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Abstract. Kabanov and Kramkov introduced the notion of "large �nancial markets".
Instead of considering{as usual in mathematical �nance{a stochastic stock price pro-
cess S based on a �ltered probability space (
;F ; (Ft)t2I ;P) one considers a sequence
(Sn)n�1 of such processes based on a sequence (
n;Fn; (Fn

t
)t2In ;P

n)n�1 of �ltered
probability spaces. The interpretation is that an investor can invest not only in one

stock exchange but in several (in the model countably many) stock exchanges.
The usual notion of arbitrage then may be interpreted by "asymptotic" arbitrage

concepts, where it is essential to distinguish between two di�erent kinds introduced
by Kabanov and Kramkov. If for each n 2 N the market is complete i.e., there is
exactly one local martingale measure Qn for the process Sn on Fn which is equivalent
to Pn, then Kabanov and Kramkov showed that contiguity of (Pn)n�1 with respect to
(Qn)n�1 (respectively vice versa) is equivalent to the absence of asymptotic arbitrage
of �rst (respectively second) kind.

In the present paper we extend this result to the non-complete case i.e., where for
each n 2 N the set of equivalent local martingale measures for the process Sn is non-
empty but not necessarily a singleton. The question arises whether we can extend
the theorem of Kabanov and Kramkov to this situation by selecting a proper sequence
(Qn)n�1 of equivalent local martingale measures.

It turns out that the theorem characterising asymptotic arbitrage of �rst kind may
be directly extended to this setting while for the theorem characterising asymptotic
arbitrage of second kind some modi�cations are needed. We also provide an example
showing that these modi�cations cannot be avoided.

Introduction

In this paper we deal with arbitrage possibilities in a large �nancial market, a
concept originally introduced by Kabanov and Kramkov, see [10]. Following these
authors we de�ne a large �nancial market to be a sequence of �ltered probability
spaces (
n;Fn; (Fn

t )t2R+;P
n). On each of these "small" spaces we can trade in

d(n) securities, whose price processes are denoted by an Rd(n) -valued (Fn
t )-adapted

semimartingale.

Key words and phrases. arbitrage, asymptotic arbitrage, contiguity of measures, equivalent mar-
tingale measure, free lunch, free lunch with vanishing risk, large �nancial market.
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We suppose that for each "small market" there exists a probability measure Qn on
Fn that is equivalent to the original measure Pn, such that Sn is a localQn-martingale.
So we obviously do not have any arbitrage opportunities on the small markets, a
fact that is very wellknown (see [8,9]). Nevertheless by choosing a reasonably large
portfolio (i.e. by trading on a large number of small markets) we may be able to
make some kind of approximation of an arbitrage pro�t. Kabanov and Kramkov
called this form of arbitrage an asymptotic arbitrage and distinguished two kinds.
Asymptotic arbitrage of �rst kind (see de�nition 1.1 below) can be interpreted as an
opportunity of getting arbitrarily rich with positive probability by risking arbitrarily
small losses, i.e. taking a "vanishing risk" (compare the notion of "no free lunch
with vanishing risk", introduced in [4]). Asymptotic arbitrage of second kind (see
de�nition 1.2 below) describes the possibility of gaining something with probability
arbitrarily close to 1, but by taking the risk of loosing a uniformly bounded amount
of money (say for example one ECU), i.e. one has the chance of a very likely pro�t
but only with bounded (not vanishing) risk. So the di�erence between the two kinds
of asymptotic arbitrage is that on one hand by risking nearly nothing we can become
very rich but only on a set of positive probability, on the other hand we can win
something, maybe very little, with very high probability, but there is the possibility
to loose one ECU on a set of probability nearly zero.

In the "classical" case where we do not have a sequence of �nancial markets but
only one �xed market there has been done a lot of work relating the absence of arbi-
trage or similar concepts (such as "no free lunch"[11], "no free lunch with bounded
risk"[2,12], "no free lunch with vanishing risk" [4]) to the existence of an equiva-
lent local martingale measure for the price process of the available securities, e.g.
[2,4,6,8,9,11,12,13]. In a large �nancial market there is a similar situation. We will
specify conditions on the local martingale measures of the small spaces, respectively
on sequences of such measures, that are necessary and su�cient for the absence of
asymptotic arbitrage of �rst or second kind.

