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ABSTRACT. The paper deals with the following question arising naturally in Mathematical Finance: “What
is the good notion of the space of attainable claims in LP(P)7"

Fix 1 < p € oo and a semi-martingale S = (St);er, which is locally in LP(P). It is natural to define
the space K of simple p-attainable claims as random variables (H - §)c where H are simple predictable
integrands satisfying suitable integrability conditions insuring that (H - §)ee € LP(P). Then one may define
the closure Ky of K in LP(P) and ask whether the elements of K may be written as (H - S) for appropriate
(not necessarily simple) predictable integrands and study the duality relation between the space K and the
equivalent martingale measures (§ for S with %% € L9(Q), where ;7 + % =1,

In the case of continuous processes S, the situation turns out to be nice and K consists precisely of the random
variables (H - S)o such that H is predictable and H - S is a uniformly integrable martingale with respect to
each equivalent martingale measure Q) with % € Li(P).

In the case of processes with jumps the situation is more intriguing: it turns out that K should be replaced by
the space Dp which is the intersection of the L? closures of K — Li (P) and K+ Li (P). This “sandwich-like”
definition of Dy, may be interpreted naturally in economic terms and this notion allows to prove a general
theorem analogous to the theorem for the continuous case.

We also give examples which are intended to convince the reader that the concepts defined in the paper are
indeed the natural notions for attainable claims with p’th moments.

Sommaire

Le présent papier traite la question que l'on rencontre de maniére naturelle dans la finance mathématique:
"Quels sont les biens contingents atteignables dans LP()?”

Prenons 1 < p < co et une semi-martingale S = (St):er, Jocalement dans LP(P). Il est naturel de definir
I'espace K des biens contingents p-atteignables simples, comme |'espace des variables aléatoires (H - S)e ol
H est un processus simple prévisible, vérifiant une condition d’intégrabilité, assurant que (H - S)oo € LP(P).
On peut définir la fermeture K de K dans LP(F) et se demander si les eléments de K peuvent étre écrits
comme (H - §)c pour un processus prévisible, pas nécessairement simple, et on peut étudier la dualité entre
Ky et 'ensemble des mesures (J qui sont des mesures de martingale pour S, avec %g € L(Q), on ;7 + % =1

Dans le cas d'un processus continu 5, la situation est agréable et K, est précisément 1'espace des variables
aléatoires (H - 5)o telles que H est prévisible et H - S est une martingale équi-intégrable par rapport a toute
mesure equivalente de martingale ) avec % € Li(P).

Dans le cas d'un processus avec sauts la situation est plus intrignante: l'espace K, doit étre remplacée par
l'espace Dp, qui est l'intersection des fermetures dans LP de K — Li (P) et K7 + Li (P). Cette situation
"sandwich” de D, peut étre interpretée de fagon naturelle en termes économiques et la notion permet de
démontrer un théoréme analogue au cas d'un processus continu.

Nous donnons aussi des exemples qui doivent convaincre le lecteur que ces notions sont en effet les bonnes
notions de biens contingents atteignables avec moment d'ordre p.
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1. INTRODUCTION

We consider an R valued cidlag semi-martingale (St)iem,- As usual in Mathematical Finance, S models
the price process of d stocks and economic agents are allowed to trade on these stocks. An easy way to
formalize this concept is the notion of simple integrand (we refer to [P 90] for the theory of stochastic
integration), which is a linear combination of processes of the form

H =[xy, 1)

where 77 < T, are finite stopping times and the R%valued random variable [ is Fp,-measurable. We
then may form the stochastic integral

(H 'S)t =f- (STz.f\t = ST,M)

and the random variable

(H-8)oo = f (S, — S1y)-

The interpretation is that H defines the trading strategy of buying at time T) the amount of f(w) =
(fY(w), -, f¥(w)) units of the stocks S = (S?,---,5%) and selling it at time 7. At time t € [0, 00] the
random variable (H - S);(w) describes the cumulated gain (or loss) up to time ¢ and (H - S) (w) the final
result, if an agent follows the trading strategy H. We call the linear space spanned by the above random
variables (H - S)s the space of claims attainable by simple integrands or by simple trading strategies.

