t>0,P) and τ a suitably
chosen finite stopping time (to be discussed below) with respect to the filtration
(Ft)t>0, after which the process S remains constant.

The usual way to find a risk-neutral measure Q for the process S above is
to use Girsanov’s formula, which amounts to considering

Zτ = exp(−Bτ − τ
2
) (126)

as a candidate for the Radon-Nikodym derivative dQ
dP

.
It turns out that one may construct τ in such a way that the density process

given by Girsanov’s theorem

Zt = exp(−Bt∧τ − t∧τ
2

), t > 0 (127)

fails to be a uniformly integrable martingale: Then in particular

E[Zτ ] < 1. (128)

The trick is to choose the filtration (Ft)t≥0 to be generated by two independent
Brownian motions (Bt)t≥0 and (Wt)t≥0. Using the information of both (Bt)t≥0

and (Wt)t≥0 one may define τ in a suitable way such that (128) holds true and
nevertheless we have that Me(S) 6= ∅. In other words, there are equivalent
martingale measures Q for the process S, but Girsanov’s theorem fails to
produce one.

This example is known for quite some time ([DS 98a]) and served as a kind
of “universal counterexample” to several questions arising in Mathematical
Finance.
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How can one use this example in the present context? Consider the log-
arithmic utility U(x) = ln(x) and recall that its conjugate function V equals
V (y) = − ln(y) − 1. Hence the dual optimization problem — formally — is
given by

E

[
V
(
y dQ
dP

)]
= E

[
− ln

(
y dQ
dP

)
− 1
]

=

= −E
[
ln
(
dQ
dP

)]
− (ln(y) + 1) 7−→ min!, Q ∈Ma(S). (129)

It is well known (see, e.g., the literature on the “numéraire portfolio” [L 90],
[J 96], [A 97] and [B 00]), that for a process (St)t≥0 based, e.g., on the filtration
generated by an n-dimensional Brownian motion, the martingale measure ob-
tained from applying Girsanov’s theorem (which equals the “minimal martin-
gale measure” investigated by Föllmer and Schweizer [FS 91]) is the minimizer
for (129), provided it exists.

In the present example we have seen that the candidate for the density
of the minimal martingale measure Zτ obtained from a formal application of
Girsanov’s theorem fails to have full measure; but nevertheless one may show
that Zτ is the optimizer of the dual problem (125), which shows in particular
that we have to pass fromMa(S) to the larger set D to find the dual optimizer
in (129).

Passing again to the general setting of Theorem 3.4 one might ask: how
severe is the fact that the dual optimizer ŶT (1) may fail to be the density of

a probability measure (or that E[ŶT (y)] < y, for y > 0, which amounts to
the same thing)? In fact, in many respects it does not bother us at all: we
still have the basic duality relation between the primal and the dual optimizer
displayed in Theorem 3.4 (ii). Even more is true: using the terminology from

[KS 99] the product (X̂t(x)Ŷt(y))0≤t≤T , where x and y satisfy u′(x) = y, is a
uniformly integrable martingale. This fact can be interpreted in the following
way: by taking the optimal portfolio (X̂t(x))0≤t≤T as numéraire instead of the

original cash account, the pricing rule obtained from the dual optimizer ŶT (y)
then is induced by an equivalent martingale measure. We refer to ([KS 99],
p. 912) for a thorough discussion of this argument.

Finally we want to draw the attention of the reader to the fact that —
comparing item (iii) of Theorem 3.4 to the corresponding item of Theorem 2.3
— we only asserted one pair of formulas for u′(x) and v′(y). The reason is
that, in general, the formulae (86) do not hold true any more, the reason again

being precisely that for the dual optimizer ŶT (y) we may have E[ŶT (y)] < y.

Indeed, the validity of u′(x) = E[U ′(X̂T (x))] is tantamount to the validity of

y = E[ŶT (y)].

Case 2: dom(U) = R
We now pass to the case of a utility function U satisfying Assumption 1.2

case 2 which is defined and finitely valued on all of R. The reader should
have in mind the exponential utility U(x) = −e−γx, for γ > 0, as the typical
example.
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We want to obtain a result analogous to Theorem 3.4 also in this setting.
Roughly speaking, we get the same theorem, but the sets C and D considered
above have to be chosen in a somewhat different way, as the optimal portfolio
X̂T now may assume negative values too.

Firstly, we have to assume throughout the rest of this section that the semi-
martingale S is locally bounded. The case of non locally bounded processes is
not yet understood and waiting for future research.

Next we turn to the question; what is the proper definition of the set C(x)
of terminal values XT dominated by a random variable x+ (H ·S)T , where H
is an “allowed” trading strategy? On the one hand we cannot be too liberal
in the choice of “allowed” trading strategies as we have to exclude doubling
strategies and similar schemes. We therefore maintain the definition of the
value function u(x) unchanged

u(x) = sup
H∈H

E [U (x+ (H ·S)T )] , x ∈ R, (130)

where we still confine H to run through the set H of admissible trading strate-
gies, i.e., such that the process ((H·S)t)0≤t≤T is uniformly bounded from below.
This notion makes good sense economically as it describes the strategies pos-
sible for an agent having a finite credit line.