Kabanov and Kramkov already presented such conditions but only for the special
case when the set of equivalent local martingale measures for each small space (de-
noted by Me(Pn)) consists of a single Qn (for each n). The notion of contiguity of
sequences of probability measures, a concept often used in mathematical statistics,
plays an important role. Kabanov and Kramkov showed that (Pn)n�1 is contiguous
with respect to (Qn)n�1, respectively (Qn)n�1 contiguous with respect to (Pn)n�1, if
and only if there is no asymptotic arbitrage of �rst kind, respectively second kind. For
the general case (Me(Pn) not a singleton) Kabanov and Kramkov proved the su�-
ciency, i.e. the existence of some sequence (Qn)n�1,Q

n 2 Me(Pn), with the respective
contiguity property implies the absence of asymptotic arbitrage of the respective kind.

We generalize these results to the case whereMe(Pn) is not necessarily a singleton
and observe an interesting asymmetry. For the case of asymptotic arbitrage of �rst
kind we show that the result of Kabanov and Kramkov remains valid (i.e. we prove the
necessity of the above condition). In the other case we have to modify the condition
on the equivalent local martingale measures and thus establish a condition that is
necessary and su�cient for the absence of asymptotic arbitrage of second kind. For
the case where Me(Pn) is a singleton this condition equals the contiguity condition
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of Kabanov and Kramkov. But we present a counterexample where Me(Pn) is not a
singleton showing that in this case the necessity of the contiguity condition fails.

1.De�nitions and Notations

Let (Bn)1n=1 = (
n;Fn; (Fn
t )t2R+;P

n)1n=1 be a sequence of �ltered probability
spaces where the �ltration satis�es the usual conditions. For n 2 N let Sn = (Snt )t2R+
be a locally bounded (Fn

t )-adapted semimartingale on Bn with values in Rd(n) , de-
scribing the (discounted) price of d(n) available securities. We choose the time set to
be R+ to cover the most general case.
We de�ne M(Pn) = fQn � Pn; Sn local Qn-martingaleg to be the set of all abso-
lutely continuous local martingale measures for the process Sn andMe(Pn) = fQn 2
M(Pn)jQn � Png the set of the equivalent ones. As in Kabanov-Kramkov [10] we
assume that for any n: Me(Pn) 6= ;; in particular it is no restricion at all to require
Sn to be a cadlag semimartingale. Moreover on each �xed probability space Bn any
condition of no-arbitrage-type is satis�ed.

A trading strategy on Bn will be an Rd(n) - valued predictable Sn-integrable sto-
chastic process Hn = (Hn

t )t2R+. The predictability of Hn describes mathematically
the obvious assumption that one should not be able to foresee the future. We only
admit general admissible integrands as trading strategies, i.e. we require that there
is a 2 R+ such that for all n and t we have that (Hn � Sn)t � �a almost surely, de-
scribing the natural idea that the losses of a portfolio should stay bounded (compare
[4]).

As we always require Me(Pn) 6= ;, whence the admissibility condition on the
integrands will imply that, for all n, (Hn � Sn)1 = limt!1(Hn � Sn)t exists and is
�nite a.e. ((Hn �Sn) is an L1-bounded supermartingale for each Qn 2 Me(Pn)). Note
that (Hn �Sn)t denotes the stochastic integral of Hn with respect to Sn at time t and
describes the cumulated gains or losses according to the strategy Hn until time t.

We reformulate the notions of Asymptotic Arbitrage of �rst and second kind (AA1,
AA2), see [10]:

De�nition 1.1. A sequence (Hn)1n=1 of admissible trading strategies realizes
asymptotic arbitrage of �rst kind (AA1), i�

(1) (Hn � Sn)t � �cn for all t 2 R+ , i.e., Hn is cn-admissible,
(2) lim supn!1 P

n((Hn � Sn)1 � Cn) > 0,

where cn > 0 tend to zero and Cn > 0 to in�nity.