The concept of simple trading strategies does not require any sophisticated concepts from the theory of
stochastic integration and allows the obvious economic interpretation given above. But, of course, the
natural question arises, what happens if “one passes to the limit”. Recall that even in the most basic
example of Mathematical Finance, the replicating portfolio for a european call-option in the Black-Scholes
economy, one has to go beyond the concept of simple integrands and allow more general predictable
processes H as trading strategies.

There is a well-established theory of stochastic integration for a semi-martingale S and there is a precise
concept of S-integrable predictable process H, so that the semi-martingale

t
(H-S); = / HydS,
0

is well defined (see e.g., [P 90]). But this notion is too wide to be useful in Mathematical Finance.
For example, if S is standard Brownian motion with its natural filtration (F;)ier,, R. Dudley [D 77]
has shown that any F..-measurable random variable f may be represented as f = (H - S) for some
S-integrable predictable process H. Hence some additional admisstbility condition is needed to define a
concept useful in Mathematical Finance.

One possible way, which goes back to Harrison-Pliska [HP 81], is to require in addition to the S-
integrability of H that the process (H - S) is uniformly bounded from below (compare [DS 94]).

This notion of admissibility has an obvious interpretation as a budget constraint of the economic agents,
avoids paradoxes coming from doubling strategies (see [HP 81]) and allows a satisfactory duality relation
between admissible attainable claims and P-absolutely continuous local martingale measures for S (see
[DS 94]).

In the present paper we adopt a different point of view by using approximation with respect to the norm
of LP(IP). This approach goes back — at least — to Harrison-Kreps ([HK 79], [K 81]) and arises naturally
— at least for p = 2 — in the context of optimization (compare [St 90], [Schw 93], [MS 94b]). Fix
p € [1,00]; we want to investigate the question which S-integrable stochastic integrals (H - S) make sense
in the context of the space L?(P) and what the resulting subspace K, of L?(I?) spanned by the random
variables (H - S)e 1s.
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An aspect of central importance will be the duality relation between the space K, of attainable claims
and the martingale measures @ with %‘,@ € LI(IP). This line or research is stimulated by ([K 81], [KLSX
91], [KQ 92], [Ja 92], [AS 94], [DS 94]).

If S is a martingale under [P it is clear what the natural notions are: If 1 < p < co then we are led to
consider those S-integrable predictable processes H such that (H - S); remains bounded in L? () and, if
p =1, such that (H - S); is uniformly integrable. A celebrated result of M. Yor ([Y 78], for the vector-
valued case see [J 79]), states that the resulting space K formed by the random variables (H - S), where
H runs through the predictable processes such that (H - S) is uniformly integrable, is closed in L' (). It
follows that K, = K; N LP(P) is closed in LP(IP); in the case p = 2 this classical (and very easy) result
was observed by Kunita-Watanabe ([KW 67]).

But the problem at hand is more delicate if S is only assumed to be a semi-martingale under P and —
as usual in Mathematical Finance — a martingale only under some measure (Q equivalent to . In this
case one may proceed as follows: one calls a predictable S-integrable process admissible if (H -S) remains
bounded in the space S?(IP) of semi-martingales (with a uniform integrability condition added in the case
p = 1) and define K, as the space formed by the respective random variables (H - S)o,. Then the crucial
question arises whether or not the space K, is closed in L?(P) (compare [Schw 93], [MS 94a], [DMSSS
94]). This will not be the case, in general, and can be shown only under rather strong requirements on the
process S. Loosely speaking, one only gets nice results if S is not too far from being a (local) martingale
under P.

In the present paper we adopt a more general notion of admissible stochastic integrals which is designed
to insure under very weak assumptions on S (the existence of an equivalent local martingale measure @
for S with % € LY(PP)) that K, (as well as the space D, to be defined below) are closed in LP(IP). To
define these notions we have to be more formal and fix precisely the setting.

Throughout the paper p € [1,00] will be arbitrary (but fixed) and ¢ will denote the conjugate exponent,
;;+ % = 1. On LP(P) we shall consider the norm topology, if 1 < p < oo, and the weak-star topology
o(L®,LY), if p = co. S will be an R*-valued cadlag semi-martingale based on (2, F, (F;):er, ,P) which
is locally in L?(I?) in the following sense: There exists a sequence (U, )%, of localizing stopping times
increasing to infinity such that, for each n € N, the family {S7 : T stopping time, 7" < U,, is bounded
in L?(P) (and uniformly integrable in the case p = 1). In the case p = 1 this notion is known in the
literature under the name ”S is locally of class D”.

