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Preface

These Lecture Notes are based on a course given in June 2001 at the Cattedra
Galileiano of Scuola Normale Superiore di Pisa.

The course consisted in a short introduction into the basic concepts of Mathemat-
ical Finance, focusing on the notion of “no arbitrage”, and subsequently applying
these concepts to portfolio optimisation. To avoid technical difficulties I mainly
dealt with the situation where the underlying probability space (Ω,F ,P) is finite
and only sketched the difficulties arising in the general case. This part of the lectures
is strongly based on my lecture notes for the summer school in St. Flour [S 03] and
the survey given at the first world congress of the Bachelier society [S 01a].

We then pass to the theme of utility optimisation for general semi-martingale
models as developped in [KS 99] and [S 01].

There are, however, some topics of this course which are not standard: for exam-
ple, in the treatment of the general existence theorem for the optimal portfolio, we
give a direct proof which is not relying on duality theory. Similarly, the treatment
of the asymptotic elasticity of utility functions and a related counter-example are
original to these notes, who were taken by P. Guasoni. He gave these notes his
personal flavor, in particular with respect to these novel features: for example, he
pointed out to me an interesting connection between the elasticity and the relative
risk aversion of the duality function U . Our discussions on these topics of the course
also resulted in the subsequent joint paper [GS 04].

My sincerest thanks go to P. Guasoni for his dedication to the cumbersome duty
of writing up my lectures and bringing them into shape. My thanks also go to
Professors Pratelli and da Prato who were lovely hosts during my stay in Pisa.

Vienna, January 2004 Walter Schachermayer



ii



Contents

1 Problem Setting 1

2 Models on Finite Probability Spaces 5
2.1 Utility Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 The complete case (Arrow) . . . . . . . . . . . . . . . . . . . . 12
2.1.2 The Incomplete Case . . . . . . . . . . . . . . . . . . . . . . . 19

3 The general case 25
3.1 The reasonable asymptotic elasticity condition . . . . . . . . . . . . . 26
3.2 Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Existence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A The Bipolar Theorem in L0 59

B Asymptotic elasticity and asymptotic relative risk aversion 61

iii



iv CONTENTS



Chapter 1

Problem Setting

We consider a model of a security market which consists of d + 1 assets. We denote
by S = ((Si

t)1≤t≤T )0≤i≤d the price process of the d stocks and suppose that the
price of the asset S0, called the “bond” or “cash account”, is constant, i.e.,S0

t ≡ 1.
The latter assumption does not restrict the generality of the model as we always
may choose the bond as numéraire, i.e., we may express the values of the other
assets in units of the “bond”. In other words, ((Si

t)0≤t≤T )1≤i≤d, is an Rd-valued
semi-martingale modeling the discounted price process of d risky assets.

The process S is assumed to be a semimartingale, based on and adapted to
a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions of
saturatedness and right continuity. As usual in mathematical finance, we consider
a finite horizon T , but we remark that our results can also be extended to the case
of an infinite horizon.

In chapter 2 we shall consider the case of finite Ω, in which case the paths of S
are constant except for jumps at a finite number of times. We then can write S as
(St)

T
t=0 = (S0, S1, . . . , ST ), for some T ∈ N.

The assumption that the bond is constant is mainly chosen for notational con-
venience as it allows for a compact description of self-financing portfolios: a self-
financing portfolio Π is defined as a pair (x, H), where the constant x is the ini-
tial value of the portfolio and H = (H i)1≤i≤d is a predictable S-integrable pro-
cess specifying the amount of each asset held in the portfolio. The value process
X = (Xt)0≤t≤T of such a portfolio Π at time t is given by

Xt = X0 +

∫ t

0

HudSu, 0 ≤ t ≤ T, (1.1)

where X0 = x and the integral refers to stochastic integration in Rd.

In order to rule out doubling strategies and similar schemes generating arbitrage-
profits (by going deeply into the red) we follow Harrison and Pliska ([HP81], see also
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2 CHAPTER 1. PROBLEM SETTING

[DS 94]), calling a predictable, S-integrable process admissible, if there is a constant
C ∈ R+ such that, almost surely, we have

(H ·S)t :=

∫ t

0

HudSu ≥ −C, for 0 ≤ t ≤ T. (1.2)

Let us illustrate these general concepts in the case of an Rd-valued process S =
(St)

T
t=0 in finite, discrete time {0, 1, . . . , T} adapted to the filtration (Ft)

T
t=0. In

this case each Rd-valued process (Ht)
T
t=1, which is predictable (i.e. each Ht is Ft−1-

measurable), is S-integrable, and the stochastic integral reduces to a finite sum

(H ·S)t =

∫ t

0

HudSu (1.3)

=
t∑

u=1

Hu∆Su (1.4)

=
t∑

u=1

Hu(Su − Su−1), (1.5)

where Hu∆Su denotes the inner product of the vectors Hu and ∆Su = Su− Su−1 in
Rd, i.e.

Hu∆Su =
d∑

j=1

Hj
u(S

j
u − Sj−1

u ). (1.6)

Of course, each such trading strategy H is admissible if the underlying probability
space Ω is finite.

Passing again to the general setting of an Rd-valued semi-martingale S =
(St)0≤t≤T we denote as in [KS 99] by Me(S) (resp. Ma(S)) the set of probabil-
ity measures Q equivalent to P (resp. absolutely continuous with respect to P) such
that for each admissible integrand H, the process H ·S is a local martingale under
Q.

We shall assume the following version of the no-arbitrage condition on S:

Assumption 1.1 The set Me(S) is not empty.1

1If follows from [DS 94] and [DS 98] that Assumption 1.1 is equivalent to the condition of “no
free lunch with vanishing risk”. This property can also be equivalently characterised in terms of
the existence of a measure Q ∼ P such that the process S itself (rather than the integrals H ·S
for admissible integrands) is “something like a martingale”. The precise notion in the general
semi-martingale setting is that S is a sigma-martingale under Q (see [DS 98]); in the case when
S is locally bounded (resp. bounded) the term “sigma-martingale” may be replaced by the more
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In these notes we shall mainly be interested in the case when Me(S) is not
reduced to a singleton, i.e., the case of an incomplete financial market.

After having specified the process S modeling the financial market we now define
the function U(x) modeling the utility of an agent’s wealth x at the terminal time
T .

We make the classical assumptions that U : R → R ∪ {−∞} is increasing on
R, continuous on {U > −∞}, differentiable and strictly concave on the interior of
{U > −∞}, and that marginal utility tends to zero when wealth tends to infinity,
i.e.,

U ′(∞) := lim
x→∞

U ′(x) = 0. (1.7)

These assumptions make good sense economically and it is clear that the require-
ment (1.7) of marginal utility decreasing to zero, as x tends to infinity, is necessary,
if one is aiming for a general existence theorem for optimal investment.

As regards the behavior of the (marginal) utility at the other end of the wealth
scale we shall distinguish two cases.

Case 1 (negative wealth not allowed): in this setting we assume that U satifies
the conditions U(x) = −∞, for x < 0, while U(x) > −∞, for x > 0, and the so-
called Inada conditions

U ′(0) := lim
x↘0

U ′(x) = ∞. (1.8)

Case 2 (negative wealth allowed): in this case we assume that U(x) > −∞,
for all x ∈ R, and that

U ′(−∞) := lim
x↘−∞

U ′(x) = ∞. (1.9)

Typical examples for case 1 are

U(x) = ln(x), x > 0, (1.10)

or

U(x) =
xα

α
, α ∈ (−∞, 1) \ {0}, x > 0, (1.11)

whereas a typical example for case 2 is

U(x) = −e−γx, γ > 0, x ∈ R. (1.12)

familiar term “local martingale” (resp. “martingale”).
Readers who are not too enthusiastic about the rather subtle distinctions between martingales,
local martingales and sigma-martingales may find some relief by noting that, in the case of finite
Ω, or, more generally, for bounded processes S, these three notions coincide.
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We again note that it is natural from economic considerations to require that
the marginal utility tends to infinity when the wealth x tends to the infimum of its
allowed values.

For later reference we summarize our assumptions on the utility function:

Assumption 1.2 (Usual Regularity Conditions) A utility function U : R →
R∪{−∞} satisfies the usual regularity conditions if it is increasing on R, continuous
on {U > −∞}, differentiable and strictly concave on the interior of {U > −∞},
and satisfies

U ′(∞) := lim
x→∞

U ′(x) = 0. (1.13)

Denoting by dom(U) the interior of {U > −∞}, we assume that we have one of
the two following cases.

Case 1: dom(U) =]0,∞[ in which case U satisfies the condition

U ′(0) := lim
x↘0

U ′(x) = ∞. (1.14)

Case 2: dom(U) = R in which case U satisfies

U ′(−∞) := lim
x↘−∞

U ′(x) = ∞. (1.15)

We now can give a precise meaning to the problem of maximizing the expected
utility of terminal wealth. Define the value function

u(x) := sup
H∈H

E [U(x + (H ·S)T )] , x ∈ dom(U), (1.16)

where H ranges through the family H of admissible S-integrable trading strategies.
To exclude trivial cases we shall assume that the value function u is not degenerate:

Assumption 1.3

u(x) < sup
ξ

U(ξ), for some x ∈ dom(U). (1.17)

Since u is clearly increasing, and U(y) ≤ U(x) + U ′(x)(y−x) for any y > x, this
assumption implies that

u(x) < sup
ξ

U(ξ), for all x ∈ dom(U). (1.18)

Under appropriate hypotheses (e.g., when Ω is finite) Assumptions 1.1 and 1.2
already imply Assumption 1.3.



Chapter 2

Models on Finite Probability
Spaces

In order to reduce the technical difficulties of the theory of utility maximization to
a minimum, we assume throughout this chapter that the probability space Ω will be
finite, say, Ω = {ω1, ω2, . . . , ωN}. This assumption implies that all the differences
among the spaces L∞(Ω,F ,P), L1(Ω,F ,P) and L0(Ω,F ,P) disappear, as all these
spaces are simply isomorphic to RN . Hence all the functional analysis reduces to
simple linear algebra in the setting of the present chapter.

Nevertheless we shall write L∞(Ω,F ,P), L1(Ω,F ,P) etc. below (knowing very
well that these spaces are isomorphic in the present setting) to indicate, what we
shall encounter in the setting of the general theory.

Definition 2.1 A model of a finite financial market is an Rd+1-valued stochas-
tic process S = (S)T

t=0 = (S0
t , S

1
t , . . . , S

d
t )T

t=0, based on and adapted to the filtered
stochastic base (Ω,F , (F)T

t=0,P). Without loss of generality we assume that F0 is
trivial, that FT = F is the power set of Ω, and that P[ωn] > 0, for all 1 ≤ n ≤ N .
We assume that the zero coordinate S0, which we call the cash account, satisfies
S0

t ≡ 1, for t = 0, 1, . . . , T . The letter ∆St denotes the increment St − St−1.

Definition 2.2 H denotes the set of trading strategies for the financial market S.
An element H ∈ H is an Rd-valued process (Ht)

T
t=1 = (H1

t , H2
t , . . . , Hd

t )T
t=1 which is

predictable, i.e. each Ht is Ft−1-measurable.
We then define the stochastic integral (H ·S) as the R-valued process ((H ·S)t)

T
t=0

given by

(H ·S)t =
t∑

k=1

(Hk, ∆Sk), t = 0, . . . , T, (2.1)

where ( . , . ) denotes the inner product in Rd.

5



6 CHAPTER 2. MODELS ON FINITE PROBABILITY SPACES

Definition 2.3 We call the subspace K of L0(Ω,F ,P) defined by

K = {(H ·S)T : H ∈ H} (2.2)

the set of contingent claims attainable at price 0.

The economic interpretation is the following: the random variables f = (H ·S)T ,
for some H ∈ H, are precisely those contingent claims, i.e., the pay-off functions at
time T depending on ω ∈ Ω in an FT -measurable way, that an economic agent may
replicate with zero initial investment, by pursuing some predictable trading strategy
H.

For a ∈ R, we call the set of contingent claims attainable at price a the affine
space Ka obtained by shifting K by the constant function a1, in other words the
random variables of the form a + (H · S)T , for some trading strategy H. Again
the economic interpretation is that these are precisely the contingent claims that
an economic agent may replicate with an initial investment of a by pursuing some
predictable trading strategy H.

Definition 2.4 We call the convex cone C in L∞(Ω,F ,P) defined by

C = {g ∈ L∞(Ω,F ,P) s.t. there is f ∈ K, f ≥ g} . (2.3)

the set of contingent claims super-replicable at price 0.

Economically speaking, a contingent claim g ∈ L∞(Ω,F ,P) is super-replicable
at price 0, if we can achieve it with zero net investment, subsequently pursuing some
predictable trading strategy H — thus arriving at some contingent claim f — and
then, possibly, “throwing away money” to arrive at g. This operation of “throwing
away money” may seem awkward at this stage, but we shall see later that the set
C plays an important role in the development of the theory. Observe that C is a
convex cone containing the negative orthant L∞− (Ω,F ,P). Again we may define Ca

as the contingent claims super-replicable at price a if we shift C by the constant
function a1.

Definition 2.5 A financial market S satifies the no-arbitrage condition (NA) if

K ∩ L0
+(Ω,F ,P) = {0} (2.4)

or, equivalently,

C ∩ L∞+ (Ω,F ,P) = {0} (2.5)

where 0 denotes the function identically equal to zero.
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In other words we now have formalized the concept of an arbitrage possibility:
it consists of the existence of a trading strategy H such that — starting from an
initial investment zero — the resulting contingent claim f = (H ·S)T is non-negative
and not identically equal to zero. If a financial market does not allow for arbitrage
we say it satisfies the no-arbitrage condition (NA).

Definition 2.6 A probability measure Q on (Ω,F) is called an equivalent martin-
gale measure for S, if Q ∼ P and S is a martingale under Q.

We denote by Me(S) the set of equivalent martingale probability measures and
byMa(S) the set of all (not necessarily equivalent) martingale probability measures.
The letter a stands for “absolutely continuous with respect to P” which in the
present setting (finite Ω and P having full support) automatically holds true, but
which will be of relevance for general probability spaces (Ω,F ,P) later. We shall
often identify a measure Q on (Ω,F) with its Radon-Nikodym derivative dQ

dP
∈

L1(Ω,F ,P).

Lemma 2.7 For a probability measure Q on (Ω,F) the following are equivalent:

(i) Q ∈Ma(S),

(ii) EQ[f ] = 0, for all f ∈ K,

(iii) EQ[g] ≤ 0, for all g ∈ C.

Proof The equivalences are rather trivial, as (ii) is tantamount to the very def-
inition of S being a martingale under Q, and the equivalence of (ii) and (iii) is
straightforward.

After having fixed these formalities we may formulate and prove the central
result of the theory of pricing and hedging by no-arbitrage, sometimes called the
“fundamental theorem of asset pricing”, which in its present form (i.e., finite Ω) is
due to Harrison and Pliska [HP 81].

Theorem 2.8 (Fundamental Theorem of Asset Pricing) For a financial
market S modeled on a finite stochastic base (Ω,F , (Ft)

T
t=0,P) the following are

equivalent:

(i) S satisfies (NA).

(ii) Me(S) 6= ∅.
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Proof (ii) ⇒ (i): This is the obvious implication. If there is some Q ∈Me(S) then
by lemma 2.7 we have that

EQ[g] ≤ 0, for g ∈ C. (2.6)

On the other hand, if there were g ∈ C ∩ L∞+ , g 6= 0, then, using the assumption
that Q is equivalent to P, we would have

EQ[g] > 0, (2.7)

a contradiction.
(i) ⇒ (ii) This implication is the important message of the theorem which will

allow us to link the no-arbitrage arguments with martingale theory. We give a
functional analytic existence proof, which will be generalizable — in spirit — to
more general situations.

By assumption the space K intersects L∞+ only at 0. We want to separate the
disjoint convex sets L∞+ \{0} and K by a hyperplane induced by a linear functional
Q ∈ L1(Ω,F ,P) which is strictly positive on L∞+ \{0}. Unfortunately this is a
situation, where the usual versions of the separation theorem (i.e., the Hahn-Banach
Theorem) do not apply (even in finite dimensions!). Indeed, one usually assumes
that one of the convex sets is compact in order to obtain a strict separation.

One way to overcome this difficulty (in finite dimension) is to consider the convex
hull of the unit vectors (1{ωn})

N
n=1 in L∞(Ω,F ,P) i.e.

P :=

{
N∑

n=1

µn1{ωn} : µn ≥ 0,
N∑

n=1

µn = 1

}
. (2.8)

This is a convex, compact subset of L∞+ (Ω,F ,P) and, by the (NA) assumption,
disjoint from K. Hence we may strictly separate the sets P and K by a linear
functional Q ∈ L∞(Ω,F ,P)∗ = L1(Ω,F ,P), i.e., find α < β such that

EQ[f ] = 〈Q, f〉 ≤ α for f ∈ K, (2.9)

〈Q, hEQ[h] = 〉 ≥ β for h ∈ P.

As K is a linear space, we have α ≥ 0 and may, in fact, replace α by 0. Hence
β > 0. Therefore 〈Q,1〉 > 0, and we may normalize Q such that 〈Q,1〉 = 1. As Q
is strictly positive on each 1{ωn}, we therefore have found a probability measure Q
on (Ω,F) equivalent to P such that condition (ii) of lemma 2.7 holds true. In other
words, we found an equivalent martingale measure Q for the process S.

