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1. Introduction.

In this paper we deal with the change of num�eraire problem. Let us assume that
a d-dimensional process S describes the price of d assets in a �xed chosen currency
unit. If e.g. the currency unit is changed, the price process S will be multiplied
by the exchange ratio describing the old currency in function of the new one. We
shall give examples showing that the No-Arbitrage property of the process S may
depend on the choice of num�eraire. Such an example was already given in Delbaen
Schachermayer [DS1]. The question now arises when the value of an asset or more
generally of a portfolio, can be used as a new num�eraire without destroying the no-
arbitrage property. Of course this will depend on the kind of no-arbitrage we use.
We will give precise de�nitions further in the paper but for the moment let us assume
(oversimplifying things) that no-arbitrage stands for the existence of an equivalent
risk neutral (i.e. for a local martingale) measure.

It turns out that the problem is related to the characterization of those contingent
claims that can be hedged. This topic was studied by Jacka [Jk] and Ansel-Stricker
[AS]. These authors use the H1�BMO duality. We will give a measure independent
characterization in terms of maximal elements of attainable claims. These elements
were already used, as a technical device, in our paper Delbaen-Schachermayer [DS2].
The proofs of the theorems below use the results of [DS2] as well as an extension of
a duality relation from Delbaen [D].

The technique of a change of num�eraire together with the change of the risk neutral
measure was used by El Karoui, Geman and Rochet [EGR] and Jamshidian [Jm] to
facilitate calculations of prices of contingent claims.

The results of this paper can also be used to build consistent models of exchange
rates of currencies. In this case the discounting procedure depends on the currency
since the interest rate in di�erent currencies will be di�erent. We refer to Delbaen
Shirakawa [DSh] for details.

The rest of this section is devoted to the introduction of the basic notation. Section
2 recalls known facts from arbitrage theory. In section 3 we extend the duality equality
and relate it to properties of maximal elements. Section 4 �nally contains the main
theorem on the change of num�eraire and the application to the theory of hedgeable
elements.

The setup in this paper is the usual setup in mathematical �nance. A probability
space (
;F ;P) with a �ltration (Ft)0�t is given. In order to cover the most general
case, the time set is supposed to be R+ . The �ltration is assumed to satisfy the "usual
conditions", i.e. it is right continuous and F0 contains all null sets of F . A price
process S, describing the evolution of the discounted price of d assets, is de�ned on
R+ �
 and takes values in Rd . In order to use the results of Delbaen-Schachermayer
[DS2], we suppose that the process S is locally bounded. This assumption is fairly
general, in particular it covers the case of continuous price processes. As shown
under a wide range of hypotheses, the assumption that S is a semi-martingale follows
from arbitrage considerations, see [DS2] and references given there. We can therefore
assume that the process S is a semi-martingale. Since it is also locally bounded it
is a special semi-martingale. Stochastic integration is used to describe outcomes of
investment strategies. When dealing with processes in dimension higher than 1 it is
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understood that vector stochastic integration is used. We refer to Protter [P] and
Jacod [J] for details on these matters.

The authors want to thank C. Stricker and H. Shirakawa for helpful discussions
on the topic. Part of the research was done while the �rst author was on visit in the
University of Tokyo. Discussions with the colleagues and especially with S. Kusuoka,
S. Kotani and N. Kunitomo contributed to the development of this paper.

2. Basic Theorems

Before proving the main results of the paper we need to recall some de�nitions and
notations introduced in Delbaen-Schachermayer [DS2].

De�nition. An Rd�valued predictable process H is called a-admissible if it is S-
integrable, if H0 = 0, if the stochastic integral satis�es H � S � �a and if (H � S)1 =
limt!1(H � S)t exists a.s.. We say that H is admissible if it is a-admissible for some
number a.

The following notations will be used:

K = f(H � S)1 j H is admissibleg

Ka = f(H � S)1 j H is a-admissibleg

C0 = K � L0
+

C = C0 \ L
1

The basic theorem in Delbaen-Schachermayer [DS2] uses the concept of No Free
Lunch with Vanishing Risk. This is a rather weak form of no-arbitrage-type and it is
stated in terms of L1 convergence. The NFLV R property is therefore independent
of the choice of equivalent probability measure. Only the class of negligible sets comes
into play.