A predictable R%valued process H which is a linear combination of processes of the form

H= "FX]TI ,T2]

where T7 < T are finite stopping times dominated by some U, and where f is in L(Q, Frp,,[P) will be
called a simple p-admissible integrand for S. We denote by K the subspace of L?(P)

K, = {(H - §)eo : H-simple and p-admissible}.

Similarly as in [DS 94] we let

My (P)={Q~P: % € LY(P),S is a Q-local martingale}

and
an 40 ‘ ‘
M(P)={Q<P: i € L(P),S is a Q-local martingale}

denote the set of P-equivalent (resp. [P-absolutely continuous) probability measures on F having ¢’th
moments and such that S is a local martingale under (). Throughout the paper we shall make the
assumption Mg(IP) # 0, which is natural in our context (compare [HK 79], [St 90], [DS 94]).
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One easily deduces from Holder’s inequality that our definition of simple p-admissible integrands was
designed in such a way that

(1) Eo(f) = 0 for f € K3,Q € M,(P).

In the easy case when (2 is finite it is a simple matter of linear algebra to check that (1) defines a complete
duality relation between K* and M(IP) (the subscripts p and ¢ being superfluous in this case): Under our
standing assumption M®(IP) # 0 the random variable f (resp. the probability measure Q) is in K* (resp.
in M(P)) iff Eg(f) = 0 for all Q € M(P) (resp. for all f € K*) (compare [HP 81], [DS 94]). But, of
course, we cannot expect that this duality relation carries over in a naive way to the case when € is not
finite any more, the most obvious obstacle being that K, will not necessarily be closed in LP(P). This
leads us to the central concepts of this paper.

1.1 Notation. In the above setting let

K,,:E
and DP=K§—LiﬂK;+LP,

where the bar denotes the closure with respect to the norm topology of L?(IP), for 1 < p < oo, and with
respect to the a*-topology, for p = co.

The interpretation of the elements in K, is obvious: a random variable f € L? is in K, if it can be
approximated by random variables (H - S)o where H is simple and p-admissible. The space D, (which
clearly contains Kj) has a more intriguing interpretation: a random variable f € L? is in D, if it may
be approximately “sandwiched” between elements of K, L.e. if there are simple p-admissible strategies
H* and H~ such that (Ht - S)e — f)- as well as ((H™ - S)oo — f)+ both are small with respect to the
topology on LP(P). An economic agent will wish to approximate f by either (Ht - S)s or (H™ - S)e
depending on whether she wants to buy or sell the contingent claim modelled by the random variable f.
Although the definition of D, might seem weird at first glance, a moment’s reflection reveals that it is
quite natural from an economic point of view.

Theorem 1.2 stated below, which is one of the main results of this paper, shows that the notion of D,
is such that there is a satisfactory duality between D, and M,(P) and that the elements of D, may be
written as (H - S)s for a precisely defined class of integrands H.

1.2 Theorem. Let 1 < p < oo, q its conjugate exponent, S a semi-martingale locally in L? (IP) such that
M(P) # 0, and f € LP(IP). The following assertions are equivalent:
(i)f € Dyp.
(ii)There is an S-integrable predictable process H such that, for each Q € M;(]P), the process (H - S) is a
uniformly integrable Q-martingale converging to f in the norm of L'(Q).
(i) There is an S-integrable predictable process H such that, for each Q € M (P), the process (H - S) is a
uniformly integrable Q-martingale converging to f in the norm of L'(Q).
(i1i)Eq(f) = 0 for each Q@ € MY(P).
(iii")Eg(f) = 0 for each Q € Mq([P).

Of course, the question arises, whether the concept of “sandwich-able” contingent claims is vacuous in
the sense that we always have K, = D,. An example (for the case p = 2) given in section 3 below,
shows that this is not always the case, i.e., there are situations where D, strictly contains K. From
the economic point of view this leads to an interesting (and paradoxical) interpretation: in example 3.1
there is a contingent claim fo € L%(P) such that, for every simple 2-admissible integrand H we have
I(H - S)oo — foll2(ey > 1 but, for € > 0, there are simple 2-admissible integrands H+ and H~ such that
|((H*-S)— fo)-llz2r) < € and ||((H™ - S) = fo)+||L2(r) < €. Hence fo may or may not be approximated
in the L2-sense by simple 2-admissible integrands depending on whether agents are allowed to “throw
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away money” or not. Note that this phenomenon occurs although the process S does not permit any
arbitrage opportunities (remember: we assumed M¢(IP) # 0).