Corollary 2.9 Let S satisfy (NA) and f ∈ L∞(Ω,F ,P) be an attainable contingent
claim so that

f = a + (H ·S)T , (2.10)
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for some a ∈ R and some trading strategy H.
Then the constant a and the process (H ·S) are uniquely determined by (2.10)

and satisfy, for every Q ∈Me(S),

a = EQ[f ], and a + (H ·S)t = EQ[f |Ft] for 0 ≤ t ≤ T. (2.11)

Proof As regards the uniqueness of the constant a ∈ R, suppose that there are
two representations f = a1 + (H1 · S)T and f = a2 + (H2 · S)T with a1 6= a2.
Assuming w.l.o.g. that a1 > a2 we find an obvious arbitrage possibility: we have
a1 − a2 = ((H1 − H2) ·S)T , i.e. the trading strategy H1 − H2 produces a strictly
positive result at time T, a contradiction to (NA).

As regards the uniqueness or the process H · S we simply apply a conditional
version of the previous argument: assume that f = a+(H1·S)T and f = a+(H2·S)T

such that the processes H1 ·S amd H2 ·S are not identical. Then there is 0 < t < T
such that (H1 ·S)t 6= (H2 ·S)t; w.l.g. A := {(H1 ·S)t > (H2 ·S)t} is a non-empty
event, which clearly is in Ft. Hence, using the fact hat (H1 ·S)T = (H2 ·S)T , the
trading strategy H := (H2 − H1)χA · χ]t,T ] is a predictable process producing an
arbitrage, as (H ·S)T = 0 outside A, while (H ·S)T = (H1 ·S)t− (H2 ·S)t > 0 on A,
which again contradicts (NA).

Finally, the equations in (2.11) result from the fact that, for every predictable
process H and every Q ∈Ma(S), the process H ·S is a Q-martingale. Noting that,
for a measure Q ∼ P, the conditional expectation EQ[f |Ft] is P-a.s. well-defined
we thus obtain (2.11) for each Q ∈Me(S).

Denote by cone(Me(S)) and cone(Ma(S)) the cones generated by the convex sets
Me(S) and Ma(S) respectively. The subsequent result clarifies the polar relation
between these cones and the cone C. Recall (see, e.g., [S 66]) that, for a pair (E, E ′)
of vector spaces in separating duality via the scalar product 〈., .〉, the polar C0 of a
set C in E is defined as

C0 = {g ∈ E ′ : 〈f, g〉 ≤ 1, for all f ∈ C} . (2.12)

In the case when C is closed under multiplication with positive scalars (e.g., if
C is a convex cone) the polar C0 may equivalently be defined by

C0 = {g ∈ E ′ : 〈f, g〉 ≤ 0, for all f ∈ C} . (2.13)

The bipolar theorem (see, e.g., [S 66]) states that the bipolar C00 := (C0)0 of a
set C in E is the σ(E, E ′)-closed convex hull of C.

After these general considerations we pass to the concrete setting of the cone
C ⊆ L∞(Ω,F ,P) of contingent claims super-replicable at price 0. Note that in
our finite-dimensional setting this convex cone is closed as it is the algebraic sum
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of the closed linear space K (a linear space in RN is always closed) and the closed
polyhedral cone L∞− (Ω,F ,P) (the verification, that the algebraic sum of a space and
a polyhedral cone in RN is closed, is an easy, but not completely trivial exercise).
Hence we deduce from the bipolar theorem, that C equals its bipolar C00.

Proposition 2.10 Suppose that S satisfies (NA). Then the polar of C is equal to
cone(Ma(S)) and Me(S) is dense in Ma(S). Hence the following assertions are
equivalent for an element g ∈ L∞(Ω,F ,P)

(i) g ∈ C,

(ii) EQ[g] ≤ 0, for all g ∈Ma(S),

(iii) EQ[g] ≤ 0, for all g ∈Me(S),

Proof The fact that the polar C0 and cone(Ma(S)) coincide, follows from lemma
2.7 and the observation that C ⊇ L∞− (Ω,F ,P) implies C0 ⊆ L∞+ (Ω,F ,P). Hence
the equivalence of (i) and (ii) follows from the bipolar theorem.

As regards the density of Me(S) in Ma(S) we first deduce from theorem 2.8
that there is at least one Q∗ ∈ Me(S). For any Q ∈ Ma(S) and 0 < µ ≤ 1 we
have that µQ∗ + (1− µ)Q ∈Me(S), which clearly implies the density of Me(S) in
Ma(S). The equivalence of (ii) and (iii) now is obvious.

The subsequent theorem tells us precisely what the principle of no arbitrage can
tell us about the possible prices for a contingent claim f . It goes back to the work
of D. Kreps [K 81] and was subsequently extended by several authors.

For given f ∈ L∞(Ω,F ,P), we call a ∈ R an arbitrage-free price, if in addition
to the financial market S, the introduction of the contingent claim, which pays the
random amount f at time t = T and can be bought or sold at price a at time
t = 0, does not create an arbitrage possibility. Mathematically speaking, this can
be formalized as follows. Let Cf,a denote the cone spanned by C and the linear space
spanned by f−a; then a is an arbitrage-free price for f if Cf,a∩L∞+ (Ω,F ,P) = {0}.

Theorem 2.11 (Pricing by No-Arbitrage) Assume that S satisfies (NA) and
let f ∈ L∞(Ω,F ,P). Define

π(f) = sup {EQ[f ] : Q ∈Me(S)} , (2.14)

π(f) = inf {EQ[f ] : Q ∈Me(S)} . (2.15)

Either π(f) = π(f), in which case f is attainable at price π(f) := π(f) = π(f),
i.e. f = π(f) + (H ·S)T for some H ∈ H; therefore π(f) is the unique arbitrage-free
price for f .

Or π(f) < π(f), in which case {EQ[f ] : Q ∈ Me(S)} equals the open interval
]π(f), π(f)[, which in turn equals the set of arbitrage-free prices for the contingent
claim f .
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Proof First observe that the set {EQ[f ] : Q ∈Me(S)} forms a bounded non-empty
interval in R, which we denote by I.

We claim that a number a is in I, iff a is an arbitrage-free price for f . Indeed,
supposing that a ∈ I we may find Q ∈ Me(S) s.t. EQ[f − a] = 0 and therefore
Cf,a ∩ L∞+ (Ω,F ,P) = {0}.

Conversely suppose that Cf,a ∩ L∞+ (Ω,F ,P) = {0}. Note that Cf,a is a closed
convex cone (it is the albegraic sum of the linear space span(K, f − a) and the
closed, polyhedral cone L∞− (Ω,F ,P)). Hence by the same argument as in the proof
of theorem 2.8 there exists a probability measure Q ∼ P such that Q|Cf,a ≤ 0. This
implies that EQ[f − a] = 0, i.e., a ∈ I.

Now we deal with the boundary case: suppose that a equals the right boundary
of I, i.e., a = π(f) ∈ I, and consider the contingent claim f − π(f); by definition
we have EQ[f − π(f)] ≤ 0, for all Q ∈ Me(S), and therefore by proposition 2.10,
that f − π(f) ∈ C. We may find g ∈ K such that g ≥ f − π(f). If the sup in (2.14)
is attained, i.e., if there is Q∗ ∈ Me(S) such that EQ∗ [f ] = π(f), then we have
0 = EQ∗ [g] ≥ EQ∗ [f−π(f)] = 0 which in view of Q∗ ∼ P implies that f−π(f) ≡ g;
in other words f is attainable at price π(f). This in turn implies that EQ[f ] = π(f),
for all Q ∈Me(S), and therefore I is reduced to the singleton {π(f)}.

Hence, if π(f) < π(f), π(f) connot belong to the interval I, which is therefore
open on the right hand side. Passing from f to −f , we obtain the analogous result
for the left hand side of I, which therefore equals I =]π(f), π(f)[.

Corollary 2.12 (complete financial markets) For a financial market S satis-
fying the no-arbitrage condition (NA) the following are equivalent:

(i) Me(S) consists of a single element Q.

(ii) Each f ∈ L∞(Ω,F ,P) may be represented as

f = a + (H ·S)T , for some a ∈ R, and H ∈ H. (2.16)

In this case a = EQ[f ], the stochastic integral (H ·S) is unique and we have that

EQ[f |Ft] = EQ[f ] + (H ·S)t, t = 0, . . . , T. (2.17)

Proof The implication (i) ⇒ (ii) immediately follows from the preceding theorem;
for the implication (ii) ⇒ (i), note that, (2.16) implies that, for elements Q1, Q2 ∈
Ma(S), we have EQ1 [f ] = a = EQ2 [f ]; hence it suffices to note that. if Me(S)
contains two different elements Q1, Q2. we may find f ∈ L∞(Ω,F ,P) s.t. EQ1 [f ] 6=
EQ2 [f ].
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2.1 Utility Maximization

We are now ready to study utility maximization problems with the convex duality
approach.

2.1.1 The complete case (Arrow)

As a first case we analyze the situation of a complete financial market (Corollary
2.12 above), i.e., the set Me(S) of equivalent probability measures under which S
is a martingale is reduced to a singleton {Q}. In this setting consider the Arrow
assets 1{ωn}, which pay 1 unit of the numéraire at time T , when ωn turns out to be
the true state of the world, and 0 otherwise. In view of our normalization of the
numéraire S0

t ≡ 1, we get for the price of the Arrow assets at time t = 0 the relation

EQ

[
1{ωn}

]
= Q[ωn] = qn, (2.18)

and by 2.12 each Arrow asset 1{ωn} may be represented as 1{ωn} = Q[ωn] + (H ·S)T ,
for some predictable trading strategy H ∈ H.

Hence, for fixed initial endowment x ∈ dom(U), the utility maximization problem
(1.16) above may simply be written as

EP [U(XT )] =
N∑

n=1

pnU(ξn) → max! (2.19)

EQ[XT ] =
N∑

n=1

qnξn ≤ x. (2.20)

To verify that (2.19) and (2.20) indeed are equivalent to the original problem
(1.16) above (in the present finite, complete case), note that by Theorem 2.11 a
random variable (XT (ωn))N

n=1 = (ξn)N
n=1 can be dominated by a random variable

of the form x + (H · S)T = x +
∑T

t=1 Ht∆St iff EQ[XT ] =
∑N

n=1 qnξn ≤ x. This
basic relation has a particularly evident interpretation in the present setting, as qn

is simply the price of the Arrow asset 1{ωn}.
We have written ξn for XT (ωn) to stress that (2.19) simply is a concave maximiza-

tion problem in RN with one linear constraint. To solve it, we form the Lagrangian

L(ξ1, . . . , ξN , y) =
N∑

n=1

pnU(ξn)− y

(
N∑

n=1

qnξn − x

)
(2.21)

=
N∑

n=1

pn

(
U(ξn)− y qn

pn
ξn

)
+ yx. (2.22)
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We have used the letter y ≥ 0 instead of the usual λ ≥ 0 for the Lagrange mul-
tiplier; the reason is the dual relation between x and y which will become apparent
in a moment.

Write
Φ(ξ1, . . . , ξN) = inf

y>0
L(ξ1, . . . , ξN , y), ξn ∈ dom(U), (2.23)

and
Ψ(y) = sup

ξ1,...,ξN

L(ξ1, . . . , ξN , y), y ≥ 0. (2.24)

Note that we have

sup
ξ1,...,ξN

Φ(ξ1, . . . , ξN) = sup
ξ1,...,ξN∑N

n=1 qnξn≤x

N∑
n=1

pnU(ξn) = u(x). (2.25)

Indeed, if (ξ1, . . . , ξN) is in the admissible region
∑N

n=1 qnξn ≤ x then Φ(ξ1, . . . , ξN) =

L(ξ1, . . . , ξN , 0) =
∑N

n=1 pnU(ξn). On the other hand, if (ξ1, . . . , ξN) satisfies∑N
n=1 qnξn > x, then by letting y →∞ in (2.23) we note that Φ(ξ1, . . . , ξN) = −∞.
As regards the function Ψ(y) we make the following pleasant observation which

is the basic reason for the efficiency of the duality approach: using the form (2.22)
of the Lagrangian and fixing y > 0, the optimization problem appearing in (2.24)
splits into N independent optimization problems over R

U(ξn)− y qn

pn
ξn → max!, ξn ∈ R. (2.26)

In fact, these one-dimensional optimization problems are of a very convenient
form: recall (see, e.g., [R 70], [ET 76] or [KLSX91]) that, for a concave function
U : R → R∪{−∞}, the conjugate function V (which is just the Legendre-transform
of x 7→ −U(−x)) is defined by

V (η) = sup
ξ∈R

[U(ξ)− ηξ] , η > 0. (2.27)

Definition 2.13 We say that the function V : R → R, conjugate to the function
U , satisfies the usual regularity assumptions, if V is finitely valued, differentiable,
strictly convex on ]0,∞[, and satisfies

V ′(0) := lim
y↘0

V ′(y) = −∞. (2.28)

As regards the behavior of V at infinity, we have to distinguish between case 1 and
case 2 in Assumption 1.2 above:

case 1: lim
y→∞

V (y) = lim
x→0

U(x) and lim
y→∞

V ′(y) = 0 (2.29)

case 2: lim
y→∞

V (y) = ∞ and lim
y→∞

V ′(y) = ∞ (2.30)
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We have the following wellknown fact (see [R 70] or [ET 76]).

Proposition 2.14 If U satisfies Assumption 1.2, then its conjugate function V
satisfies the the inversion formula

U(ξ) = inf
η

[V (η) + ηξ] , ξ ∈ dom(U) (2.31)

and satisfies the regularity assumptions in Definition 2.13. In addition, −V ′(y) is
the inverse function of U ′(x). Conversely, if V satisfies the regulatory assumptions
of Definition 2.13, then U defined by (2.31) satisfies Assumption 1.2.

Following [KLS 87] we denote −V ′ = I (for “inverse” function).

Proof It follows from Assumption 1.2 that V is finitely valued on ]0,∞[. Note that
we have that

U(x) ≤ a + yx ∀x ∈ dom(U) ⇐⇒ V (y) ≤ a (2.32)

which implies the inversion formula above. In turn, this formula shows that V is
the supremum of affine functions, and therefore convex. Since U is strictly concave
and differentiable, the maximizer ξ̂ = ξ(µ) in (2.27) solves the first-order condition
U ′(ξ(η)) = η. Also, we have that U ′ is a continuous bijection between {U > −∞}
and R+. This observation and the inversion formula show that V is both strictly
convex, differentiable, and that −V ′ is the inverse of U ′.

Remark 2.15 Of course, U ′ has a good economic interpretation as the marginal
utility of an economic agent modeled by the utility function U .

Here are some concrete examples of pairs of conjugate functions:

U(x) = ln(x), x > 0, V (y) = − ln(y)− 1,

U(x) = − e−γx

γ
, x ∈ R, V (y) = y

γ
(ln(y)− 1), γ > 0

U(x) = xα

α
, x > 0, V (y) = 1−α

α
y

α
α−1 , α ∈ (−∞, 1) \ {0}.

We now apply these general facts about the Legendre transformation to calculate
Ψ(y). Using definition (2.27) of the conjugate function V and (2.22), formula (2.24)
becomes

Ψ(y) =
N∑

n=1

pnV
(
y qn

pn

)
+ yx (2.33)

= EP

[
V
(
y dQ

dP

)]
+ yx. (2.34)
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Denoting by v(y) the dual value function

v(y) := EP

[
V
(
y dQ

dP

)]
=

N∑
n=1

pnV
(
y qn

pn

)
, y > 0, (2.35)

the function v has the same qualitative properties as the function V listed in Def-
inition 2.13, since it is a convex combination of V calculated on linearly scaled
arguments.

Hence by (2.28), (2.29), and (2.30) we find, for fixed x ∈ dom(U), a unique
ŷ = ŷ(x) > 0 such that v′(ŷ(x)) = −x, which therefore is the unique minimizer to
the dual problem

Ψ(y) = EP

[
V
(
y dQ

dP

)]
+ yx = min! (2.36)

Fixing the critical value ŷ(x), the concave function

(ξ1, . . . , ξN) 7→ L(ξ1, . . . , ξN , ŷ(x)) (2.37)

defined in (2.22) assumes its unique maximum at the point (ξ̂1, . . . , ξ̂N) satisfying

U ′(ξ̂n) = ŷ(x) qn

pn
or, equivalently, ξ̂n = I

(
ŷ(x) qn

pn

)
, (2.38)

so that we have

inf
y>0

Ψ(y) = inf
y>0

(v(y) + xy) (2.39)

= v(ŷ(x)) + xŷ(x) (2.40)

= L(ξ̂1, . . . , ξ̂N , ŷ(x)). (2.41)

Note that ξ̂n are in dom(U), for 1 ≤ n ≤ N , so that L is continuously differentiable at

(ξ̂1, . . . , ξ̂N , ŷ(x)), which implies that the gradient of L vanishes at (ξ̂1, . . . , ξ̂N , ŷ(x))
and, in particular, that ∂

∂y
L(ξ1, . . . , ξN , y)|(ξ̂1,...,ξ̂N ,ŷ(x)) = 0. Hence we infer from

(2.21) and the fact that ŷ(x) > 0 that the constraint (2.20) is binding, i.e.,

N∑
n=1

qnξ̂n = x, (2.42)

and that
N∑

n=1

pnU(ξ̂n) = L(ξ̂1, . . . , ξ̂N , ŷ(x)). (2.43)

In particular, we obtain that

u(x) =
N∑

n=1

pnU(ξ̂n). (2.44)
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Indeed, the inequality u(x) ≥
∑N

n=1 pnU(ξ̂n) follows from (2.42) and (2.25), while
the reverse inequality follows from (2.43) and the fact that for all ξ1, . . . , ξN verifying
the constraint (2.20)

N∑
n=1

pnU(ξn) ≤ L(ξ1, . . . , ξN , ŷ(x)) ≤ L(ξ̂1, . . . , ξ̂N , ŷ(x)). (2.45)

We shall write X̂T (x) ∈ C(x) for the optimizer X̂T (x)(ωn) = ξ̂n, n = 1, . . . , N .
Combining (2.39), (2.43) and (2.44) we note that the value functions u and v are

conjugate:

inf
y>0

(v(y) + xy) = v(ŷ(x)) + xŷ(x) = u(x), x ∈ dom(U), (2.46)

which, by Proposition 2.14 the remarks after equation (2.35), implies that u inherits
the properties of U listed in Assumption 1.2. The relation v′(ŷ(x)) = −x which was
used to define ŷ(x), therefore translates into

u′(x) = ŷ(x), for x ∈ dom(U). (2.47)

Let us summarize what we have proved:

Theorem 2.16 (finite Ω, complete market) Let the financial market S =
(St)

T
t=0 be defined over the finite filtered probability space (Ω,F , (F)T

t=0,P) and sat-
isfy Me(S) = {Q}, and let the utility function U satisfy Assumption 1.2.