On the other hand, in general, we have no chance to find the minimizer Ĥ
in (130) within the set of admissible strategies: already in the classical cases

studied by Merton ([M 69] and [M 71]) the optimal solution x+(Ĥ·S)T to (130)
is not uniformly bounded from below; this random variable typically assumes
low values with very small probability, but its essential infimum typically is
minus infinity.

In [S 00] the following approach was used to cope with this difficulty: fix
the utility function U : R → R and first define the set Cb

U(x) to consist of all
random variables GT dominated by x + (H ·S)T , for some admissible trading
strategy H and such that E[U(GT )] makes sense:

Cb
U(x) =

{
GT ∈ L0(Ω,FT ,P) : there is H admissible s.t. (131)

GT ≤ x+ (H ·S)T and E[|U(GT )|] <∞} . (132)

Next we define CU(x) as the set of R∪{+∞}-valued random variables XT

such that U(XT ) can be approximated by U(GT ) in the norm of L1(P), when
GT runs through Cb

U(x):

CU(x) =
{
XT ∈ L0(Ω,FT ,P;R ∪ {+∞}) : U(XT ) is in (133)

L1(P)-closure of {U(GT ) : GT ∈ Cb
U(x)}

}
. (134)

The optimization problem (130) now reads

u(x) = sup
XT∈CU (x)

E[U(XT )], x ∈ R. (135)
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The set CU(x) was chosen in such a way that the value functions u(x)
defined in (130) and (135) coincide; but now we have much better chances to
find the maximizer to (135) in the set CU(x).

Two features of the definition of CU(x) merit some comment: firstly, we
have allowed XT ∈ CU(x) to attain the value +∞; indeed, in the case when
U(∞) < ∞ (e.g., the case of exponential utility), this is natural, as the set
{U(XT ) : XT ∈ CU(x)} should equal the L1(P)-closure of the set {U(GT ) :
GT ∈ Cb

U(x)}. But we shall see that — under appropriate assumptions — the

optimizer X̂T , which we are going to find in CU(x), will almost surely be finite.
Secondly, the elements XT of CU(x) are only random variables and, at this

stage, they are not related to a process of the form x + (H · S). Of course,

we finally want to find for each XT ∈ CU(x), or at least for the optimizer X̂T ,
a predictable, S-integrable process H having “allowable” properties (in order
to exclude doubling strategies) and such that XT ≤ x + (H · S)T . We shall
prove later that — under appropriate assumptions — this is possible and give
a precise meaning to the word “allowable”.

After having specified the proper domain CU(x) for the primal optimization
problem (135), we now pass to the question of finding the proper domain for
the dual optimization problem. Here we find a pleasant surprise: contrary to
case 1 above, where we had to pass from the set Ma(S) to its closed, solid
hull D, it turns out that, in the present case 2, the dual optimizer always lies
in Ma(S). This fact was first proved by F. Bellini and M. Fritelli ([BF 00]).

We now can state the main result of [S 00]:

Theorem 3.5 [S 00, Theorem 2.2] Let the locally bounded semi-martingale
S = (St)0≤t≤T and the utility function U satisfy Assumptions 1.1, 1.2 case 2
and 1.3; suppose in addition that U has reasonable asymptotic elasticity. De-
fine

u(x) = sup
XT∈CU (x)

E[U(XT )], v(y) = inf
Q∈Ma(S)

E

[
V
(
y dQ
dP

)]
. (136)

Then we have:

(i) The value functions u(x) and v(y) are conjugate; they are continuously
differentiable, strictly concave (resp. convex) on R (resp. on ]0,∞[) and
satisfy

u′(−∞) = −v′(0) = v′(∞) =∞, u′(∞) = 0. (137)

(ii) The optimizers X̂T (x) and Q̂(y) in (136) exist, are unique and satisfy

X̂T (x) = I

(
y
dQ̂(y)

dP

)
, y

dQ̂(y)

dP
= U ′(X̂T (x)), (138)

where x ∈ R and y > 0 are related via u′(x) = y or equivalently x =
−v′(y).
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(iii) We have the following relations between u′, v′ and X̂, Q̂ respectively:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ̂

[
V ′
(
y dQ̂(y)

dP

)]
(139)

xu′(x) = EP[X̂T (x)U ′(X̂T (x))], yv′(y) = EP

[
y dQ̂(y)

dP
V ′
(
y dQ̂(y)

dP

)]
.(140)

(iv) If Q̂(y) ∈ Me(S) and x = −v′(y), then X̂T (x) equals the terminal value

of a process of the form X̂t(x) = x+ (H ·S)t, where H is predictable and

S-integrable, and such that X̂ is a uniformly integrable martingale under
Q̂(y).