On the other hand, in section 2 we shall show that the above phenomenon can only occur if S has jumps,
i.e., for continuous processes S we always have that K, = D,.

The paper is organized in the following way: In section 2 we proof theorem 1.2 and the anounced result
on continuous processes. In section 3 we construct two counter-examples.

2. RESULTS AND PROOFS
We now pass to the proof of the Theorem 1.2 stated in the introduction above.

Proof of Theorem 1.2. (i) = (iii’): For Q € My(P) we have that Q takes values < 0 on K3 — L% (P) and
values > 0 on K; + Li(IP), hence (@ vanishes on D,.

(iii) <> (iii") As (iii") = (iii) is trivial we have to show that (iii) = (iii’). Suppose to the contrary that there
is f € LP(P) such that Eg(f) = 0 for all Q@ € M (P) but such that there is Qo € M,(IP) with Eg,(f) # 0.
Fix Q € M¢(P) (remember: M¢(P) # 0) and note that 3(Qo + Q1) € M¢(P) and E1Qo+an)(f) #0, 2

contradiction.

(iii") = (i): If f ¢ K3 — L (P) then the Hahn-Banach theorem provides us with an element g of L} (IP)
vanishing on Ky —so that, after normalisation, it is the density of a non-negative probability measure 12

in M,(P) - and such that Ep(fg) = Er(f) > 0.

The case f ¢ K3 + L% (P) is similar.

(i) = (ii"): Fix f € D, and Q € Mg(P); first note that the identity mapping considered as an operator
from L?(P) to L'(Q) is well defined and continuous. Hence we have that

LY@
fEK:+LL(Q)

which means that there is a sequence (fu)3%; = ((Hn - S)eo )z in K, such that
lim Eq(f - fu)s =0.

But from the martingale property and (iii) — which we have already proved to being equivalent to (i) -
we get for each n € N

Eq(fn) = Eo(f) =0,
which implies that

Jim Eo(lf — fal) =0,
i.e., fisin the L'(Q)-closure of K.

The rest of the proof follows an argument of C. Stricker ([St 90], rem. I11.2): We may identify f - as well
as each f, — with a uniformly integrable martingale (f;)icmr, by letting f; = Eg(f|F:). We now are in
the position to apply the theorem of M. Yor ([Y 78], cor. 2.5.2, for the vector-valued version see [J 79])
— to exhibit a predictable integrand H with the desired properties with respect to Q.

We still have to show that H also has the desired properties with respect to each R € M, (IP). We have
to show that (H - S); = Eg[f|F:] for each t € Ry, which will readily show that the R-almost surely
defined stochastic integral H - S is indeed a R-uniformly integrable martingale. As R € M () we have
that each (Hy, - S) is an R-uniformly integrable martingale so that (H, - S); = E[(H, - S)co|Fi]. By the
same argument as above ((Hy -S)e )%, converges to f in L'(R) and therefore ((H, -S):)3, is a Cauchy
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sequence in L'(R) that converges to (H -S); in L'(Q) and therefore also to (H -S), in L*(R). This shows
that (H - S) is indeed a R-uniformly integrable martingale converging to f in L'(R) thus finishing the
proof of the implication (i)= (ii’).

(ii") = (ii) is trivial and

(ii) = (iii) is obvious.
q.e.d.

2.2 Remark. (a) In the case 1 < p < co we can also formulate the equivalent characterisation

(ii”) There is an S-integrable predictable process H such that, for each Q € M (PP) (or, equivalently, for
each Q € M, (1)), the process (H - S); is a Q-martingale converging to f in the norm of H'(Q).

It suffices to remark that the identity mapping from LP(IP) to L}(Q) is in fact a continuous operator into

HY(Q).
Indeed, if f € L?(P),(f:)ter; = (E[f|Fi])ter, is the associated martingale and f* = .§up|f¢| is the max-

imal function, there is a constant Cp, such that ||f*[|, < Cpl|f||, and therefore ||f||1 gy < ¢llf*||lLr @) <
cColl fllp-

(b) Note that in the theorem above we did not assert that the process (H - S): converges to f in L?(PP).
There is simply no reason for this assertion to hold if 1 < p < oo: it is easy to construct examples of
(continuous) processes, satisfying the assumptions of the theorem and such that (H -S); does not converge
to fin LP(IP).