De�nition. We say that the locally bounded semi-martingale S satis�es the No
Free Lunch with Vanishing Risk or NFLV R property, with respect to general admis-
sible integrands, if

C \ L1+ = f0g;

where the bar denotes the closure in the supnorm topology of L1.
The locally bounded semi-martingale S satis�es the No Arbitrage or NA property

with respect to general admissible integrands, if

C \ L1+ = f0g:

The fundamental theorem of asset pricing, as in [DS2] Theorem 1.1, can now be
formulated as follows:

Theorem 1. The locally bounded semi-martingale S satis�es the NFLV R prop-
erty, with respect to general admissible integrands, if and only if there is an equivalent
probability measure Q such that S is a Q�local martingale. In this case the set C is
already weak� (i.e. �(L1; L1)) closed in L1.

Remark. If Q is an equivalent local martingale measure for S and if H satis�es
H � S � �a then the result of Ansel-Stricker [AS] shows that H � S is still a local
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martingale and hence, being bounded from below, is a supermartingale. It follows
that the limit (H � S)1 exists a.s. and that EQ[(H � S)1] � 0.

The proof of the fundamental theorem is quite complicated and we cannot repeat
it here. The basic idea in [DS2], see lemma 4.4 and the remark following it, is the use
of maximal elements in K1. For convenience we give a de�nition of what we mean by
this.

De�nition. We say that an element f 2 Ka is maximal in Ka if the properties
g � f a.s. and g 2 Ka imply that g = f a.s..

It is easy to see that if S satis�es the No Arbitrage condition then the fact that f is
maximal in Ka already implies that f is maximal in Kb for all b � a and therefore with
the obvious de�nition also in K. Indeed suppose that f 2 Ka, g = (H � S)1 2 K and
g � f a.s., then g � �a. From lemma 3.5 [DS2] it then follows that g is a�admissible
and hence the maximality of f in Ka implies that g = f a.s.. An example of an
element in K1 that is not maximal will be given below. The NA property with
respect to general admissible integrands is now equivalent to the fact that the zero
function is maximal in the set K.

In the proof of the fundamental theorem the following intermediate results are
shown, again for the (complicated) proof we refer to [DS2] lemma A1.1, lemma 4.3
and the proof of theorem 4.2 :

Theorem 2. If the locally bounded semi-martingale S satis�es the NFLV R prop-
erty with respect to general admissible integrands, if (fn)n�1 is a sequence in K1, then

(1) there is a sequence of convex combinations gn 2 conv(fn; fn+1; :::) such that
gn tends in probability to a function g, taking �nite values a.s.

(2) there is a maximal element h in K1 such that h � g a.s..

Corollary 3. If the locally bounded semi-martingale S satis�es theNFLV R prop-
erty with respect to general admissible integrands, then the maximal elements of the
closure of K1 in L0, are in K1.

Remark. The set K1 is not necessarily closed in the space L0. However under
the NFLV R property with respect to general admissible integrands, the set K1 and
hence its closure are convex and bounded in L0. When we de�ne maximal elements
of this closure in the obvious way, these maximal elements are already in K1.

The following theorem, in the spirit of [DS2], gives another description of the
NFLV R property.

Theorem 4. The locally bounded semi-martingale S satis�es the NFLV R prop-
erty with respect to general admissible integrands if and only if it satis�es the NA
property with respect to general admissible integrands and if there exists a strictly
positive local martingale L such that L1 > 0 a.s. with LS a local martingale.

Proof. The necessity is clear. If Q is an equivalent local martingale measure,
then the Radon Nikodym derivative dQ=dP de�nes a strictly positive P�martingale
L such that LS is a P local martingale. Also the process S necessary satis�es the
NA property with respect to general admissible integrands.
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The converse is less obvious. We recall from [DS2] corollary 3.8, that it is su�cient
to prove that S satis�es NA with respect to general admissible integrands and that
the set K1 is bounded in L0. If L is a strictly positive local martingale, then the
sequence of stopping times de�ned as

Tn = infft j Lt � ng

satis�es P[Tn = 1] ! 1 and LTn is a uniformly integrable martingale. These prop-
erties follow from the fact that L is a supermartingale and the fact that the jumps
of L are necessarily integrable. Also we may and do suppose that L0 = 1. For each
n the measure Qn de�ned by dQn=dP = LTn is a local martingale measure for the
stopped process STn . It follows that the set K1 is bounded when restricted to the
event fTn =1g. Because P[Tn =1]! 1, this implies that K1 is bounded in L0. �

The theorem yields the following result, see [DS1] and [DS4] for a di�erent approach
and for related results. For details on continuous martingales and Bessel processes
we refer to Revuz-Yor [RY].

