
Equivalent martingale measures and ramifica-

tions

1 Introduction

The usual setting of mathematical finance is provided by a d-dimensional
stochastic process S = (St)0≤t≤T based on and adapted to a filtered proba-
bility space (Ω,F , (Ft)0≤t≤T ,P). This process S models the price evolution
of d risky stocks which is random.

To alleviate notation we assume from the very beginning that these prices
are denoted in discounted terms: fix a traded asset, the “bond”, as numéraire
and express stock prices S in units of this bond. This simple and classical
technique allows us to dispense with discount factors in the formulae below
(compare [6, Section 2.1] for more details).

A central topic in mathematical finance is to decide whether there is a
probability measure Q, equivalent to P, such that S is a martingale under Q.
This is the theme of the Fundamental Theorem of Asset Pricing eqf04/002:
Fundamental theorem of asset pricing. Once we know that there exist
equivalent martingale measures, they can be used to determine risk neutral
prices of derivative securities by taking expectations under these measures
eqf04/003: Risk Neutral Pricing, and to replicate, resp. sub- or super-
replicate, the derivative eqf04/005: Replication.

In fact, we were a little sloppy in the previous paragraph (as is usual in
this context) by requiring that S is a martingale. It turns out that some
technical care is needed here, involving the notions of local martingales and,
more generally, of sigma-martingales. This article deals precisely with these
technical variants of the concept of a martingale.

We start by giving precise definitions.

Definition 1. An Rd-valued stochastic process (St)0≤t≤T based on and adapted
to (Ω,F , (Ft)0≤t≤T ,P) is called a
(i) martingale if

E[St|Fu] = Su, 0 ≤ u ≤ t ≤ T.

(ii) local martingale if there exists a sequence (τn)∞n=1 of [0, T ] ∪ {+∞}-
valued stopping times, increasing a.s. to ∞, such that the stopped processes
Sτnt are all martingales, where

Sτnt = St∧τn , 0 ≤ t ≤ T.
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(iii) sigma-martingale if there is an Rd-valued martingale M = (Mt)0≤t≤T
and a predictable M-integrable R+-valued process ϕ such that S = ϕ ·M .

The process ϕ · M is defined as the stochastic integral in the sense of
semi-martingales. The – by now well-understood – underlying theory was
developed notably by the Strasbourg school around P.A. Meyer (see, e.g., [10,
11, 12]):

(ϕ ·M)t =

∫ t

0

ϕudMu, 0 ≤ t ≤ T.

It is not obvious, but true, that a local martingale is a sigma-martingale,
so that (i)⇒ (ii)⇒ (iii) holds true above, while the reverse implications fail
to hold true as we shall see below.

Why is it necessary to introduce these generalizations of the concept of
a martingale? Let us start with a familiar example of a martingale, namely
geometric Brownian motion

Mt = exp[Wt −
t

2
], t ≥ 0, (1)

where the process (Wt)t≥0 is a standard Brownian motion.
Clearly (Mt)t≥0 is a martingale (w.r. to its natural filtration) when t

ranges in [0,∞[. But what happens if we include t = ∞ into the time set?
It is straightforward to verify that

M∞ := lim
t→∞

Mt

exists a.s. and equals
M∞ = 0.

Hence we may well-define the continuous process (Mt)0≤t≤∞; this process
is not a martingale any more as

1 = M0 > E[M∞] = 0.

In this example the breakdown of the martingale property happens at
t = ∞. But it is purely formal to shift this problem to any other point
T ∈]0,∞[, e.g. T = 1. Indeed, letting

M̃t = M
tan(

tπ
2

)
, 0 ≤ t < 1,

M̃1 = M∞ = 0, (2)
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we find a process (M̃t)0≤t≤1, having a.s. continuous paths, which fails to be
a martingale. However, it is intuitively clear that “locally”, i.e. before t
assumes the value 1, the process (M̃t)0≤t≤1 is “something like a martingale”.
The good way to formalize this intuition is to find a “localizing” sequence of
stopping times as in (ii) above. The canonical choice1 is

τn = inf{t ∈ [0, 1] : |M̃t| ≥ n}, (3)

which is a [0, 1] ∪ {∞}-valued stopping time, if we define the infimum over
the empty set to be equal to ∞. It is straightforward to verify that (τn)∞n=1

satisfies the requirements of (ii) above.
In the above example it holds true that (M̃t)0≤t<1 is a martingale, i.e. when

t ranges in [0, 1[. In other words, the problem only arises at t = 1. But there
is a more subtle phenomenon in this context, where the problem not only
appears at one single value of t, but for all t!

