CHAPTER 9

The Role of Mathematics in the Financial Markets

WALTER SCHACHERMAYER

The financial markets have not only experienced a stormy development in past
years, but the methods used for evaluating the quality and the risk of an invest-
ment have changed too. While even 30 years ago the tools available to a successful
investor were only his “flair”, besides legal and economic knowledge, today there
is a multitude of quantitative methods available. The concepts of “arbitrage” and
the “Black-Scholes formula” now play a central role in the valuation and hedging of
options. The significance of this formula was recognized in 1997 by the award of the
Nobel Prize for Economics to Robert C. Merton and Myron Scholes: Fisher Black,
who had died in 1995, was also honored, but Nobel Prizes are not awarded posthu-
mously.

In this short article I will attempt to present a generally understandable survey
of stochastic mathematical finance, the theory that stands behind these methods.
In particular, I would like to indicate the strengths, but also the weaknesses. of
modeling financial markets by stochastic (i.c., chance dependent) processes.

Let us begin our discussion with the older sister of mathematical finance. clas-
sical insurance mathematics. Ever since Sir Edmond Halley, the pupil and friend
of Isaac Newton, known above all for his eponymous comet, published a “mortal-
ity table” in the year 1693, actuaries have employed the same method for setting
insurance premiums: the “cquivalence principle”.

We illustrate this by an extremely simple example.

Suppose that a 40-year-old woman takes out a one-year term insurance: In
the case of her death in the course of the following year, her heirs will be paid
the insured sum 5, for example S = € 100,000, at the end of the year; otherwise
nothing is paid out. How should an insurance company calculate the premium for
such a contract?

Here is where probability theory enters the story, in a very simple way. The
death, or the survival, of the woman is modeled as a random wvariable, just like
throwing a coin. Now, however, the chances are not 50:50: instead they must be
derived from the fact that 40-year-old women have a known probability, which we
denote by g0, of dying in the course of the following year. A mortality table (awful
word!) is simply a listing of the values g, and ¢,, where y (resp. @) runs through
the possible ages (e.g., 0,1,2,...,110) for women (resp. men).

The premium for the contract is determined as the expected value of the benefit
to the insurance company. Thus, in our example,

(1) premium = g4 -insured sum .
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If we further assume that gy can be taken to be 0.0012 (in accordance with a
modern mortality table) we find

(2) premium = 0.0012- &€ 100,000 = € 120.

A trifle that we have left out: although the premium is paid at the beginning
of the year, the benefit of the insurance will not be paid before the end of the year,
and the interest effect must be taken into account. This is done by determining
an actuarial interest rate (for example i = 4%) and discounting the premium
appropriately: here

) 120
(3) premium = € — = € 115.38.
1.04

Simple as this process may scem, this modus operandi is, in nuce, exactly what
actuaries have done for centurics: they calculate the premium as the discounted
expected value of the insurance henefit.

Perhaps you would now like to object that the insurance company also has
costs (sales, administration, cte.), and that these must be considered too. This is
of course correct, and these costs are incorporated as an addition to the premium.

But when we discount the cost, what really is the mathematical justification
for using the expected walue in assessing the premium? The reason lies in the Law of
Large Numbers, which states the following: So long as the assumed probability g4
does in reality model the mortality of 40-year-old women correctly, the insurance
company will on average ncither win nor lose if it concludes “many” independent
contracts of this kind. How to interpret “many” can be quantified in a mathemat-
ically precisc way from the Limit Theorems.

Financial mathematics, more precisely stochastic mathematical finance, is—
at least at the first glance—fundamentally different from insurance mathematics.
The reasoning based on the Law of Large Numbers is replaced by the coneept of
arbitrage.

In order to motivate this concept we again consider a very simple example: If
in Irankfurt the dollar is exchanged at $1.05 per curo, then it will be exchanged
at (almost) the same rate in New York: For if the rate there were, for example,
$1.0199 per curo. then arbitrageurs would immediately simultaneously exchange
curos against dollars in New York and dollars against curos in Frankfurt, therchy
realizing a risk free profit. If, instead, the rate in New York were $1.0501 per euro
they would transact in the opposite direction, again making a risk free profit. With
an exchanged volume of € 10 M, for example, a relatively moderate sum in global
foreign exchange, where transactions can be made within a second, the arbitrage
profit would he about. € 950.