Corollary 5. If R is the Bessel(3) process, stopped at time 1 and with its natural
�ltration then R allows arbitrage with respect to general admissible integrands.

Proof. The process L = 1
R

is a local martingale and from stochastic calculus
it follows that it is the only local martingale X such that X0 = 1 and such that
X R is a local martingale. If now Q were a local martingale measure for R, then
the martingale X de�ned as EP[

dQ
dP

j Ft] satis�es that X R is a local martingale and
hence X = L. Since L is only a local martingale and not a true martingale we arrive
at a contradiction. It follows that R does not have an equivalent local martingale
measure. Since it satis�es the second part of the preceding theorem, it cannot satisfy
the NA property with respect to general admissible integrands. �

Remark. The element L1 � 1 is not maximal in the set K1 constructed with the
process L. To see this recall that E[L1] < 1 and that L1�E[L1] is by the predictable
representation property of L, the result of a uniformly integrable martingale of the
form K � L. It is clear that (K � L)1 = (L1 � E[L1]) > L1 � 1.

If a locally bounded semi-martingale S satis�es the NFLV R property with respect
to general admissible integrands, then the following two non-empty sets will play a
role in the theory:

Me(P) =

�
Q j

Q is equivalent to P

and the process S is a Q -local martingale

�

M(P) =

�
Q j

Q is absolutely continuous with respect to P

and the process S is a Q -local martingale

�

We identify absolutely continuous measures with their Radon Nikodym derivatives.
It is clear that the set Me(P) is L1 dense in M(P).
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3. Duality Relation

In this section we extend the duality formula of Delbaen [D] and Delbaen-Schacher-
mayer [DS2] to the case of unbounded functions. We denote by C� the polar of the
cone C, i.e.

C� =
�
f j f 2 L1(P) and for each h 2 C we have EP[f h] � 0

	
:

Theorem 6. If S is a locally bounded semi-martingale that satis�es the NFLV R
property with respect to general admissible integrands then

M(P) = C�
\
fQ j Q probability measure;Q � Pg

Proof. If Q 2 M(P) then for each admissible integrand H we have, by the
Ansel-Stricker theorem, [AS], that H � S is a Q -local martingale and hence it is a
supermartingale. Therefore EQ[f ] � 0 for each f 2 K. The same inequality pertains
for elements of C.

Conversely if Q is a probability measure in C� then S will be a Q -local martingale.
Indeed take Tn an increasing sequence of stopping times, Tn " 1, such that each
STn is bounded. For each s < t and each A 2 Fs we have that 1A (STnt � STns ) is

in C and hence we have EQ[1A (STnt � STns )] � 0. Replacing 1A by �1A gives that

EQ[1A (STnt � STns )] = 0. These equalities show that S is a Q -local martingale. �

Corollary 7. Suppose that the locally bounded semi-martingale S satis�es the
NFLV R property with respect to general admissible integrands. The set M(P) is
then closed in L1(P).

We remark that this is essentially a consequence of the local boundedness of S. It
is easy to give counter-examples in the general case.

Theorem 8. If the locally bounded semi-martingale S satis�es the NFLV R prop-
erty with respect to general admissible integrands, then for bounded elements f in
L1 we have that

sup
Q2Me(P)

EQ[f ] = sup
Q2M(P)

EQ[f ]

= inffx j 9h 2 C x+ h � fg

= inffx j 9h 2 C x+ h = fg

= inffx j (f � x) 2 Cg

= inffx j 9h 2 K x+ h � fg

Furthermore all in�ma are minima.

