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ABSTRACT. The Fundamental Theorem of Asset Pricing states - roughly speaking -
that the absence of arbitrage possibilities for a stochastic process S is equivalent to
the existence of an equivalent martingale measure for S. It turns out that it is quite
hard to give precise and sharp versions of this theorem in proper generality, if one
insists on modifying the concept of “no arbitrage” as little as possible. It was shown
in [DS94] that for a locally bounded R%-valued semi-martingale S the condition of No
Free Lunch with Vanishing Risk is equivalent to the existence of an equivalent local
martingale measure for the process S. It was asked whether the local boundedness
assumption on S may be dropped.

In the present paper we show that if we drop in this theorem the local boundedness
assumption on S the theorem remains true if we replace the term equivalent local
martingale measure by the term equivalent sigma-martingale measure. The concept
of sigma-martingales was introduced by Chou and Emery — under the name of
“semimartingales de la classe (Xm)”.

We provide an example which shows that for the validity of the theorem in the
non locally bounded case it is indeed necessary to pass to the concept of sigma-
martingales. On the other hand, we also observe that for the applications in Mathe-
matical Finance the notion of sigma-martingales provides a natural framework when
working with non locally bounded processes S.

The duality results which we obtained earlier are also extended to the non locally
bounded case. As an application we characterize the hedgeable elements.

1. INTRODUCTION

The topic of the present paper is the statement and proof of the subsequent Fun-
damental Theorem of Asset Pricing in a general version for not necessarily locally
bounded semi-martingales:

1.1 Main Theorem. Let S = (Sy)icr, be an R%-valued semi-martingale defined
on the stochastic base (0, F,(Fi)ier,,P).
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Then S satisfies the condition of No Free Lunch with Vanishing Risk if and only
if there exists a probability measure Q ~ P such that S is a sigma-martingale with
respect to Q.

This theorem has been proved under the additional assumption that the process S
is locally bounded in [DS94]. Under this additional assumption one may replace
the term “sigma-martingale” above by the term “local martingale”.

We refer to [DS94] for the history of this theorem, which goes back to the seminal
work of Harrison, Kreps and Pliska ([HK79], [HP81], [Kr81]) and which is of central
importance in the applications of stochastic calculus to Mathematical Finance. We
also refer to [DS94] for the definition of the concept of No Free Lunch with Vanishing
Risk which is a mild strengthening of the concept of No Arbitrage.

On the other hand, to the best of our knowledge, the second central concept in
the above theorem, the notion of a sigma-martingale (see def. 2.1 below) has not
been considered previously in the context of Mathematical Finance. In a way, this
is surprising, as we shall see in 2.4 below that this concept is very well-suited for
the applications in Mathematical Finance, where one is interested not so much in
the process S itself but rather in the family (H - S) of stochastic integrals on the
process S, where H runs through the S-integrable predictable processes satisfying
a suitable admissibility condition (see [HP81], [DS94] and section 4 and 5 below).
The concept of sigma-martingales, which relates to martingales similarly as sigma-
finite measures relate to finite measures, has been introduced by C.S. Chou and
M. Emery ([C77], [E78]) under the name “semi-martingales de la classe (X,,)”.
We shall show in section 2 below (in particular in example 2.3) that this concept
is indeed natural and unavoidable in our context if we consider processes S with
unbounded jumps.

The paper is organized as follows: In section 2 we recall the definition and basic
properties of sigma-martingales. In section 3 we present the idea of the proof
of the main theorem by considering the (very) special case of a two-step process
S = (S0,S1) = (St)i—o- This presentation is mainly for expository reasons in order
to present the basic idea without burying it under the technicalities needed for the
proof in the general case. But, of course, the consideration of the two-step case
only yields the (n+1)’th proof of the Dalang-Morton-Willinger theorem [DMW90],
i.e., the fundamental theorem of asset pricing in finite discrete time (for alternative
proofs see [S92], [KK94], [R94]). We end section 3 by isolating in lemma 3.5 the
basic idea of our approach in an abstract setting.
Section 4 is devoted to the proof of the main theorem in full generality. We shall
use the notion of the jump measure associated to a stochastic process and its com-
pensator as presented, e.g., in [JS87].
Section 5 is devoted to a generalization of the duality results obtained in [DS95].
These results are then used to identify the hedgeable elements as maximal elements
in the cone of w-admissible outcomes. The concept of w-admissible integrand is
a natural generalization to the non locally bounded case of the previously used
concept of admissible integrand.
In [Ka97] Y. Kabanov also proves our Main Theorem. The idea of the proof is the
same but worked out differently. The rechnique is to change the characteristics of
the big jumps. Kabanov also repeats the proof, given in [DS94].
For unexplained notation and for further background on the main theorem we refer
to [DS94].
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2. SIGMA-MARTINGALES

In this section we recall a concept which has been introduced by C.S. Chou [C77]
and M. Emery [E78] under the name “semi-martingales de la classe (£,,)”. This
notion will play a central role in the present context. We take the liberty to baptize
this notion as “sigma-martingales”. We choose this name as the relation between
martingales and sigma-martingales is somewhat analogous to the relation between
finite and sigma-finite measures (compare [E78], prop. 2). Other researchers prefer
the name martingale transform.

2.1 Definition. An R?-valued semimartingale X = (Xy);cr, is called a sigma-
martingale if there exists an R?-valued martingale M and an M-integrable pre-
dictable R, -valued process ¢ such that X = ¢ - M.

We refer to ([E78], prop. 2) for several equivalent reformulations of this definition
and we now essentially reproduce the basic example given by M. Emery ([E78],
p-152) which highlights the difference between the notion of a martingale (or, more
generally, a local martingale) and a sigma-martingale.

2.2 Example. [E78]:A sigma-martingale which is not a local martingale.
Let the stochastic base (2, F,P) be such that there are two independent stopping
times T and U defined on it, both having an exponential distribution with param-
eter 1.
Define M by

0 fort <T AU

My=<1 fort >TANU and T=TAU
-1 fort>T AU andU =TAU

It is easy to verify that M is almost surely well-defined and is indeed a martingale
with respect to the filtration (F;);cr, generated by M. The deterministic (and
therefore predictable) process ¢; = % is M-integrable (in the sense of Stieltjes) and
X = ¢ - M is well-defined:

0 fort <T AU
Xi=<¢ 1/(TAD) fort >T AU andT=TAU
—1/(TAU) fort>T AU andU=TAU

But X fails to be a martingale as E[|X;|] = oo, for all ¢ > 0, and it is not hard
to see that X also fails to be a local martingale (see [E78]), as E[|X7|] = oo for
each stopping time T that is not identically zero. But, of course, X is a sigma-
martingale. [

We shall be interested in the class of semimartingales S which admit an equivalent
measure under which they are a sigma-martingale. We shall present an example
of an R2-valued process S which admits an equivalent sigma-martingale measure
(which in fact is unique) but which does not admit an equivalent local martingale
measure. This example will be a slight extension of Emery’s example.

