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Abstract. Let (St)t2I be an IR
d{valued adapted stochastic process on (
;F ; (Ft)t2I ; P ). A basic problem,

occuring notably in the analysis of securities markets, is to decide whether there is a probability measure Q
on F equivalent to P such that (St)t2I is a martingale with respect to Q.

It is known since the fundamental papers of Harrison{Kreps (79), Harrison{Pliska(81) and Kreps(81) that
there is an intimate relation of this problem with the notions of "no arbitrage" and "no free lunch" in �nancial
economics.

We introduce the intermediate concept of "no free lunch with bounded risk". This is a somewhat more precise
version of the notion of "no free lunch": It requires that there should be an absolute bound of the maximal loss
occuring in the trading strategies considered in the de�nition of "no free lunch". We shall give an argument
why the condition of "no free lunch with bounded risk" should be satis�ed by a reasonable model of the price
process (St)t2I of a securities market.

We can establish the equivalence of the condition of "no free lunch with bounded risk" with the existence of
an equivalent martingale measure in the case when the index set I is discrete but (possibly) in�nite. A similar
theorem was recently obtained by Delbaen (92) for the case of continuous time processes with continuous
paths. We can combine these two theorems to get a similar result for the continuous time case when the
process (St)t2IR+ is bounded and | roughly speaking | the jumps occur at predictable times.

1. Introduction

Let (St)t2I be an IR
d{valued martingale de�ned on (
;F ; (Ft)t2I ; P ) - (precise de�nitions and notations

will be given below). For s; t 2 I , s < t and a bounded IRd{valued Fs{measurable function h we have

EP (h; St � Ss) = 0 (1)

This is essentially the de�ning property of a martingale and re
ects the intuitive idea behind this concept:
\One can't win systematically by betting on a martingale".

We investigate a kind of converse to the fundamental fact (1): Let an IRd{valued adapted stochastic
process (St)t2I on (
;F ; (Ft)t2I ; P ) be given. Under what conditions does there exist a probability
measure Q on F , equivalent to P , such that (St)t2I is a martingale with respect to (
;F ; (Ft)t2I ; Q)?
This question arose in particular in the analysis of stochastic models of securities markets. In this context
the random variables

(h(!); St(!)� Ss(!)) (2)
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as above have an obvious interpretation as the net gain of an elementary trading operation. In the
fundamental papers of Harrison-Kreps (79), Harrison-Pliska (81) and Kreps (81) the concepts of "no
arbitrage" and "no free lunch" were investigated. Intuitively they state that there should be no non-
negative element |except for the zero-function | among the functions appearing in (2). It was shown
that | under appropriate conditions | these concepts coincide with the existence of an equivalent
martingale measure for the process (St) and this result is sometimes referred to as the fundamental
theorem of asset pricing (see Dybvig-Ross (87)).

However, we claim that for general processes (St)t2I the "best possible characterisation" for the existence
of an equivalent martingale measure is not yet completely understood although there has been in recent
years a lot of research activity and a number of important steps in this direction ( Du�e-Huang (86),
Back-Pliska (90), Stricker (90), Ansel-Stricker (90) and (92), Dalang-Morton-Willinger (90), Delbaen
(92),Mcbeth (91), Lakner (92b), Schweizer (92b)).

The aim of the present paper is to introduce the concept of "no free lunch with bounded risk" and to
investigate whether this concept is equivalent to the existence of an equivalent martingale measure. This
concept was also considered (under di�erent names) in the work of Delbaen (92) and Mcbeth (91). We
claim that this concept has a more precise economic interpretation than that of "no free lunch" (see 1.5
below) and that it is of primary interest to understand its precise relation to the existence of an equivalent
martingale measure.

For the case of �nite discrete time I the relation between the existence of an equivalent martingale
measure and the absence of arbitrage opportunities is completely clear by the work of Dalang{Morton{
Willinger (90) (compare also Back{Pliska (90) and Schachermayer (92)). In the present paper we shall
show that for the case of discrete (but possibly in�nite) time (i.e., I = N0 ) the situation is clari�ed too:
We can establish the equivalence of "No free lunch with bounded risk" with the existence of an equivalent
martingale measure (theorem A below) in a completely general setting (no boundedness or integrability
conditions have to be imposed on the process (St)t2N0).

In the case of �nite continuous time (i.e., I = [0; 1]) an analogous theorem has been proved in the
remarkable paper of Delbaen (92) for processes with continuous paths. We can combine these two results
to obtain in theorem B the equivalence of "no free lunch with bounded risk" with the existence of an
equivalent martingale measure for a fairly general class of continuous time processes (roughly speaking
the jumps of the process must occur at predictable times; but in this case we do need a boundedness
assumption).

Let us now start to be more precise. We adopt the following setting: Let I be a subset of IR+,

(
; (Ft)t2I ;F ; P ) a �ltered probability space, and (St)t2I a family of Ft{measurable IRd-valued ran-
dom variables. We shall consider the case I = N0 in the �rst part of the paper and then the case
I = [0; 1] or I = IR+. We shall always assume without loss of generality that S0 � 0 and that F is
generated by (Ft)t2I . Note that at this stage we do not impose the "usual conditions" on the �ltration
(Ft)t2I , nor the requirement that the process St is cadlag, nor any integrability conditions.

1.1 De�nition. We say that (St)t2I satis�es (EMM) (which stands for "equivalent martingale mea-
sure") if there is a probability measure Q on F equivalent to P such that (St)t2I is a martingale with
respect to (
; (Ft)t2I ; Q), i.e., each St is Q-integrable and formula (1) above holds true for each bounded
Fs{measurable function h with P replaced by Q.

Similarly as in Stricker (90) de�ne K0 to be the vector space of easy stochastic integrals

K0 = span f(h(!); St(!)� Ss(!))g; (3)

where (� ; �) denotes the inner product in IRd, s; t runs through the pairs in I with s < t and h is an

IRd{valued Fs{measurable function. Note that K0 is a subspace of L0(
;F ; P ), which is the space of
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F-measurable, real-valued functions. The economic interpretation of the random variable (h(!); St(!)�
Ss(!)) is that it describes the net gain of the trading operation of bying h(!) units of the stock at time
s and selling these stocks again at time t. The requirement that h is Fs-measurable corresponds to the
fact that at time s the economic agent posesses only the information modelled by Fs.
Throughout this paper we shall denote by C0 the convex cone (K0�L0

+(
;F ; P )) , i. e. , those elements
of L0 that are dominated by some f 2 K0. Denote by K (resp. C) the linear space (resp. the convex
cone) K0 \ L1 (resp. C0 \ L1). Note that C consists of those elements of L1 that are dominated by

some f 2 K0. We shall denote by C the closure of C with respect to the ��{topology of L1 and by eC
the set of all limits of ��{convergent sequences in C. Clearly C and eC are convex cones in L1.

We now may de�ne the key concept of this paper:

1.2 De�nition.

(a) We say that (St)t2I satis�es (NA) (which stands for "no arbitrage") if

C \ L1+ = f0g:

(b) We say that (St)t2I satis�es (NFLBR) (which stands for "no free lunch with bounded risk") if

eC \ L1+ = f0g:

(c) We say that (St)t2I satis�es (NFL) (which stands for "no free lunch") if

C \ L1+ = f0g:

Obviously (NFL) ) (NFLBR) ) (NA) and it is almost as obvious that (EMM) ) (NFL) (see 3.1
below).

Note that the condition (NA) of "no arbitrage" is the same as to require thatK0\L0
+ = f0g. This concept

has the obvious economic interpretation that there should be no easy trading strategy which allows to
create positive expectation for a gain with zero investment and without bearing any risk. It was proved
by Dalang{Morton{Willinger (90) | generalising previous work of Harrison{Kreps (79), Harrison{Pliska
(81) and Back{Pliska (90) | that in the case of �nite discrete time (NA) is equivalent to (EMM). But
unfortunatly this equivalence breaks down if the time index set I becomes in�nite as is shown by easy
examples (see Back{Pliska (90) or Dalang{Morton{Willinger (90)).

It was already noted by Kreps (81) that in this case (i.e., I being in�nite) a topological condition has
to be added which led him to the notion of (NFL). The de�nition (c) is taken from Kreps (81), where
general pairs of dual vector spaces hE;F i are considered. In the present setting the pair hL1; L1i and the
��{topology on L1 are natural as each P{absolutely continuous measure Q may be identi�ed with its
Radon{Nikodym derivative dQ=dP 2 L1(
;F ; P ) and therefore de�nes a ���continuous linear functional
on L1.

1.3 Theorem (Kreps{Yan). Suppose that, for each t 2 I, St is bounded. Then (NFL) is equivalent
to (EMM).

This remarkable result has been proved (under a mild but irrelevant separability assumption) in Kreps
(81). We take the liberty to refer to it as Kreps{Yan theorem as in Yan (80) a similar result was proved
independently and in a di�erent context. Both authors had the decisive idea that { in order to get the
good notion { one has to consider the closure of the convex cone C = (K0 � L0

+) \ L1 and not just
that of K = K0 \ L1 (see example 3.3 below). Once this key idea is established the proof reduces to a
combination of a Hahn{Banach and an exhaustion argument (see 3.1 below).
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The relevance of Yan's work was noted by Stricker (90) and Ansel{Stricker (90), who used this result
of Yan (or rather its proof) to obtain analogous theorems characterising the existence of equivalent
martingale measures with �nite q{th moments, where q > 1. This setting has the advantage that one
may state a condition in terms of the norm closure of C in Lp instead of the more delicate ��{closure in
L1 as in 1.2 (c) above. On the other hand, to impose �nite q{th moments is somewhat unnatural in the
present context and, in particular, not invariant under changes of measure.

Let us turn to the economic interpretation of the concept of (NFL) as given by
Kreps (81):

1.4 Proposition. (St)t2I satis�es (NFL) i� there does not exist a nonnegative function f0 2 L1+ ; f0 6�
0, a net (f�)�2J in K0 and a net (h�)�2J in L0

+such that each f� � h� is uniformly bounded and
(f� � h�)�2J converges to f0 with respect to the ��-topology of L1.

The proof of the above proposition is rather obvious. Let us discuss the economic interpretation: The
usual argument as to why a reasonable model (St)t2I of a stock price process should satisfy the no
arbitrage condition (NA) goes as follows: If there exists an arbitrage opportunity, i. e. , a random
variable f0 2 C \L1+ ; f0 6� 0, then there should be at least one economic agent quickly taking advantage
of this opportunity until | by the law of supply and demand | the opportunity quickly disappears.
Hence a reasonable model of a �nancial market on which there are potential arbitrageurs should not
provide any arbitrage opportunities from the very beginning.