Proof. The proof of this theorem is an application of the previous theorem and
duality theory

The �rst equality is almost trivial since Me(P) is dense in M(P) for the norm
topology of L1(P). Suppose that f � x + h where h 2 C. It follows from the
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preceding theorem that for all Q 2M(P) we have that EQ[f ] � x+ EQ[h] � x. It is
therefore obvious that

sup
Q2M(P)

EQ[f ] � inffx j 9h 2 C x+ h � fg:

The converse inequality is proved using the Hahn-Banach theorem and the fact that
the set C is weak� closed, see Theorem 1 above. Let z be a real number such that

z < inffx j 9h 2 C x+ h � fg:

We have that f � z =2 C. By the Hahn-Banach theorem there is a weak� continuous
functional on L1, denoted by the corresponding measure Q , such that for all h 2 C
we have Z

(f � z) dQ >

Z
h dQ :

Since C is a cone containing �L1+ , this necessarily implies that for all h 2 C we have

0 �

Z
h dQ and that

Z
(f � z) dQ > 0:

We deduce that Q is necessarily positive and we may therefore suppose that Q is
normalized in such a way that Q(
) = 1. In that case Q is a probability measure,
is an element of C� and hence an element of M(P). But then the second inequality
shows that EQ[f ] > z. We obtain that

sup
Q2M(P)

EQ[f ] � inffx j 9h 2 C x+ h � fg:

and this ends the proof of the equalities. The fact that all in�ma are minima is an
easy consequence of the closedness of C for the norm topology of L1. Indeed, the set
fx j (f � x) 2 Cg is closed. �

We will now generalize the preceding equalities to arbitrary positive functions. The
proof relies on the special properties of the sets C and K.

Theorem 9. Suppose that the locally bounded martingale S satis�es the NFLV R
property with respect to general admissible integrands. If f � 0, or more generally if
f is bounded below by a constant, then

sup
Q2Me(P)

EQ[f ] = sup
Q2M(P)

EQ[f ]

= inffx j 9h 2 K x+ h � fg

and when the expression is �nite

= minfx j 9h 2 K x+ h � fg:

Proof. We suppose that f � 0. The �rst equality follows again from the density
of Me(P) in the set M(P) and Fatou's lemma. The left hand side is smaller than

7



the right hand side exactly as in the proof of the previous theorem. We remark that
this already implies that we have equality as soon as supQ2Me(P)EQ[f ] = 1. Let

now z be a real number such that z > supQ2Me(P) EQ[f ]. For all natural numbers we

therefore have that z > supQ2Me(P)EQ[f ^ n]. The theorem for bounded functions
now implies the existence of hn 2 K and 0 � xn < z such that f ^ n � xn + hn. We
may extract subsequences and suppose that the bounded sequence xn converges to a
real number x � z. The functions hn are bigger than �xn and therefore the result of
an xn and hence a z-admissible strategy Hn. The sequence of functions hn is in Kz,
a bounded convex set of L0(P). Using lemma A1.1 from [DS2] we may take convex
combinations of hn that converge almost everywhere to a function h. We still have
that h + x � f . The properties of Kz listed above (see Theorem 2, (2)), imply that
there is an element g 2 Kz such that g � h. This element clearly satis�es x+ g � f
and hence we obtain

z � inffx j 9h 2 K x+ h � fg:

We therefore see that

sup
Q2Me(P)

EQ[f ] = sup
Q2M(P)

EQ[f ] = inffx j 9h 2 K x+ h � fg:

To see that the in�mum is a minimum we take a sequence xn tending to the in�mum
and a corresponding sequence of outcomes hn. We can apply the same reasoning to
see that the in�mum is attained. �

Corollary 10. Suppose that the locally bounded semi-martingale S satis�es the
NFLV R-property with respect to general admissible integrands. If f � 0 and if
x = supQ2Me(P)EQ[f ] < 1, then there is a maximal element g 2 K such that
f � x+ g.

Proof. This follows from the proof of the theorem. �

4. Hedging and Change of Num�eraire

Before we give a martingale characterization of maximal elements of K, we �rst
study the NA property under the change of num�eraire. Since we want to apply it
in a fairly general setting, we will work with an abstract Rd valued semi-martingale
W . In this section we do not even require the semi-martingale to be locally bounded.
When we change the num�eraire from the constant 1 into the process V we will have to
rescale the process W . The best way to do this is to introduce the (d+2)-dimensional
process (W; 1; V ). The constant 1, which corresponds to the original num�eraire was
added, because under the new num�eraire V , this will not be constant anymore but
will be replaced by 1

V
. On the other hand, the process V will be replaced by 1. By

adding this constant process, we obtain more symmetry. Under the new num�eraire the
system is described by the process (W