Whether one finds this smooth functioning of the international financial market
good or bad, is a different question, which we shall not analyze: If the suggestion
of imposing a global turnover tax (of the order of a fraction of a tenth of a percent)
on linancial transactions were to be adopted, as proposed by J. Tobin (Economics
Nohel Prize 1981), this would introduce “friction”, and the situation would change
quickly.

But back to the concept of arbitrage: You may perhaps argue that the activity
of a shoe shop owner who buys a pair of shoes for €30 and later sells them for
¢ 60 is akin to arbitrage; the difference, however, is that the shoe seller’s input is in
finding customers, contacting his supplicrs, storing the shoes, etc. In contrast. the
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exchanges are organized so that the prices are transparent to all market participants
and large volumes can be transacted at little cost. In our foreign exchange example
the full €950 will not remain as an arbitrage profit to the arbitrageurs hecause
of the transaction costs, but for the “big players” the relative significance of the
transaction cost is extremely low.

We can now define an essential pillar of the theory, as employed by Black, Sc-
holes and Merton. They took the no-arbitrage principle as fundamental in their
mathematical modeling of the financial markets, ignoring the transaction costs (as a
first approximation): There should be no arbitrage opportunities in the mathemat-
ical model of a financial market. The plausible argument behind this is: As soon
as there are arbitrage opportunitics, no matter how small, then, as in the preced-
ing example, arbitrageurs will reduce them quickly to zero. precisely by exploiting
those arbitrage opportunities. In liquid financial markets, e.g.. foreign exchange
markets but also in large sharc and commodity markets, reality comes very close
to this mathematical postulate.

Next let us clucidate the no-arbitrage principle with a somewhat less simple
example than the location arbitrage sketched above, namely with the forward rate
of a currency. I can buy a forward contract giving me the right and the obligation
to exchange a certain amount, c.g., € 10,000 into dollars at a rate agreed today at
a fixed time point, e.g., in a year.

For such a contract to be possible there must be other market participants
ready to make such a contract in the other direction, i.e., to buy the right and the
obligation to exchange the same amount from dollars to curos at the agreed rate
at the same time.

The forward rate for the dollar is the exchange rate at which the players in the
financial markets are prepared to make such a contract today.

Can one say something intelligent about the level of the forward price, other
than the lapidary assertion that this price will swing according to offer and demand
on the foreign exchange futures markets? The answer is yes, and it is amazingly
simple.

Suppose for simplicity that today the interest level for a one year “risk frec”
term deposit (that is—to a first approximation-—government bonds with one year
remaining to run) is equally high in euros and dollars. I claim that then the forward
rate for the curos in dollars must coincide with today’s (“spot™ or “cash™) rate of
the euros in dollars. Suppose, for example, that the forward rate for the curos is
higher than the cash rate, e.g., € 1.06 versus $1.05. In this case an arbitrageur will
today borrow dollars for a year, exchange them into euros, deposit these euros for a
year, and simultancously make a forward contract to exchange the (compounded)
sum back from euros into dollars after the year. Our assumption that the interest
levels are the same in dollars and euros implies that the result of this combination
of transactions must cancel out, so long as the cash rate is equal to the forward rate.
If the forward rate, though, were higher than the cash rate the difference would
remain as a profit to the arbitrageur! What is remarkable about this arbitrage
transaction is that this profit is achieved without any net investment of capital
and is completely risk free: the profit is completely independent of whether in the
subsequent year the rate of the curo against the dollar rises. falls. or stays the
same. [t is the nature of an arbitrage profit that it arises from a combination of



126 WALTER SCHACHERMAYER

transactions, cach of which is individually risky—maybe very risky—but that the
countervailing risks mutually cancel.

The alert reader may remark that we have used the same level of interest both
for a loan (in dollars) and for a deposit (in euros); on the other hand we all know
that one has to pay higher interest on a loan than one receives for a risk free deposit
(in the same currency), since otherwise one could make an obvious arbitrage. With
this argument as with the transaction cost: for small investors this difference is very
significant, but the “big players”, however, can in the same conditions go “long” or
“short”, i.c., in the context of our example, can deposit or lend money at the same
intercst rate.