Denote by u(x) and v(y) the value functions

u(x) = sup
XT∈C(x)

E[U(XT )], x ∈ dom(U), (2.48)

v(y) = E
[
V
(
y dQ

dP

)]
, y > 0. (2.49)

We then have:

(i) The value functions u(x) and v(y) are conjugate and u inherits the qualitative
properties of U listed in Assumption 1.2.

(ii) The optimizer X̂T (x) in (2.48) exists, is unique and satisfies

X̂T (x) = I(y dQ
dP

), or, equivalently, y dQ
dP

= U ′(X̂T (x)), (2.50)

where x ∈ dom(U) and y > 0 are related via u′(x) = y or, equivalently,
x = −v′(y).
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(iii) The following formulae for u′ and v′ hold true:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ

[
V ′ (y dQ

dP

)]
(2.51)

xu′(x) = EP

[
X̂T (x)U ′(X̂T (x))

]
, yv′(y) = EP

[
y dQ

dP
V ′ (y dQ

dP

)]
. (2.52)

Proof Items (i) and (ii) have been shown in the preceding discussion, hence we only
have to show (iii). The formulae for v′(y) in (2.51) and (2.52) immediately follow
by differentiating the relation

v(y) = EP

[
V
(
y dQ

dP

)]
=

N∑
n=1

pnV
(
y qn

pn

)
. (2.53)

Of course, the formula for v′ in (2.52) is an obvious reformulation of the one in
(2.51). But we write both of them to stress their symmetry with the formulae for
u′(x).

The formula for u′ in (2.51) translates via the relations exhibited in (ii) into the
identity

y = EP

[
y dQ

dP

]
, (2.54)

while the formula for u′(x) in (2.52) translates into

v′(y)y = EP

[
V ′ (y dQ

dP

)
y dQ

dP

]
, (2.55)

which we just have seen to hold true.

Remark 2.17 Firstly, let us recall the economic interpretation of (2.50)

U ′
(
X̂T (x)(ωn)

)
= y

qn

pn

, n = 1, . . . , N. (2.56)

This equality means that, in every possible state of the world ωn, the marginal
utility U ′(X̂T (x)(ωn)) of the wealth of an optimally investing agent at time T is
proportional to the ratio of the price qn of the corresponding Arrow security 1{ωn}
and the probability of its success pn = P[ωn]. This basic relation was analyzed in the
fundamental work of K. Arrow and allows for a convincing economic interpretation:
considering for a moment the situation where this proportionality relation fails to
hold true, one immediately deduces from a marginal variation argument that the
investment of the agent cannot be optimal. Indeed, by investing a little more in
the more favorable asset and a little less in the less favorable the economic agent
can strictly increase expected utility under the same budget constraint. Hence for
the optimal investment the proportionality must hold true. The above result also
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identifies the proportionality factor as y = u′(x), where x is the initial endowment
of the investor. This also allows for an economic interpretation.

Theorem 2.16 indicates an easy way to solve the utility maximization at hand:
calculate v(y) by (2.49), which reduces to a simple one-dimensional computation;
once we know v(y), the theorem provides easy formulae to calculate all the other

quantities of interest, e.g., X̂T (x), u(x), u′(x) etc.
Another message of the above theorem is that the value function x 7→ u(x)

may be viewed as a utility function as well, sharing all the qualitative features of
the original utility function U . This makes sense economically, as the “indirect
utility” function u(x) denotes the expected utility at time T of an agent with initial
endowment x, after having optimally invested in the financial market S.

Let us also give an economic interpretation of the formulae for u′(x) in item (iii)
along these lines: suppose the initial endowment x is varied to x+h, for some small
real number h. The economic agent may use the additional endowment h to finance,
in addition to the optimal pay-off function X̂T (x), h units of the cash account, thus

ending up with the pay-off function X̂T (x)+h at time T . Comparing this investment
strategy to the optimal one corresponding to the initial endowment x + h, which is
X̂T (x + h), we obtain

lim
h→0

u(x + h)− u(x)

h
= lim

h→0

E[U(X̂T (x + h))− U(X̂T (x))]

h
(2.57)

≥ lim
h→0

E[U(X̂T (x) + h)− U(X̂T (x))]

h
(2.58)

= E[U ′(X̂T (x))]. (2.59)

Using the fact that u is differentiable, and that h may be positive as well as
negative, we must have equality in (2.58) and therefore have found another proof
of formula (2.51) for u′(x); the economic interpretation of this proof is that the
economic agent, who is optimally investing, is indifferent of first order towards a
(small) additional investment into the cash account.

Playing the same game as above, but using the additional endowment h ∈ R
to finance an additional investment into the optimal portfolio X̂T (x) (assuming,

for simplicity, x 6= 0), we arrive at the pay-off function x+h
x

X̂T (x). Comparing

this investment with X̂T (x + h), an analogous calculation as in (2.57) leads to the
formula for u′(x) displayed in (2.52). The interpretation now is, that the optimally
investing economic agent is indifferent of first order towards a marginal variation of
the investment into the optimal portfolio.

It now becomes clear that formulae (2.51) and (2.52) for u′(x) are just special
cases of a more general principle: for each f ∈ L∞(Ω,F ,P) we have

EQ[f ]u′(x) = lim
h→0

EP[U(X̂T (x) + hf)− U(X̂T (x))]

h
. (2.60)
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The proof of this formula again is along the lines of (2.57) and the interpretation
is the following: by investing an additional endowment hEQ[f ] to finance the contin-
gent claim hf , the increase in expected utility is of first order equal to hEQ[f ]u′(x);
hence again the economic agent is of first order indifferent towards an additional
investment into the contingent claim f .

2.1.2 The Incomplete Case

We now drop the assumption that the set Me(S) of equivalent martingale measures
is reduced to a singleton (but we still remain in the framework of a finite probability
space Ω) and replace it by Assumption 1.1 requiring that Me(S) 6= ∅.

In this setting it follows from Theorem 2.11 that a random variable XT (ωn) = ξn

may be dominated by a random variable of the form x + (H · S)T iff EQ[XT ] =∑N
n=1 qnξn ≤ x, for each Q = (q1 . . . , qN) ∈ Ma(S) (or equivalently, for every

Q ∈Me(S)).

In order to reduce the infinitely many constraints, where Q runs throughMa(S),
to a finite number, make the easy observation that Ma(S) is a bounded, closed,
convex polytope in RN and therefore the convex hull of its finitely many extreme
points {Q1, . . . ,QM}. Indeed, Ma(S) is given by finitely many linear constraints.
For 1 ≤ m ≤ M , we identify Qm with the probabilites (qm

1 , . . . , qm
N ).

Fixing the initial endowment x ∈ dom(U), we therefore may write the utility
maximization problem (1.16) similarly as in (2.19) as a concave optimization problem
over RN with finitely many linear constraints:

EP [U(XT )] =
N∑

n=1

pnU(ξn) → max! (2.61)

EQm [XT ] =
N∑

n=1

qm
n ξn ≤ x, for m = 1, . . . ,M. (2.62)

Writing again

C(x) =
{
XT ∈ L0(Ω,F ,P) : EQ[XT ] ≤ x, for all Q ∈Ma(S)

}
(2.63)

we define the value function, for x ∈ dom(U),

u(x) = sup
H∈H

E [U (x + (H ·S)T )] = sup
XT∈C(x)

E[U(XT )]. (2.64)
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The Lagrangian now is given by

L(ξ1, . . . , ξN , η1, . . . , ηM) (2.65)

=
N∑

n=1

pnU(ξn)−
M∑

m=1

ηm

(
N∑

n=1

qm
n ξn − x

)
(2.66)

=
N∑

n=1

pn

(
U(ξn)−

M∑
m=1

ηmqm
n

pn

ξn

)
+

M∑
m=1

ηmx, (2.67)

where (ξ1, . . . , ξN) ∈ dom(U)N , (η1, . . . , ηM) ∈ RM
+ . (2.68)

Writing y = η1 + . . . + ηM , µm = ηm

y
, µ = (µ1, . . . , µm) and

Qµ =
M∑

m=1

µmQm, (2.69)

note that, when (η1, . . . , ηM) runs trough RM
+ , the pairs (y,Qµ) run through R+ ×

Ma(S). Hence we may write the Lagrangian as

L(ξ1, . . . , ξN , y,Q) = = EP[U(XT )]− y (EQ[XT − x])

=
N∑

n=1

pn

(
U(ξn)− yqn

pn

ξn

)
+ yx, (2.70)

where ξn ∈ dom(U), y > 0, Q = (q1, . . . , qN) ∈Ma(S).
This expression is entirely analogous to (2.22), the only difference now being

that Q runs through the set Ma(S) instead of being a fixed probability measure.
Defining again

Φ(ξ1, . . . , ξn) = inf
y>0,Q∈Ma(S)

L(ξ1, . . . , ξN , y,Q), (2.71)

and
Ψ(y,Q) = sup

ξ1,...,ξN

L(ξ1, . . . , ξN , y,Q), (2.72)

we obtain, just as in the complete case,

sup
ξ1,...,ξN

Φ(ξ1, . . . , ξN) = u(x), x ∈ dom(U), (2.73)

and

Ψ(y,Q) =
N∑

n=1

pnV

(
yqn

pn

)
+ yx, y > 0, Q ∈Ma(S), (2.74)
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where (q1, . . . , qN) denotes the probabilities of Q ∈Ma(S). The minimization of Ψ
will be done in two steps: first we fix y > 0 and minimize over Ma(S), i.e.,

Ψ(y) := inf
Q∈Ma(S)

Ψ(y,Q), y > 0. (2.75)

For fixed y > 0, the continuous function Q → Ψ(y,Q) attains its minimum on

the compact set Ma(S), and the minimizer Q̂(y) is unique by the strict convexity of

V . Writing Q̂(y) = (q̂1(y), . . . , q̂N(y)) for the minimizer, it follows from V ′(0) = −∞
that q̂n(y) > 0, for each n = 1, . . . , N ; Indeed, suppose that q̂n(y) = 0, for some
1 ≤ n ≤ N and fix any equivalent martingale measure Q ∈ Me(S). Letting

Qε = εQ+(1−ε)Q̂ we have that Qε ∈Me(S), for 0 < ε < 1, and Ψ(y,Qε) < Ψ(y, Q̂)

for ε > 0 sufficiently small, a contradiction. In other words, Q̂(y) is an equivalent
martingale measure for S.

Defining the dual value function v(y) by

v(y) = inf
Q∈Ma(S)

N∑
n=1

pnV

(
y
qn

pn

)
(2.76)

=
N∑

n=1

pnV

(
y
q̂n(y)

pn

)
(2.77)

we find ourselves in an analogous situation as in the complete case above: defining
again ŷ(x) by v′(ŷ(x)) = −x and

ξ̂n = I

(
ŷ(x)

q̂n(y)

pn

)
, (2.78)

similar arguments as above apply to show that (ξ̂1, . . . , ξ̂N , ŷ(x), Q̂(y)) is the unique
saddle-point of the Lagrangian (2.70) and that the value functions u and v are
conjugate.

Let us summarize what we have found in the incomplete case:

Theorem 2.18 (finite Ω, incomplete market) Let the financial market S =
(St)

T
t=0 defined over the finite filtered probability space (Ω,F , (F)T

t=0,P) and let
Me(S) 6= ∅, and the utility function U satisfies Assumptions 1.2.

Denote by u(x) and v(y) the value functions

u(x) = supXT∈C(x) E[U(XT )], x ∈ dom(U), (2.79)

v(y) = infQ∈Ma(S) E
[
V
(
y dQ

dP

)]
, y > 0. (2.80)

We then have:
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(i) The value functions u(x) and v(y) are conjugate and u shares the qualitative
properties of U listed in Assumption 1.2.

(ii) The optimizers X̂T (x) and Q̂(y) in (2.79) and (2.80) exist, are unique, Q̂(y) ∈
Me(S), and satisfy

X̂T (x) = I

(
y
dQ̂(y)

dP

)
, y

dQ̂(y)

dP
= U ′(X̂T (x)), (2.81)

where x ∈ dom(U) and y > 0 are related via u′(x) = y or, equivalently,
x = −v′(y).

(iii) The following formulae for u′ and v′ hold true:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ̂

[
V ′
(
y dQ̂(y)

dP

)]
(2.82)

xu′(x) = EP[X̂T (x)U ′(X̂T (x))], yv′(y) = EP

[
y dQ̂(y)

dP
V ′
(
y dQ̂(y)

dP

)]
.(2.83)

Remark 2.19 Let us again interpret the formulae (2.82), (2.83) for u′(x) similarly
as in Remark 2.17 above. In fact, the interpretations of these formulae as well as
their derivations remain in the incomplete case exactly the same.

But a new and interesting phenomenon arises when we pass to the variation of
the optimal pay-off function X̂T (x) by a small unit of an arbitrary pay-off function
f ∈ L∞(Ω,F ,P). Similarly as in (2.60) we have the formula

EQ̂(y)[f ]u′(x) = lim
h→0

EP[U(X̂T (x) + hf)− U(X̂T (x))]

h
, (2.84)

the only difference being that Q has been replaced by Q̂(y) (recall that x and y are
related via u′(x) = y).

The remarkable feature of this formula is that it does not only pertain to varia-
tions of the form f = x + (H ·S)T , i.e, contingent claims attainable at price x, but
to arbitrary contingent claims f , for which — in general — we cannot derive the
price from no arbitrage considerations.

The economic interpretation of formula (2.84) is the following: the pricing rule
f 7→ EQ̂(y)[f ] yields precisely those prices, at which an economic agent with initial
endowment x, utility function U and investing optimally, is indifferent of first order
towards adding a (small) unit of the contingent claim f to her portfolio X̂T (x).

In fact, one may turn the view around, and this was done by M. Davis [D 97]

(compare also the work of L. Foldes [F 90]): one may define Q̂(y) by (2.84), verify
that this indeed is an equivalent martingale measure for S, and interpret this pric-
ing rule as “pricing by marginal utility”, which is, of course, a classical and basic
paradigm in economics.
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Let us give a proof for (2.84) (under the hypotheses of Theorem 2.18). One
possible strategy of proof, which also has the advantage of a nice economic interpre-
tation, is the idea of introducing “fictitious securities” as developed in [KLSX91]:
fix x ∈ dom(U) and y = u′(x) and let (f 1, . . . , fk) be finitely many elements of
L∞(Ω,F ,P) such that the space K = {(H ·S)T : H ∈ H}, the constant function 1,
and (f 1, . . . , fk) linearly span L∞(Ω,F ,P). Define the k processes

Sd+j
t = EQ̂(y)[f

j|Ft], j = 1, . . . , k, t = 0, . . . , T. (2.85)

Now extend the Rd+1-valued process S = (S0, S1, . . . , Sd) to the Rd+k+1-valued
process S = (S0, S1, . . . , Sd, Sd+1, . . . , Sd+k) by adding these new coordinates. By

(2.85) we still have that S is a martingale under Q̂(y), which now is the unique
probability under which S is a martingale, by our choice of (f 1, . . . , fk) and Corollary
2.12.

Hence we find ourselves in the situation of Theorem 2.16. By comparing (2.50)

and (2.81) we observe that the optimal pay-off function X̂T (x) has not changed.
Economically speaking this means that in the “completed” market S the optimal
investment may still be achieved by trading only in the first d+1 assets and without
touching the “fictitious” securities Sd+1, . . . , Sd+k.

In particular, we now may apply formula (2.60) to Q = Q̂(y) to obtain (2.84).

Finally we remark that the pricing rule induced by Q̂(y) is precisely such that the

interpretation of the optimal investment X̂T (x) defined in (2.81) (given in Remark
2.17 in terms of marginal utility and the ratio of Arrow prices q̂n(y) and probabilities
pn) carries over to the present incomplete setting. The above completion of the
market by introducing “fictious securities” allows for an economic interpretation of
this fact.
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Chapter 3

The general case

In the previous chapter we have analyzed the duality theory of the utility maxi-
mization problem in detail and with full proofs, for the case when the underlying
probability space is finite.

We now pass to the question under which conditions the crucial features of the
above Theorem 2.18 carry over to the general setting. In particular one is naturally
led to ask: under which conditions

• are the optimizers X̂T (x) and Q̂(y) of the value functions u(x) and v(y) at-
tained?