V
; 1
V
; 1). Before proving the change of num�eraire

theorem, a theorem that relates the NA property of both systems, let us give an
example of what happens in a discrete time setting and when d = 0, the simplest
possible case.
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Example. The semi-martingale V which describes the price of the new num�eraire
(in terms of the old one) is supposed to satisfy V0 = 1, a pure normalization as-
sumption, Vt > 0, a.s. and limt!1 Vt = V1 exists a.s. and is strictly positive a.s..
Note that the symmetry in these assumptions if we pass from V to 1

V
, i.e. they are

invariant whether we consider the new num�eraire in terms of the old one or vice versa.
The process is driven by a sequence of independent identically distributed Bernoulli
variables ("n)n�1. They are such that P["n = 1] = P["n = �1] = 1=2. To facilitate
the writing, we call the two currencies ECU and $. The process V describes the value
of the $ in terms of the ECU. Let us now �x � such that 0 < � < 1. At time n = 0,
we require that V0 = 1. Let us suppose that Vn�1 is already de�ned. If the Bernoulli
variable "n = 1 then we put Vn = �. If "n = �1, then we put Vn = 2Vn�1 � �. In
such a way the process V remains strictly positive, in fact greater than �, it becomes
eventually equal to � and the limit V1 = � therefore exists. The process V is also
a non uniformly integrable martingale with respect to the measure P. Remark that
once the process hits the level � it remains at that level forever. In economic terms
we may say that an investment in $ seems to be a fair game, since V is a martingale,
but that at the end it was not a good choice. Indeed, since � < 1, the investment
is, in the long run, a losing one. An economic agent might try to get a pro�t out
of it by selling short the $. But here is an obstruction. Indeed by going short on $,
the ECU investor will realize that he is using a non admissible strategy. Therefore
she will not be able to take advantage of this special situation. A $ investor on the
contrary is able to buy ECU at an initial price of 1$ and then in the long run sell
this ECU for 1=�, making arbitrage pro�ts! As a last point let us observe that the
0-variable dominates the outcome V1 � 1 = � � 1 and hence the variable V1 � 1 is
not maximal. The example is simple but it has all the features that appear in greater
generality in the theorem.

Theorem 11. Let W be a semi-martingale, taking values in Rd . Let V be a
strictly positive semi-martingale such that V1 = limt!1 Vt exists and is strictly
positive a.s.. The semi-martingale X is the d+ 2 dimensional process X = (W; 1; V ).
The process Z de�ned as Z = (W

V
; 1
V
; 1) is a d + 2 dimensional semi-martingale. It

satis�es the NA property with respect to general admissible integrands if and only if
V1 � 1 is maximal in the set of outcomes of 1-admissible integrands for X.

Proof. Using the symmetry between the processes X and Z we �rst reformulate
the statement of the theorem. We can regard the process X as obtained from Z by
dividing it by the process 1

V
. The process 1

V
is also strictly positive and at in�nity

its limit exists a.s. and is still strictly positive. If we change the role of X and Z,
resp. V and 1

V
, we see that the proof of the theorem is equivalent to the proof of the

following two statements

(1) If X satis�es the NA property with respect to general admissible integrands
then 1

V1
� 1 is maximal in the set of outcomes of 1-admissible integrands for

Z.
(2) If Z permits arbitrage with respect to general admissible integrands then

V1 � 1 is not maximal in the set of outcomes of 1-admissible integrands for
X.
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The proof depends on the following calculation from vector stochastic calculus. From
X = V Z we deduce that

dXt = dVt Zt� + Vt� dZt + d[V; Z]t :

If K is a (d+ 2)-dimensional predictable process that is a 1-admissible integrand for
the system Z = (W

V
; 1
V
; 1) then we let Y = (1+K �Z)V . Remark that Y is a process

that describes a portfolio obtained by using an investment described by the system
Z that afterwards is converted, through the change of num�eraire V , into values that
�t in the system X. We have that

dYt = dVt (1 + (K � Z)t�) + Vt�Kt dZt +Kt d[V; Z]t :

Using the expression for dX we may convert this into

dVt (1 + (K � Z)t�) +Kt dXt � dVtKtZt�

which is of the form
dYt = Lt dXt

for some d + 2 dimensional predictable and X-integrable process L. Since K was
1-admissible for Z, we have that Y is positive and therefore L is 1-admissible for X.
We now apply the above equality in two di�erent cases. To prove (1) we suppose
that 1

V1
� 1 is not maximal. Take K a 1-admissible integrand for Z such that the

limit at in�nity exists and such that 1 + (K � Z)1 � 1
V1

, with strict inequality on a

non-negligible set. In that case we have that Y1 � 1 = (L �X)1 is non-negative and
strictly positive on a non negligible set. This should produce arbitrage for X.