AA1 describes the possibility of getting arbitrarily rich with positive probability
by taking an arbitrarily small (vanishing) risk.

De�nition 1.2. A sequence of admissible trading strategies realizes asymptotic
arbitrage of second kind (AA2), i�

(1) (Hn � Sn)t � �1, for all t 2 R+ , i.e. Hn is 1-admissible.
(2) 9 c > 0, such that lim supn!1 P

n((Hn � Sn)1 � c) = 1.
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AA2 can be interpreted as an opportunity of gaining something with probability
arbitrarily close to one, but by taking a uniformly bounded risk.

A large �nancial market satis�es no asymptotic arbitrage of �rst, respectively second
kind (NAA1, NAA2) i� it does not allow the respective arbitrage opportunities.

A sequence of measures (Qn)n2N is called contiguous with respect to (Pn)n2N, denoted
by (Qn)n�1 / (Pn)n�1, i� for all sequences (An)n2N, A

n 2 Fn, Pn(An) ! 0 implies
that Qn(An)! 0.

Kabanov and Kramkov proved the following theorem [10].

Theorem 1.3. Suppose that, for all n, Me(Pn) consists of a single measure Qn.

(1) (Pn)n�1 / (Qn)n�1 if and only if NAA1 is satis�ed.
(2) (Qn)n�1 / (Pn)n�1 if and only if NAA2 is satis�ed.

In order to extend this result to the case whereMe(Pn) is not necessarily a singleton
we suppose for the rest of the paper that Me(Pn) 6= ;, for each n, and gather some
notations and results. For each n de�ne

Kn = f(Hn � Sn)1jH
n admissibleg

to be the set of all random variables which are outcomes of admissible trading strate-
gies considered as a subset of L0(
n;Fn;Pn). Let

Cn0 = Kn � L0
+(


n;Fn;Pn); Cn = Cn0 \ L
1(
n;Fn;Pn):

The next result is in the spirit of a theorem of Yor [14] and is a direct consequence of
theorem 4.2 of Delbaen, Schachermayer [4].

Theorem 1.4. Cn is a weak*- (i.e. �(L1; L1)-) closed cone in L1(
n;Fn;Pn).

The following duality relation between Cn and Me(Pn) (see, e.g.,[5], theorem 6)
will be crucial in our treatment as the proof of theorem 2.1 and 2.2 below will be
based on Hahn-Banach arguments.

Lemma 1.5. An element g 2 L1(
n;Fn;Pn), normalized by EPn(g) = 1, is the
density of a measure Qn 2 M(Pn) if and only if EPn(gh) � 0 for all h 2 Cn.
Similarly an element h 2 L1(
n;Fn;Pn) is in Cn i� EQn (h) � 0 for all Qn 2 M(Pn)
(or equivalently for all Qn 2 Me(Pn)).

Finally we need the following result of Ansel, Stricker [1], which essentially goes

back to �Emery [7].

Theorem 1.6. If M is a d-dimensional local martingale, H a d-dimensional ad-
missible integrand forM , thenH �M is a local martingale and therefore being bounded
from below a supermartingale.
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2. Results

We suppose that (
n;Fn; (Fn
t )t2R+;P

n), Sn is as stated in section 1, in particular
that Me(Pn) 6= ; for each n 2 N .

Theorem 2.1. NAA1 is satis�ed if and only if there exists a sequence (Qn)n�1,
Qn 2 Me(Pn) for all n, such that (Pn)n�1 / (Q

n)n�1.

Theorem 2.2. NAA2 is satis�ed if and only if for each � > 0 there exist measures
Qn 2 Me(Pn) and � > 0, such that for any set An 2 Fn with Pn(An) < � we have
that Qn(An) < �.