• does the basic duality formula

U ′
(
X̂T (x)

)
= ŷ(x)

dQ̂(ŷ(x))

dP
(3.1)

or, equivalently

X̂T (x) = I

(
ŷ(x)

dQ̂(ŷ(x))

dP

)
(3.2)

hold true?

• are the value functions u(x) and v(y) conjugate?

• does the value function u(x) still inherit the qualitative properties of U listed
in Assumption 1.2?

• do the formulae for u′(x) and v′(y) still hold true?

We shall see that we get affirmative answers to these questions under two provisos:
firstly, one has to make an appropriate choice of the sets in which XT and Q are
allowed to vary. This choice will be different for case 1, where dom(U) = R+, and

25
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case 2, where dom(U) = R. Secondly, the utility function U has to satisfy — in
addition to Assumption 1.2 — a mild regularity condition, namely the property of
“reasonable asymptotic elasticity”.

3.1 The reasonable asymptotic elasticity condi-

tion

The essential message of the theorems below is that, assuming that U has “reasonable
asymptotic elasticity”, the duality theory works just as well as in the case of finite
Ω. On the other hand, we shall see that we do not have to impose any regularity
conditions on the underlying stochastic process S, except for its arbitrage-freeness in
the sense made precise by Assumption 1.1. We shall also see that the assumption of
reasonable asymptotic elasticity on the utility function U cannot be relaxed, even if
we impose very strong assumptions on the process S (e.g., having continuous paths
and defining a complete financial market), as we shall see below.

Before passing to the positive results we first analyze the notion of “reasonable
asymptotic elasticity” and sketch the announced counterexample.

Definition 3.1 A utility function U satisfying Assumption 1.2 is said to have “rea-
sonable asymptotic elasticity” if

AE+∞(U) = lim sup
x→∞

xU ′(x)

U(x)
< 1, (3.3)

and, in case 2 of Assumption 1.2, we also have

AE−∞(U) = lim inf
x→−∞

xU ′(x)

U(x)
> 1. (3.4)

We recall the following lemma from [KS99, Lemma 6.1], from which it follows
that, for any concave function U such that the right hand side makes sense, we
always have that AE+∞(U) ≤ 1. Note that, the asymptotic elasticity assumption
requires that the strict inequality holds.

Lemma 3.2 For a strictly concave, increasing, real-valued differentiable function
U the asymptotic elasticity AE(U) is well-defined and, depending on U(∞) =
limx→∞ U(x), takes its values in the following sets:

(i) For U(∞) = ∞ we have AE(U) ∈ [0, 1],

(ii) For 0 < U(∞) < ∞ we have AE(U) = 0,

(iii) For −∞ < U(∞) ≤ 0 we have AE(U) ∈ [−∞, 0].
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Proof (i) Using the monotonicity and positivity of U ′ we may estimate

0 ≤ xU ′(x) =(x− 1)U ′(x) + U ′(x)

≤[U(x)− U(1)] + U ′(1)

hence, in the case U(∞) = ∞,

0 ≤ lim sup
x→∞

xU ′(x)

U(x)
≤ lim sup

x→∞

U(x)− U(1) + U ′(1)

U(x)
= 1.

(ii) For each x0 > 0 we have

lim sup
x→∞

xU ′(x) = lim sup
x→∞

(x− x0)U
′(x)

≤ lim sup
x→∞

(U(x)− U(x0)).

If U(∞) < ∞ we may choose x0 such that the right hand side becomes arbitrary
small.

(iii) We infer from U(∞) ≤ 0 that U(x) < 0, for x ∈ R+, so that xU ′(x)
U(x)

< 0, for
all x ∈ R+.

Example 3.3

• For U(x) = log x, we have AE+∞(U) = 0.

• For U(x) = xα

α
, we have AE+∞(U) = α, for α ∈ (−∞, 1) \ {0}.

• For U(x) = x
log x

for x ≥ x0, we have AE+∞(U) = 1.

The asymptotic elasticity compares as follows with other conditions used in the
literature [KLSX 91]:

Lemma 3.4 Let U be a utility function, and consider the following conditions:

i) There exists x0 > 0, α < 1, β > 1 such that U ′(βx) < αU ′(x) for all x ≥ x0.

ii) AE+∞(U) < 1

iii) There exist k1, k2 and γ < 1 such that U(x) ≤ k1 + k2x
γ for all x ≥ 0.

Then we have that i) ⇒ ii) ⇒ iii). The reverse implications do not hold true in

general, but if limx→∞
xU ′(x)
U(x)

exists, then ii) ⇐⇒ iii). If limx→∞
xU ′(x)
U(x)

exists and

is strictly positive, then i) ⇐⇒ ii).
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Proof (i) ⇒ (ii) Assume (i) and let a = αβ and b = 1
α

> 1 and estimate, for
x > ax0:

U(bx) =U(βx0) +

∫ bx

βx0

U ′(t)dt (3.5)

=U(βx0) + β

∫ x/a

x0

U ′(βt)dt (3.6)

≤U(βx0) + αβ

∫ x/a

x0

U ′(t)dt (3.7)

=U(βx0) + aU(
x

a
)− aU(x0). (3.8)

It follows that criterion (ii) of corollary 6.1 in [KS99] is satisfied, hence AE(U) <
1.

(ii) ⇒ (iii) is immediate from assertion (i) of lemma 6.3 in [KS99].
(ii) ; (i): For n ∈ N, let xn = 22n

and define the function U(x) by letting
U(xn) = 1− 1

n
and to be linear on the intervals [xn−1, xn]; (for 0 < x ≤ x1 continue

U(x) in an arbitrary way, so that U satisfies (2.4)).
Clearly U(x) fails (i) as for any β > 1 there are arbitrary large x ∈ R with

U ′(βx) = U ′(x). On the other hand, we have U(∞) = 1 so that AE(U) = 0 by

Lemma 3.2. Finally, note that in this counterexample the limit limx→∞
xU ′(x)
U(x)

exists
and equals zero.

The attentive reader might object that U(x) is neither strictly concave nor differ-
entiable. But it is obvious that one can slightly change the function to “smooth out”
the kinks and to “strictly concavify” the straight lines so that the above conclusion
still holds true.

(iii) ; (ii): Let again xn = 22n
and consider the utility function Ũ(x) = x1/2.

Define U(x) by letting U(xn) = Ũ(xn), for n = 0, 1, 2... and to be linear on the
intervals [xn, xn+1]; (for 0 < x ≤ x1 again continue U(x) in an arbitrary way, so that
U satisfies (2.4)).

Clearly U(x) satisfies condition (iii) as U is dominated by Ũ(x) = x1/2.
To show that AE(U) = 1 let x ∈]xn−1, xn[ and calculate the marginal utility U ′

at x:

U ′(x) =
U(xn)− U(xn−1)

xn − xn−1

=
22n−1 − 22n−2

22n − 22n−1 =
22n−1

(1− 2−2n−2
)

22n(1− 2−2n−1)
= 2−2n−1

(1 + o(1)).

On the other hand we calculate the average utility at x = xn:

U(xn)

xn

=
22n−1

22n = 2−2n−1

.



3.1. THE REASONABLE ASYMPTOTIC ELASTICITY CONDITION 29

Hence

AE+∞(U) = lim sup
x→∞

xU ′(x)

U(x)
= 1.

As regards the lack of smoothness and strict concavity of U a similar remark
applies as in (ii) ; (i) above.

(ii) ⇒ (i) under the assumption that limx→∞
xU ′(x)
U(x)

= γ > 0. By Corollary 6.1

(ii) in [KS99], condition (ii) is equivalent to the following: the exists some x0 > 0,
λ > 1 and c < 1 such that

U(λx) < cλU(x) (3.9)

for all x > x0. Since limx→∞
xU ′(x)
U(x)

= γ for any ε > 0 there exists some other x′0
such that

xU ′(x)

γ(1 + ε)
≤ U(x) ≤ xU ′(x)

γ(1− ε)
(3.10)

for all x > x′0. Relabeling x0 = max(x0, x
′
0), and substituting (3.10) into (3.9), we

obtain that:

U ′(λx) ≤ c
1 + ε

1− ε
U ′(x)

which is clearly equivalent to (i) by choosing ε small enough, so that c1+ε
1−ε

< 1. Note
that in the case γ = 0 the above argument does not hold true, as shown in the
example (ii) ; (i) above.

(iii) ⇒ (ii) under the assumption that limx→∞
xU ′(x)
U(x)

exists. By contradiction,

suppose that AE+∞(U) = 1. Then for all ε > 0 there exists some x0 such that
xU ′(x)
U(x)

> 1− ε for all x > x0. It follows that:

log U(x)− log U(x0) =

∫ x

x0

(log U)′(y)dy ≥ (1− ε)

∫ x

x0

dy

y
= (1− ε)(log x− log x0)

and hence:

U(x) > U(x0)

(
x

x0

)1−ε

(3.11)

Choosing ε < 1− γ, as x →∞ (3.11) clearly contradicts (iii).

Let us discuss the economic meaning of the notion of reasonable asymptotic
elasticity: as H.-U. Gerber ponted out to us, the quantity xU ′(x)

U(x)
is the elasticity

of the function U at x. We are interested in its asymptotic behaviour. It easily
follows from Assumption 1.2 that the limits in (3.3) and (3.4) are less (resp. bigger)

than or equal to one (compare Lemma 3.2). What does it mean that xU ′(x)
U(x)

tends

to one, for x →∞? It means that the ratio between the marginal utility U ′(x) and

the average utility U(x)
x

tends to one. A typical example is a function U(x) which
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equals x
ln(x)

, for x large enough; note however, that in this example Assumption 1.2
is not violated insofar as the marginal utility still decreases to zero for x →∞, i.e.,
limx→∞ U ′(x) = 0.

If the marginal utility U ′(x) is approximately equal to the average utility U(x)
x

for large x, this means that for an economic agent, modeled by the utility function
U , the increase in utility by varying wealth from x to x + 1, when x is large, is
approximately equal to the average of the increase of utility by changing wealth
from n to n + 1, where n runs through 1, 2, . . . , x− 1 (we assume in this argument
that x is a large natural number and, w.l.o.g., that U(1) ≈ 0). We feel that the
economic intuition behind decreasing marginal utility suggests that, for large x,
the marginal utility U ′(x) should be substantially smaller than the average utility
U(x)

x
. Therefore we have denoted a utility function, where the ratio of U ′(x) and

U(x)
x

becomes arbitrarily close to one if x tends either to +∞ or −∞, as being
“unreasonable”. Another justification for this terminology will be the results of
Theorems 3.15 and 3.19 below.

P. Guasoni observed, that there is a close connection between the asymptotic
behaviour of the elasticity of U , and the asymptotic behaviour of the relative risk
aversion associated to U . Recall (see, e.g., [HL88]) that the relative risk aversion of
an agent with endowment x, whose preferences are described by the utility function
U , equals

RRA(U)(x) = −xU ′′(x)

U ′(x)
. (3.12)

A formal application of de l’Hôpital’s rule yields

lim
x→∞

xU ′(x)

U(x)
= lim

x→∞

U ′(x) + xU ′′(x)

U ′(x)
= 1− lim

x→∞

(
−xU ′′(x)

U ′(x)

)
(3.13)

which insinuates that the asymptotic elasticity of U is less than one iff the “asymp-
totic relative risk aversion” is strictly positive.

Turning the above formal argument into a precise statement, one easily proves
the following result (Proposition B.1 below): if limx→∞(−xU ′′(x)

U ′(x)
) exists, then

limx→∞
xU ′(x)
U(x)

exists too, and the former is strictly positive iff the latter is less than
one. Hence “essentially” these two concepts coincide.

On the other hand, in general (i.e. without assuming that the above limit exists),

there is no way to characterize the condition lim supx→∞
xU ′(x)
U(x)

< 1 in terms of the

asymptotic behaviour of −xU ′′(x)
U ′(x)

, as x → ∞ (for more details on this issue, see

appendix B).

Similar reasoning applies to the asymptotic behaviour of xU ′(x)
U(x)

, as x tends to

−∞, in case 2. In this context the typical counter-example is U(x) ∼ x ln(|x|), for
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x < x0; in this case one finds similarly

lim
x→−∞

U ′(x) = ∞, while lim
x→−∞

xU ′(x)

U(x)
= 1. (3.14)

The message of Definition 3.1 above is — roughly speaking — that we want to
exclude utility functions U which behave like U(x) ∼ x

ln(x)
, as x → ∞, or U(x) ∼

x ln |x|, as x → −∞. Similar (but not quite equivalent) notions comparing the
behaviour of U(x) with that of power functions in the setting of case 1, were defined
and analyzed in [KLSX91] (see Lemma 3.4 above or [KS 99], Lemma 6.5, for a
comparison of these concepts).

3.2 Counterexamples

We start with a counterexample showing the relevance of the notion of asymptotic
elasticity in the context of utility maximization: whenever U fails to have reasonable
asymptotic elasticity the duality theory breaks down in a rather dramatic way. We
only state the version of the counterexample when the lim sup and the lim inf in
Definition 3.1 are indeed limits and are bothe equal to one; we refer to [KS 99] and
[S 03] for the general case (which only differs in some technicalities).

In fact for this counterexample we do not have to go very far in the degeree
of complexity of the price process S. We shall see that it suffices to take S to
be a Geometric Brownian Motion stopped at an appropriately chosen stopping time
([KS 99], Example 5.2).

Example 3.5 ([S 01], Proposition 3.5) Let U be any utility function satisfying As-
sumption 1.2, case 2 and such that

lim
x→−∞

xU ′(x)

U(x)
= lim

x→∞

xU ′(x)

U(x)
= 1, (3.15)

Then there is an R-valued process (St)0≤t≤T of the form

St = exp (Bt + µt) , (3.16)

where B = (Bt)0≤t≤T is a standard Brownian motion, based on its natural filtered
probability space, and µt a predictable process, such that the following properties
hold true:

(i) Me(S) = {Q}, i.e., S defines a complete financial market.

(ii) The primal value function u(x) fails to be strictly concave and to satisfy
u′(∞) = 0, u′(−∞) = ∞ in a rather striking way: u(x) is a straight line
of the form u(x) = c + x, for some constant c ∈ R.
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(iii) The optimal investment X̂T (x) fails to exist, for all x ∈ R, except for one
point x = x0. In particular, for x 6= x0, the formula (3.2) does not define the

optimal investment X̂T (x).

(iv) The dual value function v fails to be a finite, smooth, strictly convex function
on R+ in a rather striking way: in fact, v(1) = c < ∞ while v(y) = ∞, for all
y 6= 1.

We shall try to sketch the basic idea underlying the construction of the example,
in mathematical as well as economic terms. Arguing mathematically, one starts by
translating the assumptions (3.15) on the utility function U into equivalent proper-
ties of the conjugate function V : roughly speaking, the corresponding property of
V (y) is, that it increases very rapidly to infinity, as y → 0 and y →∞ (see [KS 99,
Corollary 6.1] and [S 01, Proposition 4.1]). Having isolated this property of V , it is
an easy exercise to construct a function f : [0, 1] →]0,∞[, E[f ] = 1 such that

c : E [V (f)] < ∞ while E [V (yf)] = ∞, for y 6= 1, (3.17)

where E denotes expectation with respect to Lebesque measure λ. In fact one
may find such a function f taking only the values (yn)∞n=−∞, for a suitable chosen
increasing sequence (yn)∞n=−∞, limn→−∞ yn = 0, limn→∞ yn = ∞.

Next we construct a measure Q on the sigma algebra F = FT generated by the
Brownian motion B = (Bt)0≤t≤T which is equivalent to Wiener measure P, and such
that the distribution of dQ

dP
(under P) equals that of f (under Lebesgue measure λ).

There is no uniqueness in this part of the construction, but it is straightforward to
find some appropriate measure Q with this property.

By Girsanov’s theorem we know that we can find an adapted process (µt)0≤t≤T ,
such that Q is the unique equivalent local martingale measure for the process defined
in (3.16), hence we obtain assertion (i).

This construction makes sure that we obtain property (iv), i.e.

v(y) = EP

[
V
(
y dQ

dP

)]
= Eλ [V (yf)] < ∞ iff y = 1. (3.18)

Once this crucial property is established, most of the assertions made in (ii) and

(iii) above easily follow (in fact, for the existence of X̂T (x) for precisely one x = x0,
some extra care is needed): for esample, the function u(x) = c + x is such that v(y)
is conjugate to u, which — at least formally — yields (ii).

Instead of elaborating further on the mathematical details of the construction
sketched above, let us try to give an economic interpretation of what is really hap-
pening in the above example. This is not easy, but we find it worth trying. We
concentrate on the behaviour of U as x → ∞, the case when x → −∞ being
similar.
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How is the “unreasonability” property of the utility function U used to construct
the pathologies in the above example? Here is a rough indication of the underlying
economic idea: the financial market S is constructed in such a way that one may
find positive numbers (xn)∞n=1, disjoint sets (An)∞n=1 in FT (which correspond to the
sets {f = yn} in the above sketch), with P[An] = pn and Q[An] = qn, such that for
the contingent claims xn1An we approximately have

EQ [xn1An ] = qnxn ≈ 1 (3.19)

and
EP [U(xn)1An ] = pnU(xn) ≈ 1. (3.20)

Hence qn

pn
≈ U(xn)

xn
.

It is easy to construct a complete, continuous market S (e.g., over the Brownian
filtration) such that this situation occurs and this is, in fact, what is done in the
above “mathematical” argument to define f and Q.