(c) Questions leading to more demanding counter-examples are the following: Can one replace in (i)
above D, by K, which seems at first glance a much more natural object than D,? Or: Can one replace
the requirement “for each Q € MZ(IP)” in (ii) by the requirement “for some Q € Mg(P)”?

We shall see in section 3 below that the question to both answers is no, in general. However, we shall
presently show that the answer to the first question is yes for the case of continuous processes.

2.2 Theorem. Suppose that S = (Si)ier, Is a continuous process, let 1 < p,q < o0, %—{- % =1 and
suppose that Mg () # 0.

Then K, = D, .

Proof. Suppose first that 1 < p < co. Let f € D,; by theorem 1.2 there is an S-integrable predictable
process H such that ((H - S)f)tefq. is a uniformly integrable martingale with respect to each Q € M(P)
and such that almost surely

o0

o2 of simple p-admissible

The definition of D, implies the existence of sequences (H+™)3%, and (H ")
integrands such that, for

frh = (HY-S)e and [ = (H" - S)eo
we have that ((f — ft™)4)%%, and ((f — f~™)-)%%, tend to zero in LP(P). By the argument used in
the proof of theorem 1.2 we deduce that, in fact, (f — f+™")3%, and (f — f~"™)2%, tend to zero in L}(Q),
for each Q € M{(P). It follows from the martingale property that, more generally, for each Q € M(PP)

and each (not necessarily finite) stopping time 7', we have

() lim (= H*™) - S)rllzig =0 and  lim |I((H = H™") - S)rllexg) =0

n—+00
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We have to show that, for € > 0, there is a simple p-admissible integrand H* such that

[I1f = (H® - S)oollrey < €

For C € Ry let

Te = inf{t: |(H - S):| > C},
so that

Clim P{Tc < o0} = 0.
Let 6 > 0 to be specified below and find C' = C(68) > 1 such that

P{T¢c < oo} < 8.

Some warning seems in order here: There is no reason that (H - S)y,. converges to (H - S)u, as C'— o0
with respect to the norm of L?(PP) (compare, e.g., example 3.1 below). We have to be more careful and
to use the continuity of S in a nontrivial way.

Let

h=(H-S)r.
and define, for n € N

ht" = (HY".S)p, and A™"=(H™":S)re.
We deduce from (1) that (h*7)2%, and (h=")5%,, converge to h in L'(Q) and therefore in measure. For

n=1?

n > 0, again to be specified below, we therefore have that, for n = n(n) sufficiently big,
P{lh—h*"|>1}<n and P{h—h™"|>1}<n.

Fix n such that the above inequalities hold true and define the Fr.-measurable sets A* and A~ by

At = {Tc <00} {h=—-C}n{lh—h+"| <1} and
A~ ={Tc < 0} {h=+C}n{lh—h~"| <1},

so that A* and A~ are disjoint subsets of {T¢ < 0o} covering this set up to a set B = {T¢ < oo} \ (AT U
A7) of P-measure at most P(B) < 27.

Define the predictable integrand H

8= Hxjo,re] + HY ™ Xire ool Xa+
+ HW’“X]TC,DQ[ XA- )

and define the stopping time T as the first moment after T when (H - S); = 0. We want to show that

(2) If = Fllzecey <€
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if 6 =6(¢) > 0 and n = n(C(é),€) > 0 are sufficiently small, where
J=(i-S).

As

(3) If = fllerey < I(F = Hxatllereey + I = Hxa-llee@y + 1(f = Hxalls e

it will suffice to show that each of the three terms on the right hand side is less than £/3. As regards the
last one note that

fxsllere<e/6  and  ||fxsllose < C(2n)7 < /6

if n = n(C(6),€) is small enough.