The second part is proved in a similar way. Suppose that Z allows arbitrage and
that K is the 1-admissible integrand responsible for it. The outcome Y1 � 1 is now
greater than V1 � 1, with strict inequality on a non negligible set. A contradiction
to its maximality. �

Corollary 12. Using the same notation as in the theorem we see that X satis�es
the NA property with respect to general admissible integrands and V1�1 is maximal
"for X" if and only if Z satis�es the NA property with respect to general admissible
integrands and 1

V1
� 1 is maximal "for Z".

Proof. This is a straightforward application of the previous theorem. The only
di�erence lies in the statement that V1 � 1 is maximal in the set of all outcomes of
admissible integrand and not just in the set of outcomes of 1-admissible integrands. If
X satis�es NA and V1� 1 is maximal then we can apply both parts of the theorem.
In this case we know, from section 2, that f = 1

V1
� 1 is maximal in the set of

outcomes of all admissible integrands. This proves the if statement. The only if part
is the same statement as the if part because X is obtained from Z by multiplying
with V �1. �

We can now apply the above reasoning to the original setting of this paper. Given
a locally bounded semi-martingale S that satis�es the NFLV R property with respect
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to general admissible integrands, we use a process of the form V = 1 +H � S for the
new num�eraire. If H is admissible and V1 > 0 a.s., then we can apply the previous
theorem. In this case we certainly have that the system (S; 1; V ) has the NA property
with respect to general admissible integrands. With the assumption that P was a local
martingale measure for S, the system (S; 1; V ) becomes in fact a local martingale for
P. The previous theorem then yields

Theorem 13. Suppose that S is a locally bounded semi-martingale that satis�es
the NFLV R property with respect to general admissible integrands. Suppose that H
is admissible and that the process V = 1+(H �S) satis�es f = V1 = 1+(H �S)1 > 0
a.s.. Then the following are equivalent:

(1) (H � S)1 is maximal in the set K.

(2) The process ~S = ( S
V
; 1
V
) satis�es NA with respect to general admissible

integrands.
(3) There is Q 2Me(P) such that H � S is a Q -uniformly integrable martingale.

If V �1 is locally bounded then these statements are equivalent to :

(4) The process ~S has an equivalent local martingale measure.

Remark. We conjecture that the assumption that V �1 is locally bounded can be
removed.

Proof. 1 and 2 are equivalent

Since S satis�es the NFLV R property with respect to general admissible inte-
grands, there is an equivalent local martingale measure, Q for S. Because the sto-
chastic integral H � S is bounded below, the theorem of Ansel-Stricker, see [AS],
implies that it, and hence also V , is a local martingale. Since the �nal value V1 of
V is strictly positive, the result in Dellacherie-Meyer [DM] Th 17, p. 85 implies that
the process V is bounded away from zero a.s.. We can now apply Theorem 11 to see
that (1) and (2) are already equivalent.

1 implies 4

In case V �1 is locally bounded we have that ~S is also locally bounded. It has the
NA property and the product V ~S is a local martingale. Therefore the process has
the NFLVR property and by Theorem 1 and Theorem 4 it has an equivalent local
martingale measure.

1 and/or 2 imply 3

Now we apply the statement that (1) implies (4) on the process V 0 = 1
2 (1 + V ).

This process is de�ned using H=2 instead of H. It has the advantage that 1
V 0

is

bounded. Let ~Q be an equivalent local martingale measure for ( S
V 0
; 1
V 0
). Since the

last coordinate X = 1
V 0

is bounded and is a ~Q -local martingale it is a strictly positive
bounded martingale, starting at 1. When we de�ne the probability measure Q by
dQ = X1 d~Q , we obtain that S = S

V 0
V 0 is a Q -local martingale and V 0 is a Q -

uniformly integrable martingale. This implies that H � S is a Q -uniformly integrable
martingale. The proof that (1) and/or (2) implies (3) is complete.