The reader should note that in Emery’s example 2.2 above one may replace the
measure P by an equivalent measure Q such that X is a true martingale under
Q. For example, choose Q such that under this new measure T' and U are inde-
pendent and distributed according to a law g on Ry such that p is equivalent to
the exponential law (i.e., equivalent to Lebesgue-measure on R, ) and such that
Ey [3] < 0.
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2.3 Example. A sigma-martingale S which does not admit an equivalent local
martingale measure.

With the notation of the above example define the R?-valued process S = (St, 52)
by letting S' = X and S? the compensated jump at time T AU i.e.,

2_{—275 fort <T AU
Pl 1-2(TAU) fort>TAU

(Observe that T' A U is exponentially distributed with parameter 2).

Clearly S? is a martingale with respect to the filtration (F;)ier , generated by S.
Denoting by (G¢)ier, the filtration generated by S2, it is a well-known property of
the Poisson-process (c.f. [J79], p. 347) that on G the restriction of P to G = te\]}/hgt

is the unique probability measure equivalent to P under which S? is a martingale.
It follows that P is the only probability measure on F = . \]/R F: equivalent to P
ER4

under which S = (S1,5?) is a sigma-martingale.

As S fails to be a local martingale under P (it’s first coordinate fails to beso) we
have exhibited a sigma-martingale for which there does not ex ist an equivalent
martingale measure. O

2.4 Remark. In the applications to Mathematical Finance and in particular in the
context of pricing and hedging derivative securities by no-arbitrage arguments the
object of central interest is the set of stochastic integrals H - S on a given stock
price process S, where H runs through the S-integrable predictable processes such
that the process H - S satisfies appropriate regularity condition. In the present
context this regularity condition is the admissibility condition H - S > —M for
some M € Ry (see [HP81], [DS94] and section 4 below). In different contexts one
might impose an LP(PP)-boundedness condition on the stochastic integral H - S (see,
e.g., [Kr81], [DH86], [St90], [DMSSS96]). In section 5, we shall deal with a different
notion of admissibility, which is adjusted to the case of big jumps.

Now make the trivial (but nevertheless crucial) observation: passing from S to ¢-S,
where ¢ is a strictly positive S-integrable predictable process, does not change the
set of stochastic integrals. Indeed, we may write

H-S=(He™")-(p-9)

where the predictable R?-valued process H is S-integrable iff Hp~! is ¢-S-integrable.
The moral of this observation: when we are interested only in the set of stochastic
integrals H - S the requirement that S is a sigma-martingale is just as good as the
requirement that S is a true martingale.

We end this section with two observations which are similar to the results in [E78].
The first one stresses the distinction between the notions of a local martingale and
a sigma-martingale.

2.5 Proposition. For a semi-martingale X the following assertions are equivalent.

(i) X is a local martingale.
(il) X = ¢ - M where the M-integrable, predictable R -valued process ¢ is in-
creasing and M is a local martingale.
(ii’) X = ¢-M where the M -integrable, predictable Ry -valued process o is locally
bounded and M is a local martingale.
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(iil) X = ¢ - M where the M-integrable, predictable R -valued process ¢ is in-
creasing and M is a martingale.

(iii") X = @-M where the M -integrable, predictable R, -valued process o is locally
bounded and M is a martingale.

(iv) X = ¢ - M where the M-integrable, predictable R -valued process ¢ is in-
creasing and M is a martingale in H*.

(iv) X = ¢-M where the M-integrable, predictable Ry -valued process ¢ is locally
bounded and M 1is a martingale in H'.

We will not prove this proposition as its proof is similar to the proof of the next
proposition.
2.6 Proposition. For a semi-martingale X the following are equivalent
(i) X is a sigma-martingale.
(il) X = ¢-M where the M -integrable, predictable R, -valued process ¢ is strictly
positive and M 1is a local martingale.
(ili) X = p-M where the M -integrable, predictable Ry -valued process ¢ is strictly
positive and M is a martingale.
(iv) X = @-M where the M -integrable, predictable R -valued process ¢ is strictly
positive and M is a martingale in H".

Proof. Since (iv) implies (iii) implies (ii) and since obviously (ii) implies (i), we only
have to prove that (i) implies (iv). For simplicity we assume that My = 0, leaving
the necessary alterations to the reader. If X is a sigma-martingaletingale, then
there is a local martingale M as well as a nonnegative M-integrable predictable
process ¢ such that X = ¢ - M. Let (T,)p>1 be a sequence that localizes M in
the sense that T, is increasing, tends to co and for each n, M™ is in H'. Put
To = 0 and for n > 1, define N™ as the H' martingale N™ = (¢1}1, , 7,]) - M.
Let now N =} -, a, N", where the strictly positive sequence a,, is chosen such
that Y an, ||[N"|ls1 < co. The process N is an H! martingale. We now put ¢ =
1is=0} + >, an'1yr,_, 1] It is easy to check that X = ¢ - N and that ¢ is
strictly positive.

Corollary 2.7. A local sigma-martingale is a sigma-martingale. More precisely, if
X is a semi-martingale and if (Ty),~, is an increasing sequence of stopping times,
tending to oo such that each stopped process X'* is a sigma-martingale, then X
itself is a sigma-martingale.

Proof. For each k take ¢F, XT* integrable such that ¢¥ > 0 on [0,T%], ¢* - X+
is a uniformly integrable martingale and ||¢* - XT*||;n < 27, Put T, = 0 and
¢° = ¢ 1g). It is now obvious that ¢ = ¢° + 3, ¢*1j5,_, 7] is strictly positive,
is X integrable and is such that ¢ - X is an H! martingale. O

3. ONE-PERIOD PROCESSES

In this section we shall present the basic idea of the proof of the main theorem

in the easy context of a process consisting only of one jump. Let So = 0 and

S; € LO(Q, F,P;R?) be given and consider the stochastic process S = (S;)i_o; as

filtration we choose (F;);—, where F; = F and Fp is some sub-o-algebra of F. At

a first stage we shall in addition make the simplifying assumption that Fy is trivial,

i.e., consists only of null-sets and their complements. In this setting the definition
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of the No-Arbitrage condition (NA) (see [DMW90] or [DS94]) for the process S boils
down to the requirement that, for z € R?, the condition (z,5) > 0 a.s. implies
that (z,S) = 0 a.s., where (-,-) denotes the inner product in R?.