As regards the first two terms in (3) we only estimate the first one (the second being analogous): we split
the set AT into At N{T < oo} and A* N {T' = oo}. For the former set we may estimate

I(f = Fxa+air<cotllee@) = Ifxa+nir<oo} ey < If XA+ Lo,

which is smaller than /6 if § = 6(g) > 0 is sufficiently small as f € L?(I?). For the second set we may
estimate

e~ f)XA+n{T=00} [|zece)

<A+ 1f = FH"Dxarair=co}llze(®)

<A+ (f = F5) ) xa+nir=co}llzee) + (1 + (f = F5™) )X a+a{T =00} |l Lr @)
<L+ (F = FP™)e)xatnr=co}llLee) + 12 + f-)xa+n{T=c0} l|L7(®)-

In the last line we have used the fact f*" is less than or equal to 1 on {T" = co}. If we choose § = é(¢) > 0
small enough and n = n(e,n) big enough the above expression is smaller than /6.

Summing up we have shown (2): given ¢ > 0 choose § = é(¢) > 0, then C' = C(8) > 0, n = n(C,e) > 0
and finally n = n(e,n) € Nyg. However, we are not yet finished, as H is a simple p-admissible integrand
only after the stopping time Tz. But it is standard to approximate (H - S)r. by the stochastic integral
of a simple p-admissible integrand H supported by [0,7¢] such that |(H - S);| is bounded by C and

(A - S)ze = (H - S)zellLs(e) < €
For the convenience of the reader we isolate this argument in the subsequent lemma 1.3.

Modifying H on [0,7¢] in the indicated way we obtain the desired simple integrand H* for which

If = (H - S)eollLr(r) < 2¢,
thus finishing the proof.

The case p = oo is easy: simply note that, for Q@ € M${(P), (L*®(P),o(L>(P), L'(P))), may be identified
with (L*°(Q),e(L*(Q), L'(Q)))-
q.e.d.



ATTAINABLE CLAIMS WITH P'TH MOMENTS 9

2.3 Lemma. Let (Si)icr, be a continuous local martingale with respect to a probability measure Q
and H a predictable integrand such that H - S is bounded by 1 in absolute value.

Then there exists a sequence (H™)3., of co-admissible simple integrand S such that H™ - S is bounded
by 1 in absolute value, for each n € N, and such that (H" - S)., converges almost surely to (H - S)wo

Proof. By the wvery construction of the stochastic integral there is a sequence
(H™)22, of simple integrands such that (H™ - S)s converges to (H - S)s in the norm of L2(Q). As
S is locally bounded one easily verifies that we may assume (by stopping) that the integrands H"
are oco-admissible (see the definition in the introduction). By Doob’s inequality the maximal functions
((H — H™) - 8)%, tends to zero in L*(Q) and therefore in measure. By passing to a subsequence we may
suppose that ((H — H,) - S)%, is less than n~! on a set of Q-measure bigger than 1 — 2-". Define the
stopping times 7, = inf{t : [(f{n -S)e| > 1+ n~1} and the integrands

H" = Haxqor,-

14+n-1

Thﬁ sequence (H" i sa.t.isﬁes the requirement Of t.he lemma.
q n=1
q.e.d.

3. Two COUNTEREXAMPLES
This section is devoted to the construction of two counter-examples.

3.1 Example. We construct a uniformly bounded discrete adapted stochastic process S = (S¢)i2,
defined on (Q, F, (F)2,,P) with the following properties.

(1) There exists an equivalent martingale measure () for S with density function —f}% € L=(Q,F,P).
(2) Ky is strictly contained in Dj.

Construction of Example 3.1. We work on @ = N. Denote, for t € Ny,

Al = {3t+1},
Al = {3t + 2},
AL = {3t 43},
B'={3t+1,3t+2,...} = [ J(4]u4ju 43),

s>t
C'={3t+2,3t+3,...} =B*\ AL.

In order to keep track of the right order of magnitude of the sequences constructed below we shall use
the following notation: For sequences (a:)f2, and (b,)52, of positive numbers we write a; & b; if there
are constants ¢, C' > 0 such that ca; < b; < Ca, for all ¢ sufficiently big.