To argue that a reasonable model (St)t2I should in fact satisfy the stronger condition of (NFL), one might
argue as follows: If (NFL) is violated then an arbitrageur may still �nd a nonnegative f0 2 L1+ nf0g,
which | possibly | is not quite in C but may be approximated by elements of C in the following sense:
There is a net (f�)�2J in K0 such that if the agent "throws away" the amount of money h� 2 L0

+ the
random variable f� � h� becomes close to f0 with respect to the ��{topology of L1. Whence, similarly
as above, there should be an arbitrageur who takes advantage of the "almost arbitrage opportunity" f�
for some � 2 J which, in turn, would quickly make this opportunity disappear.

We believe that this argument is not very convincing: It requires the existence of rather imprudent
arbitrageurs as | although (f� � h�) is in some sense close to f0 | there is no control on the maximal
loss obtained when using the trading strategy which gives the gain f�. Let us also note that a similar
remark applies to the conditions used by Stricker (90), as a control of the Lp{norm of (f� � h�)� f0 for
some p <1 does not give a control for the respective maximal loss.

This drawback of the notion of (NFL) is not shared by the notion of "no free lunch with bounded risk"
as will be shown by the subsequent proposition. This is the main attraction of this notion and should
explain its name. The proof of proposition 1.5 is a consequence of the Banach{Steinhaus theorem and
will be given in 3.6 below.

1.5 Proposition:. The process (St)t2I satis�es (NFLBR) i� there does not exist a [0;1]-valued random
variable f0, f0 6� 0, and a sequence (fn)

1
n=1 in K0 such that

(a) fn(!) � �1 for P{a.e. ! 2 
 and n 2 N

(b) lim
n!1

fn(!) = f0(!) for P{a.e. ! 2 
:

We claim that a "free lunch with bounded risk" is much more appealing to an arbitrageur than just a
"free lunch": He or she knows that in any case (in the sense of P{almost everywhere) he or she can
at most lose one unit of money while | as n becomes big | the net gain fn(!) becomes pointwise
arbitrarily close to f0(!). Hence he or she should choose some big n and do the trading operation that
yields fn(!).

Note that we did not impose any bound from above on f0 and we even allowed it to take the value
+1. This curious fact of "allowing the agents to become arbitrarily rich" is in fact crucial for the above
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proposition to hold true and corresponds to the fact that in prop. 1.4 we had to allow the agents to
"throw away money".

The main result of this paper reads as follows:

1.6 Theorem A. Let (St)t2N0 be an adapted stochastic process on (
;F ; (Ft)t2N0 ; P ). Then (NFLBR)
is equivalent to (EMM).

The proof of this theorem will be given in section 4. Let us stress that we did not impose any boundedness
or integrability assumptions on the process (St)t2N0 , i.e., we only assume that (St)t2N0 is a sequence of
Ft-measurable Rd-valued functions.

Theorem A should be compared with the subsequent theorem of Delbaen (92):

1.7 Theorem. (Delbaen)

Let (St)t2[0;1] be a bounded adapted stochastic process on (
;F ; (Ft)t2[0;1]; P ) with continuous paths. Then
again (NFLBR) is equivalent to (EMM).

For Delbaen's theorem to be true one has to use slightly more general "easy" stochastic integrals than
those appearing in formula (2) above: the deterministic times s < t have to be replaced by stopping times
U < V (see section 5 below).

Using yet a slightly more general notion of elementary stochastic integrals (see again section 5 below) we
may combine these two theorems to obtain a fairly general result:

1.8 Theorem B. Let (St)t2IR+ be an adapted cadlag stochastic process de�ned on the �ltered probability
space (
;F ; (Ft)t2IR+ ; P ) satisfying the usual conditions. Suppose that

(i) for each t 2 IR+, St is bounded, and

(ii) there is a sequence (Tn)
1
n=1 of predictable stopping times increasing to in�nity such that the jumps of

(St)t2IR+ are contained in
S1
n=1[[Tn]].

Then again (NFLBR) is equivalent to (EMM).

There are natural examples of the situation encountered in theorem B: suppose the (discounted) price
process (St)t2IR+ of n stocks is modelled to develop continuously except for some jumps occuring at
predictable moments (e.g. when elections are held or earnings announcements are given), where of course
the size of the jump (or its sign) need not be known in advance. This is the situation described by theorem
B and the message of the theorem is that in this setting there is a crisp economic characterisation for the
existence of an equivalent martingale measure.1

Finally we note that one may also view theorem A as a help for determining the existence of a sequence
of trading strategies yielding a free lunch with bounded risk. Let us illustrate this with an easy example.

Let (�n)
1
n=1 be a sequence of independent random veariables de�ned on (
;F ; P ) such that

1Note added in revising the paper: There remains the obvious problem whether theorem B may be generalized by dropping
the assumption that the jumps of the process occur at predictable times only. This question turns out to have a negative
answer in the framework of "easy integrands" considered in the present paper. However by passing to general stochastic
integration it is possible to obtain a theorem analogous to theorem B above which applies to the general case. These
questions will be dealt with in the forthcoming paper Delbaen-Schachermayer (93).
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Pf�n = 1g = Pf�n = �1g = 1

2
:

We assume that the �-algebra F is generated by (�n)
1
n=1.

Fix a sequence (�n)
1
n=1 of numbers in ]0; 1[ and de�ne the process (Sn)

1
n=1 by S0 � 0 and

Sn � Sn�1 = �n + �n for n 2 N:

Interpreting the process S as the (discounted) price of a risky asset we see the �n is the expected change
in price, while the residual �n is either plus or minus one with probability one-half each.

It is straightforward to verify that there is a unique probability measure Q on F which turns S into a
martingale, i.e., a unique "risk-neutral probability": Under this measure Q the sequence (�n)

1
n=1 is a

sequence of independent random variables such that

Pf�n = 1g = 1 + �n
2

and Pf�n = �1g = 1� �n
2

:

A classical theorem of Kakutani (see, e.g., Williams (91) 14.17, page 150) asserts thatQ is either equivalent
to P , or Q and P are mutually singular, depending on whether the sequence (�n)

1
n=1 is in l2 or not.

This implies { in order to insure the existence of an equivalent martingale measure { the risk premia of
the process S have to go to zero over time and at a su�ciently high rate . This may be regarded as an
unpalatable assumption and shows that in the in�nite horizon setting the process S has to be already
"almost a martingale" in order to allow an equivalent martingale measure.

It is obvious that the process S above does not permit arbitrage possibilities if we allow only trading
strategies with a �nite horizon. On the other hand Kakutani's theorem in tandem with theorem A above
implies that there is a free lunch with bounded risk if and only if the sequence (�n)

1
n=1 fails to be square

integrable.

In order to achieve some intuitive understanding of the situation we pass to an even simpler situation:
Suppose that all �n equal a �xed � and let us pass to the familiar "geometric" version of the process:
Let ~S0 � 1 and

~Sn � ~Sn�1
~Sn�1

= �n + �:

If � � p
2� 1 { which we shall assume in order to make things even simpler { the process ~S tends almost

surely to in�nity, whence an investor has an obvious strategy yielding a free lunch with bounded risk:
Simply buy the risky security at time 0 and sell it at the �rst time t when ~St � 2 ~S0 = 2 or at a given time
n, if n is reached �rst. Now let n!1 to obtain a sequence of simple strategies which have bounded risk
and converge to an arbitrage opportunity. Such a sequence is by de�nition a free lunch with bounded
risk.

Of course, this was a particularly easy setting. But if we choose, for example, �n = (n + 1)�1=2 it is
already more challenging to directly construct a sequence of trading strategies yielding the desired free
lunch with bounded risk.

We now give an outline of the paper. After �xing de�nitions and notations in section 2 we establish
some preliminary results in section 3. We �rst reproduce the proof of the Kreps{Yan theorem, which is
fundamental. In example 3.3 we show that in general it is indispensable to consider in the Kreps{Yan
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theorem the convex cone of functions dominated by the gains of trading operations and not just the vector
space formed by these gains functions. We then introduce the notion of Fatou{convergence, which alludes
to Fatou's lemma and is tailor{made for the convex cones encountered in the setting of the Kreps{Yan
theorem. This notion allows for a kind of compactness result for sequences of functions bounded from
below (lemma 3.5) which will turn out to be a very useful tool.

In section 4 we prove theorem A. We introduce the notion of admissible integrands which essentially
appears already inMcbeth (91), the idea and the name going back to a remark in Harrison-Pliska (81).
This notion is also tailor{made to �t into the framework of the Kreps{Yan theorem. After establishing
some technical results we �rst prove Theorem A for the case of bounded processes (St)t2N0 and �nally
for the general case which is more delicate and involves the use of Frechet{ rather than Banach{spaces.
In both cases the Krein{Smulian theorem will be the decisive ingredient to the proof.

In section 5 we prove theorem B. Unfortunatly, this is not just a straightforward corollary of Delbaen's
theorem and theorem A. Instead we have to work quite hard for the proof. First we reformulate Delbaen's
theorem for our setting and then relate it to the notion of admissible integrands. This notion of admissible
integrands may then be extended to processes (St)t2IR+ satisfying the assumptions of theorem B, and
this allows us to adapt the arguments used for theorem A to prove theorem B.

2. Definitions and Notations

(
;F ; P ) will denote a probability space. Let I be a subset of IR+ containing zero. (We adopt this degree
of generality mainly to cover the continuous and discrete time cases simultaneously). An increasing family
(Ft)t2I of sub{�{algebras of F will denote a �ltration.

(St)t2I will denote an adapted IR
d{valued process, i.e. a family of IRd{valued functions such that each St

is Ft{measurable. As is usual, we shall identify functions with their equivalence classes (modulo functions
vanishing almost everywhere). It will be clear that in the context of the present paper no confusion can
arise.

We denote by L0(
;F ; P ; IRd) the space of (equivalence classes of) F{measurable IRd{valued functions

and, for 1 � p � 1, by Lp(
;F ; P ; IRd) the subspace of functions with �nite p{th moments. IRd will be
equipped with its canonical inner product (�; �) and euclidean norm k:k.
Let Q be a probability measure on F . We say that Q is equivalent to P if Q and P have the same
nullsets or, equivalently, if the mutual Radon{Nikodym derivatives dQ

dP and dP
dQ exist. We denote, for

f 2 L1(
;F ; P ; IRd), by EP (f) the expectation of f with respect to P .