The canonical example for this phenomenon is the inverse of the 3-
dimensional Bessel process2 (Rt)0≤t≤1. It may be defined by R0 = 1 and

dRt = R2
t dWt, 0 ≤ t ≤ 1. (4)

It turns out that (4) well-defines a stochastic process with continuous
paths which is a local martingale (define (τn)∞n=1 as in (3)). However, the
function

t→ E[Rt], 0 ≤ t ≤ 1,

is strictly decreasing on the entire interval [0, 1]! Intuitively speaking, this
may be interpreted as (Rt)0≤t≤1 “losing mass in continuous time”. We leave
it to the reader to develop her own intuition for this remarkable phenomenon.
In any case, this example should convince the reader that the concept of local
martingales, involving “localizing” sequences of stopping times, is a useful
and natural notion.

To underline this claim even further, think of a diffusion process (Xt)0≤t≤1

1For continuous local martingales (Mt)t≥0 starting at M0 = 0 the choice of stopping
times via (3) always works, i.e. gives a sequence (τn)∞n=1 satisfying the requirements of (ii)
above. In the case of càdlàg local martingales this is not true any more and one may give
examples of local martingales where (3) does not define a sequence of localizing stopping
times.

2Here is an explanation for this name: let (Bt)0≤t≤1 = (B1
t , B

2
t , B

3
t )0≤t≤1 be an R3-

valued standard Brownian motion starting at B0 = (B1
0 , B

2
0 , B

3
0) = (1, 0, 0). Let Rt =

‖Bt‖−1 where ‖.‖ denotes euclidean norm on R3. Then (Rt)0≤t≤1 satisfies (4), where
(Wt)0≤t≤1 is a one-dimensional Brownian motion adapted to the filtration generated by
the three-dimensional Brownian (Bt)0≤t≤1. We refer to [11] for a beautiful presentation
of the theory of Bessel processes (compare also [5]).
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satisfying the equation

dXt = σ(Xt, t)dWt + µ(Xt, t)dt, 0 ≤ t ≤ 1. (5)

A typical argument used e.g. in the derivation of the Black–Scholes PDE
(compare eqf04/006: The Black Scholes Formula, or [13, Vol. II]), goes
as follows: for the drift term µ(Xt, t) we have µ(Xt, t) ≡ 0 if and only if
(Xt)0≤t≤1 is a martingale. This is a very useful argument! But it is not quite
correct as a glance at (4) reveals where we only obtain a local martingale.
The correct statement is: the process X is a local martingale if and only if
µ(Xt, t) = 0, a.s. with respect to dP⊗ dλ.

2 Local Martingales in Finance

As a concrete example of a local martingale modeling a price process we
consider S̃ = (S̃t)0≤t≤T = (M̃t)0≤t≤1, the time changed geometric Brownian
motion defined in (2). We consider S̃ to be defined on (Ω,F , (Ft)0≤t≤T ,P),
where the filtration (Ft)0≤t≤T is generated by S̃ and F = FT . We conclude
that Q = P is the unique probability measure Q on F which is equivalent to
P and such that S̃ is a local martingale under Q. This quickly follows from
the fact that Q = P is the unique probability measure on F , equivalent to P,
such that the Brownian motion W = (Wt)0≤t<∞ in (1) is a martingale under
Q.

The question arises whether S̃ defines a sound, i.e. arbitrage free model of
a financial market. At first glance things seem suspicious: after all, (S̃t)0≤t≤T ,
is a ridiculous stock: it starts at S̃0 = 1 and ends a.s. at S̃T = 0. Hence buy-
ing a stock S̃ and holding it up to time T = 1 is a very “silly investment”.
M. Harrison and St. Pliska [8] called such an investment a suicide strategy.
But it is not forbidden to be silly!