F will denote the sigma-algebra of all subsets of 2 and we shall define measures P and @ on F: let
(formally) P(A7") = —1 and define recursively, for ¢t > 0,

P(AY) =271 -2~ D)p(A-l) =2 (‘“)H — 2= (2s=1)y 9=t

]P’(Aé) = ]F’(Ag) = 2—[2t+2)]p(A;) — 9—(3t+3) H —9—(2s- 1) 5 2_.3;



10 F. DELBAEN AND W. SCHACHERMAYER

and (formally) Q(A;') = 4 and, for ¢ > 0,

Q(4}) = 27°Q(4i™) (0 Y 07
QA = 2-¢+DQ(aY) = 27860 gt
@(A:t?,) — (1 - 2—2 = 2—-(!-1-2))@(‘4:): (1 — 2—2 = 2—(t+2))2—(3t+1) ~ ‘2—3t'
Let us try to explain the idea behind this definition: we start with letting P(AY) = Q(A?) = 27! so that
P(C°) = Q(C°) = 2~1. For each t € Ny the set C* is broken into
Cr = AL w AL u Ay ar,
The mass of C* is divided amongst these 4 sets such that
(1) PAM) =P(C*)  and QAT =Q(C').

In the case of IP the mass of C* is distributed among the 4 sets above with the weights {27(2t+2) 2-(2t42) 9-1(]_
9= (2t+1)) 9-1(1—2-(2+1)}) and in the case of Q with the weights {2-(+2) (1-2-2-2-(+2)) 9-3 9-3}

Clearly the measures [P and () are equivalent and %g is uniformly bounded.

Now we define a sequence (f;)72, of functions on Q by

1, on A},
ft = _1: on Ct)

0, elsewhere.
In view of (1) we have
) Ee(f:) = Eg(f:) = 0.
Let, for t € Ny,

o0
a, =2 H (1~ 2-(25—1}) ~ 2
s=t+1

and define the function f on Q by

f= Z at ft.
t=0

As for each w € Q the values fi(w) are eventually zero the above sum converges everywhere on Q. It is
elementary to calculate explicitly the values of f:

{ e on A},
=
—b; on AL U A},

where

t t oo
by = Zas = Zﬂ(?s H (1 —27(™=1)) &~ 2 and, more precisely, :!Ll'gla b2t =2,
s=0 s= r=s+1

o =1
c=a—b_1=2" [[ 1-27®"D)-%"2 [] 1-27"Y) ~ 1

s=t+1 s=0 r=s+1
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Note that f € L?(P) and that, for all ¢ € Ny,

(3) (f! 1 )ﬂ’ -
where (-,-)p denotes the inner product in L?(P). Indeed, letting F, denote the n’th partial sum of f

n

Fy =Zatf!

t=0

and noting the biorthogonality of (f;)f2, we have, for n >,

(fu Fn)? = ﬂ:(fhf:)ll’

= a,2P(A!)
— ot H (1 —(2s5— l) (t+1} H(l — 9—(2s— 1)))
s=t+1 s=1

(1 -2y,

18

I
—

3

On the other hand

nlergo(f;,f —F)p= n]i_.r{.lo Ee((Fn — f)xc»)

= lim (D Ep(Fo = fxap + D Ee(Fa = f)xapuay)
m=n+l m=n
o0 o0
- niingo(mgﬂ(*bn —em) P(AT) + mz_n(—b,, + bm) P(AT U AT)
=— lim b, Y  P(AT)
e m=n+1l
P o 2n+l Z (m+1] H v-(zg 1)
e m=n+1l
= - [J(1 -2y
s=1
Combining these two equalities we obtain (3).
For later use we observe that
@) Ee(fxp) =D _ePlAl] = 3 b PlASUA ~ 27"
=1 3=t
Also note that
(5) im (|(Fo = f)4llZa@y = lim Y (b —ba) P(AT U AF)
m=n+1

= lim Z gém g-9m. — g

m=n+1
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Now define, for t € Ny,

M, on A,
gt =4 —my on Aj,
1 on Bt

where the real numbers M; and m; will be chosen such that the relations

(6) (f,9)p=0 and  Eg(g:) =0

hold true. Clearly these equations are satisfied iff M, and m; solve the two linear equations

M P(A5)(=be) +me P(AR)by = —Ep(fxpi+)
M, Q(AE) —my @(A:ta) = _Q(BH—l)
We can rearrange these equations to get
Mt —my — Em(fxa:“) o Qt

FCAD)S:
QA% _ @Bt .
My (-ga) +me =%Gm? =1

: : . QA3) o 9—
which yields, in view of m ~ 271,

M, ~ 2 and my & 1.