From the theorem of Dalang-Morton-Willinger [DMW90] we deduce that the No
Arbitrage condition (NA) implies the existence of an equivalent martingale measure
for S, i.e., a measure Q on (Q,F),Q ~ P, such that Eg [S1] = 0.

By now there are several alternative proofs of the Dalang-Morton-Willinger theorem
known in the literature ([S92], [KK94], [R94]) and we shall present yet another proof
of this theorem in the subsequent lines. While some of the known proofs are very
elegant (e.g., [R94]) our subsequent proof is rather clumsy and heavy. But it is
this method which will be extensible to the general setting of an R?-valued (not
necessarily locally bounded) semi-martingale and will allow us to prove the main
theorem in full generality.

Let us fix some notation: by Adm we denote the convex cone of admissible elements
of R? which consists of those z € R? such that the random variable (z, S) is (almost
surely) uniformly bounded from below.

By K we denote the convex cone in L°(Q, F,P) formed by the admissible stochastic
integrals on the process S, i.e.,

K = {(z,51) : z € Adm} (3.1)

and we denote by C the convex cone in L*®(, F,P) formed by the uniformly
bounded random variables dominated by some element of K, i.e.,

C=(K-Ly(Q,F,P)NL=(Q,F,P)
={f e L®(Q,F,P): thereisge K, f < g}. (3.2)
Under the assumption that S satisfies (NA), i.e. KN LY = {0}, we want to find
an equivalent martingale measure Q for the process S. The first argument is well-
known in the present context (compare [S92] and theorem 4.1 below for a general

version of this result; we refer to [S94] for an account on the history of this result,
in particular on the work of J.A. Yan [Y80] and D. Kreps [Kr81]):

3.1 Lemma. If S satisfies (NA) the convex cone C is weak* closed in
L>(Q, F,P), and C N LEL(Q, F,P) = {0}. Therefore there is a probability mea-
sure Q1 on F,Qy ~ P such that

Ep, [f]<0 for feC. O

In the case, when S; is uniformly bounded, the measure ; is already the desired
equivalent martingale measure. Indeed, in this case the cone Adm of admissible
elements is the entire space R? and therefore

Eg, [(z,51)] <0, for z € R?,
which implies that

Eg, [(z,51)] =0, for z € RY,

whence Eg, [S] = 0.



But if Adm is only a sub-cone of R? (possibly reduced to {0}), we can only say much
less: first of all, S; need not be @ -integrable. But even assuming that Egp, [S1]
exists we cannot assert that this value equals zero; we can only assert that

(z, Eq, [S1]) = Eqg, [(z,51)] <0, for z € Adm,
which means that Eg, [S1] lies in the cone Adm° polar to Adm, i.e.,

Eg, [S1] € Adm® = {y € R? : (z,y) < 1 for z € Adm}
={y e R?: (z,y) <0 for z € Adm}.

The next lemma will imply that, by passing from Q; to an equivalent probability
measure Q with distance ||Q— Q|| in total variation norm less than € > 0, we may
remedy both possible defects of @ : under QQ the expectation of S; is well-defined
and it equals zero.

The idea for the proof of this lemma goes back in the special case d = 1 and
Adm = {0} to the work of D. McBeth [M91].

3.2 Lemma. Let Qq be a probability measure as in lemma 3.1 and € > 0. Denote
by B the set of barycenters

B = {Eg [S1] : Q gprobability on F,Q ~P,||Q— Q|| <&, and S; is Q-integrable}

Then B is a convex subset of R? containing 0 in its relative interior. In particular,

there is Q ~ Q,||Q — Q|| < &, such that Eg [S1] = 0.

Proof. Clearly B is convex. Let us also remark that it is nonempty. To see this let

us take § > 0 and let us define % = ﬁ%' Clearly S; is Q integrable
21

and from Lebesgue’s dominated convergence theorem we deduce that for § small
enough |Q — Q|| <e.

If 0 were not in the relative interior of B we could find by the Minkowski separation
theorem, an element z € R?, such that B is contained in the halfspace H, = {y €
R? : (z,y) > 0} and such that (z,y) > 0 for some y € B. In order to obtain a
contradiction we distinguish two cases:

Case 1: z fails to be admissible, i.e., (z,S;) fails to be (essentially) uniformly
bounded from below.

First find, as above, a probability measure Q@ ~ P, ||Q; — Q:|| < €/2 and such that
Eq, [S1] is well-defined.

By assumption the random variable (z,.5;) is not (essentially) uniformly bounded
from below, i.e., for M € Ry, the set

Qp = {w : (m,Sl(w)) < —M}
has strictly positive Q,-measure. For M € R, define the measure Q¥ by

dQM 1—¢/4 on Q\ Qu
d(@g - 1_6/4+4Q2(5791\/1) OIIQM.
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It is straightforward to verify that QM is a probability measure, QY ~ P,
|QY — Q|| < &/2, dQM /dQx € L* and such that

(z, Egu [S1]) = Equ [(z,SY)] < (1 —e/4)Eqg, [(z, S1)] - %_

For M > 0 big enough the right hand side becomes negative which gives the desired
contradiction.

Case 2: z is admissible, i.e., (x,S7) is (essentially) uniformly bounded from below.
In this case we know from the Beppo-Levi theorem that the random variable (x, S1)
is @ -integrable and that Eg, [(z,S1)] < 0; (note that, for each M € Ry, we have
that (z,S1) A M is in C and therefore Eg, [(z,S1) A M] < 0).

Also note that (x,S1) cannot be equal to 0 a.s., because as we saw above there is a
y € B such that (z,y) > 0 and hence (z,51) cannot equal zero a.s. either. The No
Arbitrage property then tells us that Q [(z,S) > 0] as well as @ [(z,S) < 0] are
both strictly positive.

We next observe that for all 7 > 0 the variable exp (n(z,S1)~) is bounded. The

measure Q», given by g%i = % is therefore well defined. For 7 small

enough we also have that || — Q|| < . But @ also satisfies:

E@z [(SL’,Sl)] <0.
Indeed:

]EQI [eXp (77(55751)_) (517,51)]
= _EQl [eXp (77(55751)_) (.73,51)_] +]EQ1 |:($7Sl)+:|
< _]EQ1 [(.’L’,Sl)_] +E@1 [($7SI)+] S 0.

The measure (» does not necessarily satisfy the requirement that Egp, [||S1]|] < oc.