As a next step we will discard the simplifying assumption that the interest
rates (for a one year risk free deposit) are the same in dollars and euros: suppose,
for example, that the corresponding dollar-interest is 4 % while the euro-interest
is only 3%. If one again thinks through the argument developed above one sees
immediately that it can be applied in this situation too: the only difference is that
the ratio of the forward rate of the euro into dollars to the cash rate is no longer
1:1 but now must be 1.04 : 1.03.

We here recommend the skeptical reader to take up the financial part of the
daily paper and check empirically that these considerations are not just arid the-
orizing. The reader will be able to convince herself that, as discussed, the level of
the forward rates between two currencies really depends on the ratio of the interest
levels of the currencies—and only on this. And this is not because of supervision
by a regulatory agency or something similar (as was not the case in the simple
example of location arbitrage), but because worldwide market participants exploit
any arbitrage opportunitics immediately, and so bring them to vanish (or, more
precisely, reduce to such a small amount that cven arbitrageurs with very small
relative transaction costs can no longer profit from them). This certainly goes for
currencies for which the cash and futures markets show a high liquidity (i.e., high
transaction volume and small transaction costs). The euro versus the dollar is of
course a primce example.

Up to now our thoughts on arbitrage have required only a very clementary
mathematical discussion. This changes abruptly on turning to other contracts han-
dled on the futures exchanges: an option (more precisely, a European call option)
certifies the right. but not the obligation, to buy a certain quantity of an under-
lying stock, c.g., foreign currency, shares, ete., at a certain expiration ttme and at
a certain strike price. To illustrate the economic sense of such contracts: In the
preceding foreign exchange example there could be good reasons for investors to
ensure themselves the right to exchange euros into dollars in a year’s time, to pro-
teet themselves against an incrcasing dollar rate, but not to bind themselves to this
transaction if it would lead to a loss in the case of a falling dollar rate.

Naturally one can no longer—as with a forward contract—-purchase such an
option at zero cost: the buyer has to pay a price to purchase the option.

Again we have the question of whether we can say something intelligent about
this price or whether we must simply refer to market forces. And again the answer
is yes: though the situation is no longer as simple as for the forward rate discussed
above.

Above it was enough to consider “buy-and-hold strategies”: When we review
our argument on the determination of the unique arbitrage free forward rate, we sec
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that only four transactions (a loan, a deposit, a currency exchange at the cash rate,
and a forward contract) were necessary. In order to crecam off the arbitrage profit
(if the forward rate is not at the level postulated by the theory). the arbitrageur
ran close these transactions today, simply wait a year, and then chalk up a risk free
profit according to the contractual right and obligation (buy-and-hold).

These elementary strategies are not adequate for ferreting out arbitrage oppor-
tunities in the context of options. It is relatively easy to sce (and also to prove
mathematically) that one cannot deduce any nontrivial statements on the price of
an option from arbitrage arguments concerning buy-and-hold strategies.

Now the market permits not only buy-and-hold, that is, static trading strate-
gies, but it also allows one to trade dynamically. In mathematical modeling one
says “in continuous time”; we call a trading strategy dynamic when it permits buy-
ing and selling at any time, but of course using only the information available at
the time of trading (if I had access to the exchange reports of tomorrow it would
not be difficult to make an arbitrage profit). The mathematics has, with the theory
of stochastic processes that were developed mainly for applications in the natural
sciences, an outstanding instrument at hand for modeling the concept of a dynamic
trading strategy precisely. (Keywords: filtrations, predictable processes, cte.)

The greater the possibilities of trading on the financial markets, the more the
opportunities of compensating countervailing risks, drawing on the no-arbitrage
argument for valuations.

In order to model the possible price developments of an option on the under-
lying (the “stock” or “asset”; ec.g., sharcs in Company XYZ). we nced to make
assumptions about the price process (S;)p<i<7. For cach ¢ in the interval [0,7] we
denote by S; the price of the share at time ¢: The quantity T denotes the expiration
time of the option (e.g., in a year), and we denote today’s date by (0. We know
today’s price Sy, but, since we cannot sce into the future, we model the variables
S, for 0 < t < T, as random variables. To specify the process (Si)o<i<rs We
need to impose further assumptions on the probability distributions of the random
variable S;.