A much more appealing investment strategy would be to go short in the
stock at time 0, and to hold this short position up to time T , as this strategy
yields a.s. a gain of one Euro. But, unfortunately this is forbidden! To un-
derstand why this is the case, let us recall from eqf04/002: Fundamental
theorem of asset pricing the definition of admissibility: a trading strat-
egy H = (Ht)0≤t≤T for a (general semi-martingale) stock price process S is
defined as a predictable strategy which is S-integrable. By definition, the
stochastic integral

(H · S)t =

∫ t

0

(Hu, dSu), 0 ≤ t ≤ T,

then is well-defined. We call H admissible if there is a constant C > 0 such
that a.s.

(H · S)t ≥ −C, 0 ≤ t ≤ T. (6)
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The finite credit line C rules out doubling strategies and similar schemes
which capitalize on taking higher and higher risks. A typical representant of
such a “kind of doubling strategy” is the strategy of going short in the stock
(S̃t)0≤t≤T , which corresponds to taking Ht ≡ −1, for 0 ≤ t ≤ T .

We now shall convince ourselves that local martingales yield sound, arbitrage-
free models of financial markets. It turns out that it does not matter whether
we start with a true martingale S = (St)0≤t≤T or with a local martingale S
if we are only interested in the admissible stochastic integrals H · S. Indeed,
it was shown by J.P. Ansel and C. Stricker ([1, Corr. 3.5]) that, given a local
martingale S and an admissible integrand H, the stochastic integral H · S
is a local martingale and therefore (using once more the fact that H · S is
bounded from below) a super-martingale. In particular, the process H · S
cannot increase in expectation; but it may very well decrease in expectation
as, e.g., the process S̃ above.

The following characterization of local martingales (see [4, Prop. 2.5] for
more on this issue) is useful in this context.

Proposition 1. For an Rd-valued semi-martingale S the following are
equivalent.

(i) S is a local martingale

(ii) S = ϕ ·M , where M is an Rd-valued martingale, and ϕ is an R+-
valued, M-integrable, predictable, increasing process.

From this proposition and the trivial formula3

H ·M =
H

ϕ
· (ϕ ·M) =

H

ϕ
· S (7)

which holds true for every Rd-valued, predictable, M -integrable process H =
(Ht)0≤t≤T we deduce that the family of processes, which are stochastic inte-
grals on the local martingale S coincides with the family of processes which
are stochastic processes on the martingale M . Also note that H is admissible
for M if and only if H

ϕ
is admissible for S.

The bottom line of formula (7) is that there is no difference between the
stock price process S and M in Proposition 1 if we are only interested in
the admissible stochastic integrals on these processes: these two families of
stochastic integrals coincide.

3It is easy to verify that in Proposition 1 (as well as in Definition 1 (iii) we may assume
w.e.g. that ϕ takes its values in ]0,∞[ (or, equivalently, in [1,∞[). See [4, Prop. 2.5] for
details.
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3 Sigma-Martingales

For continuous stock price processes S or, more generally, for locally
bounded processes S, the concept of local martingales is sufficiently general
to characterize those models which satisfy the condition of nor free lunch with
vanishing risk (see eqf04/002: Fundamental theorem of asset pricing).

However, if we pass to processes S which are not locally bounded any
more, we still need one more step of generalization. The key concept for
doing so was introduced by C. Chou [2] and M. Émery [7] under the name
of “semi-martingale de la classe (

∑
m)”. In [4], F. Delbaen and the present

author took the liberty of calling these processes sigma-martingales S. The
reason for this name is that their relation to martingales is analogous to
the relation between sigma-finite measures and finite measures, as seen from
Definition 1 above. Also note the (only) difference between Definition 1
(iii) of a sigma-martingale, and the characterization of a local martingale as
given in Proposition 1: in the latter the predictable, R+-valued process ϕ is
supposed to be increasing while there is no such restriction in the former one.

Here is the illuminating example, due to M. Émery [7] (compare [4, Ex.
2.2]), of the arche-typical sigma-martingale which fails to be a local martin-
gale.

Example 1. We start with an exponentially distributed random vari-
able τ and an independent Bernoulli random variable ε, i.e. P[ε = 1] =
P[ε = −1] = 1

2
. These random variables are based on some probability space

(Ω,F ,P).
Define the process M = (Mt)t≥0 by

Mt =

{
0, for 0 ≤ t ≤ τ,
ε, for τ ≤ t.