We therefore make a last tansformation and we define dQ = %d@z.
2

For § > 0 tending to zero we obtain that ||Q— Qz|| tends to 0 and Eg [(z, S1)] tends
to Eg, [(z,S1)]which is strictly negative. So for § small enough we find a probability
mesaure Q such that Q ~ P, ||Q — Q|| < &, Eg [||S1]]] < o0 and Eg [(z,51)] <0, a
contradiction to the choice of z. O

Lemma 3.2 in conjunction with lemma 3.1 implies in particular that, given the
stochastic process S = (S;)}_, with Sop = 0 and Fy trivial, we may find a probability
measure Q ~ P such that S is a Qmartingale. We obtained the measure Q in
two steps: first (lemma 3.1) we found @ ~ P which took care of the admissible
integrands, which means that

Eg, [(z,51)] <0, for z € Adm.

In a second step (lemma 3.2) we found Q ~ P such that Q took care of all integrands,
ie.,

(2,Eq [S1]) = Eg [(2,51)] <0 for z € R*

and therefore

]EQ [Sl] = Oa
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which means that S is a Q-martingale.
In addition, we could assert in lemma 3.2 that |[|Qy — Q|| < ¢, a property which will
be crucial in the sequel.
The strategy for proving the main theorem will be similar to the above approach.
Given a general semi-martingale S = (S;)icr, defined on (0, F, (Fi)icr,,P) we
first replace P by @Q; ~ PP such that 4y “takes care of the admissible integrands”,
ie.,

Eg, [(H - S)w) <0, for H admissible.

For this first step, the necessary technology has been developed in [DS94] and may
be carried over almost verbatim.

The new ingredient developed in the present paper is the second step which takes
care of the “big jumps” of S. By repeated application of an argument as in lemma,
3.2 above we would like to change @ into a measure Q,Q ~ P, such that S
becomes a Q-martingale. A glance at example 2.3 above reveals that this hope
is, in the general setting, too optimistic and we can only try to turn S into a Q-
sigma-martingale. This will indeed be possible, i.e., we shall be able to find Q and
a strictly positive predictable process ¢, such that, for every — not necessarily
admissible — predictable R? -valued process H satisfying||H||ga < ¢, we have that
H - S is a Q-marti ngale. In particular ¢ - S will be a Q-martingale.

In order to complete this program we shall isolate in Lemma 3.5 below, the argument
proving lemma 3.2 in the appropriate abstract setting. In particular we show that
the construction in the proof of lemma 3.2 may be parameterized to depend in a
measurable way on a parameter 7 varying in a measure space (E, &, 7). The proof of
this lemma is standard but long. One has to check a lot of measurability properties
in order to apply the measurable selection theorem. Since the proofs are not really
used in the sequel and are standard, the reader can, at a first reading, look at the
definition 3.3, convince herself that the two parametrisations given in lemma 3.4
are equivalent and look at lemma 3.5.

Definition 3.3. We say that a probability measure y on R? satisfies the NA prop-
erty if for every x € R? we have u({a | (z,a) < 0}) > 0 as soon as p({a | (z,a) >
0}) > 0.

We start with some notation that we will keep fixed for the rest of this section. We
first assume that (E, &, ) is a probability space that is saturated for the null sets,
ie. if AC B € € and if m(B) = 0 then A € £. The probability 7 can easily be
changed into a o-finite positive measure, but in order not to overload the statements
we skip this straightforward generalisation. We recall that a Polish space X is a
topological space that is homeomorphic to a complete separable metrisable space.
The Borel sigma algebra of X is denoted by B(X). We will mainly be working in a
space ' x X where X is a Polish space. The canonical projection of £ x X onto F is
denoted by pr. If A € EQB(X) then pr(A) € £, see [Au65] and [D72]. Furthermore
there is a countable family (f,)p>1 of measurable functions fn:pr(4) — X such
that

(1) for each n > 1 the graph of f, is a selection of A, i.e. {(n,fa(n)) | n €
pr(A)} C 4,
(2) for each n € pr(A) the set {f,(n) |n > 1} is dense in A, = {z | (n,z) € A}.
We call such a sequence a countable dense selection of A.
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The set P(R?) of probability measures on R? is equipped with the topology of
convergence in law, also called weak* convergence. It is well known that P(R?) is
Polish. If F: E — P(R?) is a mapping, then the measurability of F' can be refor-
mulated as follows: for each bounded Borel function g, we have that the mapping
N — Jpa9(y) dF,(y) is £ measurable. This is easily seen using monotone class ar-
guments. Using such a given measurable function F' as a transition kernel, we can
define a probability measure A on E x R? as follows. For an element D € £ @B(R?)
of the form D = A x B, we define \p(D) = [, F,(B) w(dn).

For each n € E we define the set Supp(F,) as the support of the measure F, i.e.
the smallest closed set of full Fj-measure. The set S is defined as {n,z) | = €
Supp(F,;)}. The set is an element of £ ® B(R?). Indeed, take a countable base
(Upn)n>1 of the topology of R? and write the complement as:

8¢ =J ({n| Fy(Un) =0} x Up).
n>1

If 2: E — R? is a measurable function then ¢: E — Ry U {+00} defined as ¢(n) =
(7, )" llLe (s, is € measurable. Indeed take a countable dense selection (fy,)n>1
of S and observe that ¢(n) = inf{(zy, fn(n))” | n > 1}.

For each n € E we denote by Adm(n) the cone in R? consisting of elements x € R?
so that (z,.)” € L*(F),). The set Adm is then defined as {(n,z) | x € Adm(n)}.
This set is certainly in £ ® B(R?). Indeed Adm = {(n,z) | inf,>1(z, fn) > —oc}
where the sequence (f,)n>1 is a countable dense selection of S.

3.4 Lemma. If F is a measurable mapping from (E,E,w) into the probability
measures on R?, then the following are equivalent:
(1) For almost every n € E, the probability measure F), satisfies the No Arbi-
trage property
(2) For every measurable selection x,, of Adm, we have Ar [(n,a) | z,(a) < 0] >
0 as soon as Ap [(n,a) | z,(a) > 0] > 0.

Proof. The implication 1 = 2 is almost obvious since for each € E we have
that F, [{a| (zy,a) <0}] > 0 as soon as F,[{a| (zy,a) > 0}] > 0. Therefore if
Ar[(n,a) | z,(a) > 0] > 0, we have that 7(B) > 0 where B is the set

B={neE|F,[{a](zy,a) >0}] > 0}.

For the elements n € B we then also have that F), [{a | (zy,a) <0}] > 0 and
integration with respect to 7 then gives the result:

Ar((n,a) | (zg,a) < 0] = /EW(dU)Fn [{a | (zy,a) <0}] > 0.