This theme is by no means new. Louis Bachelier, in his 1900 dissertation under
the distinguished mathematician Henri Poincaré, had already proposed a model for
the price-process (Si)o<i<7 of a share, his motivation heing to derive a formula
for the waluation of options. He modeled the price of the share as a random (or
stochastic) process: whether the price of our share will rise or fall tomorrow is to
be described in a way similar to the throwing of a coin or the spin of a roulette

wheel. Bachelier had an almost mystic belief that a probability law determined the
events on the exchange:

Si, a 'égard de plusicurs questions traitées dans cette étude, j'ai
comparé les résultats de Pobscrvation a cceux de la théorie, ce
n’'était pas pour vérifier des formules établies par les méthodes
mathématiques, mais pour montrer sculement que le marché, a
son insu, obéit & une loi qui le domine : la loi de la probabilité.!

llf, with respect to the various questions treated in this study, 1 have compared the results
of observation with those of the theory, it has not been to verify the formulae established by
mathematical methods, but only to demonstrate that the market

, unaware, obeys the one law
that dominates it: the law of probability.
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F1GURE 1. Path of a Brownian motion

As a concrete model he proposed the process (Sp)o<i<7 known nowadays as
DBrownian motion: The increment S; — S, of the price between two times v < ¢
is assumed to be normally distributed (that is, according to the famous Gaussian
bell curve), with mean value 0 and variance proportional to the length of the in-
terval [u, ¢]. Further, the increments over disjoint time intervals are assumed to be
mutually independent.

For a fixed random clement w, i.c., for w in the underlying probability space
(§, F, P), one has a path (Si(w))o<i<r; a typical simulated path is sketched in
Figure 1.

1t redounds to the pride of mathematical finance that Bachelier was thus the
first to formulate the mathematical model of a Brownian motion. He was five years
ahead of Einstein and Smoluchowski, who introduced this model into physics in
1905 to describe the behavior of gas molecules. The name Brownian motion derives
from the fact that in 1826 the botanist Robert Brown detected a completely erratic
behavior --similar to the simulated path in Figure 1—while observing particles in
the microscope (though he did not attempt to model this behavior mathematically).

After formalizing his model, Bachelier was able to approach the real aim of his
work. namely the valuation of an option on a share whose price follows a Brownian
motion (Sy)o<i<r. If we fix the exercise time T and the strike price /<, it is casy
to specify the value Cp of the option at the time T: Cp is the larger of the two
numbers 0 and Sy — K.

Indeed, if the price St of the underlying share is larger than I, then the value
of the option is the difference St — K, since the owner of the option can buy a share
at price K and then sell it immediately for S7. But if Sy is smaller than I, then
the option is quite worthless.
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Thus we see that we can write the value Cr of the option at time T as a simple
function of the random variable Sp. We do not know today (i.e., at time ¢ = 0) the
ralue that Sp will have at time ¢ = T', but ouly the probability distribution of Sr.
We illustrate the difference again with a simple example: When I roll a die I do not
know the result of the throw in advance, but T assume—and with a fair die I have
good reason to—that the probability distribution of the result is that each of the
six possible digits will be thrown with the same chance (thus with probability %)
Similarly, I do not know the value St of the share today, but I claim to know the
probability distribution of St.

How can we compute the present value Cy of the option? Bachelier does just
what actuaries have done for ages: He takes the ezpected value of the value of Cr.

(4) CV() = E[C’[‘] .

This is an expression that can be evaluated easily, i.c., can be expressed in terms
of a formula, since—according to our model assumption- ~we know the distribution
S, namely a normal distribution with mean value Sy and variance T

One may object that Bachelier neglected the interest effect that we had to take
into account when discussing life insurance. This objection is not a very strong
one: Bachelier ignored the interest effect since he was interested in the valuation of
options with a relatively short exercise time (T of the order of a few months), and
interest rates were then low—at the time of the past fin-de-si¢cle too the interest
rates were low and the share prices high! Of course, if one does want to consider the
interest eflect, there is no problem in building a discount factor into the formula:

(5) Cy = 6_"TE[ T,

where 7 denotes the risk free interest. The decisive point is. however, a different one:
The motivation for using the expected valuc is the Law of Large Numbers, which,
from an economic point of view, is much less convincing than the no-arbitrage
principle. We do not yet find the idea of a connection between these two approaches
in Bachelier.

Bachelier’s work sadly did not enjoy the attention it deserved. The cconomists,
on the one hand, ignored it completely, and only 65 years later did the eminent
economist Paul Samuelson (Economics Nobel Prize 1970) take this theme up again.
But the mathematicians also took little notice of it. However, his work was not
completely forgotten in the mathematical community; for example, it was cited in
Kolmogorov’s fundamental book on probability theory of 1932.