If Q is a probability measure on F equivalent to P and (St)t2I is an IRd{valued process adapted to

(Ft)t2I , we say that (St)t2I is a martingale with respect to Q if each St is in L1(
;Ft; Q; IRd) and, for

s; t 2 I , s < t and h 2 L1(
;Fs; P ; IRd), we have

EQ(h; St � Ss) = 0 :

In this case we say that Q is a martingale measure for (St)t2I , and we say that Q is an equivalent
martingale measure if, in addition, Q is equivalent toP .

By Lp(
;F ; P )+ or Lp+ we denote the positive cone of Lp.

An easy integrand will be a linear combination of functions of the form

H(!; t) = h(!)�]u;v](t)

where u < v are elements of I , �]u;v](t) denotes the indicator function of the interval ]u; v], and h 2
L0(
;Fu; P ; IRd). To be precise, we shall use this notion of an easy integrand in sections 3 and 4, while
in section 5 we shall use a slightly more general concept.
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An easy integrand H gives rise to an easy stochastic integral, which is a linear combination of processese
of the form

(H:S)t(!) =

8><
>:

0; for t � u

(h(!); St(!)� Su(!)); for u � t � v

(h(!); Sv(!)� Su(!)); for v � t:

For an easy integrand H we may also de�ne

(H:S)1 = lim
t2I

(H:S)t(!);

where limt2I (H:S)t(!) either equals (H:S)t1(!) if there is a maximal element t1 2 I or, if I contains
no maximal element, the limit as t tends to the supremum of I . Note that in any case there are no
convergence problems arising in the above de�nitions.

3. Preliminary Results

In this section we develop the necessary machinery for the proof of the main theorems.

We start by proving some results which were mentioned without proofs in the introduction. First we give
a proof of the fundamental Kreps{Yan theorem (compare Yan (80), Kreps (81), Stricker (90)):

3.1 Proof of theorem 1.3. (EMM) ) (NFL): This is the easy part. Suppose there is an equivalent

martingale measure Q and denote by g its Radon{Nikodym derivative dQ
dP . It essentially follows from the

de�nition of a martingale that for each f 2 K we have

EQ(f) = hf; gi =
Z
f(!)g(!)dP (!) = 0 ;

and therefore, for each f 2 C

EQ(f) = hf; gi =
Z
f(!)g(!)dP (!) � 0 ;

By the weak-star continuity of g this inequality remains valid for each f 2 C.

On the other hand, for f 2 L1+ , f 6� 0,

EQ(f) = hf; gi > 0 ;

which clearly implies that C is disjoint from L1+ n f0g.
Note that for this implication we did not need the boundedness assumption on (St)t2I .

We now pass to the reverse implication.

(NFL) )(EMM) Step 1 (Hahn{Banach argument):
We claim that, for �xed f 2 L1+ , f 6� 0, there is g 2 L1

+ which | viewed as a linear functional on L1 |

is less than or equal to zero on C such that

hf; gi > 0 :

To see this, apply the separation theorem (e.g., Schaefer (71), th. II, 9.2) to the ��{closed convex set C
and the compact set ffg to �nd g 2 L1 and � < � such that

g jC � � and hf; gi > � :
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As 0 2 C we have � � 0. This implies that g is zero or negative on C and, in particular, non-negative on
L1+ , i.e. g 2 L1

+. Noting that � > 0 we proved step 1.

Step 2 (Exhaustion Argument): Denote by G the set of all g 2 L1
+, g being less than or equal to zero on

C. As 0 2 G (or by Step 1), G is nonempty.

Let S be the family of (equivalence classes of ) subsets of 
 formed by the supports of the elements g 2 G.
Note that S is closed under countable unions, as for a sequence (gn)

1
n=1 2 G we may �nd strictly positive

scalars (�n)
1
n=1, such that

1P
n=1

�ngn 2 G.

Hence there is g0 2 G such that for S0 = fg0 > 0g we have

P (S0) = supfP (S) : S 2 Gg:

We now claim that P (S0) = 1, which readily shows that g0 is strictly positive almost surely. If P (S0) < 1
then we could apply step 1 to f = �(
nS0) to �nd g1 2 G with

hf; g1i =
Z


nS0

g1(!)dP (!) > 0

Hence g0 + g1 would be an element of G whose support has P{measure strictly bigger than P (S0), a
contradiction.

Normalize g0 so that jjg0jj1 = 1 and let Q be the measure on F with Radon{Nikodym derivative dQ=dP =

g0. By our boundedness assumption, for s < t and h 2 L1(
;Fs; P ; IRd) we have that the random
variable (h; St � Ss) is bounded, and therefore (h; St � Ss) as well as �(h; St � Ss) are in C. Hence
EQ(h; St � Ss) = 0 thus proving (EMM).

q.e.d.

3.2 REMARK. We have given the proof for the pair of dual spaces hL1; L1i. But it is clear that the
same proof applies to any pair hE;F i of dual vector spaces of measurable functions on 
, provided we
choose topologies on E and F compatible with this pairing and if, for any sequence (gn)

1
n=1 there are

strictly positive scalars (�n)
1
n=1 such that

P1
n=1 �ngn converges in F . Compare Kreps (81) and also 4.10

below where we apply the above proof to a setting where E is a Frechet space.

Let us recast the above theorem in a more abstract version: Let C be a convex cone in L1 such that

(i) C = C � L1+
(ii) C is weak star closed and
(iii) C \ L1+ = f0g.

Then there is g 2 L1 with gjC � 0 and g being strictly positive almost surely.

We now give an example showing that in the de�nition of (NFL) { and therefore in the Kreps-Yan theorem
{ the ��-closure of C = (K0 � L0

+) \ L1 may not be replaced by the ��{closure of K = (K0 \ L1). A
similar example, displaying the same phenomenon, was given by Mcbeth ((92), example 5.2).

3.3 EXAMPLE. There is a uniformly bounded IR{valued process (St)t2N0 such that with the above
notation and letting K = K0 \ L1 we have

C = L1

while
K \ L1+ = f0g;
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where denotes the closure with respect to the ��{topology of L1.

Proof. Let (An)
1
n=1 be a partition of 
 into sets of probability P (An) = 2�n. Split each An into two

disjoint sets A+
n and A�n of probability 2�(n+1). Let Bn =

S1
k=n+1 Ak. De�ne

fn = 25n�A+n + 2n�A�n � 2�n�Bn

and let K be the span of (fn) in L1.

Let us �rst show that the constant function 1 is in the ��{closure of K �L1+ . The same analysis readily
shows that K � L1+ is ��{dense in L1. Indeed, gn =

Pn
k=1 fk is bounded from below by �1 and bigger

than 1 on 
 nBn. Hence (gn ^ 1)1n=1 tends almost surely and therefore �� to the constant function 1.

To show the second assertion, suppose to the contrary that there is g0 2 L1+ n f0g which is in the ��{
closure of K. As K is convex, g0 is in fact in the closure of K with respect to the Mackey-topology and
a fortiori in the closure of K with respect to the L1{norm (Observe that the Mackey-topology on L1 is
the topology of uniform convergence on weakly compact subsets of L1; as the unit-ball of L1, viewed
as a subset of L1, is weakly compact, one readily observes that the Mackey-topology is �ner than the
topology of uniform convergence on the unit-ball of L1, i.e., the norm-topology induced by the L1-norm.
For details, see e:g: Schaefer (71)).

Clearly g0 is constant on each A+
n and A�n . Let n0 be the �rst number such that g0 does not vanish on

An0 . One easily veri�es that there is a > 0 such that g0 equals 2
n0a on A�n0 and 25n0a on A+

n0 .

Let n > n0 and consider g 2 K such that g � 0 on
Sn
k=1 Ak and g = g0 on

Sn0
k=1 Ak. Glancing at the

de�nition of fn one veri�es inductively that, for n � k > n0, g is bigger than 22(k�n0)a on A+
k , whence

the L1{norm of g is bigger than 22(n�n0)�(n+1)a.

It follows easily that for M 2 IR+ there is n 2 N and � > 0 such that for each g 2 K with k(g �
g0)�S n0

k=1
Ak
k1 < � and g � �� on the set

Sn
k=1 Ak we have kgk1 > M . This contradiction readily proves

the second assertion about K.

We still have to show thatK may be constructed asK = K0\L1 whereK0 is the space of the elementary
stochastic integrals of a process (St)t2N0 . Let S0 � 0 and de�ne, for n 2 N, Sn � Sn�1 = 2�6nfn. The
numbers 2�6n are choosen su�ciently small such that the process (St)t2N0 stays uniformly bounded. If
we de�ne the �{algebras Fn to be generated by (S0; : : : ; Sn) we obtainK = K0 as the space of elementary
stochastic integrals of the process (St)t2N0 .

q.e.d.

In order to deal with the cone C = (K0�L0
+)\L1 we introduce the subsequent concept which is similar

to the notion of ��convergence considered by Mcbeth (92) and will be crucial to deal with the "one-sided
boundedness" situations in the sequel.

3.4 De�nition. Denote by F (
;F ; P ) the cone of IR [ f+1g-valued F-measurable functions. We say
that a sequence (fn)

1
n=1 2 F (
;F ; P ) Fatou-converges to f0 2 F (
;F ; P ) if

(i) there is M 2 IR+ such that
fn(!) > �M n 2 N; P � a:s:

(ii) limn!1 fn(!) = f0(!) P � a:s:

To pass from ��{convergence in L1 to almost sure convergence we shall repeatedly use the following
easy fact: If a net (f�)�2J 2 L1(
;F ; P ) converges weak star to f0 2 L1(
;F ; P ) (or, more generally,
if (f�)�2J 2 L1(
;F ; P ) converges with respect to the weak topology of L1 to f0 2 L1(
;F ; P )) there
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are convex combinations gn 2 conv(f�)�2J such that (gn)
1
n=1 converges a.s. to f0. Indeed, by the Hahn{

Banach theorem there are convex combinations gn 2 conv(f�)�2J converging to f0 with respect to the
norm of L1. Hence there is a subsequence | which, of course, again is a sequence of convex combinations
of (f�)�2J | converging almost surely.

Also note that, conversely, if (fn)
1
n=1 2 L1(
;F ; P ) is uniformly bounded and (fn)

1
n=1 converges a.s. to

f0 2 L1(
;F ; P ) then, by Lebesgue's theorem, (fn)
1
n=1 converges weak star to f0.