Let us now prove the reverse implication 2 = 1.
We consider the set

A={(n,z)| Fyla]|(z,a) >0]=1and F,[a]| (z,a) > 0] > 0}.
The reader can check that this set is in £ @ B(R?) and therefore the set B = pr(4) €
€. Suppose that 7(B) > 0 and take a measurable selection z, of A. Outside B
we define z, = 0. Clearly Ar ({(n,q) | (x5,a) > 0}) > 0 and hence we have that
Ar ({(n,a) | (zy,a) < 0}) > 0, a contradiction since (z,,a) > 0, Ar a.s.. So we see
that B = () a.s. or what is the same for almost every n € E the measure F;, satisfies
the No Arbitrage property. O
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3.5 The Crucial Lemma. Let (E,&, ) be a probability measure space and let
(Fy)nek be a family of probability measures on R? such that the map n — F, is
& -measurable.

Let us assume that F' satisfies the property that for each measurable map z: E —
RY:n — x, with the property that for every n € E we have (x,,y) > —1, for F,
almost every y, we also have that [, F(dy)(zy,y) <O0.

Let e: E — Ry \ {0} be & measurable and strictly positive.

Then, we may find an £-measurable map n — Gy, from E to the probability measures
on B(R?) such that, for m-almost every n € E,

(i) F, ~ Gy and ||F, — G,l| < &g,
(ii) Eg, [llyll] < oo and Eg, [y] = 0.

Proof. As observed above the set P(R?) of probability measures on R?, endowed
with the weak* topology is a Polish space. We will show that the set

{(n,u)l/ el di < oo [ xdu=0;Fn~u;|lu—Fnll<€(n)}
Rd Rd

is in £ ® B(P(R?)). Since, by lemma 3.4, for almost all 7, the measure F,, satisfies
the No Arbitrage assumption of Definition 3.3, we obtain that, for almost all 7, the
vertical section is nonempty. We can therefore find a measurable selection G, and
this will then end the proof.

The proof of the measurability property is easy but requires some arguments.
First we observe that the set M = {u | [p.llz|ldu < oo} is in B(P(R%)). This
follows from the fact that 4 — [ ||z|| du is Borel measurable as it is an increasing
limit of the weak* continuous functionals p — [ min(|[z||,n) dp.

Next we observe that M — R?%; y — fRd z dp is Borel measurable.

The third observation is that {(n, u) | || — Fyl| < e(n)} is in £ ® B(P(R?)).
Finally we show that {(n, u) | 4 ~ F,} is also in & ® B(P(R?)). This will then end
the proof of the measurability property.

We take an increasing sequence of finite sigma-algebras D, such that B(R?) is

generated by U,D,,. For each n we see that the mapping (n, u, z) — ddTH,, (z) =

Dn
an(n, i, ) is £ ® B(P(R?)) ® B(R?) measurable. The mapping

q(n, p, z) = liminf g, (n, u, x)

is clearly £ B(P(R?)) ® B(R?) measurable. By the martingale convergence theorem
we have that for each u, the mapping ¢ defines the Radon-Nikodym density of the
part of u that is absolutely continuous with respect to F,. Now we have that

(@ ln~ Fy={ ) | [ atna)dm) =15t [ () A1y (o) = 1]

Rd
and this shows that {(n,p) | p ~ F,} is in € ® B(P(R?)).

Next suppose that (E,&, ) is not necessarily complete. In that case we first com-
plete the space (E, &, w) by replacing the sigma-algebra £ by & generated by £ and
all the null sets. We then obtain an £ measurable mapping F}, which can easily be

replaced by a £ measurable mapping F;, such that 7 almost surely F; = ﬁ},. a
11



Remark. We have not striven for maximal generality in the formulation of lemma
3.5: for example, we could replace the probability measures Fj by finite non-
negative measures on R?. In this case we may obtain the G, in such a way that
the total mass G, (R?) equals F,(R?), m-almost surely.

To illustrate the meaning of the Crucial Lemma we note a little observation in the
spirit of [M91] which shows in particular the limitations of the no-arbitrage-theory
when applied e.g. to Gaussian models for the stock returns in finite discrete time.

3.6 Proposition. Let (S;)L_, be an adapted R%-valued process based on
(Q, F, (F)L,,P) such that for every predictable process (h;)l_, we have that (h -
S)r = Ez;l htAS; is unbounded from above and from below as soon as (h-S)r Z 0.
For example, this assumption is satisfied if the F;_1-conditional distributions of the
jumps AS; are normally distributed on R?.

Then, for € > 0, there is a measure Q ~ P,||Q — P|| < &, such that S is a Q-
martingale.

As a consequence, the set of equivalent martingale measures is dense with respect
to the variation norm in the set of P-absolutely continuous measures.

Proof. Suppose first that T'= 1. Contrary to the setting of the motivating example
at the beginning of this section we do not assume that Fg is trivial.

Let (E,E&,7) be (Q, Fo,P) and denote by (F,,),cq the Fo-conditional distribution of
AS; = 851 —8p. The assumption of lemma 3.5 is (trivially) satisfied as by hypothesis
the Fo-measurable functions z(w) such that P-a.s. we have (z,,y) > -1, F,-a.s.,
satisfy (z,,y) = 0, F,-a.s., for P-a.e. w € Q.

Choose e(w) = € and find G, as in the lemma. To translate the change of the
conditional distributions of AS; into a change of the measure P, find Y : Q x R? —

Ry,
dG.,

dF. (z)
such that, for P-a.e. w € ,Y (w,-) is a version of the Radon-Nikodym derivative
of G, with respect to F,,, and such that Y (-,-) is Fo ® Borel(R?)-measurable.
Letting

Y(w,z) = zeR we

dQ

dP
we obtain an JFj-measurable density of a probability measure. Assertion (i) of
lemma 3.5 implies that Q ~ P and [|Q — P|| < &. Assertion (ii) implies that

(w) =Y (w,AS1(w))

Eg [l|AS: ||ralFo] < 00 a.s.

and
IEQ [ASllj:o] =0. a.s.

We are not quite finished yet as this only shows that (S;)]_, is a @—sigma—martingale
but not necessarily a Q-martingale as it may happen that E[||AS1||grd] = oo. But
it is easy to overcome this difficulty: find a strictly positive Fy-measurable function
w(w), normalised so that Ey [w] =1 and such that By [w(w)E[||AS: [|ralFo]] < co.
We can construct w is such a way that the probability measure QQ defined by
d@(w) = w(w),
dQ(w)
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still satisfies ||Q — P|| < &. Then

Eq [|AS: [[ra] < oo

and
]EQ [A51|.7:0] = 0, a.S.,

i.e., S is a Q-martingale.