The essential breakthrough on the question of option valuation came first in
1973 with the work of Black and Scholes, and also of Merton. They took a slight
variant of the model used by Bachelier for the share price: They assumed—as had
Samuelson—that the logarithm In(S;) of the stock price process Sy would follow a
Brownian motion with drift: i.e.,

(6) In(S;) = In(Sy) + oV + pt,

where g € R, o > 0 are appropriate normalization constants and W, is a Brownian
motion as defined by Bachclier.

Changing to the logarithm is a harmless step, and it corresponds to the dif-
ference between compound interest, when invested capital grows according to an
exponential curve, and linear interest, when one neglects the effect of iterated in-
terest. As is well known, the difference between these two approaches is not very
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significant over short time spans. It is similar for the difference between Bachelier’s
model of Brownian motion and the model (6), the geometrical Brownian motion,
today often also referred to as the Black-Scholes model.

Black, Scholes and Merton were the next to break new ground, using a no-
arbitrage argument for dynamical trading strategies. In essence this argument
runs: Suppose that there really is a function f(¢,S) that determines the value of
the option at each time point 0 < ¢t < T in terms of the price S at time ¢ of the
underlying—this is the technical expression for the asset to whose value changes
the option relates. Then one can differentiate this function f(¢,5) partially with
respect to the variable S. Following practitioners’ language, we call the quantity

;)Q; (t,S) the Delta of the option at time t at current stock-price S (for fixed ¢ and

S).

For the purpose of illustration suppose that this Delta has the value % for some
fixed ¢ and S. This means that when the value S of the underlying increases by
€1 the value of the option increases by about 50 cents (¢ remaining fixed). The
“about” is to be understood in the sense of differential calculus: this ratio 2 : 1,
of the variation of the underlying to that of the option, fits better as the price
variations become small, and is exact “in the limit”.

This relation has an important economic consequence: If—still with fixed ¢ and
S --we create a portfolio, going “long” with one unit of the underlying (buying it)
and simultancously going “short” with two units of the option (selling it), then this
portfolio is risk free against (small) price variations in the underlying: profits on
the underlying will be compensated by losses on the option, and vice versa.

The portfolio is risk free only “locally”, i.e.. as long as ¢ and S vary only a
little, but the idea of a dynamical trading strategy allows one to adjust the balance
of the portfolio by buying and selling so as to fit to the current Delta.

Now comes the no-arbitrage argument: A risk free portfolio formed in this way
must yield the same interest as a risk free deposit. For, if not, one could find trading
strategies, as already discussed, that would make arbitrage profits possible.

We have thus found an economic connection between the dynamics of the value
of the portfolio and the risk free interest, and can express it mathematically in the
form of an equation: if we adopt the model assumption (6), we are led to a partial
differential equation that can he solved explicitly. The solution can be stated in
the shape of a formula, namely the famous Black-Scholes formula:

(7) f(t,8) = SN(d)) — Ke " T=9N(d,),
_ CIn(S/K) + (r+ 5T — 1)
(8) where d; = VT ,

~ In(S/K) + (r — "T)(F —t)
(9) (12 = J\/T — .

Here N denotes the distribution function of the standard normal distribution, S is
the value of the underlying at time ¢, while I{ and T are the strike price and
exercise time of the call option, r is the risk free interest rate, and o > 0 is the
volatility, i.e., the parameter for the influence of the random Brownian motion 1V
in the underlying model (6).
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The concrete shape of the formula is not so important, and I have given it
here only so that the reader can see how it can be used explicitly with concrete
numerical values.

The following is more important. Today's value f(0, Sy) of the call option is
the only possible arbitrage free price. And more: The derivation of the formula also
leads explicitly to dynamical trading strategies, with which arbitrage profits can be
made if the market price of the option deviates from this theoretical value.

Finally, a total surprise: The price f(0,Sy) also emerges from the approach
corresponding to the Bachelier formula (5),

(10) f(07 S()) = CATTEQ [CT]’

where the expected value is not with respect to the original probability measure P,
but with respect to a modified risk neutral probability mecasure (). The term
risk neutral comes from the fact that, on the basis of this modified probability
distribution, the appreciation of the stock is on average the same as for a risk free
deposit.