The verbal description goes like this: the process M remains at zero until
time τ ; then a coin is flipped, independently of τ , and the process M continues
at the level +1 or −1, according to the result of this coin flip.

Denoting by (Ft)t≥0 the filtration generated by (Mt)t≥0, it is rather obvious
that (Mt)t≥0 is a martingale in this filtration (Ft)t≥0. To keep in line with
the above notation, we only consider the finite horizon process (Mt)0≤t≤T , but
the example could as well be presented for the infinite horizon.

Let ϕ = (ϕt)0≤t≤1 be the deterministic process

ϕt = t−1, 0 ≤ t ≤ 1,
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and define the stochastic integral S = ϕ ·M , for which we get

St =

{
0, for 0 ≤ t ≤ τ,
τ−1ε, for τ ≤ t.

The process S = (St)0≤t≤1 is a well-defined stochastic integral (in the
point wise Stieltjes sense). The verbal description of S goes as follows: again
S remains at 0 until time τ and then, depending on the sign of ε, it jumps
to +τ−1 or −τ−1.

Is the process S a martingale? Morally speaking, one might think yes, as
it has the same odds of jumping up or down4. But this intuition goes wrong:
indeed, the notion of martingale is based on some (conditional) expectations
to be zero. When we do the calculations in the present example we end up
with expressions of the form ∞−∞, which creates a problem. Indeed, we
have

E[|St|] =∞, for 0 < t ≤ 1,

as is easily seen from
∫ t

0
u−1du = ∞, for t > 0. In fact, it is not hard to

show [7] that, for every (Ft)0≤t≤1 – stopping time σ : Ω → [0, 1], such that
P[σ > 0] > 0, we have

E[|Sσ|] =∞.

It follows that S even fails to be a local martingale. But, of course, S is a
sigma-martingale by its very construction.

The message of the above example is that the notion of sigma-martingale
is taylor-made to save the intuition that – from a “moral point of view” –
the above process S is “something like a martingale”.

Let’s turn from moral considerations to finance again: the question arises
whether a process S = (St)0≤t≤T which is a sigma-martingale under some
measure Q equivalent to P, well-defines a sound, i.e. arbitrage-free, model of
a financial market. The answer is analogous to the case of a local martin-
gale, namely a resounding yes. If S = ϕ ·M , for some R+-valued predictable
process ϕ, then again the “trivial formula” (7) above holds true. Whence
again the families of admissible stochastic integrals on the processes S and
M coincide. If these are the only relevant objects – as is the case for the
classical approach to no arbitrage theory as proposed by M. Harrison and
S. Pliska [8] – the processes S and M work equally well. In particular the
Ansel–Stricker Theorem carries over to sigma-martingales (see [4, Th. 5.5]

4A precise statement is that the processes S and −S have the same law, which obviously
is the case.
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for a somewhat stronger version of this result).

It is not hard to show that a locally bounded process which is a sigma-
martingale is already a local martingale ([4, Prop. 2.5 and 2.6]). Émery’s
example shows that this is not the case any more if we drop the local bound-
edness assumption. From a financial point of view, however, the question of
interest arises in a slightly different version. Is there an example of a process
S = (St)0≤t≤T which is a sigma-martingale, say under P, but such that it
fails to be a local martingale under any probability measure Q equivalent to
P?

Émery’s original example does not provide a counter-example to this ques-
tion: in this example it is not hard to pass from P to Q such that S even
becomes a Q-martingale. However, in [4, Ex. 2.3] a variant of Émery’s exam-
ple has been constructed, which is a process S taking values in R2 answering
the above question negatively. It seems worth mentioning that — to the best
of the authors knowledge — it is unknown whether there also is a counterex-
ample of a process S, taking values only in R, to this question.

4 Separating measures

We have seen in the preceding sections that, for a process S = (St)0≤t≤T
which is a sigma-martingale under some probability measure Q and for each
admissible integrand H, we have the inequality

EQ[(H · S)T ] ≤ 0. (8)

Indeed, the theorem of Ansel–Stricker [1, Corr. 3.5] and its extension to
sigma-martingales [4, Th. 5.5] imply that H · S is a local martingale and,
using again the boundedness from below, the process H ·S is a supermartin-
gale.