Now we are ready to define the process S: let Sy = 0 and, for ¢ > 0,

Sot41 —Sat =27y,
Sot4a — Sary1 = 272y,

Clearly (S;):2, is a uniformly bounded process and it follows from (2) and (6) that S is a (J-martingale
with respect to its natural filtration (F;)f2,. Note that each F), is a simple integral on the process S,
hence F,, € K5 and we obtain from (5) that

(7) f € K3 — L2 (P).

On the other hand we claim that for

Gn = Fn+bngn
we have that
®) lim [I(Ga = )= llzaey = 0
which will readily imply that
(9) e KT 0P,

and therefore, combining (7) and (9),
f € Ds.
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To prove (8) note that

I(Grn — f)—”%,z(]r) =(Gn = f) = XA;‘|I%=(P) % (265)P(45)

~ 221 2797,

Finally we shall show that f is orthogonal to K3, whence in particular

(10) f € Dy \ K.

Indeed, as for each ¢ > 0 the support of S;41 — S; is contained in an atom of F;, the space Kj of simple
integrals consists of the linear span of (f;);2, and (g:);2, and therefore we obtain the assertion from (3)
and (6). The construction of the example now is completed.

q.e.d.

3.2 Remark.

It is instructive to relate the above example to theorem 1.2. The representation

= Z a f; = Zﬂt 2t(52t+1 - 523)
t=0 i=0

is a representation of the random variable as a stochastic integral (H - S) on the process S. From
theorem 1.2 in conjunction with (7) and (9) above, we deduce that the process (H - S); is a uniformly
integrable martingale, with respect to each equivalent martingale measure R on Q) satisfying %‘E,i € L3(P),
converging to f = (H - .S)s with respect to the norm of L!(R); in particular for Q we have that f closes
the (Q-martingale (H - S);, a fact which also may easily be calculated directly.

But how is the situation with respect to the measure P? It happens that in our example the process
(H - S); is in fact an L'-bounded martingale with respect to P; but this martingale is not uniformly
integrable with respect to [P and f does not close it in L(IP).

We now pass to the second example answering negatively the second question asked in remark 2.2. It is
closely related to the examplegiven in [Sch 93] as well as to the simplified version of this example given in
[DS 94b]. In the present context it turns out to be more convenient to follow the track of the construction
in [Sch93], if we are only interested in a discrete time example.

3.3 Example. We construct a uniformly bounded discrete adapted process (X;){2, on a filtered prob-
ability space (2, F,(F1)i2q,P) and an equivalent measure ) on F with the following properties:

(1)X is a martingale with respect to P as well as with respect to ().

(2)%2 € L2(P)

(3)There is a predictable process H such that ((H - X)), is a uniformly integrable martingale under Q
converging (almost surely) to (H - X )o, € L*(P), but such that ((H - X),)$2, is not a uniformly integrable
martingale under .

Construction. Consider the example in section 2 from [S 93] from which we freely use the notation (the
use of the notation X and [P above instead of the usual S and [P was chosen in order to avoid confusion
with the notation from [S 93]): define X by Xy = 0 and, for t > 0,
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X!+1 —Xg :4_t(ét+1 '—G;)

We leave Q) as in the original example, but we slightly modify P to define

B = (R)(L6 + 16 @ (R~ 4761 + 46

Then we have X
P(B:)=2"[[}_,(1—47") ~2
P(Cy)= 27! [[,2 (1 —47")4 "~ 81
P(Dy)= 27" [po, (1 - 47") ~2

Note that X is a bounded local martingale (and therefore a uniformly integrable martingale) with respect
to @ as well as with respect to P. Let H; = 4¢ so that

(H-X): =Gy,

which is a uniformly integrable martingale with respect to ( but not with respect to IP.

Claim 1: (H - X)oo = Goo € L3(P).

Indeed, for w € C; we have Goo(w) &~ 2! and P(C,) =~ 8=, while for w € D; we have Goo(w) ~ 1 and
B(Dy) ~ 271

Cluiin 9 %% € Lz([gp)_ Indeed, for w € Cy, we have %% ~ 1 and, for w € Dy, we have %% ~ 47t e, %% 1s
even uniformly bounded.

The construction is complete.
q.e.d.

3.4 Remark. The example 3.3 is in discrete time; however, using the techniques from [Sch 93] or using
the construction from [DS 94b] it may be translated into a continuous process in finite continuous time.
On the other hand example 3.1 is resistent to such a translation as we have seen in theorem 2.2 above
that, for continuous processes, we have K, = D,.
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