We claim that, for any x ∈ R and any investment strategy XT = x + (H ·S)T ,

we can find an investment strategy X̃T = (x + 1) + (H̃ ·S)T such that

E
[
U(X̃T )

]
≈ E [U(XT )] + 1. (3.21)

The above relation should motivate why the value function u(x) becomes a
straight line with slope one, at least for x sufficiently large (for the correspond-
ing behaviour of u(x) on the left hand side of R one has to play in addition a similar
game as above with (xn)∞n=1 tending to −∞).

To present the idea behind (3.21), suppose that we have E [U(XT )] < ∞, so that
limn→∞E[U(XT )1An ] = 0. Varying our initial endowment from x to x + 1 Euro, we
may use the additional Euro to add to the pay-off function XT the function xn1An ,
for some large n; by (3.19) this may be financed (approximately) with the additional
Euro and by (3.20) this will increase the expected utility (approximately) by 1

E [U (XT + xn1An)] ≈ E
[
U(XT )1Ω\An

]
+ E [U(XT + xn)1An ]

≈ E [U(XT )] + pnU(xn)

≈ E [U(XT )] + 1, (3.22)

which was claimed in (3.21).
The above argument also gives a hint why we cannot expect that the optimal

strategy X̂T (x) = x + (Ĥ ·S)T exists, as one cannot “pass to the limit as n → ∞”
in the above reasoning.

Observe that we have not yet used the assumption lim supx→∞
xU ′(x)
U(x)

= 1, as it

always is possible to construct things in such a way that (3.19) and (3.20) hold true.
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How does the “unreasonable asymptotic elasticity” come into play? The point is
that we have to do the construction described in (3.19) and (3.20) without violating
Assumption 1.3, i.e.,

u(x) = sup
H∈H

E [U (x + (H ·S)T )] < ∞,

for some (equivalently, for all) x ∈ R. (3.23)

In order to satisfy Assumption 1.3 we have to make sure — as a necessary condition
— that

E

[
∞∑

n=1

U(µnxn)1An

]
=

∞∑
n=1

pnU(µnxn) (3.24)

remains bounded, when (µn)∞n=1 runs through all convex weights µn ≥ 0,
∑∞

n=1 µn =
1, i.e., when we consider all investments into non-negative linear combinations of
the contingent claims xn1An , which can be financed with one Euro.

The message of Example 3.5 is that this is possible, if and only if
lim supx→∞

xU ′(x)
U(x)

= 1 (for this part of the construction we only use the asymp-

totic behaviour of U(x), as x →∞). To motivate this claim, think for a moment of
the “reasonable” case, e.g., U(x) = xα

α
, for some 0 < α < 1, in which case we have

limx→∞
xU ′(x)
U(x)

= α < 1. Letting µn ≈ cεn
−(1+ε) (where the normalizing constant

cε > 0 is chosen such that
∑∞

n=1 µn = 1), we get from (3.20)

∞∑
n=1

pnU(µnxn) ≈
∞∑

n=1

n−(1+ε)αpnU(xn) (3.25)

≈
∞∑

n=1

n−(1+ε)α, (3.26)

which equals infinity if ε > 0 is small enough, that (1 + ε)α ≤ 1. This argument
indicates that in the case of the power utility U(x) = xα

α
it is impossible to reconcile

the validity of (3.19) and (3.20) with the requirement (3.23). On the other hand,

it turns out that in the “unreasonable” case, where we have limx→∞
xU ′(x)
U(x)

= 1, we

can do the construction in such a way that U(µnxn) is sufficiently close to µnU(xn)
such that we obtain from (3.20) a uniform bound on the sum in (3.24).

After these motivating heuristic remarks, let us now pass to the formal construc-
tion of a counterexample similar in spirit to that of Example 3.5, but now modeled
in countable discrete time.

It is convenient to introduce some notation.

Definition 3.6 Let tn = 1 − 1
n+1

. A financial market (Ω,F , (Ftn)∞n=0,P, (Stn)∞n=0)
is a simple jump model if:
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i) Ω = (∪∞n=1An) ∪ B, where (An)∞n=1 and B are disjoint nonempty sets such that
P(An) = pn for some numbers pn > 0, where

∑∞
n=1 pn = 1−P(B) < 1.

ii) Ftn = σ((Ak)
n
k=1), for n ≥ 0.

iii) The risky asset process Stn is defined by:

Stn =
n∑

k=1

αk(1Ak
− qk)1Ω\(∪k−1

i=1 Ai)

where the numbers (αn)∞n=1 and (qn)∞n=1 satisfy
∑∞

n=1 αn < ∞, qn > 0 for all n,
and

∑∞
n=1 qn < 1.

Remark 3.7 It is immediate from the above definition that a simple jump model
is complete, and the unique equivalent martingale measure Q for S is given by
Q(An) = qn and Q(B) = 1−

∑∞
n=1 qn.

We prove the following:

Proposition 3.8 Let U satisfy Assumption 1.2 and

lim sup
x→∞

xU ′(x)

U(x)
= 1 (3.27)

For any x∗ > 0, there is a simple jump model (Stn)∞n=0, based on a countable filtered
probability space (Ω,F , (Ftn)∞n=0,P) such that:

i) u(x) < ∞, for all x ∈ dom(U),

ii) For x > 0, the utility maximization problem admits an optimizer X̂(x) = x +

(Ĥ(x) ·S)T , with Ĥ(x) an admissible predictable process, if and only if x ≤ x∗,

iii) u′(x) is constant for x ≥ x∗.

We break the proof of Proposition 3.8 into two lemmata. In the first one, we
show that the quantities (pn)∞n=1 and (qn)∞n=1 in Definition 3.6 can be chosen so that
the optimal terminal payoff on SN (the process S stopped at the N -th step) with
initial capital x∗∗ prescribes an investment of x∗∗ − xN in the Arrow-Debreu asset
1AN

. As N increases to infinity, the value functions uN(x∗∗) increase to u(x∗∗), also
finite-valued, and yN , the Lagrange multipliers associated to the above problems,
increase to a finite value y∞.

¿From now on, we shall write, for notational convenience, Sn (respectively Hn,
Xn) in place of Stn (resp. Htn , Xtn).
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Lemma 3.9 Let U be a utility function satisfying Assumption 1.2 and (3.27). Let
x∗ > 0, x∗∗ > x∗, and let (xn)∞n=1, with x1 > 0, be a sequence strictly increasing
to x∗. Consider a simple jump model, as in Definition 3.6, and denote by (SN

n )∞n=1

the process (Sn)∞n=1 stopped at N , and by uN(x) and u(x) the value functions of
the utility maximization problems on S and SN respectively. Finally, denote by
X̂N

T (x∗∗) = ξN
1 1A1 + · · · + ξN

N 1AN
+ µN1BN

the optimal terminal payoff on SN with
initial capital x∗∗.

We can choose the quantities (pn)∞n=1 and (qn)∞n=1 such that:

i) qNξN
N = x∗∗ − xN

ii) 0 < qn < pn

2
and

∑∞
n=1 pn ≤ 1

2
.

iii) u(x) = limN→∞ uN(x) < ∞ for all x > 0, and y∞ = limN→∞ yN < ∞,
where yN = (uN)′(x∗∗) and y∞ = u′(x∗∗).

Proof Note that without loss of generality we may assume U(∞) > 0, as adding a
constant to U does not change the optimization problem.

First we need to introduce some notation. Let us fix strictly positive numbers
(εn)∞n=1, such that

∏∞
n=1(1+ εn) < 2, and denote by I = (U ′)−1. Denote also the set

Ξ =

{
x : U(x) > 0,

xU ′(x)

U(x)
>

1

2

}
which is open by Assumption 1.2 and unbounded by assumption (3.27).

We shall construct our model so that the following properties hold:

(a)
∑N

n=1 pn < 1
2
− 2−(N+1)

(b) qn < pn

2
for 1 ≤ n ≤ N

(c) ξN
N qN = x∗∗ − xN

(d) U ′
(

xN+1−xN

2(x∗∗−xN )
ξN
N

)
< U ′(ξN

N )(1 + εN)

(e) I(y qN

pN
) ∈ Ξ for all y ∈ [yN , y∞]

We proceed by induction on N . Consider first N = 1: we shall find p1 and q1,
which determine ξ1

1 , µ1 and y1 so that

X̂1(x∗∗) =ξ1
11A1 + µ11B1 and

y1 =(u1)′(x∗∗)
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For fixed parameter ξ1
1 ∈ Ξ, we obtain the first order conditions for the optimal port-

folio satisfying (c) for the one-period problem S1 by solving the following equations
for the unknowns p1, q1, y

1, µ1, for given parameter ξ1
1 :

ξ1
1q1 =x∗∗ − x1 (3.28)

ξ1
1q1 + µ1(1− q1) =x∗∗ (3.29)

U ′(ξ1
1) =y1 q1

p1

(3.30)

U ′(µ1) =y1 1− q1

1− p1

(3.31)

Let us check that this system has indeed a solution: q1 is determined by (3.28), and
µ1 by (3.29). (3.30) determines p1 in terms of y1, and plugging in (3.31) we obtain:

y1 =
U ′(µ1)

1 + x∗∗−x1

ξ1
1

( 1
U ′(ξ1)

− 1)
(3.32)

Recalling that limx→∞
U(x)

x
= 0 and that:

1

2
≤ lim inf

x→∞
x∈Ξ

xU ′(x)

U(x)
≤ lim sup

x→∞
x∈Ξ

xU ′(x)

U(x)
≤ 1 (3.33)

we obtain that:

lim
ξ1
1→∞
ξ1
1∈Ξ

y1(ξ1
1) = lim

ξ1
1→∞
ξ1
1∈Ξ

U ′(µ1)U(ξ1
1)

U(ξ1
1) + (x∗∗ − x1)

(
U(ξ1

1)

ξ1
1U ′(ξ1

1)
− U(ξ1

1)

ξ1
1

) = η < ∞

¿From (3.30) and (3.33) it follows that:

p1 = y1 x∗∗ − x1

U ′(ξ1
1)ξ

1
1

< 2y1x∗∗ − x1

U(ξ1
1)

and therefore we can assume that p1 < 1
4

and q1 < p1

2
(by (3.30)) for ξ1

1 large enough.

Finally, we apply Lemma 3.11 to ε = min
(
ε1,

x2−x1

2(x∗∗−x1)

)
, which provides some

large ξ1
1 for which (d) is satisfied, and condition (e) is obtained up to a change to

smaller (εn)∞n=2.
It is worthwhile to resume the present procedure. For the parameter ξ1

1 we obtain
from the necessary first-order conditions (3.28)-(3.31) how the quantities ξ1

1 , p1, q1,
y1 and µ1 have to be related. Then we turn around and specify (for a large value
of ξ1

1) the parameters p1, q1 in our model as we have just obtained them. It then
follows that for this model ξ1

1 and µ1 indeed define the optimal portfolio, while y1 is
the associated Lagrange multiplier satisfying (u1)′(x∗∗) = y1.
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Let us now pass to the induction step. Suppose that we have constructed (pi)
N
i=1

and (qi)
N
i=1 such that the resulting quantities (ξN

i )N
i=1 and yN = (uN)′(x∗∗) satisfy

(a)–(e) above. Let us construct pN+1, qN+1, which in turn determine µN+1, yN+1

and (ξN+1
i )N+1

i=1 such that the same assumptions are satisfied for N + 1.
Again, we leave ξ = ξN+1

N+1 as a free parameter to be fixed later, and solve the
N + 4 equations:

ξN+1
N+1qN+1 =x∗∗ − xN+1 (3.34)

N∑
n=1

ξN+1
n qn + ξN+1

N+1qN+1 + µN+1

(
1−

N+1∑
n=1

qn

)
=x∗∗ (3.35)

U ′(ξN+1
n ) =yN+1 qn

pn

for n = 1 . . . N + 1

(3.36)

U ′(µN+1) =yN+1 1−
∑N+1

n=1 qn

1−
∑N+1

n=1 pn

(3.37)

in the unknowns qN+1, pN+1, yN+1, µN+1 and (ξN+1
i )N

i=1. Again, qN+1 is determined
by (3.34). If we fix yN+1 = y we are left with N+2 equations ((3.36) and (3.37)), each
one involving exactly one of the N + 2 unknowns (ξN+1

i )N
i=1, pN+1 and µN+1, which

admit a unique solution depending on ξ and y. We write ξN+1
n (y) and µN+1(y) to

indicate their dependence on y. Now, denote the quantity on the left side of (3.35),

G(y) =
N∑

n=1

ξN+1
n (y)qn + (x∗∗ − xN+1) + µN+1(y)

(
1−

N+1∑
n=1

qn

)
(3.38)

Observe that G is a strictly decreasing function for y ≥ yN . In fact, from (3.36)
to (3.37) we have that ξN+1

n = I(y qn

pn
), and since I is a decreasing function, the

first summation in (3.38) is decreasing. To prove the claim, it remains to show that
µN+1(y) is also decreasing. Solving (3.36) for pN+1, we have that:

pN+1 = y
x∗∗ − xN+1

ξU ′(ξ)

and substituting in (3.37), we obtain:

µN+1(y) = I

(
y

1−
∑N

n=1 qn − x∗∗−xN+1

ξ

1−
∑N

n=1 pn − y x∗∗−xN+1

ξU ′(ξ)

)
= I

(
ay

b− cy

)

where a = 1−
∑N

n=1 qn− x∗∗−xN+1

ξ
, b = 1−

∑N
n=1 pn, and c = x∗∗−xN+1

ξU ′(ξ)
are all positive

numbers. Since ay
b−cy

is an increasing function, the claim follows.
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For y = yN we have that ξN+1
n (yN) = ξN

n for n = 1, . . . , N , and µN+1(yN) and
µN are arbitrarily close for large ξ. In fact, by the inductive hypothesis:

N∑
n=1

ξN
n qn + µN

(
1−

N∑
n=1

qn

)
= x∗∗

we obtain that:

G(yN) = x∗∗ + (x∗∗ − xN+1) + µN+1

(
1−

N+1∑
n=1

qn

)
− µN

(
1−

N∑
n=1

qn

)

For ξ large enough, µN+1 approaches to µN and qN+1 approaches to zero, therefore
we can assume that G(yN) > x∗∗. For y = yN(1 + εn), since ξN+1

n (y) is decreasing,
we have that:

ξN+1
n (yN(1 + εN)) ≤ ξN+1

n (yN) = ξN
n (yN) for n = 1 . . . N − 1 (3.39)

Furthermore, by the inductive hypothesis (d):

yN(1 + εN) = U ′(ξN
N )(1 + εN) > U ′

(
xN+1 − xN

2(x∗∗ − xN)
ξN
N

)
(3.40)

and hence:

ξN+1
N (y(1 + εN)) <

xN+1 − xN

2(x∗∗ − xN)
ξN
N

Substituting (3.39) and (3.40) in (3.38), we obtain:

G(yN(1 + εN)) <

<
N−1∑
n=1

ξN
n qn+x∗∗+

xN+1 − xN

2(x∗∗ − xN)
ξN
N qN+(x∗∗−xN+1)+µN+1(yN(1+εN))

(
1−

N+1∑
n=1

qn

)
=

= −(x∗∗−xN)+
xN+1 − xN

2
+(x∗∗−xN+1)+µN+1

(
1−

N+1∑
n=1

qn

)
−µN

(
1−

N∑
n=1

qn

)
=

= −1

2
(xN+1 − xN) + ϕ(ξ)

where

ϕ(ξ) = µN+1(ξ)

(
1−

N∑
n=1

qn − qN+1(ξ)

)
− µN

(
1−

N∑
n=1

qn

)
is infinitesimal, in the sense that limξ→∞ ϕ(ξ) = 0.
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Therefore, for a sufficiently large ξ, G(yN(1 + εN)) < x∗∗, and there is a unique
value yN+1 ∈ (yN , yN(1 + εN)) such that G(y) = x∗∗. Hence, using this value of
yN+1 in equations (3.34,3.35,3.36,3.37), we obtain a solution to the entire system,
and in particular we obtain the desired values for pN+1 and qN+1. To check (b), (d)

and (e), we apply Lemma 3.11 to ε = min
(
εN , xN+2−xN+1

2(x∗∗−xN+1)

)
, and obtain some large

ξ such that:

U ′
(

xN+2 − xN+1

2(x∗∗ − xN+1)
ξ

)
< U ′(ξ)(1 + εN+1) (3.41)

which implies (d), and up a change to smaller (εn)∞n=N+1 we obtain (e). Finally,
we let ξ be large enough so that qN+1 < pN+1

2
, and the induction hypotheses are

satisfied. This completes the construction.
The sequence (yN)∞N=1 increases to y∞ < ∞. In fact, the assumption

∏∞
n=1(1 +

εn) < 2 guarantees that:

yN ≤ y1

N∏
n=2

(1 + εn) ≤ 2y1

Then by (3.36) it follows that (ξN
n )∞N=n decreases to the value ξn satisfying U ′(ξn) =

y∞ qn

pn
. Similarly, we can prove that µN decreases to the value µ which satisfies

U ′(µ) = y∞rn, where rn =
1−

∑n
k=1 qk

1−
∑n

k=1 pk
. In fact, by (3.37) it is sufficient to prove that

rn is increasing. To see this, we use the assumption qn < pn

2
, which implies:

rN+1 =
1−

∑N
n=1 qn − qN+1

1−
∑N

n=1 pn − pN+1

>
1−

∑N
n=1 qn − pN+1

2

1−
∑N

n=1 pn − pN+1

>
1−

∑N
n=1 qn

1−
∑N

n=1 pn

= rN

where the last inequality is equivalent to 1−
∑N

n=1 qn ≥ 1−
∑N

n=1 pn

2
, which is implied

by qn < pn

2
.