To extend the above argument from T' = 1 to arbitrary T' € N we need yet another
small refinement: an inspection of the proof of lemma 3.5 above reveals that in
addition to assertions (i) and (ii) of lemma 3.5, and given M > 1, we may choose
G, such that

<M

— 7

L= (R4,F,)

(iii) - a.8.

G,
dF,

We have not mentioned this additional assertion in order not to overload lemma
3.5 and as we shall only need (iii) in the present proof.

Using (iii), with M = 2 say, and, choosing w above also uniformly bounded by 2,
the argument in the first part of the proof yields a probability Q ~ P, ||Q —P|| < ¢,
such that ||(;%||Loo(]p>) <4.

Now let T € N and (S;)L,, based on (Q, (%)L 4, F,P), be given. By backward
induction on t = T,...,1 apply the first part of the proof to find F;-measurable
densities Z; such that, defining the probability measure Q(*) by

dQ®
=7
dP iy

we have that the two-step process (S, [].—, 1 Z)—i_1 is a QM) -martingale with
respect to the filtration (F,)!_, 1,Q® ~ P, ||Q® —P||; < e4 TT~!, and such that
|1 Z¢|| Loopy < 4.

Defining

dQ
-~ _ Z,
dP tl;[l K

we obtain a probability measure Q, Q ~ P such that (S;)L, is a martingale under
Q. Indeed,

Eq [ASt]Fi-1] = Ep

u=1

(1) =

<1:[ Zu) Ege

T
As ] Zuml]

T
zAS, I Zu|]-“t1]

u=t+1

T
As; I Zu|ft_1] =0

L u=t+1
and
t—1 B T
Fo [|ASIral < [| ] Zulloo - Bge |11ASe [ Zullga| < 0.
u=1 | u=t+1

13



Finally we may estimate ||Q — P||; by

T
IQ-Pll =Ee || [ 2 -1
t=1
T t t—1
< Ep lZ|HZu—HZu|
t=1 wu=1 u=1
T t—1
< Z | H Zy|| oo p)Ee [|Z; — 1]]
t=1 wu=1

<T -4Tea TT 1 =¢.

The proof of the first part of proposition 3.6 is thus finished and we have shown in
the course of the proof that we may find QQ such that, in addition to the assertions
of the proposition, %g is uniformly bounded.

As regards the final assertion, let P’ be any P-absolutely continuous measure. For
given g > 0, first take P ~ P such that ||P” —P'|| < €. Now apply the first assertion
with P” replacing P. As a result we get an equivalent martingale measure QQ such
that [|Q —P"|| < &, hence also [|Q — P'|| < 2e.

This finishes the proof of proposition 3.6 [

4. THE GENERAL R¢-vALUED CASE

In this section S = (S¢)icr, denotes a general R?-valued cadlag semi-martingale
based on (9, F, (F¢)tcr., P) where we assume that the filtration (F;):cr., satisfies
the usual conditions of completeness and right continuity.

Similarly as in [DS94] we define an S-integrable R?-valued predictable process H =
(Hi)ter, to be an admissible integrand if the stochastic process

t
(H - 8), = /0 (H,,dS.,) tER,

is (almost surely) uniformly bounded from below.

It is important to note that, similarly as in proposition 3.6 above, it may happen
that the cone of admissible integrands is rather small and possibly even reduced to
zero: consider, for example, the case when S is a compound Poisson process with
(two-sided) unbounded jumps, i.e., Sy = Zf\il X, where (N;)icr, is a Poisson
process and (X;)2°; an i.i.d. sequence of real random variables such that || X ||oo =
[|X; |loo = 00. Clearly, a predictable process H, such that H - S remains uniformly
bounded from below, must vanish almost surely.

Continuing with the general setup we denote by K the convex cone in L°(2, F,P)
given by
K ={f=(H" 9 : H admissible}

where this definition requires in particular that the random variable (H - S)q, :=
limy 400 (H - S) is (almost surely) well-defined (compare [DS94], definition 2.7).
Again we denote by C the convex cone in L*°(Q, F,P) formed by the uniformly
bounded random variables dominated by some element of K, i.e.,

14



C = (K- Ly(Q,F,P))n L*®(Q, F,P)
={feL>®(Q,F,P): thereis g€ K, f < g}. (4.1)

We say [DS94], p.467, that the semi-martingale S satisfies the condition of No Free
Lunch with Vanishing Risk (NFLVR) if the closure C of C, taken with respect to
the norm-topology || - ||ec of L>(2, F,P) intersects L3°(€2, F,P) only in 0, i.e.,

S satisfies (NFLVR) <= C N LY = {0}.

For the economic interpretation of this concept, which is a very mild strengthening
of the “no arbitrage” concept, we refer to [DS94].

The subsequent crucial theorem 4.1 was proved in ([DS94], th.4.2) under the addi-
tional assumption that S is bounded. An inspection of the proof given in [DS94]
reveals that — for the validity of the subsequent theorem 4.1 — the boundedness
assumption on S may be dropped.

4.1 Theorem. Under the assumption (NFLVR) the cone C is weak* closed in
L>®(Q, F,P). Hence there is a probability measure Q; ~ P such that

Eq, [f] <0, for feC. O

4.2 Remark. In the case, when S is bounded, Q; is already a martingale measure for
S, and when S is locally bounded, @, is a local martingale measure for S (compare
[DS94], theorem 1.1 and corollary 1.2).

To take care of the non locally bounded case we have to take care of the “big jumps”
of S. We shall distinguish between the jumps of S occurring at accessible stopping
times and those occurring at totally inaccessible stopping times.

We start with an easy lemma which will allow us to change the measure (; count-
ably many times without loosing the equivalence to P.

4.3 Lemma. Let (Q,)52; be a sequence of probability measures on (Q, F,P) such
that each Q, is equivalent to P. Suppose further that the sequence of strictly positive
numbers (€n)n>2 is such that

1) Qs = Quta [l < nt1,

(2) if Q, [A] < epg12™ then P[A] < 27™.
Then the sequence (Q,)n>1 converges with respect to the total variation norm to a
probability measure Q, which is equivalent to P.

Proof of lemma 4.3. Clearly the second assumption implies that €,41 < 27" and
hence the sequence (Q,)n>1 converges in variation norm to a probability measure
Q. We have to show that Q ~ P. For each n we let g,4+1 be defined as the
Radon-Nikodym derivative of Q, 1 with respect to Q,. Clearly for each n > 2 we
then have [ |1 — ¢ny1]/dQ, < €,41 and hence the Markov inequality implies that
Qn |1 = gnt1| > 27"] < 27e,41. The hypothesis on the sequence (€,),>2 then
implies that P[|1 — gp+1| > 27"] < 27". From the Borel Cantelli lemma it also
follows that a.s. the series ), -, |1 — gn| converges and hence the product [[,~, ¢n

converges to a function g a.s. different from 0. Clearly g = %’; which shows that

Q~Q ~P. O
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We are now ready to take the crucial step in the proof of the main theorem. To
make life easier we still make the simplifying assumption that S does not jump
at predictable times. In 4.6 below we finally shall also deal with the case of the
predictable jumps.