The next lemma, whose proof is somewhat long but only uses standard arguments, extends this kind of
situation to sequences of functions in F (
;F ; P ).

3.5 Lemma. If (fn)
1
n=1 2 F (
;F ; P ) is uniformly bounded from below there is a sequence gn 2

conv(fn; fn+1; : : : ) such that (gn)
1
n=1 Fatou-converges to some g0 2 F (
;F ; P ).

Proof. First observe the following

Fact : If (hn)
1
n=1 2 F (
;F ; P ) and h0(!) = lim inf hn(!) then at least one of the following assertions

holds true:

(i) there is a subsequence (hnk )
1
k=1 of (hn)

1
n=1 converging a.s. to h0 , or

(ii) there is a sequence kn 2 conv(hn; hn+1; : : : ) s. t. for k0(!) = lim inf kn(!) we have k0 > h0 and
k0(!) > h0(!) on a set of positive P -measure.

To see this consider, for " > 0,
a"(n) = Pfhn > h0 + "g:

If, for each " > 0, the sequence (a"(n))
1
n=1 tends to zero, then it is easy to produce a subsequence (hnk)

1
k=1

satisfying (i).

So suppose that there is " > 0 and � > 0 such that lim sup a"(n) = 2� > 0. By passing to a subsequence
we may assume a"(n) > � for all n 2 N. The sequence (�fhn�h0+"g)

1
n=1 is bounded in L1(
;F ; P ),

whence there is a sequence rn 2 conv(�fhn�h0+"g; �fhn+1�h0+"g; : : : ) converging a.s. to r0 2 L1+ (
;F ; P ).
Clearly E(r0) > �.

Let kn 2 conv(hn; hn+1; : : : ) be obtained by using the same weights on (n; n+ 1; : : : ) as (rn)
1
n=1. Then

k0 = lim inf kn > h0 + "r0;

hence (kn)
1
n=1 satis�es (ii), thus proving the \fact".

Now we apply an inductive procedure: if (fn)
1
n=1 satis�es condition (i) then { by passing to a subsequence

{ we have proved the lemma. If (i) fails then there are f
(1)
n 2 conv(fn; fn+1; : : : ) such that with

f
(1)
0 = lim inf f (1)n

the conditions of (ii) are satis�ed. In addition, we choose (f
(1)
n )1n=1 such that

E(arctan(f
(1)
0 )) > supE(arctan(lim inf(hn)))� 1;

where the sup is taken over all sequences of convex combinations

hn 2 conv(fn; fn+1; : : : ):

Continuing in an obvious way we either come to the situation where (i) holds true { in which case we are

�nished { or we get sequences f
(k)
n 2 conv(f

(k�1)
n ; f

(k�1)
n+1 ; : : : ) such that with

f
(k)
0 = lim inf f (k)n
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we have
E(arctan(f

(k)
0 )) > E(arctan(lim inf hn))� k�1

for each sequence (hn)
1
n=1; hn 2 conv(f

(k�1)
n ; f

(k�1)
n+1 ; : : : ). Choose a diagonal sequence gk = f

(k)
nk such

that
Pfarctan(f (k)nk ) < arctan(f

(k)
0 )� k�1g < 2�k:

Then for every sequence hk 2 conv(gk; gk+1; : : : )

E(arctan(lim inf gk)) = E(arctan(lim inf hk))

whence (gk)
1
k=1 must satisfy assertion (i) and { by passing once again to a subsequence { we have proved

the lemma.
q.e.d.

The above proposition will be of constant use in the sequel. First of all it allows one to prove proposition
1.5.

3.6 Proof of proposition 1.5. Obviously the condition formulated in 1.5 implies the existence of a free
lunch with bounded risk (consider fn ^ 1).

Conversely suppose (NFLBR) fails, i.e. there are sequences (gn)
1
n=1 2 K0 and (rn)

1
n=1 2 L0

+ such that
(gn � rn)

1
n=1 �

�{converges to g0 2 L1+ nf0g. By Banach-Steinhaus (kgn � rnk1)1n=1 is bounded, whence
(gn)

1
n=1 is uniformly bounded from below and { by multiplying gn, rn and g0 by a suitable scalar { there

is no loss of generality to assume that (gn)
1
n=1 is bounded from below by �1.

By the remark after de�nition 3.4 we may choose a sequence (hn � sn)
1
n=1 with (hn � sn) 2 conv((gj �

rj)
1
j=1); hn 2 K0; sn 2 L0

+, such that (hn(!)� sn(!))
1
n=1 converges a.s. to g0. Hence

lim inf
n!1

hn(!) > g0(!) P � a:s:

By lemma 3.5 there is a sequence fn 2 conv(hn; hn+1; :::) and f0 2 F (
;F ; P ) such that

lim
n!1

fn(!) = f0 P � a:s:

As fn � �1 for each n 2 N and f0 > g0 we �nished the proof.
q.e.d.

The next result will be useful to avoid problems arising from the above discussed phenomenon of \em-
barras de richesse".

3.7 Lemma. If (St)t2I veri�es (NFLBR) and (fn)
1
n=1 2 K0 Fatou-converges to some f0 2 F (
;F ; P ),

then f0(!) <1 a.s.

Proof. Let A = ff0=1g and suppose P (A) > 0. Find a subsequence (nk)
1
k=1 such that

PfA \ ffnk > kgg > P (A) � 2�k

and note that
lim
k!1

(fnk(!)=k) ^ �A(!) = �A(!) P � a:s:;

a contradiction to (NFLBR).
q.e.d.

To end this section we note in the subsequent proposition that { similarly as in the case of martingales
{ condition (NA) allows one to recover the process (H:S)t2I from the random variable (H:S)1.
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3.8 Proposition. Suppose that (St)t2I satis�es (NA) and let H1; H2 be easy integrands such that

(H1:S)1(!) = (H2:S)1(!) P -a.s.

Then, for any t 2 I, we have

(H1:S)t(!) = (H2:S)t(!) P -a.s.

Hence we may associate unambigously to each f = (H:S)1 2 K0 the stochastic process (ft)t2I =
(H:S)t2I . In addition we have for each t 2 I

ess inf(ft) > ess inf(f):

Proof. If the �rst assertion fails we may �nd H1; H2 and t 2 I such that

(H1:S)1(!) = (H2:S)1(!) P -a.s.

while

Pf(H1:S)t < (H2:S)tg > 0:

Note that

((H1:S)1 � (H1:S)t � ((H2:S)1 � (H2:S)t)):�f(H1 :S)t<(H2:S)tg

is an element of K0 and contained in L0
+(
;F ; P ) n f0g, a contradiction to (NA).

To prove the last assertion, suppose again to the contrary that there is f 2 K0 and t 2 I such that

A = fft < ess inf(f)g

has positive P -measure. Then (f � ft):�A again is in K0 \ (L0
+ n f0g), contradicting (NA).

q.e.d.

4. The proof of Theorem A

We now turn to the proof of theorem A (see 1.6 above). Throughout this section the index set I will
equal N0 .

The following concept already appears essentially in Mcbeth (92), the idea and the name going back to a
remark (3.27) in Harrison-Pliska (81). It is intimately related to the concept of (NFLBR): The underlying
motivation is that an economic agent has an initial wealth of M units of money and is only allowed to
perform trading operations which cannot result in a negative wealth.

4.1 De�nition. Let (St)t2N0 be an R
d-valued process de�ned on the �ltered probability space (
;F ; (Ft)t2N0 ; P ).

A general integrand will be a function H(t; !) of the form

H(t; !) =

1X
n=1

gn(!):�fng(t)

where, for n 2 N, gn is an IRd-valued Fn�1-measurable function. We then may de�ne the stochastic
integral as the process
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(H:S)t(!) =

tX
n=1

(gn(!); Sn(!)� Sn�1(!)) t 2 N0 :

We say that a general integrand H(t; !) is an admissible integrand if there is M 2 IR+ such that, for
t 2 N0 ,

(H:S)t(!) � �M P � a:s:

Our program for the proof of theorem A will be as follows: we �rst show that | assuming the hypothesis
of (NFLBR) | we may de�ne (H:S)1 for admissible integrands (prop.4.2). Then we de�ne Cadm as the
convex cone in L1 of functions dominated by (H:S)1, where H is an admissible integrand, and �nally we
show that the cone Cadm is weak star closed in L1 (prop.4.6) and meets L1+ only in f0g. An application
of the Kreps-Yan theorem will then prove theorem A.

In fact, we shall go through this scheme | with variations | several times in the sequel, namely twice
in this section and twice in the next sections, to cover the cases of theorem A and B.

4.2 Proposition. If (St)t2N0 satis�es (NFLBR) and H(t; !) is an admissible integrand then

(H:S)1(!) = lim
t!1

(H:S)t(!)

exists almost surely. In addition, for each t 2 N0

ess inf(H:S)1 � ess inf(H:S)t:

Proof. Fix M 2 IR+ such that (H:S)t � �M almost surely for each t 2 N0 . If ((H:S)t)t2N0 does not
converge almost surely (in the compact interval [�M;1]) there are A 2 F with P (A) = � > 0, and real
numbers � < 
 such that, for ! 2 A

lim inf
t!1

(H:S)t(!) < � while lim sup
t!1

(H:S)t(!) > 
:

Noting that F is generated by (Ft)t2N0 we may �nd, for � > 0, some t0 2 N and A0 2 Ft0 such that, for
the symmetric di�erence A M A0, we have P (A M A0) < �. De�ne the stopping times U and V by

U(!) = minft � t0 : (H:S)t(!) < �g
and

V (!) = minft � U(!) : (H:S)t(!) > 
g;
where U(!) and V (!) equal +1 if the respective sets above are empty.

Since V (!) <1 for ! 2 A, we may �nd t1 2 N such that, for A1 = A0 \ fV � t1g, we have

P (A1) > �� 2�:

Note that the random variable

f(!) = �A0(!):((H:S)V ^t1(!)� (H:S)U^t1(!))
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is of the form f(!) = (L:S)1, where L is an easy integrand. The function f is bounded from below by
�(M + �), vanishes outside of A0, and is bigger than 
 � � on A1.

Repeating the above construction for �k = 2�k and applying lemma 3.5 we obtain a sequence (fk)
1
k=1 in

K0, bounded from below by �(M + �), converging pointwise almost surely to zero outside of A and to a
value bigger than or equal to 
 � � on A. This gives the desired contradiction to (NFLBR).