We now show that u(x) = limN→∞ uN(x). Since uN(x) is increasing, and
uN(x) ≤ u(x) for all N , it is clear that limN→∞ uN(x) ≤ u(x). To prove the reverse

inequality, it suffices to show that X̂N
T is a maximizing sequence.

Consider a maximizing sequence for u(x), that is a sequence (Y k)∞k=1 ⊂ X (x) such
that limk→∞E

[
U(Y k)

]
= u(x). We may well replace Y k with (1− δk)Y

k1{Y k<Mk}+
xδk for some small (δk)

∞
k=1 and some big (Mk)

∞
k=1, so that we still have a maximizing

sequence (still denoted by (Y k)∞k=1), and Yk is bounded away from zero.
As Y k is the terminal payoff of some strategy Hk, we denote by Y k

n the payoff
of Hk at time n. Then we have that U(Y k

n ) is bounded from below by U(xδk),
uniformly in n. Therefore, Fatou’s Lemma implies that:

lim
n→∞

E
[
U(Y k

n )
]
≥ E

[
U(Y k)

]
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and hence, choosing nk big enough, (Y k
nk

)∞k=1 is a maximizing sequence. On the other

hand, we trivially have that E
[
U(Y k

nk
)
]
≤ E

[
U(X̂k

T )
]
, as desired.

We now prove that u(x) < ∞ for all x > 0. By Theorem 3.1 in [KS 99] (or by the
concavity of u), it suffices to show that u(x) < ∞ for some x > 0, and we show this
for x∗. The utility maximization problem with initial capital x∗ admits an optimizer
(see also Lemma 3.10 (i) below), which is given by:

X̂T (x∗) =
∞∑

n=1

1AnI

(
y∞

qn

pn

)
+ 1BI (y∞r∞)

By assumption (e) above, I
(
y∞ qn

pn

)
∈ Ξ for all n. Denoting by M = U(I (y∞r∞)),

we have:

E
[
U(X̂T (x∗))

]
< M + 2E

[
X̂T (x∗)U ′(X̂T (x∗))1Ω\(B∪A1)

]
=

= M + 2y∞
N∑

n=2

I

(
y∞

qn

pn

)
qn = M + 2y∞x∗

which shows that u(x∗) < ∞.

In the next lemma we describe the properties of the above model:

Lemma 3.10 The model constructed in Lemma 3.9 has the following properties:

i) For all x ≥ x∗, X̂N
T (x) converges to X̂T (x∗) a.s.

ii) u(x) is a straight line with slope u′(x∗) for x > x∗.

iii) The utility maximization problem admits a solution if and only if x ≤ x∗.

Proof

i) Denoting by X̂N(x) = (ξN
1 , . . . , ξN

N , µN), from (3.36,3.37) we obtain that, for
x ≥ x∗:

lim
N→∞

ξN
n = I

(
yN qn

pn

)
= I

(
y∞

qn

pn

)
lim

N→∞
µN = I

(
yNrN

)
= I (y∞r∞)
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therefore it suffices to show that this limit coincides with X̂(x∗). In fact, from
(3.35), we obtain that:

N−1∑
n=1

I

(
yN qn

pn

)
qn + I(yNrN)

(
1−

N∑
n=1

qn

)
= xN

and taking the limit as N →∞, we obtain:

∞∑
n=1

I

(
y∞

qn

pn

)
qn + I(y∞r∞)

(
1−

∞∑
n=1

qn

)
= x∗

which concludes the proof.

Note that for x < x∗, equations (3.35,3.36,3.37) still admit a solution, but yN

converges to a value strictly greater than y∞.

ii) By Lemma 3.9 we have that uN(x) → u(x) for all x > 0, and by standard re-
sults on convex functions (see [R 70]), this implies that also (uN)′(x) converges
to u′(x), for all x > 0 as u(x) is differentiable by Theorem 2.0 in [KS 99]. Also,
by Theorem 2.0 in [KS 99] we have that (uN)′(x) = yN .

¿From i) it follows that, for x ≥ x∗:

u′(x∗) = y∞ = lim
N→∞

yN = lim
N→∞

(uN)′(x) = u′(x)

which proves the claim.

iii) As noted in i), an optimizer exists for x = x∗. Then an optimizer exists also
for x < x∗ by Theorem 2.0 in [KS 99]. Since an optimizer exists for x = x∗,
then it cannot exist for x > x∗ by ii), and by the strict concavity of U (see
Scholium 5.1 in [KS 99]).

We now prove the technical lemma used in the proof of Proposition 3.8:

Lemma 3.11 Let U be a utility function satisfying Assumption 1.2 and (3.27). For
all ε > 0, there is x > ε−1 such that:

i) xU ′(x) ≥ ε−1

ii) zU ′(z)
U(z)

≥ 1− ε for all z ∈ [εx, x
ε
]

iii) U ′(εx) ≤ (1 + ε)U ′(x)
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Notice that ii) is an immediate consequence of (3.27), while iii) follows from
Lemma 6.5 in [KS 99]. The difficulty of the above lemma consists in finding some x
which satisfies simultaneously ii) and iii).

The proof requires two auxiliary lemmata.

Lemma 3.12 Let U be a utility function satisfying Assumption 1.2, and y < x such
that:

yU ′(y)

U(y)
≤ α

xU ′(x)

U(x)
≥ β

Then we have that:

x ≥ y

(
β − α

(1− β)α
+ 1

)
Proof Define b(x) = U(x)− xU ′(x). Note that b(x) can be characterized as:

b(x) = inf{m : U ′(x)z + m ≥ U(z) for all z > 0} (3.42)

and therefore b(x) is an increasing function of x (when U is twice differentiable, this
is immediately seen by differentiating the definition of b(x)). This fact, combined
with the assumptions on x and y, implies that:

(1− α)U(y) ≤ b(y) ≤ b(x) ≤ (1− β)U(x) (3.43)

and by the concavity of U :

U(x) ≤ U(y) + U ′(y)(x− y) (3.44)

Putting together (3.43) and (3.44), we have

x− y ≥ β − α

1− β

U(y)

U ′(y)

and hence

x ≥ y

(
β − α

1− β

U(y)

yU ′(y)
+ 1

)
≥ y

(
β − α

(1− β)α
+ 1

)

Lemma 3.13 Let U be a utility function satisfying Assumption 1.2, and U(∞) > 0.
Let 0 < y < x and 0 < α < β.

i) If xU ′(x)
U(x)

≥ β and zU ′(z)
U(z)

≥ α for all z ∈ [y, x] then U ′(x) > β
α

(
x
y

)α−1

U ′(y)
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ii) For y large enough, if yU ′(y)
U(y)

≥ β and xU ′(x)
U(x)

≤ α then U ′(y) ≥ β
α
U ′(x)

Proof

i) As in the proof of Lemma 3.4, we have

U(z) ≥ U(y)

(
z

y

)α

for all z ∈ [y, x]

It follows that

β ≤ xU ′(x)

U(x)
≤ yU ′(x)

U(y)

(y

x

)α−1

≤ α
U ′(x)

U ′(y)

(y

x

)α−1

which completes the proof.

ii) Notice that (
U(x)

x

)′
=

xU ′(x)− U(x)

x2
= −b(x)

x2

Since U(∞) > 0 implies that limx→∞ b(x) > 0, it follows that U(x)
x

is a decreasing
positive function on the nonempty set {x : b(x) ≥ 0, U(x) ≥ 0}. It follows that:

U ′(y)

U ′(x)
≥ β

α

U(y)

y

x

U(x)
≥ β

α

as claimed.

Proof of Lemma 3.11 First note that AE+∞(U) > 0 implies that U is unbounded
(Lemma 6.1 in [KS 99]). Hence, we only need to find some x big enough which
satisfies ii) and iii), as i) will follow automatically.

If there exists some x0 such that xU ′(x)
U(x)

≥ 1− ε for all x ≥ x0, the result follows

by Lemma 6.5 in [KS 99]. In fact, from the mentioned lemma we obtain that, for all
α < 1 and β > 1 there exists y > ε−1 such that:

αU ′(y) < U ′(βy)

and iii) follows by setting β = 1
ε
, x = y

ε
and α = 1

1+ε
. Such an x will then satisfy

ii) and i) above.

Otherwise, if lim infx→∞
xU ′(x)
U(x)

< 1, then there exist y, x̂, with y < x̂ such that:

x̂U ′(x̂)

U(x̂)
≥ 1− ε3,

yU ′(y)

U(y)
= 1− ε and

zU ′(z)

U(z)
≥ 1− ε for all z ∈ [y, x̂]
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In fact, we may just choose some y < x̂ with the first two properties, and then
replace y with sup{w < x̂ : wU ′(w)

U(w)
≤ 1− ε}.

Denote now x = inf{w > y : wU ′(w)
U(w)

= 1 − ε2}. Notice that, by Lemma 3.12, we
have:

x̂ ≥
(

1 +
1

ε(1 + ε)

)
x ≥ x

ε
and εx ≥ y (1 + ε) > y

Applying Lemma 3.13 (i) to y = εx, we obtain that:

U ′(x) ≥ (1 + ε)εεU ′(εx) > (1 + ε)(1 + ε log ε)U ′(εx)

and iii) follows for ε small enough.

3.3 Existence Theorems

Let us now move to the positive results in the spirit of Theorem 2.16 and Theorem
2.18 above. We first consider the case where U satisfies case 1 of Assumption 1.2,
which was studied in [KS 99].

Case 1: dom(U) = R+.
The heart of the argument in the proof of Theorem 2.18 (which we now want

to extend to the general case) is to find a saddlepoint for the Lagrangian. In more
general situations we have to apply the minimax theorem, which is crucial in the
theory of Lagrange multipliers. We want to extend the applicability of the minimax
theorem to the present situation. The infinite-dimensional versions of the minimax
theorem available in the literature (see, e.g, [ET76] or [St 85]) are along the following
lines: Let 〈E, F 〉 be a pair of locally convex vector spaces in separating duality, C ⊆
E, D ⊆ F a pair of convex subsets, and L(x, y) a function defined on C×D, concave
in the first and convex in the second variable, having some (semi-)continuity property
compatible with the topologies of E and F (which in turn should be compatible with
the duality between E and F ). If (at least) one of the sets C and D is compact
and the other is complete, then one may assert the existence of a saddle point
(ξ̂, η̂) ∈ C ×D such that

L(ξ̂, η̂) = sup
ξ∈C

inf
η∈D

L(ξ, η) = inf
η∈D

sup
ξ∈C

L(ξ, η). (3.45)

We try to apply this theorem to the analogue of the Lagrangian encountered in
the proof of Theorem 2.18 above. Fixing x > 0 and y > 0 let us formally write the
Lagrangian (2.70) in the infinite-dimensional setting,

Lx,y(XT ,Q) = EP[U(XT )]− y(EQ[XT − x]) (3.46)

= EP

[
U(XT )− y dQ

dP
XT

]
+ yx, (3.47)
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where XT runs through “all” non-negative FT -measurable functions and Q through
the set Ma(S) of absolutely continuous local martingale measures.

To restrict the set of “all” nonnegative functions to a more amenable one, note
that infy>0,Q∈Ma(S) Lx,y(XT ,Q) > −∞ iff

EQ[XT ] ≤ x, for all Q ∈Ma(S). (3.48)

Using the basic result on the super-replicability of the contingent claim XT (see
[KQ95], [J 92], [AS 94], [DS 94], and [DS 98]), we have — as encountered in Theorem
2.11 for the finite dimensional case — that a non-negative FT -measurable random
variable XT satisfies (3.48) iff there is an admissible trading strategy H such that

XT ≤ x + (H ·S)T . (3.49)

Hence let

C(x) =
{
XT ∈ L0

+(Ω,FT ,P) :

XT ≤ x + (H ·S)T , for some admissible H} (3.50)

=
{
XT ∈ L0

+(Ω,FT ,P) :

EQ[XT ] ≤ x, for all Q ∈Ma(S)} (3.51)

and simply write C for C(1) (observe that C(x) = xC).
We thus have found a natural set C(x) in which XT should vary when we are

mini-maxing the Lagrangian Lx,y. Dually, the set Ma(S) seems to be the natural
domain where the measure Q is allowed to vary (in fact, we shall see later, that this
set still has to be slightly enlarged). But what are the locally convex vector spaces
E and F in separating duality into which C and Ma(S) are naturally embedded?
As regards Ma(S) the natural choice seems to be L1(P) (by identifying a measure
Q ∈ Ma(S) with its Radon-Nikodym derivative dQ

dP
); note that Ma(S) is a closed

subset of L1(P), which is good news. On the other hand, there is no reason for C
to be contained in L∞(P), or even in Lp(P), for any p > 0; the natural space in
which C is embedded is just L0(Ω,FT ,P), the space of all real-valued FT -measurable
functions endowed with the topology of convergence in probability.

The situation now seems hopeless (if we don’t want to impose artificial P-
integrability assumptions on XT and/or dQ

dP
), as L0(P) and L1(P) are not in any

reasonable duality; in fact, L0(P) is not even a locally convex space, hence there
seems to be no hope for a good duality theory, which could serve as a basis for
the application of the minimax theorem. But the good news is that the sets C
and Ma(S) are in the positive orthant of L0(P) and L1(P) respectively; the crucial
observation is, that for f ∈ L0

+(P) and g ∈ L1
+(P), it is possible to well-define

〈f, g〉 := EP[fg] ∈ [0,∞]. (3.52)
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The spirit here is similar as in the very foundation of Lebesgue integration theory:
For positive measurable functions the integral is always well-defined, but possibly
+∞. This does not cause any logical inconsistency.

Similarly the bracket 〈 . , . 〉 defined in (3.52) shares many of the usual properties
of a scalar product. The difference is that 〈f, g〉 now may assume the value +∞ and
that the map (f, g) 7→ 〈f, g〉 is not continuous on L0

+(P) × L1
+(P), but only lower

semi-continuous (this immediately follows from Fatou’s lemma).
At this stage it becomes clear that the role of L1

+(P) is somewhat artificial, and
it is more natural to define (3.52) in the general setting where f and g are both
allowed to vary in L0

+(P). The pleasant feature of the space L0(P) in the context
of Mathematical Finance is, that it is invariant under the passage to an equivalent
measure Q, a property only shared by L∞(P), but by no other Lp(P), for 0 < p < ∞.

We now can turn to the polar relation between the sets C and Ma(S). By (3.49)
we have, for an element XT ∈ L0

+(Ω,F ,P),

XT ∈ C ⇐⇒ EQ[XT ] = EP[XT
dQ
dP

] ≤ 1, for Q ∈Ma(S). (3.53)

Denote by D the closed, convex, solid hull of Ma(S) in L0
+(P). It is easy to

show (using, e.g., Lemma 3.14 below), that D equals

D = {YT ∈ L0
+(Ω,FT ,P) : there is

(Qn)∞n=1 ∈Ma(S) s.t. YT ≤ lim
n→∞

dQn

dP
}, (3.54)

where the limn→∞
dQn

dP
is understood in the sense of almost sure convergence. We

have used the letter YT for the elements of D to stress the dual relation to the
elements XT in C. In further analogy we write, for y > 0, D(y) for yD, so that
D = D(1). By (3.54) and Fatou’s lemma we again find that, for XT ∈ L0

+(Ω,F ,P)

XT ∈ C ⇐⇒ EP[XT YT ] ≤ 1, for YT ∈ D. (3.55)

Why did we pass to this enlargement D of the set Ma(S)? The reason is that
we now obtain a more symmetric relation between C and D: for YT ∈ L0

+(Ω,F ,P)
we have

YT ∈ D ⇐⇒ EP[XT YT ] ≤ 1, for XT ∈ C. (3.56)

The proof of (3.56) relies on an adaption of the “bipolar theorem” from the theory
of locally convex spaces (see, e.g., [S 66]) to the present duality 〈L0

+(P), L0
+(P)〉,

which was worked out in [BS 99].
Why is it important to define the enlargement D of Ma(S) in such a way that

(3.56) holds true? After all, Ma(S) is a nice, convex, closed (w.r.t. the norm of
L1(P)) set and one may prove that, for g ∈ L1(P) such that EP[g] = 1,

g ∈Ma(S) ⇐⇒ EP[XT g] ≤ 1, for XT ∈ C. (3.57)



48 CHAPTER 3. THE GENERAL CASE

The reason is that, in general, the saddle point (X̂T , Q̂) of the Lagrangian will

not be such that Q̂ is a probability measure; it will only satisfy E
[

dQ̂
dP

]
≤ 1, the

inequality possibly being strict. But it will turn out that Q̂, which we identify with
dQ̂
dP

, is always in D. In fact, the passage from Ma(S) to D is the crucial feature in
order to make the duality work in the present setting: we shall see below that even
for nice utility functions U , such as the logarithm, and for nice processes, such as a
continuous process (St)0≤t≤T based on the filtration of two Brownian motions, the
above described phenomenon can occur: the saddle point of the Lagrangian leads
out of Ma(S).