While theorem 2.1 is a straight generalization of the Kabanov-Kramkov theorem,
the necessary and su�cient condition stated in theorem 2.2 is of a somewhat technical
nature and re
ects an interchange of quanti�ers. We do not assert that we may choose
a sequence Qn 2 Me(Pn) such that for each � > 0 there is � > 0 etc. (which would
precisely mean that (Qn)n�1 is contiguous with respect to (Pn)n�1). We only assert
that for each � > 0 there is a sequence (Qn)n�1,Q

n 2 Me(Pn), (depending on �)
such that there is � > 0 etc. Clearly if Me(Pn) is reduced to a singleton then the
choice of Qn 2 Me(Pn) cannot depend on � and therefore theorem 2.2 contains the
Kabanov-Kramkov theorem as a special case. But the subsequent example shows that
this interchange of quanti�ers is indeed necessary for theorem 2.2 to be valid in the
present generality.

Example 2.3. There is a sequence of probability spaces (
n;Fn;Pn) and Rn -
valued processes (Snt )t2f0;1g, such that:

(1) NAA2 is satis�ed, while
(2) for any sequence (Qn)n�1, Q

n 2 Me(Pn) for all n, we have that
(Qn)n�1 6 (Pn)n�1.

3. Proofs

Proof of Theorem 2.1. We just prove the "only if"-part as the "if"-part is
proved in Kabanov-Kramkov [10].
So assume that NAA1 is satis�ed. We shall construct a sequence Qn 2 Me(Pn) such
that (Pn)n�1 / (Qn)n�1. Let M 2 R+ and de�ne, for n 2 N ,

Dn
M = fhn 2 L1+ (
n;Fn;Pn)jEPn(h

n) = 1; khnk1 �Mg:

Claim : For any M � 1 exists 
M > 0, such that, for all n,

(*) distk:k1(C
n; Dn

M ) � 2
M ;

where Cn is the set de�ned in section 1.
Proof of the claim : If not, there existsM0 and a sequence (nk)

1
k=1 of natural numbers,

such that

distk:k1(C
nk ; Dnk

M0
) <

1

4k2
:
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That means there exist an admissible integrands Hnk and fnk 2 L0
+, h

nk 2 Dnk
M0

,

such that k(Hnk � Snk)1 � fnk � hnkk1 < 1
4k2 , i.e.

�
1

4k2
+ fnk + hnk < (Hnk � Snk)1 <

1

4k2
+ fnk + hnk ; a.s.

Since fnk ; hnk are nonnegative we have that (Hnk � Snk)1 � � 1
4k2 a.e.

Besides that hnk 2 Dnk
M0

and therefore Pnk (fhnk � 1
2g) �

1
2M0

, and this implies that
for all k:

Pnk ((Hnk � Snk)1 �
1

4
) �

1

2M0
:

Now de�ne a new integrand eHnk := 4kHnk . Then we have that

( eHnk � Snk)1 � �
1

k
; a.e.

As we assume that Me(Pnk ) 6= ; we have that eHnk is 1
k
-admissible (see [4], Propo-

sition 3.5). On the other hand Pnk (( eHnk � Snk)1 � k) � 1
2M0

a.e., so we get an

asymptotic arbitrage of �rst kind, thus proving the claim (*).

Take now M � 1 �xed. By theorem 1.4 we have that Cn is weak*-closed and
Dn
M is clearly weak*-compact. Hence by Hahn-Banach we can �nd gn;M 2 L1(Pn),

kgn;Mk1 = 1, such that,

(1) sup
fn2Cn

EPn(g
n;Mfn) � inf

hn2Dn
M

EPn(g
n;Mhn)� 
M :

As Cn is a cone the left hand side equals zero and gn;M � 0, because �L1+ � Cn. By
lemma 1.5 we see that gn;M is the density of a measure in M(Pn).
Moreover we have that for any hn 2 Dn

M :

(2) EPn(g
n;Mhn) � 
M :

We claim that this implies that

(3) Pn(fgn;M < 
Mg) <
1

M
:

Indeed, suppose Pn(fgn;M < 
Mg) = p � 1
M
. Let hn := 1

p
�fgn;M<
Mg which is inD

n
M .

Because of (2) 
M � EPn(gn;Mhn) = 1
p
EPn(gn;M�fgn;M<
Mg) < 
M , a contradiction,

proving (3).