Hence we have shown that (H:S)1(!) = limt!1(H:S)t(!) exists almost surely, where we { a priori {
allowed (H:S)1(!) to take the value +1. But a glance at proposition 3.7 reveals that (H:S)1(!) is
necessarily �nite almost surely.

To show the last assertion, suppose to the contrary that there is t0 2 N0 and � > 0 such that, for
A = f(H:S)t0 < ess inf(H:S)1 � �g, we have P (A) > 0. Then the random variables

ft = �A:((H:S)t � (H:S)t0)

for t � t0 give rise to a contradiction to (NFLBR).
q.e.d.

The above proof may be extended to a more general situation which is described by the subsequent
proposition.

4.3 Proposition. Suppose that (St)t2N0 satis�es (NFLBR) and that Hn(t; !) is a sequence of admissible
integrands such that (gn)

1
n=1 = ((Hn:S)1)

1
n=1 Fatou-converges to some g0 2 L0(
;F ; P ) and, for each

t 2 N0 , the sequence (gn;t)
1
n=1 = ((Hn:S)t)

1
n=1 Fatou-converges to some g0;t 2 L0(
;Ft; P ). Then we

still have

g0(!) � lim inf
t!1

g0;t(!)

almost surely.

The reader should note, however, that in this more general setting we only claimed an inequality. In fact,
one may construct examples such that the equality

g0(!) = lim
t!1

g0;t(!)

does not hold true.

Proof of proposition 4.3. First note that there is M 2 IR+ such that (Hn:S)1 � �M and therefore
(Hn:S)t � �M for all t and n. If the above inequality were false we could proceed similarly as in 4.2
above: again we could �nd A 2 F with P (A) = � > 0 and � < 
 such that

g0(!) > 
 while lim inf
t!1

g0;t(!) < �

for ! 2 A.

Hence for � > 0 there is t0 2 N and A0 2 Ft0 such that P (A M A0) < � and n0 2 N such that, for n � n0

P (A \ fgn(!) � 
g) < �:

Next �nd t0 < s1 < s2 < � � � < sk such that
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P (A \ f min
1�i�k

g0;si � �g) < �;

and n � n0 such that

P (A \ f min
1�i�k

gn;si � �g) < �:

Now de�ne the stopping times U and V by

U(!) = minft � t0 : gn;t(!) = (Hn:S)t(!) < �g
and

V (!) = minft � U(!) : gn;t(!) = (Hn:S)t(!) > 
g;
where U(!) and V (!) equal +1 if the respective sets above are empty.

Note that A \ fV (!) < 1g has measure bigger than � � 2�, hence we may �nd t1 2 N such that, for
A1 = A0 \ fV � t1g, we have

P (A1) > �� 3�:

Note again that the random variable

f(!) = �A0(!):((Hn:S)V ^t1(!)� (Hn:S)U^t1(!))

is of the form f(!) = (L:S)1, where L is an easy integrand. The function f is bounded from below by
�(M +�), vanishes outside of A0, and is bigger than 
�� on A1. Hence by applying the same argument
as in 4.2 above we arrive at a contradiction to (NFLBR).

q.e.d.

We now can �x some notation related to the notion of admissible integrands.

4.4 De�nition. Let (St)t2N0 satisfy (NFLBR). Denote by K
adm
0 the convex cone in L0(
;F ; P ) spanned

by the random variables (H:S)1, where H runs through the admissible integrands. Denote by Cadm
0 the

convex cone Kadm
0 � L0

+(
;F ; P ) and by Cadm its intersection with L1.

4.5 Proposition. Let (St)t2N0 satisfy (NFLBR). Then Cadm \ L1+ = f0g.

Proof. Let f 2 Cadm \ L1+ and �nd an admissible integrand H such that (H:S)1 � f . By proposition
4.2 (H:S)t � 0 almost surely for each t 2 N0 and ((H:S)t)

1
t=0 converges almost surely to (H:S)1. By

the assumption of (NFLBR) (in fact (NA) would su�ce here) we have that (H:S)t � 0 for each t 2 N0

and therefore (H:S)1 � 0.
q.e.d.

The next proposition is a crucial step. It relies essentially on a classical result from functional analysis,
the Krein-Smulian theorem. For the convenience of the reader we restate this theorem below (see, e.g.,
Horvath (66), p.246). Let us point out that similar arguments as in the proof of proposition 4.6 below
were used by Delbaen (92); in fact, Delbaen applied the Banach-Dieudonne theorem, a close relative of
the Krein-Smulian theorem.
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Theorem of Krein-Smulian. Let E be a Fr�echet space and E� its dual. A convex subset C of E� is
�(E�; E)-closed i�, for each balanced, convex �(E�; E)-closed set M of E�, the intersection C \M is
�(E�; E)-closed.

We deduce that, in particular, if E is a Banach space and C a convex cone in E�, then C is �(E�; E)-closed
i� the intersection of C with the closed unit ball of E� is �(E�; E)-closed.

We also recall a lemma from Stricker (90) which is similar in spirit to the subsequent proposition 4.6.
For a discussion of Stricker's lemma, its relation to the theorem of Dalang-Morton-Willinger and an
alternative proof we refer to Schachermayer (92).

Stricker's Lemma. (Stricker (90), prop. 2)

Let (
;F1; P ) be a probability space, Y 2 L0(
;F1; P ; IR
d), F0 a sub{�{algebra of F1 and denote by K0

the subspace of L0(
;F1; P )

K0 = f(h; Y ) : h 2 L0(
;F0; P ; IR
d)g :

Then K0 is closed in L0(
;F1; P ) with respect to the topology of convergence in measure.

Finally let us specify some technicalities pertaining to the formation of convex combinations. Given a

sequence (gn)
1
n=1 in a vector spaceX we say that (g

(1)
n )1n=1 is a sequence of convex combinations of (gn)

1
n=1

if, for each n 2 N, g
(1)
n 2 conv(gn; gn+1; : : : ), i.e., there are nonnegative scalars (�k)

Nn

k=n,
PNn

k=n �k = 1,

such that g
(1)
n =

PNn

k=n �kgk.

If (hn)
1
n=1 is a sequence in a vector space Y we say that a sequence of convex combinations (h

(1)
n )1n=1 is

obtained by using the same weights as (g
(1)
n )1n=1 if, for each n 2 N, h

(1)
n =

PNn

k=n �khk.

Note that if ((g
(j)
n )1n=1)

1
j=0 is a sequence of sequences in X such that, for each j 2 N0 , (g

(j+1)
n )1n=1 is

a sequence of convex combinations of (g
(j)
n )1n=1, then the diagonal sequence (g

(n)
n )1n=1 is a sequence of

convex combinations of (g
(0)
n )1n=1.

In particular, if (g
(0)
n )1n=1 is a sequence of random variables converging almost surely to a random valiable

g0 then (g
(n)
n )1n=1 converges almost surely to g0 too.

4.6 Proposition. Let (St)t2N0 satisfy (NFLBR). Then the convex cone Cadm is weak star closed in L1.

Proof. By the Krein{Smulian theorem and the above remark it su�ces to show that Cadm \ ball(L1) is
weak star closed. Let (f�)�2J be a net in Cadm \ ball(L1) converging weak star to f0. By the remark
preceding lemma 3.5 there exists a sequence (fn)n2N, fn 2 conv((f�)�2J ) converging almost surely to
f0. Clearly each fn is in Cadm \ ball(L1) and therefore we may �nd a sequence (Hn)n2N of admissible
integrands such that fn � (Hn:S)1. Let gn = (Hn:S)1 and, for t 2 N0 , gn;t = (Hn:S)t. Note that
gn � �1 and therefore, by prop. 4.2, gn;t � �1 for n 2 N; t 2 N0 .

By the lemmata 3.5 and 3.7 we may �nd a sequence (g
(1)
n )1n=1 of convex combinations of (gn)

1
n=1 con-

verging almost surely to some g0 2 L0 for which we clearly have that g0 � f0 � �1 almost surely. Denote
by (H

(1)
n )1n=1 the sequence of admissible integrands obtained from (Hn)

1
n=1 by using the same weights as

(g
(1)
n )1n=1. We again apply lemmata 3.5 and 3.7 to �nd a sequence (g

(2)
n )1n=1 of convex combinations of

(g
(1)
n )1n=1 and the corresponding sequence (H

(2)
n )1n=1 of admissible integrands, obtained from (H

(1)
n )1n=1

by using the same weights as (g
(2)
n )1n=1, such that (g

(2)
n;0)

1
n=1 = (H

(2)
n :S)0 converges almost surely to some

g0;0 2 L0.
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Continuing in an obvious way and applying the diagonalisation procedure explained in the paragraph
preceding prop. 4.6, we may assume that (gn)

1
n=1 converges almost surely to g0 and, for each t 2 N0 ,

(gn;t)
1
n=1 to some g0;t 2 L0.

We shall show that there is an admissible integrand H0 such that g0;t = (H0:S)t for each t 2 N0 .
Admitting this for the moment we can �nish the proof as follows: By proposition 4.3 we have

g0(!) � lim inf
t!1

g0;t(!) = (H0:S)1:

Hence g0 and a fortiori f0 is dominated by an element of Kadm
0 showing that f0 2 Cadm, thus �nishing

the proof.

To show the existence of the admissible integrand H0 we apply Stricker's lemma. Consider, for t 2 N0 ,
the sequence (Hn(t; !))

1
n=1 of Ft�1-measurable random variables and let Y (!) = St(!) � St�1(!) 2

L0(
;Ft; P ; IRd). We know that

(Hn(t; !); St(!)� St�1(!))
1
n=1 = (gn;t(!)� gn;t�1(!))

1
n=1

converges almost surely to g0;t� g0;t�1, whence by Stricker's lemma there is an Ft�1-measurable random
variable H0(t; !) such that

(H0(t; !); St(!)� St�1(!)) = (g0;t(!)� g0;t�1(!)):

De�ning H0(t; !) in this way for each t 2 N, this means precisely that g0;t = (H0:S)t for all t 2 N0 , which
�nishes the proof.

q.e.d.

We now have assembled all the ingredients for the proof of theorem A in the case when the process
(St)t2N0 is such that each St is bounded. For expository reasons we present this case �rst as the idea of
the proof should become more transparent than in the proof of the general case, where we have to deal
with some additional technicalities.

4.7 Proof of theorem A (special case).

In addition to the assumptions of theorem A stated in the introduction we assume that each St is bounded.