4.5 Proposition. Let S = (S¢)icr, be an R?-valued semi-martingale which is
quasi-left-continuous, i.e., such that, for every predictable stopping time T we have
St = ST_ almost surely.

Suppose, as in 4.1 above, that Q; ~ P is a probability measure verifying

Eo, [f]1<0 for f € C.

Then there is, for € > 0, a probability measure Q ~ P, ||Q — Q1 || < &, such that S
s a sigma-martingale with respect to Q.

In addition, for every predictable stopping time T, the probabilities Q and @, on
Fr, coincide , conditionally on Fr_, i.e.,

dQl Fr — dQl Fp—
dQu |7y dQu lFp _

Proof. Step 1: Define the stopping time 7" by
T =inf{t: ||ASt||re > 1}

and first suppose that S remains constant after time 7', hence S has at most one
jump bigger than 1.
Similarly as in [JS87], I1.2.4 we decompose S into

S=X+X
where X equals “S stopped at time T-", i.e.,

{St fort<T
X =
Sy fort>T

and X the jump of S at time T, i.e.,
Xt = AST . 1[T,oo]-

As X is bounded, it is a special semi-martingale, and we can find its Doob-Meyer
decomposition with respect to @

X=M+B

where M is a local ;-martingale and B a predictable process of locally finite
variation.
We shall now find a probability measure @ on F,Qy ~ P, s.t.
i) 1 -Qll <e/2,
(i) Q2|zr. = Q|7,_ and Z%f is Fr-measurable,
(iii) S is a sigma-martingale under .
16



We introduce the jump measure p associated to X,
plw, dt, dz) = 6(T(w),AS7(w)):

where d;, denotes Dirac-measure at (t,z) € Ry x R? and we denote by v the Q-
compensator of u (see [JS87], prop. II.1.6). Similarly as in ([JS87], prop. 11.2.9) we
may find a locally @ -integrable, predictable and increasing process A such that

B=b-A
v(w,dt,dz) = F, 4(dzx)dAs (w)

where b = (b")L, is a predictable process and F, ;(dz) a transition kernel from
(2 xRy, P) into (R?, Borel (R?)), i.e., a P-measurable map (w,t) = F,, ;(dz) from
Q x R, into the nonnegative Borel measures on R?. Since the processes X and X
arequasi left continuous, the processes A and B can be chosen to be continuous,
but this is not really needed.

The process v and p are such that for each nonnegative P ® Borel(R?) measurable
function g we have that

/ 9w, 9w, dt, dy) P(dw) = / 9w, b, 9)w(w, dt, dy) P(dew)
QxR xR4 QxR xRd

To stay in line with the notation used in [JS87], H,, +* F,, ;, where H is a predictable
R¢ valued process and F is the kernel described above, denotes the predictable R
valued process Er, , [(Hu,t ,-)] = [ga(Hut,y) Fuotldy].
We may assume that A is constant after T', Qs -integrable and its integral is bounded
by one, i.e.,

Eq, [Aw] = dAQ x By) < 1,

where dA denotes the measure on P defined by dA(JT1,T>]) = Eg, [An, — A ], for
stopping times 77 < T5.
We now shall find a P-measurable map (w,t) = G+ such that for dA-almost each
(w,1),
(a‘) Fw,t(dw) ~ Gw,t(d$)7Fw,t(Rd) = Gw,t(Rd) and ||Fw,t - Gw,tl
(b) Eg,, [[lyllre] < 00 and Bg,, [y] = =b(w,?).
This is a task of the type of “martingale problem” or rather “semi-martingale
problem” as dealt with, e.g., in [JS87], def. 1I1.2.4.

We apply lemma 3.5 and the remark following it: as measure space (E,E&,w) we
take (Q x Ry, P,dA) and we shall consider the map

e
<3

n= (UJ, t) - ﬁw,t = Fw,t*db(w,t)

where dy(,, ) denotes the Dirac measure at b(w,t) € R¢, % denotes convolution and
therefore ﬁ’w,t is the measure F,, ; on R? translated by the vector b(w,t).

We claim that the family (ﬁ'w,t)(w’t)egxm . satisfies the assumptions of lemma 3.5
above. Indeed, let H, ; be any P-measurable function such that dA-almost surely
Hw,t € Adm(ﬁ’w,t) = .Adm(Fw,t).

By multiplying H with a predictable strictly positive process v, we may eventually
assume that ||H, ||re < 1 and that, at least dA a.e., also the predictable process
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[{Hu,t,-)"lloe (£, . is bounded by 1. That the latter process is predictable follows
from the discussion preceding the Crucial Lemma and essentially follows from the
measurable selection theorem.

The boundedness property translates to the fact that H = (H;(w))¢cr, is an ad-
missible integrand for the process X. This follows from the definition of the com-
pensator v in the following way. For each natural number n we have, according to
the definition of the compensator that

E [ ((Hu.t, AST(w))7)" 17<c0]

=E / ((Hop9)™)" u(w;dtady)]
R xR4

=E / (Hot,y)™)" v(w,dt,dy)
R+><Rd

=E _/R+ /md (Hot,y) )" Flot(dy) dAy(w)

<E _/]R+ /Rdww,t(dy) Ay (w)

<E / 1v(w,dt,dy)
]R+XRd

<E / 1u(w,dt,dy)] < Q[T < oo].
R4 xR

Since the inequality holds for each n we necessarily have that

(H-X); > -1 a.s., for all t € Ry.
Noting that M is a (locally bounded) local martingale and B is of locally bounded
variation, we may find a sequence of stopping times (Uj)]?;1 increasing to infinity,
such that, for each j € N,

(1) MY is a martingale, bounded in the Hardy space H'!(Q; ), and
(2) BYi is of bounded variation.

Hence, for each predictable set P contained in [0,U;], for some j € N, we have
that H1p is an admissible integrand for S and H1p - M is a martingale bounded
in #*(Qy) and therefore

Eo, [(H1p - M)s] = 0.