The set D can be characterized in several equivalent manners. We have defined D
above in the abstract way as the convex, closed, solid hull of Ma(S) and mentioned
the description (3.54). Equivalently, one may define D as the set of random variables
YT ∈ L0

+(Ω,F ,P) such that there is a process (Yt)0≤t≤T starting at Y0 = 1 with
(YtXt)0≤t≤T a P-supermartingale, for every non-negative process (Xt)0≤t≤T = (x +
(H ·S)t)0≤t≤T , where x > 0 and H is predictable and S-integrable. This definition
was used in [KS 99]. Another equivalent characterization was used in [CSW01]:
Consider the convex, solid hull of Ma(S), and embed this subset of L1(P) into the
bidual L1(P)∗∗ = L∞(P)∗; denote by Ma(S) the weak-star closure of the convex
solid hull of Ma(S) in L∞(P)∗. Each element of Ma(S) may be decomposed into
its regular part µr ∈ L1(P) and its purely singular part µs ∈ L∞(P)∗. It turns out
that D equals the set {µr ∈ L1(P) : µ ∈Ma(S)}, i.e. consists of the regular parts of
the elements of Ma(S). This description has the advantage that we may associate
to the elements µr ∈ D a singular part µs, and it is this extra information which is
crucial when extending the present results to the case of random endowment as in
[CSW01]. Compare also [HK02], where the case of random endowment is analyzed
in full generality without using the space L∞(P)∗.

Why are the sets C and D hopeful candidates for the minimax theorem to work
out properly for a function L defined on C×D? Both are closed, convex and bounded
subsets of L0

+(P). But recall that we still need some compactness property to be able
to localize the mini-maximizers (resp. maxi-minimizers) on C (resp. D). In general,
neither C nor D is compact (w.r.t. the topology of convergence in measure), i.e.,
for a sequence (fn)∞n=1 in C (resp. (gn)∞n=1 in D) we cannot pass to a subsequence
converging in measure. But C and D have a property which is close to compactness
and in many applications turns out to serve just as well.

Lemma 3.14 Let A be a closed, convex, bounded subset of L0
+(Ω,F ,P). Then for

each sequence (hn)∞n=1 ∈ A there exists a sequence of convex combinations kn ∈
conv(hn, hn+1, . . .) which converges almost surely to a function k ∈ A.

This easy lemma (see, e.g., [DS 94, Lemma A.1.1], for a proof) is in the spirit
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of the celebrated theorem of Komlos [Kom 67], stating that for a bounded sequence
(hn)∞n=1 in L1(P) there is a subsequence converging in Cesaro-mean almost surely.
The methodology of finding pointwise limits by using convex combinations has
turned out to be extremely useful as a surrogate for compactness. For an extensive
discussion of more refined versions of the above lemma and their applications to
Mathematical Finance we refer to [DS 99].

The application of the above lemma is the following: by passing to convex com-
binations of optimizing sequences (fn)∞n=1 in C (resp. (gn)∞n=1 in D), we can always
find limits f ∈ C (resp. g ∈ D) w.r.t. almost sure convergence. Note that the pas-
sage to convex combinations does not cost more than passing to a subsequence in
the application to convex optimization.

We have now given sufficient motivation to state the central result of [KS 99],
which is the generalization of Theorem 2.18 to the semi-martingale setting under
Assumption 1.2, case 1, and having reasonable asymptotic elasticity.

Theorem 3.15 ([KS 99], Theorem 2.2) Let the semi-martingale S = (St)0≤t≤T

and the utility function U satisfy Assumptions 1.1, 1.2 case 1 and 1.3; suppose in
addition that U has reasonable asymptotic elasticity. Define

u(x) = sup
XT∈C(x)

E[U(XT )], v(y) = inf
YT∈D(y)

E[V (YT )]. (3.58)

Then we have:

(i) The value functions u(x) and v(y) are conjugate; they are continuously differ-
entiable, strictly concave (resp. convex) on ]0,∞[ and satisfy

u′(0) = −v′(0) = ∞, u′(∞) = v′(∞) = 0. (3.59)

(ii) The optimizers X̂T (x) and ŶT (y) in (3.58) exist, are unique and satisfy

X̂T (x) = I(ŶT (y)), ŶT (y) = U ′(X̂T (x)), (3.60)

where x > 0, y > 0 are related via u′(x) = y or equivalently x = −v′(y).

(iii) We have the following relations between u′, v′ and X̂T , ŶT respectively:

u′(x) = E
[

X̂T (x)U ′(X̂T (x))
x

]
, x > 0, v′(y) = E

[
ŶT (y)V ′(ŶT (y))

y

]
, y > 0. (3.61)

For the full proof of the theorem we refer to [KS 99]. Instead, here we present

an alternative proof of the existence of the solution X̂T (x), which does not rely on
the dual point of view.

We start with an easy lemma, which is in the spirit of Kadec’ and Pelčzyn’ski
[KP 65]:
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Lemma 3.16 Let (fn)∞n=1 ≥ 0 be random variables on (Ω,F ,P) converging a.s. to
f0. Suppose that limn→∞E [fn] = E [f0] + α, for some α > 0. Then for all ε > 0
there exist n,m > ε−1 and disjoint sets An, Am such that the following conditions
are satisfied:

i) fn ≥ ε−1 on An and fm ≥ ε−1 on Am

ii) E [fn1An ] > α− ε and E [fm1Am ] > α− ε

iii) E
[
fn1Ω\(An∪Am)

]
> E [f0]− ε and E

[
fm1Ω\(An∪Am)

]
> E [f0]− ε

Proof Denoting by Bk = {fk ≥ (f0 + ε) ∨ ε−1}, we can write:

E [fk] = E
[
fk1Ω\Bk

]
+ E [fk1Bk

]

Since the class (fk1Ω\Bk
)k∈N is uniformly integrable, the first term in the right con-

verges to E [f0], and therefore the last term converges to α. This means that we can
choose n, m > ε−1 such that:

E [fn1Bn ] > α− ε

2
and E

[
fn1Ω\Bn

]
> E [f0]−

ε

2

E [fm1Bm ] > α− ε

2
and E

[
fm1Ω\Bm

]
> E [f0]−

ε

2

The uniform integrability of (fk1Ω\Bk
)k∈N also implies that for any ε > 0 we can

find δ > 0 such that, if P(C) < δ, then:

E
[
fk1C\Bk

]
= E

[
fk1Ω\Bk

1C

]
< ε (3.62)

Since fk converges a.s. to f0, for all ε > 0 we have:

lim
k→∞

P(Bk) = 0

and hence we can choose Bn small enough, so that by (3.62), E
[
fk1Bn\Bk

]
< ε

2
for

all k. Analogously, we choose m such that E [fn1Bm ] < ε
2
.

Denoting by An = Bn \Bm and Am = Bm, we obviously have An ∩Am = ∅, and
it is easy to check that they satisfy i), ii), and iii).

Proof of existence of the primal optimizer XT (x) Fix x > 0 and let Xn(x) =
x + (Hn · S)T ≥ 0 be a maximizing sequence for (1.16). Since AE+∞(U) < 1, by
Lemma 6.3 in [KS 99] there exists some γ > 1 such that U(x

2
) > γ

2
U(x) for all x ≥ x0.

By passing to a sequence of convex combinations X ′
n ∈ conv(Xn, Xn+1, . . . ), still

denoted by Xn and applying Lemma 3.14, we may suppose that Xn converges a.s.
to X̂ ∈ L0(Ω,F ,P, [0,∞]). Since Me(S) 6= ∅, we have that conv(Xn, Xn+1, . . . ) is
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bounded in L1(Q), and hence in L0(P) (that is, bounded in probability under P).

Hence X̂ < ∞ is finite almost surely, and by the closedness of C(x) in L0(P) we

have X0 ≤ x + (Ĥ ·S)T for some admissible Ĥ.

We shall show that limn→∞E [U(Xn)] = E
[
U(X̂)

]
. If not, we have that:

lim
n→∞

E [U(Xn)]− E
[
U(X̂)

]
= α > 0

and by Lemma 3.16 we may find n,m,An, Am such that:

U(Xn) ≥ ε−1 on An U(Xm) ≥ ε−1 on Am

E [U(Xn)1An ] > α− ε E [U(Xm)1Am ] > α− ε

E
[
U(Xn)1Ω\(An∪Am)

]
> E

[
U(X̂)

]
− ε E

[
U(Xm)1Ω\(An∪Am)

]
> E

[
U(X̂)

]
− ε

We can write:

E

[
U

(
Xn + Xm

2

)]
= E

[
U

(
Xn + Xm

2

)
1Ω\(An∪Am)

]
+

+ E

[
U

(
Xn + Xm

2

)
1An∪Am

]
By the condition AE+∞(U) < 1, for the second term we have:

E

[
U

(
Xn + Xm

2

)
1An∪Am

]
≥ γE

[
U(Xn + Xm)

2
1An∪Am

]
≥

≥ γ

2
(E [U (Xn)1An ] + E [U (Xm)1Am ]) ≥ γ(α− ε)

while for the first term:

E

[
U

(
Xn + Xm

2

)
1An∪Am

]
≥

≥ 1

2

(
E
[
U(Xn)1Ω\(An∪Am)

]
+ E

[
U(Xm)1Ω\(An∪Am)

])
≥ E

[
U(X̂)

]
− ε

and hence:

E

[
U

(
Xn + Xm

2

)
1An∪Am

]
≥ E

[
U(X̂)

]
+ α + ((γ − 1)α− ε(γ + 1))

Since ε can be chosen arbitrarily small, we can assume that the last term in the right
is positive, but this leads to a contradiction, since Xn was a maximizing sequence,

and limn→∞E [U(Xn)] = E
[
U(X̂)

]
+ α was the supremum.
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We finish the discussion of utility functions satisfying the Inada conditions (1.7)

and (1.8) by briefly indicating two examples, when the dual optimizer ŶT (y) fails to

be of the form ŶT (y) = y dQ̂(y)
dP

, for some probability measure Q̂(y).
The first example will feature a stopped Geometric Brownian Motion as the asset

process, while the second one will be a simple one-period model with countably many
states.

Example 3.17 ([KS 99, Example 5.2]) It suffices to consider a stock-price process
of the form

St =
(
exp

(
Bt + t

2

))τ
(3.63)

= exp
(
Bt∧τ + t∧τ

2

)
, t ≥ 0,

where (Bt)t≥0 is Brownian motion based on (Ω,F , (Ft)t>0,P) and τ a suitably chosen
finite stopping time (to be discussed below) with respect to the filtration (Ft)t>0,
after which the process S remains constant.

The usual way to find a risk-neutral measure Q for the process S above is to use
Girsanov’s formula, which amounts to considering

Zτ = exp(−Bτ − τ
2
) (3.64)

as a candidate for the Radon-Nikodym derivative dQ
dP

.
We shall construct τ in such a way that — apart from other properties to be

discussed below — the density process given by Girsanov’s theorem

Zt = exp(−Bt∧τ − t∧τ
2

), t > 0 (3.65)

fails to be a uniformly integrable martingale, so that

E[Zτ ] < 1. (3.66)

The trick is to choose the filtration (Ft)t≥0 to be generated by two independent
Brownian motions (Bt)t≥0 and (Wt)t≥0. Using the information of both (Bt)t≥0 and
(Wt)t≥0 one may define τ in a suitable way such that (3.66) holds true and never-
theless we have that Me(S) 6= ∅. In other words, there are equivalent martingale
measures Q for the process S, but Girsanov’s theorem fails to produce one.

This example is known for quite some time ([DS 98]) and served as a kind of
“universal counterexample” to several questions arising in Mathematical Finance.

How can one use this example in the present context? Consider the logarithmic
utility U(x) = ln(x) and recall that its conjugate function V equals V (y) = − ln(y)−
1. Hence the dual optimization problem — formally — is given by

E
[
V
(
y dQ

dP

)]
= E

[
− ln

(
y dQ

dP

)
− 1
]

=

= −E
[
ln
(

dQ
dP

)]
− (ln(y) + 1) −→ min!, Q ∈Ma(S). (3.67)
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It is well known (see, e.g., the literature on the “numéraire portfolio” [L 90], [A 97]
and [B 01]), that for a process (St)t≥0 based, e.g., on the filtration generated by an
n-dimensional Brownian motion, the martingale measure obtained from applying
Girsanov’s theorem (which equals the “minimal martingale measure” investigated
by Föllmer and Schweizer [FS 91]) is the minimizer for (3.67), provided it exists.

In the present example we have seen that the candidate for the density of the
minimal martingale measure Zτ obtained from a formal application of Girsanov’s
theorem fails to have full measure; but nevertheless one may show that Zτ is the
optimizer of the dual problem (3.63), which shows in particular that we have to pass
from Ma(S) to the larger set D to find the dual optimizer in (3.67).

Example 3.18 ([KS 99, Example 5.2 bis]) Let (pn)∞n=0 be a sequence of strictly pos-
itive numbers,

∑∞
n=0 pn = 1, tending sufficiently fast to zero and (xn)∞n=0 a sequence

of positive reals, x0 = 2, decreasing also to zero (but less fast than (pn)∞n=0). For
example, p0 = 1 − α, pn = α2−n, for n ≥ 1, and x0 = 2, xn = 1

n
, for n ≥ 1, will do,

if 0 < α < 1 is small enough to satisfy (1− α)/2 + α
∑∞

n=1 2−n(−n + 1) > 0.

Now define S
∆→= (S0, S1) by letting S0 ≡ 1 and S1 to take the values (xn)∞n=0

with probability pn. As filtration we choose the natural filtration generated by S.
Clearly the process S satisfies Me(S) 6= ∅. In this case we can explicitly calculate
the family of admissible processes starting at 1: it consists of all processes X with
X0 = 1 and such that X1 is equals the random variable Xλ = 1 + λ(S1 − S0), for
some −1 ≤ λ ≤ 1.

Using again U(x) = ln(x) as utility function and writing f(λ) = E
[
U(Xλ)

]
we

obtain by an elementary calculation

f ′(λ) =
∞∑

n=0

pn
xn − 1

1 + λ(xn − 1)

so that f ′(λ) is strictly positive for −1 ≤ λ ≤ 1 if α > 0 satisfies the above
assumption f ′(1) = (1 − α)1

2
+ α

∑∞
n=1 2−n(−n + 1) > 0. Hence f(λ) attains its

maximum on [−1, 1] at λ = 1, in other words, the optimal investment process X̂(1)
equals the process S.

We can also explicitly calculate u(x) by

u(x) = E[U(xS1)] =
∞∑

n=0

pnU(xxn) (3.68)

=
∞∑

n=0

pn(ln(x) + ln(xn)) = ln(x) +
∞∑

n=0

pn ln(xn). (3.69)
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In particular, u′(1) = 1 and by Theorem 3.15 (ii) we get Ŷ (1) = U ′(X̂(1)) =
(S1)

−1. Note that

E[S−1
1 ] =

∞∑
n=0

pn

xn

=
p0

2
+

∞∑
n=1

npn

is strictly less than 1 by using again the condition (1−α)1
2
+α

∑∞
n=1 2−n(−n+1) > 0.

In particular, the optimal element Ŷ1(1) is not the density of a martingale measure
for the process S.

Passing again to the general setting of Theorem 3.15 one might ask: how severe
is the fact encountered in the two examples above that the dual optimizer ŶT (1)

may fail to be the density of a probability measure (or that E[ŶT (y)] < y, for y > 0,
which amounts to the same thing)? In fact, in many respects it does not bother
us at all: we still have the basic duality relation between the primal and the dual
optimizer displayed in Theorem 3.15 (ii). Even more is true: using the terminology

from [KS 99] the product (X̂t(x)Ŷt(y))0≤t≤T , where x and y satisfy u′(x) = y, is a
uniformly integrable martingale. This fact can be interpreted in the following way:
by taking the optimal portfolio (X̂t(x))0≤t≤T as numéraire instead of the original cash

account, the pricing rule obtained from the dual optimizer ŶT (y) then is induced
by an equivalent martingale measure. We refer to ([KS 99], p. 912) for a thorough
discussion of this argument.

Finally we want to draw the attention of the reader to the fact that — comparing
item (iii) of Theorem 3.15 to the corresponding item of Theorem 2.18 — we only
asserted one pair of formulas for u′(x) and v′(y). The reason is that, in general, the
formulae (2.82) do not hold true any more, the reason again being precisely that

for the dual optimizer ŶT (y) we may have E[ŶT (y)] < y. Indeed, the validity of

u′(x) = E[U ′(X̂T (x))] is tantamount to the validity of y = E[ŶT (y)].

Case 2: dom(U) = R
We now pass to the case of a utility function U satisfying Assumption 1.2 case 2

which is defined and finitely valued on all of R. The reader should have in mind the
exponential utility U(x) = −e−γx, for γ > 0, as the typical example.

We want to obtain a result analogous to Theorem 3.15 also in this setting.
Roughly speaking, we get the same theorem, but the sets C and D considered
above have to be chosen in a somewhat different way, as the optimal portfolio X̂T

now may assume negative values too.
Firstly, we have to assume throughout the rest of this section that the semi-

martingale S is locally bounded. The case of non locally bounded processes is not
yet understood and waiting for future research.

Next we turn to the question; what is the proper definition of the set C(x) of
terminal values XT dominated by a random variable x + (H ·S)T , where H is an
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“allowed” trading strategy? On the one hand we cannot be too liberal in the choice
of “allowed” trading strategies as we have to exclude doubling strategies and similar
schemes. We therefore maintain the definition of the value function u(x) unchanged

u(x) = sup
H∈H

E [U (x + (H ·S)T )] , x ∈ R, (3.70)

where we still confine H to run through the set H of admissible trading strategies,
i.e., such that the process ((H · S)t)0≤t≤T is uniformly bounded from below. This
notion makes good sense economically as it describes the strategies possible for an
agent having a finite credit line.