By propositions 4.5 and 4.6 Cadm is a weak star closed convex cone in L1(
;F ; P ), such that Cadm \
L1+ = f0g. Hence by the abstract version of the Kreps-Yan theorem (see remark 3.2) there is an element
g 2 L1(
;F ; P ), g > 0 almost surely, such that g | viewed as a linear functional on L1 | is less than
or equal to zero on Cadm. Note that by our boundedness assumption each function of the form

(h(!); St(!)� Ss(!));

with s < t and h being Fs-measurable and bounded, is bounded and therefore in Cadm. Whence

EQ(h(!); St(!)� Ss(!)) � 0;

where Q denotes the measure on F with Radon{Nikodym derivative equal to g. By passing to �h we
conclude that equality holds above which means precisely that (St)t2N0 is a martingale under Q.

q.e.d.
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To extend the above proof to the general case (i.e., without assuming any boundedness or integrability
assumptions on the process (St)t2N0) we have to develop some more concepts. For t 2 N0 de�ne the
weight function

wt(!) = max(1; kS1(!)k; : : : ; kSt(!)k):

Clearly wt is Ft-measurable and takes its values in [1;1[ almost surely. Denote by W the sequence
(wt)

1
t=0.

For t0 2 N0 , a general integrandH(t; !) is called wt0 -admissible if there isM 2 IR+ such that (H:S)t(!) �
�Mwt0(!) almost surely for all t � t0. We callH(t; !)W-admissible if it is wt-admissible for some t 2 N0 .

Under the assumption (NFLBR), for W-admissible integrands a similar theory may be established as for
admissible integrands. This will be done in the subsequent propositions which are technical variants of
the corresponding propositions in the �rst part of this section.

4.8 Proposition. Suppose that (St)t2N0 satis�es (NFLBR) and let H(t; !) be a W-admissible integrand.
Then

(H:S)1 = lim
t!1

(H:S)t

exists almost surely. If t0 2 N0 and M 2 IR+ are such that

(H:S)1(!) � �Mwt0(!) P � a:s:;

then for each t � t0

(H:S)t(!) � �Mwt0(!) P � a:s:

Proof. If H is W-admissible there is t1 2 N0 and M1 2 IR+ such that, for t � t1

(H:S)t(!) � �M1wt1(!) P � a:s:

In order to show that ((H:S)t)
1
t=0 converges almost surely, it su�ces to show that, for each L 2 IR+, the

sequence

(((H:S)t � (H:S)t1)�f(H:S)t1<Lwt1g)
1
t=t1

converges almost surely.

Consider the general integrand

~H(t; !) = w�1t1 H(t; !)�]t1;1[(t)�f(H:S)t1<Lwt1g(!):

Note that ( ~H:S)t � �(M1 +L) for all t 2 N0 . Hence ~H is an admissible integrand and we may conclude

by prop.4.2 that ( ~H:S)1t=0 and therefore (H:S)1t=0 converges almost surely.

For the second assertion let again H be W-admissible and suppose in addition that there are t0 2 N0

and M 2 IR+ such that (H:S)1 � �Mwt0 . By the W-admissibility of H there are t1 and M1 as above
and we may assume that t0 � t1.
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We �rst show that for t � t1 we have (H:S)t � �Mwt0 . Indeed, otherwise we could �nd t2 � t1 and
� > 0 such that

A = f(H:S)t2 < �(M + �)wt0g
has measure P (A) > 0. Letting, for t � t2,

ft = w�1t1 ((H:S)t � (H:S)t2 )�A;

we �nd a sequence (ft)
1
t=t2 of easy integrals on the process (St)t2N0 bounded from below by �M1 and

such that, for t!1, (ft)
1
t=t2 converges almost surely to a function dominating the function �wt0w

�1
t1 �A,

a contradiction to (NFLBR).

To show that the same result holds true for t0 � t < t1, suppose again to the contrary that there is
t0 � t2 < t1 such that

A = f(H:S)t2 < �(M + �)wt0g
has measure P (A) > 0. Considering

((H:S)t1 � (H:S)t2)�A;

we obtain a contradiction to (NA) and therefore to (NFLBR).
q.e.d.

We now may de�ne KW�adm
0 as the convex cone in L0(
;F ; P ) formed by the random variables of the

form (H:S)1, where H is a W-admissible integrand. CW�adm0 will denote the convex cone KW�adm
0 �

L0
+(
;F ; P ). For t 2 N we denote by w�1t CW�adm0 the convex cone of functions of the form w�1t f with

f 2 CW�adm0 .

4.9 Proposition. If (St)t2N0 satis�es (NFLBR) then C
W�adm
0 \L0

+(
;F ; P ) = f0g and, for each t 2 N0 ,

the convex cone w�1t CW�adm0 \ F (
;F ; P ) is closed with respect to Fatou-convergence.

Proof. The �rst assertion follows immediatly from prop. 4.8 above. If H isW-admissible and (H:S)1 � 0,
then (H:S)t � 0 for all t 2 N0 , whence (H:S)1 � (H:S)t � 0.

For the Fatou{closedness of w�1t CW�adm0 \ F (
;F ; P ), �x t0 2 N0 and let (fn)
1
n=1 be a sequence in

w�1t0 C
W�adm
0 with fn � �M that converges almost surely to f0 2 F (
;F ; P ). Find W-admissible

integrands Hn such that for gn = (Hn:S)1 we have gn � wt0fn. Denoting (Hn:S)t by gn;t we infer from
prop. 4.8 that gn;t � �Mwt0 for t � t0.

Similarly as in the proof of prop. 4.6 we may assume | by passing to convex combinations of the sequence
(gn)

1
n=1 | that (gn)

1
n=1 converges almost surely to some g0 2 L0(
;F ; P ) and, for t 2 N0 , (gn;t)

1
n=1

converges almost surely to some g0;t 2 L0(
;Ft; P ). Indeed, as regards the convergence of the sequence
(gn)

1
n=1 and of the sequences (gn;t)

1
n=1 for t � t0, this may be deduced from the lemmata 3.5 and 3.7 by

considering (w�1t0 gn)
1
n=1 and (w�1t0 gn;t)

1
n=1.

To obtain the same result for t < t0 some extra care is needed: We deduce from the Dalang{Morton{
Willinger theorem that there is a measure Q on Ft0 equivalent to the restriction of P to Ft0 such that
(St)

t0
t=0 is a martingale under Q. In particular, wt0 is Q-integrable and (gn;t0)

1
n=1 therefore is bounded

in L1(Q). It follows that, for each t < t0, (gn;t)
1
n=1 is bounded in L1(Q) and we now may apply Komlos'

theorem (Komlos (67)). Recall that this theorem implies that, for a bounded sequence in L1, there is a
sequence of convex combinations converging almost surely. Hence we may �nd convex combinations of
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(gn)
1
n=1 such that the corresponding sequences of convex combinations (gn;t)

1
n=1 converge almost surely

to some g0;t for each 0 � t < t0.

Now we may again apply Stricker's (90) lemma to obtain an integrandH0(t; !) such that (H0:S)t = g0;t for
each t 2 N0 . Clearly H0 is wt0 -admissible and therefore (H0:S)1 = lim(H0:S)t exists almost surely. We

shall show that (H0:S)1 � g0, which will �nish the proof as g0 � wt0f0 and therefore f0 2 w�1t0 C
W�adm
0 .

To show that (H0:S)1 � g0, denote by v the weight function

v(!) = max(Mwt0(!); sup
n
gn;t0(!));

which is Ft0-measurable and �nite almost everywhere. For n 2 N0 let

~Hn = v�1Hn�]t0;1[:

Note that ( ~Hn:S)t � �2 for all n and t. Hence by proposition 4.3

lim
t!1

( ~H0:S)t � lim
n!1

( ~Hn:S)1;

which means that

lim
t!1

v�1(g0;t � g0;t0) � lim
n!1

v�1(gn � gn;t0):

Noting that (gn;t0)
1
n=1 converges almost surely to g0;t0 , we conclude that

lim
t!1

g0;t � lim
n!1

gn = g0;

which �nishes the proof.
q.e.d.

4.10 Proof of Theorem A. De�ne the vector space

L1
W(
;F ; P ) = fg 2 L1(
;F ; P ) : E(wtjgj) <1 for t 2 N0g:

L1
W is a Frechet space, the topology given by the increasing sequence of seminorms

kgkt = E(wtjgj):

We denote by L1W the dual of L1
W which is given by (see, e:g: Schaefer (71) or

Horvath (66))

L1W(
;F ; P ) = ff 2 L0(
;F ; P ) : there is t 2 N0 ;M 2 IR+ s:t: jf j �Mwtg:

Note that L1
W separates points of L1W , i.e., the topology �(L1W ; L1

W) is Hausdor�. Indeed, for � > 0 �nd
sets At;� 2 Ft, P (At;�) > 1 � �2�t such that wt is bounded on At;�. Then A� =

T1
t=1At;� has measure

bigger than 1� � and �A�
2 L1

W , which quickly implies the assertion.

A fundamental sequence of equimeasurable sets of L1W is given by



22 W. SCHACHERMAYER

Bt = ff 2 L1W : jf j � wtg t 2 N0 :

Note that there is an equivalent martingale measure Q for (St)t2N0 i� there is g = dQ=dP 2 L1
W such

that g(!) > 0 almost surely and, for each bounded Ft�1-measurable h, we have

EQ(h; St � St�1) = 0:

As (h; St � St�1) 2 KW�adm
0 \ L1W , this will be the case if g is less than or equal to 0 on CW�adm =

CW�adm0 \ L1W .

By prop. 4.9 CW�adm \ (L1W)+ = f0g and CW�adm \Bt is �(L
1
W ; L1

W)-closed for each t 2 N0 . Hence by
the Krein{Smulian theorem in its version for Frechet spaces (see, e. g. Horvath (66)) we may conclude
that CW�adm \ L1W is �(L1W ; L1

W)-closed. The proof of the Kreps{Yan theorem reveals the existence of
an element g 2 L1

W , g > 0 a.s. such that gjCW�adm � 0. This �nishes the proof of theorem A.
q.e.d.

4.11 Remark. Observe a curious feature of theorem A. Let (St)t2N0 be such that C = �L1+ , i:e:, there
are no easy integrands (except for H � 0) such that the stochastic integral is uniformly bounded from
below. In this case (NFLBR) is trivially satis�ed, whence by theorem A we get that (St)t2N0 satis�es
(EMM).