A more detailed rationale for this fundamental connection between the no-
arbitrage argument on the one hand and the spectacular revival (10) of the good
old insurance mathematical equivalence principle on the other hand would take
us beyond the confines of this article. It is the theme of the Fundamental Theo-
rem of Asset Pricing that was developed around 1980 in the works of M. Harrison,
D. Kreps, and S. Pliska, later extended by numerous other authors. An exact formu-
lation of this fundamental theorem in a general mathematically precise framework
was first given by Freddy Dclbaen and the author in 1994.

We shall here develop only a very intuitive approach to what really happens
in changing from the original “true™ probability mecasure P to the modified risk
neutral probability measure (). Let us cut back to the very simple example of a oue
year term insurance for a 40-year-old woman. You probably rcacted with surprise
and scepticism on being told that the insurance company calculates the premium
by using the expected value; because then the insurance company will on average
not earn anything from these contracts. This scepticism is quite justified, for an
insurance company has to be profit oriented.

The solution to this riddle lies in the fact that two different probability dis-
tributions are involved here too: on the one hand there is the true probability gio
that a 40-year-old woman will die in the course of the year; this true probability
can be estimated very reliably from mortalities in the past. But another. carefully
chosen, probability, denoted by qi’(‘,o", is applied in calculating the premium. The
(mortality) profit on the policy results from the difference in these two values.

The parallel to mathematical finance is now obvious, where it was equally
essential to distinguish between the true measure P and the “modified” measure Q.

After this general discussion we pose the question of how well the Black-Scholes
formula, and the hedging strategies derived from it, work in practice. This ques-
tion essentially depends on whether the model of geometrical Brownian motion (6)
describes reality correctly.

Let us cast a glance back to the real data from the financial market time
series. Figure 2 presents the daily logarithmic returns, i.e.. In(Sy4+1/5¢). of an Aus-
trian share price index, where ¢ runs through the trading days from April 1995 to
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FIGURE 2. ATX Log-Returns (April 1995-June 1998): Comparison with
the normal distribution

June 1998, If the assumptions of the Black-Scholes model are met, this random vari-
able must be normally distributed, i.e., the empirical histogram must approximate
the form of the normal distribution (shown dashed).

We see that the agreement is not so very good: the empirical histogram has too
much mass near the mean value (in comparison with the theoretical normal distri-
bution) and too little in the middle range. The most difficult problem for practical
application is not, so obvious to the eye, and concerns the “tails” of the distribution:
the normal distribution underestimates the extreme events dramatically; and just
these events, large fluctuations, are obviously of particular practical relevance.

These “stylized [acts™, as we observe in this example (i.e., in comparison to the
normal distribution there is too much probability measure in the center and at the
tails of the distribution, but too little in a middle range), reappear with remarkable
persistence in such time series.

In place of an approximation by the normal distribution, Figure 3 shows the
approximation of the same empirical histogram by one of a more general class of
probability distributions, the hyperbolic distributions. The fit is considerably better
and. although one cannot sce it in this example with the naked eye, comprehensive
empirical investigations confirm that the modeling of the extreme fluctuations by
this more general class of distributions also agrees better with reality than does the
normal distribution.

This provokes the question of why we do not replace the Black-Scholes model
by a more general model that would describe reality better. Research is doing
just this  and, in increasing measure, practice too--and meanwhile progress is
controversial. The situation immediately becomes essentially more complicated if
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FIGURE 3. ATX Log-Returns (April 1995-Junc 1998): Comparison with
the hyperbolic distribution

one steps out of the Black-Scholes model, since one can no longer derive unique
prices and the corresponding trading strategies from pure no-arbitrage arguments.
For this reason the Black-Scholes model continues to play a fundamental role for
practitioners, although current rescarch results are being adopted in practice with
remarkable speed.

In this introductory presentation we cannot go into extensions of the Black-
Scholes models, but only indicate a comprehensive list for further reading. I hope,
however, to have conveyed the following message to the reader: For the practical
application of the theory it is crucial to understand the chosen mathematical model
and its assumptions thoroughly. This is particularly necessary for developing an
understanding of in which aspects the model assumptions describe reality aceept-
ably, and in which aspects this is not the case. This forms the basis for a critical
awareness of the situations when the theory delivers valuable results, and in which
situations great caution is called for.
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