3 implies 1
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If H �S is a Q -uniformly integrable martingale for some Q 2Me(P) then (H �S)1
is necessarily maximal. Indeed if say (K �S)1 � (H �S)1 fro some admissibleK, then
by taking expectations with respect to Q , applying the supermartingale property of
K � S and the martingale property of (H � S) we see

0 = EQ[(H � S)1] � EQ[(K � S)1] � 0:

It follows that EQ[(K �S)1] = 0 and (H �S)1 = (K �S)1. This completes the proof
that (3) implies (1).

4 implies 2
Since the existence of an equivalent local martingale measure implies the NA prop-

erty with respect to general admissible integrands, this is trivial. �

Corollary 14. If the locally bounded semi-martingale S satis�es the NFLV R
property with respect to general admissible integrands then for an admissible inte-
grand H the following are equivalent:

(1) (H � S)1 is maximal in K
(2) there is Q 2Me(P) such that EQ[(H � S)1] = 0
(3) there is Q 2Me(P) such that H � S is a Q -uniformly integrable martingale

The theorem also allows us to give a characterization of strict local martingales as
studied by Elworthy, Li and Yor, [ELY]. They de�ne a strict local martingale as a
local martingale that is not a uniformly integrable martingale.

Corollary 15. Let S = L be a strictly positive locally bounded local martingale
such that L1 > 0 a.s.. Let

Me(P) =

�
Q j

Q is equivalent to P

and the process L is a Q -local martingale

�

The process 1
L
satis�es the NA property with respect to general admissible integrands

if and only if L is a uniformly integrable martingale for some Q in Me(P).

Remark. From Schachermayer [S] (see Delbaen Schachermayer [DS4] for an easier
example) it follows that under the assumptions of the corollary, the process L need
not be a uniformly integrable martingale under all elements of Me(P).

Remark. In the case that R = 1
L1 equals the Bessel(3) process with its natural

�ltration, stopped at time 1, we have that L1 is a local martingale for P. This is
the only martingale measure and hence we deduce that R has arbitrage with respect
to general admissible integrands. The preceding corollary is a generalization of this
phenomenon to the case that Me(P) is not a singleton, see also section 2.

De�nition. If S is a locally bounded semi-martingale that satis�es the NFLV R
property with respect to general admissible integrands, then we say that a positive
random variable (or contingent claim) f can be hedged if there is x 2 R and a maximal
element h 2 K such that f = x+ h.

There is a good reason to require the use of maximal elements. If h is not maximal
then there is a maximal element g 2 K, g 6= h such that g � h. An investor who

12



would try to hedge f by using an admissible strategy, would be better o� to use a
strategy that gives her the outcome g instead of h. Starting with the same initial
investment x, she will obtain something better than f and since g > h on a set of
positive measure, she will be strictly better o� in some cases. In such a case the
contingent claim f is not the result of a good optimal hedging policy.

The following theorem is due to Ansel-Stricker [AS] and, independently , to Jacka
[Jk]. They proved it using H1 � BMO duality. We shall see that it is also a conse-
quence of the characterization of maximal elements.

Theorem 16. If S is a locally bounded semi-martingale that satis�es the NFLV R
property with respect to general admissible integrands then for a random variable
f � 0, the following are equivalent

(1) f can be hedged
(2) there is Q in Me(P) such that

EQ[f ] = supfER[f ] j R 2Me(P)g <1

Proof.

(1) implies (2)
If f can be hedged, then there is an admissible strategy H and a real number x,

such that f = x+ (H � S)1 and H � S is a uniformly integrable martingale for some
Q 2Me(P). For all R 2Me(P) we have that H � S is a supermartingale and hence
ER[f ] � x = EQ[f ].

(2) implies (1)
If we have EQ[f ] = supfER[f ] j R 2Me(P)g <1, then clearly we have that

x = EQ[f ] = minfz j 9h 2 K such that z + h � fg <1

The duality relation of section 3 now implies that there is an admissible integrand H
such that f � x+ (H � S)1. Since H � S is a supermartingale for Q we have that

x = EQ[f ] � x+EQ[(H � S)1] � x

and hence EQ[(H � S)1] = 0. This implies that f = x+ (H � S)1 and that H � S is
uniformly integrable for Q . Therefore (H � S)1 is maximal in K. �
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