The notion of a separating measure introduced by Y. Kabanov in [9], takes
this inequality (8) as defining property. To formalize this idea, we assume
that S is an Rd-valued semi-martingale on some filtered probability space
(Ω,F , (Ft)0≤t≤T ,P). We say that a measure Q, equivalent to P, is a separat-
ing measure for S if, for all admissible, predictable S-integrable integrands
H, inequality (8) holds true.

If S is bounded, then it is straightforward to verify that the validity of
inequality (8), for all admissible H, is tantamount to S being a martingale.
It follows that, if S is locally bounded, then the validity of inequality (8),
for all admissible H, is tantamount to S being a local martingale. Hence
we don’t find anything new by using the notion of separating measure in the
context of locally bounded semi-martingales S. But for semi-martingales S
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which are not locally bounded we do find something new: as observed above,
if S is a sigma-martingale under Q then (8) holds true, for all admissible
H. But the converse does not hold true. The difference is illustrated by
the subsequent easy one period example. To stay in line with the present
notation we write it as an example in continuous time.

Example 2. Let X be an R-valued random variable, defined on some
probability space (Ω,F ,P), which is unbounded from above and from below.
For example, we may choose X to be normally distributed.
The process S = (St)0≤t≤1 is defined as

St =

{
0 , 0 ≤ t < 1,
X, t = 1.

Defining (Ft)0≤t≤1 as the filtration generated by S = (St)0≤t≤1, we find
that the only (Ft)0≤t≤1-predictable processes are the constant processes H =
(Ht)0≤t≤1. Among those, the only S-admissible predictable process is H = 0.
Indeed, if H = const 6= 0, the process H · S is not bounded from below in the
sense of (6).

The condition (8) therefore is trivially satisfied, for each probability mea-
sure Q equivalent to P. On the other hand, S is a martingale (or, equiva-
lently, a local or a sigma-martingale) under Q iff

EQ[X] = EQ[S1] = 0.

Hence we see that, in this easy example, the class of separating measures
Q is strictly bigger than the class of probability measures Q, equivalent to P,
under which S is a sigma-martingale.

Where does the name “separating measure” come from? This concept
arises naturally as an intermediary step in the proof of the eqf04/002: Fun-
damental theorem of asset pricing (compare [9] for a careful analysis of
the arguments in [3] and [4] and, in particular, for the introduction of the
name “separating measure”).

In the context of this theorem, after surmounting some difficulties, an
application of the Hahn–Banach theorem plus an exhaustion argument due
to J. Yan ([15], compare also [14]) provides a σ∗-continuous, linear functional
F : L∞(Ω,F ,P)→ R which strictly separates the set of random variables of
the form5

(H · S)T =

∫ T

0

(Ht, dSt),

5To be precise, we have to consider the random variables (H · S)T ∧ C, where C runs
through R+, to make sure that these random variables are in L∞(Ω,F ,P)
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where H runs through the admissible integrands, from L∞+ (Ω,F ,P) \ {0},
i.e. the positive orthant with the origin 0 deleted. Normalizing the functional
F by F (1) = 1 this translates into the fact that F is of the form

F (g) = EQ[g], g ∈ L∞(Ω,F ,P),

where Q is a separating measure.
If the process S is bounded (resp. locally bounded), it immediately fol-

lows that S is a martingale (resp. a local martingale) under this separating
measure Q which concludes the proof of the fundamental theorem of asset
pricing (see [3]).

If, however, S fails to be locally bounded then we cannot conclude that S
is “some kind of martingale” under the separating measure Q, as is illustrated
by Example 2 above. Some further work is needed – which was carried out
in [4] – to pass from the separating measure Q to a probability measure Q̃,
which is equivalent to P and under which S is a sigma-martingale measure.
It turns out that, in the setting of the Fundamental Theorem of Asset Pricing
[4], the latter set is dense w.r. to ‖ · ‖1 in the set of separating measures for
S. In particular this set is non-empty, provided we have found a separating
measure. This argument concludes the proof of the fundamental theorem of
asset pricing also in the case of a general, Rd-valued semi-martingale S.

Walter Schachermayer

References

[1] Ansel, J.P., Stricker, C. (1994) Couverture des actifs contingents et prix
maximum. Annales de l’Institut Henri Poincaré – Probabilités et Statis-
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