For example, this is the case when (St � St�1)
1
t=1 is a sequence of real{valued independent random

variables which are neither bounded from below nor from above. In this case the existence of an equivalent
martingale measure was proved by Mcbeth (92), who also showed that C = �L1+ implies the existence
of a local martingale measure for (St)t2N0 and correctly conjectured that it implies in fact (EMM).

Finally we note that one may also view theorem A as a help for determining the existence of a sequence
of trading strategies yielding a free lunch with bounded risk. Let us illustrate this with an easy example.

Suppose that 
 = f�1;+1gN equipped with normalized Haar measure P ; denote by �n the projection
on the n'th coordinate of 
 and by Fn the sigma-algebra generated by f�1; : : : ; �ng. F will denote the
Borel-sigma-algebra of 
. Fix a sequence (�n)

1
n=1 of numbers in ]0; 1[ and de�ne the process (Sn)

1
n=1 by

S0 � 0 and
Sn � Sn�1 = �n + �n for n 2 N:

It is straightforward to verify that there is a unique probability measure Q on F which turns S into a
martingale, namely

Q =

1O
n=1

(
1 + �n

2
��1 +

1� �n
2

�1)

where � denotes the Dirac-measure. A classical theorem of Kakutani (see, e.g., Williams (91) 14.17, page
150) asserts that Q is either equivalent to P or Q and P are mutually singular depending on whether the
sequence (�n)

1
n=1 is in l2 or not.

For example, if �n = (n + 1)�1=2, we deduce that there is no equivalent martingale measure for the
process S. Theorem A tells us that there is a free lunch with bounded risk; but it is quite a challenging
task { at least to the author { to directly construct a sequence of trading strategies yielding the desired
free lunch with bounded risk.

5. The proof of Theorem B

We now turn to the case of continuous time I . In the mathematical �nance literature the case I = [0; 1]
has usually been considered, but in the present context it is more natural to work with the general case
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I = IR+. So we shall consider in this section a �ltered probability space (
;F ; (Ft)t2IR+ ; P ) satisfying
the usual conditions and an adapted cadlag process (St)t2IR+ .

Similarly as in Delbaen (92) we de�ne in this section easy integrands to be linear combinations of functions
of the form

H = h�]]U;V ]];

where U � V are stopping times taking �nite values almost surely and h is an FU -measurable IRd-valued
function. We then may de�ne the stochastic integral with respect to easy integrands as processes which
are linear combinations of processes of the form

(H:S)t = (h; (SV ^t � SU^t)) t 2 IR+:

Note that for easy integrands H we may de�ne

(H:S)1 = lim
t!1

(H:S)t = (h; (SV � SU )):

As we shall also deal with processes (St)t2IR+ with jumps we shall also consider easy integrands of a
second type, namely linear combinations of functions of the form

H = h�[[T ]]

where T is a predictable stopping time taking �nite values almost surely and h is an FT�-measurable
IRd-valued function. There is an obvious economic interpretation of these integrands: If the agent knows
in advance that there is a possibility of a jump at time T (e.g., when earnings announcements are given),
he or she should be able to bet on this jump using all the information prior to T (which is re
ected by
the requirement h 2 FT�). Again we may de�ne

(H:S)t = (h;�ST�fT�tg) and (H:S)1 = (h;�ST );

and throughout this section an easy integrand will refer to a linear combination of processes H of the
two kinds considered above.

Note that the de�nition of easy integrands has been chosen such that the easy integrals do not involve
any limiting procedure and therefore are well de�ned for any process (St)t2IR+ .

We shall adopt in this section the following notation: K0 will denote the subspace of L
0(
;F ; P ) spanned

by (H:S)1, where H runs through the easy integrands as de�ned above. Again we denote by C0 the
cone K0 � L0

+(
;F ; P ) and by C the convex cone C0 \ L1. Similarly as in de�nition 1.2 we say that

the continuous time process (St)t2IR+ satis�es (NFL) (resp. (NFLBR) or (NA)) if C \ L1+ = f0g (resp.eC \ L1+ = f0g or C \ L1+ = f0g).

With this notation we may formulate a version of Delbaen's theorem appropriate for our setting:

5.1 Delbaen's Theorem. Let (St)t2IR+ be a process with continuous paths. If (St)t2IR+ satis�es
(NFLBR) then there is a measure Q on F equivalent to P such that (St)t2IR+ is a local martingale with
respect to Q. If, in addition, each St is bounded, then Q is in fact a martingale measure for (St)t2IR+ .

5.2 Remark. Contrary to Delbaen's (92) original formulation of his theorem we can only assure the
existence of an equivalent local martingale measure as we dropped the assumption that (St)t2IR+ is
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bounded. We refer to Delbaen-Schachermayer (92) for examples showing that in this general setting one
only obtains an equivalent local martingale measure Q.

Also note that for the above case of processes with continuous paths there is no need to consider easy
integrands of the form H = h�[[T ]] .

Proof of proposition 5.1. Let T0 � 0 and Tn be the �rst moment where kSt(!)k equals for the �rst time
n if this occurs before t = n and Tn = n otherwise.

De�ne the process (Xt)t2IR+ inductively on the stochastic intervals [[Tn�1; Tn]]: for t 2 [[Tn�1; Tn]] let

Xt �XTn�1 = 2�n(St � STn�1):

Clearly (Xt)t2IR+ is a well de�ned, adapted, continuous and uniformly bounded process such that
limt!1Xt converges uniformly to a random variable X1. One easily veri�es that one may apply Del-
baen's theorem to the process (Xt)t2[0;1] to conclude that there is an equivalent martingale measure Q
for the process (Xt)t2[0;1].

Hence, for each n 2 N, the process (STnt )t2IR+ is a martingale under Q which readily implies that (St)t2IR+
is a local martingale under Q.

For the �nal assertion note that it follows from easy no-arbitrage arguments (compare prop.3.8) that
(kStk1)t2IR+ is increasing. Hence, for each t0 2 IR+ the process (St)t2[0;t0] is a uniformly bounded local

martingale and therefore a martingale under Q, which implies the assertion.
q.e.d.

Proposition 5.1 shows in particular that a process (St)t2IR+ with continuous paths and satisfying (NFLBR)
is a semimartingale, and we therefore may apply the general stochastic integration theory available for
semimartingales.

5.3 De�nition. Given an Rd-valued semimartingale (St)t2IR+ we call a predictable IRd-valued process
(Ht)t2IR+ an admissible integrand if H is S-integrable (see Protter(90), p.134 for a de�nition) and there
is M 2 IR+ such that

(H:S)t � �M for t 2 IR+; P a:s:

We shall now develop a theory of stochastic integrals for admissible integrands in the continuous time
case similarly as we did in the previous section for the discrete time case.

5.4 Proposition. If (St)t2IR+ has continuous paths and satis�es (NFLBR) then for each admissible
integrand H the limit

(H:S)1 = lim
t!1

(H:S)t

exists almost surely and, for each t 2 IR+,

ess inf(H:S)1 � ess inf(H:S)t:

Proof. Let Q be an equivalent local martingale measure for (St)t2IR+ . The process (H:S)t is a well de�ned
continuous local martingale with respect to Q (see, e.g. Protter (90) th. IV 22 and 30). As it is uniformly



MARTINGALE MEASURES FOR DISCRETE TIME PROCESSES WITH INFINITE HORIZON 25

bounded from below by �M , it is a supermartingale which is bounded in the norm of L1(Q) and therefore
converges almost surely. The �nal assertion now follows from the fact that EQ((H:S)1jFt) � (H:S)t.

q.e.d.

5.5 De�nition. Given a continuous process (St)t2IR+ satisfying (NFLBR) denote by Kadm
0 the convex

cone in L0(
;F ; P ) spanned by the functions (H:S)1 where H runs through the admissible integrands.
Again denote by Cadm

0 the convex cone Kadm
0 � L0

+(
;F ; P ) and by Cadm its intersection with L1.

We come to the crucial proposition which will give the link of Delbaen's theorem to the setting of theorem
B.

5.6 Proposition. If (St)t2IR+ has continuous paths and satis�es (NFLBR), then Cadm is weak star

closed in L1 and Cadm \ L1+ = f0g.

Proof. Again let Q be an equivalent local martingale measure for (St)t2IR+ . By the Krein{Smulian

theorem it su�ces to show that Cadm \ ball(L1) is weak star closed.
As in 4.6 above let (fn)

1
n=1 be a sequence in Cadm \ ball(L1) converging weak star to f0 2 ball(L1).

Find a sequence gn = (Hn:S)1 in Kadm
0 such that gn � fn.

By lemma 5.4 we know that, for n 2 N and t 2 IR+, we have (Hn:S)t � �1 almost surely; by stopping at
the �rst moment when (Hn:S)t = 1 we also may assume that (Hn:S)t � 1 and therefore gn 2 ball(L1).
By passing to convex combinations we may assume that (gn)

1
n=1 converges almost surely | and therefore

with respect to the norm of L2(Q) | to some g0 2 ball(L1).

This implies that the sequence of admissible integrands (Hn)
1
n=1 is a Cauchy sequence with respect to

the H2-norm

kHk2 = EQ(

Z 1

0

d[H:S;H:S]):

As the space formed by the predictable processes H such that kHk2 < 1 is complete (i.e., a Hilbert
space), there is a predictable S-integrable process H0 with lim kH0 � Hnk2 = 0. Clearly H0 is an
admissible integrand and (H0:S)1 = g0 � f0, which readily shows that f0 2 Cadm.

The �nal assertion Cadm\L1+ = f0g quickly follows from proposition 5.4: if H is an admissible integrand
with (H:S)1 � 0 then (H:S)t � 0 for all t. Hence (H:S)t is a nonnegative local Q-martingale with
(H:S)0 � 0 and therefore identically equal to zero.

q.e.d.

We now turn to the setting of theorem B: let (St)t2IR+ be an adapted cadlag process such that each St
is bounded and such that there is an increasing sequence (Tn)

1
n=1 of predictable stopping times tending

to +1 such that the jumps of (St)t2IR+ are contained in
S1
n=1[[Tn]]. Let T0 � 0. By passing to Tn ^ n

we may suppose that (Tn)
1
n=1 is �nite almost surely.