We refer to [S 00] for a proof of this theorem and further related results.
We cannot go into the technicalities here, but a few comments on the proof
of the above theorem are in order: the technique is to reduce case 2 to case 1
by approximating the utility function U : R → R by a sequence (U (n))∞n=1

of utility functions U (n) : R → R ∪ {−∞} such that U (n) coincides with U
on [−n,∞[ and equals −∞ on ] −∞,−(n + 1)]. For fixed initial endowment
x ∈ R, we then apply Theorem 3.4 to find for each U (n) the saddle-point
(X̂

(n)
T (x), Ŷ

(n)
T (ŷn)) ∈ Cb

U(x) ×D(ŷn); finally we show that this sequence con-

verges to some (X̂T (x), ŷQ̂T ) ∈ CU(x) × ŷMa(S), which then is shown to be
the saddle-point for the present problem. The details of this construction are
rather technical and lengthy (see [S 00]).

We have assumed in item (iv) that Q̂(y) is equivalent to P and left

open the case when Q̂(y) is only absolutely continuous to P. F. Bellini and
M. Fritelli have observed ([BF 00]) that, in the case U(∞) = ∞ (or, equiva-

lently, V (0) =∞), it follows from (136) that Q̂(y) is equivalent to P. But there

are also other important cases where we can assert that Q̂(y) is equivalent to
P: for example, for of the exponential utility U(x) = −e−γx, in which case

the dual optimization becomes the problem of finding Q̂ ∈Ma(S) minimizing
the relative entropy with respect P, it follows from the work of Csiszar [C 75]

(compare also [R 84], [F 00], [GR 00]) that the dual optimizer Q̂(y) is equivalent
to P, provided only that there is at least one Q ∈ Me(S) with finite relative
entropy.

Under the condition Q̂(y) ∈ Me(S), item (iv) tells us that the optimizer

X̂T ∈ CU(x) is almost surely finite and equals the terminal value of a process

x+(H·S), which is a uniformly integrable martingale under Q̂(y); this property
qualifies H to be a “allowable”, as it certainly excludes doubling strategies and
related schemes. One may turn the point of view around and take this as the
definition of the “allowable” trading strategies; this was done in [DGRSSS 00]
for the case of exponential utility, where this approach is thoroughly studied
and some other definitions of “allowable” trading strategies, over which the
primal problem may be optimized, are also investigated. Further results on
these lines were obtained in [KaS 00] for the case of exponential utility, and in
[S 00b] for general utility functions.
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We finish this survey with a brief account on the recent literature related
to maximizing expected utility in financial markets. There are many aspects
going beyond the basic problem surveyed above. We can only give a very
brief indication on the many interesting papers and hope to have provided the
reader with some introductory motivation to study this literature.

G. Zitkovic [Z 00] has analyzed the problem of optimizing expected utility
of consumption during the time interval [0, T ]. He obtained a similar result as
Theorem 3.4 above, provided the utility functions Ut,ω, which in this setting
may depend on t ∈ [0, T ] and ω ∈ Ω in an Ft-measurable way, satisfy the
reasonable elasticity condition in a uniform way.

Results related to the duality theory of utility maximization and notably
to the dual optimizer Q̂ ∈ Me(S) were obtained in [F 00], [K 00], [XY 00],
[GK 00], [GR 00] and [BF 00].

Utility maximization under transaction costs was investigated, e.g., in
[HN 89], [CK 96], [CW 00] and [DPT 00]; in the latter two papers the phe-
nomenon arising in Theorem 3.4 is of crucial importance: for the dual opti-
mizer one has to perform a similar enlargement as the passage fromMa(S) to
D encountered in Theorem 3.4 above.

The theme of random endowment, which is intimately related to the con-
cept of utility based hedging of contingent claims is treated in [KJ 98], [KR 00],
[CSW 00], [D 00], [JS 00], [CH 00], and in the context of minimizing expected
shortfall, which leads to non-smooth utility functions, in [C 00] and [FL 00].
Non smooth utility functions also come up in a natural way in [DPT 00] and
in [L 00].
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[R 84] L. Rüschendorf, (1984), On the minimum discrimination information
theorem. Statistics & Decisions Supplement Issue, Vol. 1, pp. 263–283.

[S 69] P.A. Samuelson, (1969), Lifetime portfolio selection by dynamic
stochastic programming. Rev. Econom. Statist., Vol. 51, pp. 239–246.

[S 00] W. Schachermayer, (1999), Optimal Investment in Incomplete Mar-
kets when Wealth may Become Negative. Preprint (45 pages), to ap-
pear in Annals of Applied Probability.

[S 00a] W. Schachermayer, (2000), Introduction to the Mathematics of Finan-
cial Markets. Notes on the St. Flour summer school 2000, preprint, to
appear in Springer Lecture Notes.

[S 00b] W. Schachermayer, (2000), How Potential Investments may Change
the Optimal Portfolio for the Exponential Utility. preprint.

36
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