Let now M = 1; 2; : : : and �nd for each M 2 N the 
M > 0 as above and, for each n,
the density gn;M of a measure in M(Pn) as above. De�ne

Gn :=
1X

M=1

2�Mgn;M ;
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so that Gn is the density of a measure Qn in M(Pn), since{by the local-boundedness
assumption on Sn{M(Pn) is convex and closed in L1(Pn). We even have that Qn is
in Me(Pn), because fGn = 0g �

T1
M=1fg

n;M < 
Mg.
Finally we claim that (Pn)n�1 / (Qn)n�1.
We have to show that, for � > 0, we can �nd � > 0, such that for An 2 Fn with
Qn(An) < � we have that Pn(An) < �.
Let � > 0. Choose M so that 2M�1 < � and �x this M . Let now � < 2�M
MM�1

and An 2 Fn with Qn(An) < �. We see that

Pn(An) = Pn(An \ fgn;M < 
Mg) + P
n(An \ fgn;M � 
Mg)

�M�1 + Pn(An \ fGn � 2�M
Mg)

�M�1 +
2M


M
Qn(An) < 2M�1 < �:

So (Qn)n�1 / (Pn)n�1 and we are �nished. �

Proof of Theorem 2.2. Su�ciency of the �-�-condition:
Suppose that there is an arbitrage opportunity of second kind, i.e. there is a sequence
(Hn)1n=1 of 1-admissible integrands and c > 0 such that

lim inf
n!1

Pn((Hn � Sn)1 < c) = 0:

Let � > 0 be small enough such that �� + c(1� �) > 0 and apply the assumption to
�nd � > 0 and a sequence Qn 2 Me(Pn) such that, for An 2 Fn, Pn(An) < �, we
have that Qn(An) < �. Choose n big enough such that Pn((Hn � Sn)1 < c) < � so
that Qn((Hn � Sn)1 < c) < � which implies that

EQn ((Hn � Sn)1) � ��+ c(1� �) > 0:

On the other hand, as (Hn � Sn) is a Qn-supermartingale (see theorem 1.6)

EQn ((Hn � Sn)1) � 0;

a contradicion.
Necessity of the �-�-condition:
Suppose to the contrary that there exists 1 > � > 0 such that for any � > 0 there is
n 2 N such that for each Qn 2 Me(Pn) there exists a set AQn 2 Fn with

Pn(AQn) < �; but Qn(AQn) � �:

Choose a sequence �k ! 0 and the corresponding nk as above. Now we construct a
sequence of admissible integrands Hnk admitting AA2. We do this by constructing

Hnk for each �xed k, so we omit superscripts. Let \M(P) be the cone in L1(P)
generated by the densities dQ

dP
, where Q 2 M(P),and let

� := fg 2 L1
+(P); kgk1 = 1; g �

�

4�
a.s.g:
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We claim that

(1) distk�k1(�;
\M(P)) �

�

4
:

We have to show that for all � 2 R+

distk�k1(�; �M(P)) �
�

4
:

This is obvious for � =2]1� �
4
; 1+ �

4
[. So suppose � 2]1� �

4
; 1+ �

4
[. Let Q be a measure

in M(P), AQ such that P(AQ) < � and Q(AQ) � � and g a function in �. Then we
have

k�
dQ

dP
� gk1 � jE (�

dQ

dP
�AQ)� E (g�AQ )j

� (1�
�

4
)��

�

4�
� >

�

4
;

whence (1) is proved.
By Hahn-Banach there exists f 2 L1(P) such that kfk1 = 1 and

(2) sup
h2\M(P)

EP(hf) � inf
g2�
EP(gf)�

�

4
:

As \M(P) is a cone we may again conclude that the left hand side equals zero. We
deduce from lemma 1.5 that f is in C, i.e. there is an admissible integrand H, such
that

(3) f � (H � S)1:

Clearly (H � S)1 � �1 whence H is 1-admissible (compare again Proposition 3.5 of
[4].) (2) implies that for any g 2 �:

(4) EP(gf) �
�

4
:

We claim that

(5) P(f <
�

4
) <

4�

�
:

Indeed, similarly as in the proof of theorem 2.1 above, suppose P(f < �
4 ) = p �

4�
�
. Let g := 1

p
�ff< �

4g
which is in �. Because of (4) we have that �

4 � EP(fg) =
1
p
EP(f�ff< �

4g
) < �

4 , a contradicion, proving (5).
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Using superscripts again we see that we found a sequence of 1-admissible integrands
(Hnk) such that

lim
k!1

Pnk (f(Hnk � Snk)1 �
�

4
g) � lim

k!1
Pnk (ffnk �

�

4
g) = 1;

since �k ! 0. Hence the sequence (Hnk)k�1 admits AA2, a contradiction. �

Construction of Example 2.3. For n and 1 � j � n de�ne the random variable
fn;j on a suitable base (
n;Fn;Pn) by

fn;j =

8><
>:

1 on An;j ;Pn(An;j) = 1� 2�(j+2) � 2�(n+1)

�2�j on Bn;j;Pn(Bn;j) = 2�(j+2)

�2j on Cn;j ;Pn(Cn;j) = 2�(n+1);

such that (fn;j)nj=1 are independent. The process Sn is then de�ned as Sn0 = 0,

Sn1 = (fn;1; : : : ; fn;n). Moreover we de�ne the �ltration: Fn
0 = f;;
ng;Fn

1 =
�(fn;1; : : : ; fn;n).

NAA2 is satis�ed:
Indeed, otherwise there is some c > 0 such that for each � > 0 there is n 2 N and a
1-admissible integrand such that

Pn((Hn � Sn)1 � c) � 1� �:

We shall show that for � small enough this leads to a contradiction. Indeed, in view
of the triviality of Fn

0 , we may write

(Hn � Sn)1 =
nX
j=1

hn;jfn;j

for some real numbers (hn;j)nj=1. We will break the random variable (Hn � Sn)1 into
three pieces gn1 + gn2 + gn3 :

gn1 =
X

fj�n:hn;j�0g

hn;jfn;j:

We remark that Pn(gn1 � 0) � 1�
Pn

j=1 2
�(j+2)� n

2n+1 �
1
2 . For j0 2 N to be speci�ed

below, let

gn2 =
X

fj�j0:hn;j>0g

hn;jfn;j

and remark that Pn(gn2 � 0) �
Qj0

j=1 2
�(j+2) � 2�j

2
0�2j0 . As regards the third part

gn3 =
X

fj0<j�n:hn;j>0g

hn;jfn;j;
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we note that in view of the 1-admissibility ofHn and the independence of the (fn;j)nj=1
we have hn;j � 2�j (for hn;j > 0) so that

gn3 �
nX

j=j0+1

2�j � 2�j0 :

Now choose j0 2 N , j0 � 3, such that 2�j0 < c
2 . If Pn((Hn � Sn)1 � c) � 1 � � we

have that
Pn(gn1 + gn2 �

c

2
) � 1� �:

On the other hand

Pn(gn1 + gn2 � 0) � Pn(gn1 � 0)Pn(gn2 � 0) � 2�j
2
0�2j0�1 � 4�j

2
0 ;

a contradiction for � small enough, �nishing the proof.

We prove now the second part of the assertion in example 2.3. Suppose that (Qn)n�1
is a sequence with Qn 2 Me(Pn) for all n and (Qn)n�1 / (Pn)n�1. Since Qn is a
martingale measure we must have, for j = 1; : : : ; n,

0 = EQn (fn;j) = Qn(An;j)� 2�(j+1)Qn(Bn;j)� 2j+1Qn(Cn;j):

Since Qn(An;j) +Qn(Bn;j) +Qn(Cn;j) = 1 (for each j), we see that

Qn(Bn;j) =
1� (2(j+1) + 1)Qn(Cn;j)

1 + 2�(j+1)
:

Since (Qn)n�1 / (Pn)n�1 we have that Qn(Cn;j) ! 0 for each �xed j. Hence, for

each �xed j, Qn(Bn;j) tends to 1
1+2�(j+1)

= 1 � 2�(j+1)

1+2�(j+1)
. Choosing an increasing

sequence (nj)
1
j=1 such that Qnj (Bnj ;j) � 1 � 2�j

1+2�(j+1)
we arrive at a contradiction

as Pnj (Bnj;j) tends to zero. �
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