We may decompose (St)t2IR+ into its discontinuous part

Sdt =

1X
n=1

�STn�([[Tn;1[n[[Tn�1]](t)

and its continuous part
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Sct = St � Sdt :

From now on we shall assume that (St)t2IR+ satis�es (NFLBR) with respect to the easy integrands
introduced in the beginning of this section. Glancing at the de�nition of these integrands it is clear that
(Sdt )t�Tn and (Sct )t�Tn satisfy (NFLBR) too. As (Sdt ) is, of course, a semimartingale it follows again
from 5.1 that (St)t2IR+ is a semimartingale, so de�nition 5.3 of admissible integrands does make sense
for (St)t2IR+ .

We now shall develop similar results for the processes (St)t2IR+ satisfying the assumptions of theorem B
as those which we have obtained for the case of continuous processes (St)t2IR+ in the �rst part of this
section.

5.7 Proposition. Assume that the process (St)t2IR+ satis�es the assumptions of theorem B. Let H be
an admissible integrand. Then

(H:S)1(!) = lim
t!1

(H:S)t(!)

exists almost surely. In addition, for each t 2 N0

ess inf(H:S)1 � ess inf(H:S)t:

Proof. We mimic the proof of proposition 4.2. Fix again M 2 IR+ such that (H:S)t � �M almost
surely for each t 2 IR+. If ((H:S)t)t2IR+ does not converge almost surely there are A 2 F ; � > 0 with
P (A) = � > 0 and real numbers � < 
 such that for ! 2 A

lim inf(H:S)t(!) < � while lim sup(H:S)t(!) > 
:

Noting that F is generated by (FTk )k2N, we may �nd, for � > 0, some k0 2 N and A0 2 FTk0 such that

for the symmetric di�erence A M A0 we have P (A M A0) < �. De�ne the stopping times U and V by

U(!) = infft � Tk0 : (H:S)t(!) < �g
and

V (!) = infft � U(!) : (H:S)t(!) > 
g;
where U(!) and V (!) equal +1 if the respective sets above are empty.

Since V (!) <1 for ! 2 A we may �nd k1 2 N such that for A1 = A0 \ fV � Tk1g we have

P (A1) > �� 2�:

Note that the random variable

f(!) = �A0(!):((H:S)V ^Tk1 (!)� (H:S)U^Tk1 (!))

is of the form f(!) = (L:S)1, where L is an admissible integrand supported by the stochastic intervall
]]Tk0 ; Tk1 ]]. The function f is bounded from below by �(M + �), vanishes outside of A0, and is bigger
than � � 
 on A1.
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We shall approximate L by an easy integrand Leasy such that (Leasy:S)1 is bounded from below by
�(M + � + �) and bigger than � � 
 � � on a subset of A1 of measure bigger than �� 3�.

If we have done this we may �nish the proof as in 4.2 above: we repeat the above construction for a
sequence (�k)

1
k=1 tending to zero which will give us a contradiction to (NFLBR).

To construct Leasy �nd �rst a constant D � M + � such that, if we stop at the �rst moment W when
either (jStj)t2IR+ or the process ((L:S)t)t�Tk1 is bigger than or equal to D, we have that fTk1 ^W = Tk1g
is a set of measure bigger than 1� �=2.

For each k0 � j < k1 consider the stochastic interval ]]Tj ^W;Tj+1 ^W [[. The process

(St � STj^W )Tj^W�t<Tj+1^W

is continuous, bounded, and satis�es (NFLBR), hence it is a martingale under some equivalent measure
Qj .

The process (L:(St�STj^t))Tj^W�t<Tj+1^W is uniformly bounded and therefore in L2(Qj). Hence it may

be approximated by easy integrands Lj supported by
]]Tj ^W;Tj+1 ^W [[ with respect to the norm of L2(Qj). In particular we may �nd, for k0 � j < k1, easy
integrands Lj supported by ]]Tj ^W;Tj+1 ^W [[ verifying the estimate

Pfsup j(L� Lj ; St � STj^t)jTj^W�t<Tj+1^W > �=2k1g < �=2k1:

De�ne Leasy to equal Lj on ]]Tj ^W;Tj+1^W [[ and L on [[Tj+1]], for each k0 � j < k1, and zero elsewhere.
Then Leasy is an easy integrand and

Pfsup j(L� Leasy; St)j0�t�Tk1^W > �=2g < �=2:

De�ning the stopping time W1 to be the �rst moment before W when j(L�Leasy; S)tj is at least � (and
therefore equal to � as Lt and Leasy

t agree where (St)t�W has jumps) and de�ning Leasy to equal zero
after W ^W1 we have completed our construction of the desired easy integrand.

To show the last assertion we �rst show that, for each stopping time T with T � Tk0 for some k0 2 N,
we have

ess inf(H:S)1 � ess inf(H:S)T :

Indeed, if there is � > 0 such that, for A = f(H:S)T < ess inf(H:S)1 � �g we have P (A) > 0, then the
random variables

fk = �A:((H:S)Tk � (H:S)T )

for k � k0 give rise to a contradiction to (NFLBR) if we approximate the admissible integrandH(!; t)�A\f(H:S)T�Dg(!)�]]T;Tk]]
by easy integrands as above. As (Tk)

1
k=1 tends to in�nity, this readily implies the last assertion of the

proposition.
q.e.d.

Similarly as in proposition 4.3, the above proof may be extended to a more general situation:

5.8 Proposition. Under the assumptions of proposition 5.7 let (Hn)
1
n=1 be a sequence of admissible

integrands such that the sequence (gn)
1
n=1 = ((Hn:S)1)

1
n=1 Fatou-converges to some g0 2 L0(
;F ; P )
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and, for each k 2 N, the sequence (gn;Tk)
1
n=1 = ((Hn:S)Tk)

1
n=1 converges to some g0;Tk 2 L0(
;FTk ; P ).

Then we still have

g0(!) � lim inf
k!1

g0;Tk (!)

almost surely.

Proof. Indeed, note �rst that there isM 2 IR+ such that (Hn:S)1 � �M and therefore (Hn:S)Tk � �M
for all k and n. If the above inequality were false, again we could �nd A 2 F with P (A) = � > 0 and
� < 
 such that

g0(!) > 
 while lim inf
k!1

g0;Tk(!) < �

for ! 2 A.

Hence for each k0 2 N we have

gn(!) > 
 while inf
k�k0

gn;Tk(!) < �

for almost each ! 2 A, provided that n is su�ciently big (i.e., for n > n0, where n0 depends on ! 2 A
and k 2 N).

Hence we may combine the arguments of the proof of proposition 5.7 with the arguments of the proof of
proposition 4.3 to obtain a contradiction to (NFLBR).

q.e.d.

We now can proceed in an analogous way as we did in section 4 for the case of discrete time.

5.9 De�nition. Let (St)t2IR+ satisfy the assumptions of theorem B. Similarly as in 4.4 and 5.5, denote by

Kadm
0 the convex cone in L0(
;F ; P ) spanned by the random variables (H:S)1, where H runs through the

admissible integrands. Denote by Cadm
0 the convex cone Kadm

0 �L0
+(
;F ; P ) and by Cadm its intersection

with L1.

5.10 Proposition. If (St)t2IR+ satis�es the assumptions of theorem B, then Cadm is weak star closed

in L1 and Cadm \ L1+ = f0g.

Proof. As in the proof of proposition 4.6 it su�ces to show for the �rst assertion the following: Let
(fn)

1
n=1 be a sequence in Cadm \ ball(L1) converging almost surely to f0. Then f0 2 Cadm.

Find admissible integrands (Hn)
1
n=1 such that gn = (Hn:S)1 satis�es gn � fn. We may assume that Hn

equals zero after the �rst moment when (Hn:S)t � 1. This implies that, for each k 2 N, the continuous
process ((Hn:S)t � (Hn:S)Tk�1)Tk�1�t<Tk is bounded by 2.

By passing to convex combinations of the sequence (gn)
1
n=1 in a similar way as in 4.6 above we may

assume that (gn)
1
n=1 converges to some g0 2 L0 and, for each k 2 N, (gn;T

k
)1n=1 = ((Hn:S)T

k
)1n=1 and

(gn;T�
k
)1n=1 = ((Hn:S)T�

k
)1n=1 converge to some g0;Tk and g0;T�

k
in L0 respectively.

We shall show that there is an admissible integrand H0 such that, for each k 2 N,

g0;T�
k
� (H0:S)T�

k
and g0;T

k
� (H0:S)T

k
:
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This again will �nish the proof as by proposition 5.8

g0(!) � lim inf
k!1

g0;Tk(!) � lim
k!1

(H0:S)Tk = (H0:S)1:

Hence g0 and, a fortiori, f0 are dominated by an element of Kadm
0 .

We now shall construct for k 2 N the integrand H0 on the stochastic intervals ]]Tk�1; Tk[[ and [[Tk]]. For
the intervals [[Tk]] we may apply | just as in the proof of 4.6 | Stricker's lemma to obtain an integrand

Hd;k
0 supported by [[Tk]] such that

(Hd;k
0 :S)1 = (Hd;k

0 :S)Tk � (Hd;k
0 :S)T�

k
= g0;Tk � g0;T�

k
:

For the intervals ]]Tk�1; Tk[[ we may apply prop. 5.6 to �nd an admissible integrand Hc;k
0 supported by

]]Tk�1; Tk[[ such that

(Hc;k
0 :S)1 = (Hc;k

0 :S)T�
k
� (Hc;k

0 :S)T
k�1

� g0;T�
k
� g0;T

k�1
:

De�ning H0 to equal H
c;k
0 and Hd;k

0 on the intervals ]]Tk�1; Tk[[ and [[Tk]] n [[Tk�1]] respectively, we obtain
the desired admissible integrand H0, thus �nishing the proof.

q.e.d.

5.11 Proof of theorem B. If (St)t2IR+ satis�es the assumptions of theorem B, then by proposition 5.9

Cadm is a weak star closed convex cone in L1 that satis�es Cadm \ L1+ = f0g. A glance at the abstract
version of the Kreps{Yan theorem (3.2 above) reveals the existence of an element g 2 L1(
;F ; P ), g > 0
a.s., such that for the measure Q on F with Radon{Nikodym derivative dQ=dP = g and f 2 Cadm we
have

EQ(f) � 0:

Note that by our boundedness assumption on (St)t2IR+ we have that, for each s < t and each Rd-valued
bounded Fs-measurable function h, the integrand h�]s;t] is admissible and therefore

EQ(h; St � Ss) � 0:

By passing to �h we conclude that equality holds above which readily implies that (St)t2IR+ is a mar-
tingale under Q thus �nishing the proof of theorem B.

q.e.d.
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