On the other hand, in general, we have no chance to find the minimizer Ĥ in
(3.70) within the set of admissible strategies: already in the classical cases studied
by Merton ([M69] and [M 71] where, in particular, the case of exponential utility is

solved for the Black-Scholes model) the optimal solution x+(Ĥ ·S)T to (3.70) is not
uniformly bounded from below; this random variable typically assumes low values
with very small probability, but its essential infimum typically is minus infinity.

In [S 01] the following approach was used to cope with this difficulty: fix the
utility function U : R → R and first define the set Cb

U(x) to consist of all random
variables GT dominated by x+(H ·S)T , for some admissible trading strategy H and
such that E[U(GT )] makes sense:

Cb
U(x) =

{
GT ∈ L0(Ω,FT ,P) : there is H admissible s.t. (3.71)

GT ≤ x + (H ·S)T and E[|U(GT )|] < ∞} . (3.72)

Next we define CU(x) as the set of R∪ {+∞}-valued random variables XT such
that U(XT ) can be approximated by U(GT ) in the norm of L1(P), when GT runs
through Cb

U(x):

CU(x) =
{
XT ∈ L0(Ω,FT ,P; R ∪ {+∞}) : U(XT ) is in (3.73)

L1(P)-closure of {U(GT ) : GT ∈ Cb
U(x)}

}
. (3.74)

The optimization problem (3.70) now reads

u(x) = sup
XT∈CU (x)

E[U(XT )], x ∈ R. (3.75)

The set CU(x) was chosen in such a way that the value functions u(x) defined
in (3.70) and (3.75) coincide; but now we have much better chances to find the
maximizer to (3.75) in the set CU(x).

Two features of the definition of CU(x) merit some comment: firstly, we have
allowed XT ∈ CU(x) to attain the value +∞; indeed, in the case when U(∞) < ∞
(e.g., the case of exponential utility), this is natural, as the set {U(XT ) : XT ∈
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CU(x)} should equal the L1(P)-closure of the set {U(GT ) : GT ∈ Cb
U(x)}. But we

shall see that — under appropriate assumptions — the optimizer X̂T , which we are
going to find in CU(x), will almost surely be finite.

Secondly, the elements XT of CU(x) are only random variables and, at this stage,
they are not related to a process of the form x + (H ·S). Of course, we finally want

to find for each XT ∈ CU(x), or at least for the optimizer X̂T , a predictable, S-
integrable process H having “allowable” properties (in order to exclude doubling
strategies) and such that XT ≤ x + (H · S)T . We shall prove later that — under
appropriate assumptions — this is possible and give a precise meaning to the word
“allowable”.

After having specified the proper domain CU(x) for the primal optimization
problem (3.75), we now pass to the question of finding the proper domain for the
dual optimization problem. Here we find a pleasant surprise: contrary to case 1
above, where we had to pass from the set Ma(S) to its closed, solid hull D, it turns
out that, in the present case 2, the dual optimizer always lies in Ma(S). This fact
was first proved by F. Bellini and M. Fritelli ([BF 02]).

We now can state the main result of [S 01]:

Theorem 3.19 [S 01, Theorem 2.2] Let the locally bounded semi-martingale S =
(St)0≤t≤T and the utility function U satisfy Assumptions 1.1, 1.2 case 2 and 1.3;
suppose in addition that U has reasonable asymptotic elasticity. Define

u(x) = sup
XT∈CU (x)

E[U(XT )], v(y) = inf
Q∈Ma(S)

E
[
V
(
y dQ

dP

)]
. (3.76)

Then we have:

(i) The value functions u(x) and v(y) are conjugate; they are continuously differ-
entiable, strictly concave (resp. convex) on R (resp. on ]0,∞[) and satisfy

u′(−∞) = −v′(0) = v′(∞) = ∞, u′(∞) = 0. (3.77)

(ii) The optimizers X̂T (x) and Q̂(y) in (3.76) exist, are unique and satisfy

X̂T (x) = I

(
y
dQ̂(y)

dP

)
, y

dQ̂(y)

dP
= U ′(X̂T (x)), (3.78)

where x ∈ R and y > 0 are related via u′(x) = y or equivalently x = −v′(y).

(iii) We have the following relations between u′, v′ and X̂, Q̂ respectively:

u′(x) = EP[U ′(X̂T (x))], v′(y) = EQ̂

[
V ′
(
y dQ̂(y)

dP

)]
(3.79)

xu′(x) = EP[X̂T (x)U ′(X̂T (x))], yv′(y) = EP

[
y dQ̂(y)

dP
V ′
(
y dQ̂(y)

dP

)]
.(3.80)
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(iv) If Q̂(y) ∈ Me(S) and x = −v′(y), then X̂T (x) equals the terminal value of

a process of the form X̂t(x) = x + (H · S)t, where H is predictable and S-

integrable, and such that X̂ is a uniformly integrable martingale under Q̂(y).

We refer to [S 01] for a proof of this theorem and further related results. We
cannot go into the technicalities here, but a few comments on the proof of the above
theorem are in order: the technique is to reduce case 2 to case 1 by approximating
the utility function U : R → R by a sequence (U (n))∞n=1 of utility functions U (n) :
R → R ∪ {−∞} such that U (n) coincides with U on [−n,∞[ and equals −∞ on
] −∞,−(n + 1)]. For fixed initial endowment x ∈ R, we then apply Theorem 3.15

to find for each U (n) the saddle-point (X̂
(n)
T (x), Ŷ

(n)
T (ŷn)) ∈ Cb

U(x) × D(ŷn); finally

we show that this sequence converges to some (X̂T (x), ŷQ̂T ) ∈ CU(x) × ŷMa(S),
which then is shown to be the saddle-point for the present problem. The details of
this construction are rather technical and lengthy (see [S 01]).

We have assumed in item (iv) that Q̂(y) is equivalent to P and left open the

case when Q̂(y) is only absolutely continuous to P. F. Bellini and M. Fritelli have
observed ([BF 02]) that, in the case U(∞) = ∞ (or, equivalently, V (0) = ∞), it

follows from (3.76) that Q̂(y) is equivalent to P. But there are also other important

cases where we can assert that Q̂(y) is equivalent to P: for example, for the case of
the exponential utility U(x) = −e−γx, in which case the dual optimization becomes

the problem of finding Q̂ ∈Ma(S) minimizing the relative entropy with respect P,
it follows from the work of Csiszar [C 75] (compare also [R 84], [F 00], [GR01]) that

the dual optimizer Q̂(y) is equivalent to P, provided only that there is at least one
Q ∈Me(S) with finite relative entropy.

Under the condition Q̂(y) ∈ Me(S), item (iv) tells us that the optimizer

X̂T ∈ CU(x) is almost surely finite and equals the terminal value of a process

x + (H ·S), which is a uniformly integrable martingale under Q̂(y); this property
qualifies H to be a “allowable”, as it certainly excludes doubling strategies and
related schemes. One may turn the point of view around and take this as the defini-
tion of the “allowable” trading strategies; this was done in [DGRSSS 02] for the case
of exponential utility, where this approach is thoroughly studied and some other
definitions of “allowable” trading strategies, over which the primal problem may
be optimized, are also investigated. Further results on these lines were obtained in
[KS 02] for the case of exponential utility, and in [S 03a] for general utility functions.
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Appendix A

The Bipolar Theorem in L0

We now present the non-locally convex version of the Bipolar Theorem for 〈L0
+, L0

+〉,
was first proved by Brannath and Schachermayer [BS 99]. The following proof is due
to Michael Meyer (private communication).

We define the duality in 〈L0
+, L0

+〉 given by 〈f, g〉 = E [fg] ∈ [0,∞]. For a subset
C ⊂ L0

+ define the polar C0 of C as

C0 = {f ∈ L0
+ : EP [fg] ≤ 1,∀g ∈ C} (A.1)

A subset C ⊂ L0
+ will be called solid if g ∈ C, h ∈ L0 and 0 ≤ h ≤ g implies

that h ∈ C. Note that the polar C0 of C is closed with respect to the topology of
convergence in probability, convex and solid.

Proposition A.1 Assume that the set C ⊂ L0
+ is nonempty, closed in probability,

convex and solid. Then C = C00.

Proof By definition of the polar set we have C ⊂ C00. Hence, it will thus suffice
to show that if f 6∈ C then f 6∈ C00. Assume that f 6∈ C. Since f is almost surely
finitely valued, we have P(f 6= f ∧ n) → 0 and so f ∧ n → f in probability, as
n → ∞. Since f 6∈ C and C is closed in probability, we must have f ∧ n 6∈ C, for
some n ≥ 1. It will now suffice to show that f ∧ n 6∈ C00, since the solidity of C00

then implies that f 6∈ C00. This shows that we may assume that f is bounded. Let
Cb denote the family of all bounded functions in C and let K be the closed convex
hull

K = co(Cb − L1
+) ⊂ L1

the closure being taken in the norm of L1. If h is in the convex hull co(Cb − L1
+),

then h+ is dominated by a function in C and by the solidity of C we have that
h+ ∈ C. In short

h ∈ co(Cb − L1
+) → h+ ∈ C.

59
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Since the map h 7→ h+ is continuous in L1-norm, convergence in L1-norm implies
convergence in probability and C is closed in probability, it follows that

h ∈ K = co(Cb − L1
+) ⊂ L1 → h+ ∈ C

Since f = f+ and f 6∈ C it follows that f 6∈ K. Using the convex separation theorem
in L1 and the canonical duality (L1)∗ = L∞, we obtain g ∈ L∞ such that

E(gh) ≤ 1, ∀h ∈ K and E [gf ] > 1

Since C is nonempty and solid, we have 0 ∈ Cb and thus −L1
+ ⊂ K. Consequently

E [gh] ≤ 1, for all h ∈ −L1
+, and so g ≥ 0 almost surely. Moreover E [gh] ≤ 1, for

all h ∈ Cb and consequently for all h ∈ C (if h ∈ C, then h ∧ n ∈ Cb, for all n ≥ 1,
by solidity of C, and h∧n → h as n →∞). Thus g ∈ C0 and E [gf ] > 1. It follows
that f 6∈ C00.

Theorem A.2 (Bipolar Theorem) Let C ⊂ L0
+ be non-empty. Then the bipolar

C00 is the closed convex solid hull of C in L0
+ (closure in the topology of convergence

in probability)

Proof For subsets A, B ⊂ L0
+ we have A ⊂ B ⇒ B0 ⊂ A0 ⇒ A00 ⊂ B00, by

definition of the polar set. The bipolar C00 is convex, solid and closed and contains
the set C. Thus the closed, convex solid hull C̃ of C satisfies C̃ ⊂ C00. On the other
hand C ⊂ C̃ and so C00 ⊂ (C̃)00 = C̃, where the last equality uses. It follows that

C00 = C̃.
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Asymptotic elasticity and
asymptotic relative risk aversion

Let U : R → R∪{∞} be a utility function satisfying our usual regularity hypothesis
(Assumtpion 1.2). We say that U satisfies AE+∞(U) < 1 if

AE+∞(U) = lim sup
x→∞

xU ′(x)

U(x)
< 1 (A1)

If U is twice differentiable, we say that the asymptotic relative risk aversion is
positive if

ARRA+∞(U) = lim
x→∞

(
−xU ′′(x)

U(x)

)
exists and is strictly positive.

P. Guasoni observed that the two conditions are obviously equivalent if
de l’Hôpital’s formula is applicable (we then suppose in particular that the upper
limit in (2.10) is a limit. Indeed, a formal application of this rule yields

lim
x→∞

xU ′(x)

U(x)
= lim

x→∞

xU ′′(x) + U ′(x)

U ′(x)
= 1− lim

x→∞

(
−xU ′′(x)

U ′(x)

)
(A2)

which readily yields the claimed equivalence. Passing from this formal argument to
a well-defined setting we may formulate the following:

Proposition B.1 Suppose that U , apart from the usual hypotheses, is twice differ-
entiable and that the subsequent limit exists (possibly taking the value +∞).

ARRA+∞(U) = lim
x→∞

(
−xU ′′(x)

U ′(x)

)
(A2a)
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Then the limit

AE+∞(U) = lim
x→∞

xU ′(x)

U(x)
(A2b)

exists too, and AE+∞(U) < 1 iff ARRA+∞(U) > 0.

Proof For x ≥ 1 we may write

xU ′(x) = 1U ′(1) +

∫ x

1

(zU ′(z))′dz = U ′(1) +

∫ x

1

[U ′(z) + zU ′′(z)] dz

We distinguish two cases:

Case 1 U(∞) < ∞ or, equivalently
∫∞

0
U ′(z)dz < ∞.

In this case it follows from the monotonicity of U ′ that limx→∞ xU ′(x) = 0.
Hence, if U(∞) 6= 0 we have:

lim
x→∞

xU ′(x)

U(x)
= 0.

If U(∞) = 0, by hypothesis (A2a) we are entitled to apply de l’Hôpital, and

lim
x→∞

xU ′(x)

U(x)
= lim

x→∞

(
1− xU ′′(x)

U ′(x)

)
Hence we have AE+∞(U) = 1 − ARRA+∞(U). Noting the obvious fact
(Lemma 3.2) that U(∞) = 0 implies that AE+∞(U) ≤ 0 and that
ARRA+∞(U) does not change by adding a constant to U , we also obtain
that U(∞) < ∞ implies AE+∞(U) ≤ 0 and ARRA+∞(U) ≥ 1. This proves
the claim for the case U(∞) < ∞.

Case 2 U(∞) = ∞ or, equivalently
∫∞

1
U ′(z)dz = ∞. Denoting a = ARRA+∞(U) ∈

[0,∞] we then have by (A2a):

lim
x→∞

∫ x

1
zU ′′(z)dz∫ x

1
U ′(z)dz

= lim
x→∞

∫ x

1
zU ′′(z)dz

U(x)
= −a.

Hence:

lim
x→∞

xU ′(x)

U(x)
= lim

x→∞

∫ x

1
(U ′(z) + zU ′′(z)) dz∫ x

1
U ′(z)dz

= 1− a.

Remark B.2 (a) When does the formula

AE+∞(U) = 1− ARRA+∞(U) (A4)
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hold true? We have seen in the above argument that this is the case when either
U(∞) = ∞ or U(∞) = 0. But in the case U(∞) ∈ R \ {0} there is no reason
for this relation to hold true. In fact, AE+∞(U) may change when shifting U(x)
by a constant, while ARRA+∞(U) is not affected. Consider for instance the utility
functions U(x) = −x−α + c for α > 0, for which ARRA+∞(U) = α + 1, while
AE+∞(U) depends on c.

In Case 2, one might try to drop the assumption in (A2a) that limx→∞
xU ′′(x)
U ′(x)

exists and define

ARRA+∞(U) = lim inf
x→∞

(
−xU ′′(x)

U ′(x)

)
but then the assertion of the proposition is not valid any more, as can be seen from
the following observation: Let U be any utility function. To avoid trivialities we
suppose U(∞) > 0. If U is any other utility function such that U(n) = U(n) for
n ∈ N, we have :

AE+∞(U) = AE+∞(U)

Indeed, a little picture reveals that the concavity of U implies that

U ′(n + 1) ≤ U
′
(n) ≤ U ′(n− 1)

and it is easy to see that

lim sup
x→∞
x∈R

xU ′(x)

U(x)
= lim sup

n→∞
n∈N

nU ′(n)

U(n)

Whence:

AE+∞(U) = lim sup
n→∞

nU ′(n + 1)

U(n)
≤ lim sup

n→∞

nU
′
(n)

U(n)
≤

≤ lim sup
n→∞

nU ′(n− 1)

U(n)
≤ AE+∞(U)

Hence modifying U(x) between the integer points U(n), while leaving it monotone,
differentiable, and strictly concave, does not affect AE∞(U). On the other hand, it

is rather obvious that we can do such modifications such that the behavior of U
′′
(x)

oscillates in an arbitrarily wild way between −∞ and 0 (assuming that U is twice
differentiable). Hence replacing the limit in the definition of ARRA+∞(U) in (A2a)
by a lower or an upper limit cannot determine the value of AE∞(U).

We only have the following more modest result, which we stat without proof.

Proposition B.3 If lim infx→∞

(
−xU ′′(x)

U ′(x)

)
= a > 0 then AE+∞(U) < 1 and, in

fact, AE+∞(U) ≤ (1− a)+.

If AE+∞(U) = b < 1, then lim supx→∞

(
−xU ′′(x)

U ′(x)

)
≥ (1− b) ∧ 1 > 0.
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Remark B.4 Let us now pass to the situation at −∞: this case is easier as it
follows from Assumption 1.2 case 2 that limx→∞

xU ′(x)
U(x)

always is of the form −∞
−∞ .

Hence assuming that:

ARRA−∞(U) = lim
x→∞

−xU ′′(x)

U ′(x)
∈ [0,∞]

exists, we may again apply de l’Hôpital’s rule to obtain AE−∞(U) = 1 −
ARRA−∞(U). The other considerations on the non-existence of the limit also carry
over.

Summing up, if we stick to utility functions such that −xU ′′(x)
U ′(x)

is well-defined and
converges, as x tends to +∞ or −∞, the reasonable asymptotic elasticity may
equivalently be described in terms of the asymptotic relative risk aversion.

However, the notion of reasonable asymptotic elasticity also carries over to gen-
eral utility functions and gives in this general class a necessary and sufficient condi-
tion for a good utility maximization theory. It is not possible to formulate analogous
necessary and sufficient conditions in terms of ARRA.
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