As by hypothesis
Eo, [(H1p - S)os] <0

we obtain )
Eq, [(H1p - (X + B))oo] < 0.
Using the identities

Eo, [(H1p - (X + B))w] = /Q s g+ (g bu ) LrdAGw, )

= / (Hot * Fw,t)lPdA(w,t) <0
QxR 4

18



which hold true for each P € P contained in [0,U;], for some j € N, we conclude
that for dA-almost each (w,t) we have

Hw,t * ﬁw,t = Eﬁw,t [(Hw,t a)] <0.

This inequality implies that assumption 2 in Lemma 3.4 is satisfied and hence F,, ;
satisfies the no arbitrage property, i.e. the hypothesis of lemma 3.5 is satisfied.
Hence we may find a transition kernel éw,t as described by lemma 3.5 — with ¢
replaced by €/2 — and letting G, + = éw,t*é,b(w,t) we obtain a transition kernel
satisfying (a) and (b) above.

We now have to translate the change of transition kernels from F, ; to G, into
a change of measures from ; to @ on the sigma-algebra Fr which will be done
by defining the Radon-Nikodym derivative %. We refer to [JS87], II1.3 for a
treatment of the relevant version of Girsanov’s theorem for random measures.

For (w,t) fixed denote by Y(w,t ,-) the Radon-Nikodym derivative of G, ; with
respect to F 4, i.e.

dG ¢
de,t
which is F, ¢-almost surely well-defined and strictly positive. We may and do choose
for dA-almost each (w,t), a version Y (w,t,z) such that Y (-,-,-) is P ® Borel(R?)-
measurable.

We now define

d
%(w) — 2o (@) = ¥(@, T(@), A0 @)1 {r<on) + 1(r—ooy

and Zy(w) = Y(w,T(w), ASr() (W) 1ir<e) + 1{r>¢}-

The intuitive interpretation of these formulas goes as follows: for fixed w € Q we
look at time T'(w) which is the unique “big” jump of (Sy(w))ier,. The density
Y(w,T(w),x) gives the density of the distribution of the compensated jump mea-
sure G, ¢ with respect to F, ., if the jump equals z and therefore we evaluate
Y(w,T(w),z) at the point x = ASt(,)(w) to determine the density of @ with
respect to Q. If T'(w) = oo the density %(w) is simply equal to 1. The variable
Y (w, T (w), AST(w)) is certainly integrable. Indeed

Y(w,t,7) = (z), z € RY,

E[Y(w5T(w)JAST(w))1T<OO] =K /R RdY(w,t,y)u(w,dt,dy)]

=E / Y (w,t, y)v(w,dt, dy)
R+XRd

=K / Y(w,t,y)Fo(dy)dAs (w)Q (dw)]
| /Ry JRE

_g| /R ) /R d Fw,t(Rd)dAt(w)Ql(dw)]

=E / v(w, dt,dy)
R+X]Rd

=E / u(w,dt,dy)] =Q[T < ).
R+><Rd
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The process Z can also be written as
Z = Y(w, T, AST)1|[T,oo[ + 1|[0,T[:

from which it follows that Z is a process of integrable variation. The maximal
function Z* of Z is therefore integrable.

In order to show that  is indeed a probability measure and that Z; = Zgﬂi :
shall show that (Z;);er, is a uniformly integrable martingale closed by Z.

We may write Z = (Z;)¢er, as

we

Z =1+ Y (w,t,z) — 1) * p.

From the definition of the compensator v ([JS87], II.1.8) we deduce thatwe may
write the compensator Z? of Z

Z°? =1+ (Y(w,t,z) — 1) xv
=14+ (Y (w,t,z)—1)xF,;)-A

Noting that, for dA-almost each (w,t) we have that (Y (w,t,z) — 1) % F,; =
Er, , [Y(w,t,x) —1] = 0 we deduce that the compensator ZP is constant. Since
Z — ZP is a martingale, by defintion of the compensator of processes of integrable
variation, it follows that Z is a martingale as well.

To estimate the distance ||Qx — Q ||, note that

e
<Eo, [(IY (w,t,2) = 1] % v)oo]
S EQ1 (”Fw,t - Gw,t“ ’ A)OO S (5/2) EQ1 [Aoo] S 6/2'

Next observe that |7, = Qi|x,_: indeed, we have to show that Q; and Q,
coincide on the sets of the form AN {T > t}, where A € F;, as these sets generate
Fr_. Noting that Z; is equal to 1 on {T" > t}, this becomes obvious.

Finally we show that S is a sigma-martingale under ;. First note that M remains
a local martingale under » as M is continuous at time T, i.e., M7_ = My, and
@ and @ coincide on Fp_.

As regards the remaining part X + B of the semi-martingale S we have by (b)
above that, for dA-almost each (w,t), g, , [|lyllre] < 0o and Eg,, [y] = —b(w,1).
This does not necessarily imply that X + B is already a martingale (or a local
martingale) under » as a glance at example 2.2 reveals. We may only conclude
that X + B is a Qy-sigma-martingale, as we presently shall see.

Define

ot(w) = (g, [lyllra)) "' AL

which is a predictable dA-almost surely strictly positive process. The process ¢ -
(X + B) is a process of (-integrable variation as

Eg, [ Var||.||nd(90 (X + B))] =

Eg, [¢- (lyllre * Guo,t - A + [[butllra - A)] < 2B, [Aoo] = 2B, [Ax] < 2,
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where the last equality follows from the fact that Q; and @y coincide on Fp_ and
that, A being predictable, A, is Fr_ measurable.

Hence ¢- (X + B) is a process of integrable variation whose compensator is constant
and therefore ¢ - (X + B) is a Qy-martingale of integrable variation, whence in
particular a Qy-martingale. Therefore X 4+ B as well as S are Q,-sigma-martingales.

Summing up: We have proved proposition 4.5 under the additional hypothesis that
S remains constant after the first time 7" when S jumps by at least 1 with respect
0 || - [l

Step 2: Now we drop this assumption and assume w.l.g. that Sy = 0. Let Ty =
0,71 = T and define inductively the stopping times

T = inf{t > Ti_1 : ||ASt||ra > 1}, k=23,...
so that (T%)72, increases to infinity. Let
S(k) :l]Tk_1,Tk]'S k:1,2,....

Note that S1) satisfies the assumptions of the first part of the proof, where we have
shown that there is a measure Q» ~ P, satisfying (i), (ii), (iii) above for T' = T;.
Now repeat the above argument to choose inductively, for k = 2,3, ..., measures
Qk+1 ~ P such that

() Qusr — Qell < e/25' Ainf{Z524) - 4 € F,P[4] > 274},

(i) Qet1lFr, = QxlF,, and 4@t g Fr,-measurable.

dQs
(iii) S® is a sigma-martingale under Q.

The condition in (i) above is chosen such that we may apply lemma 4.3 to conclude
that

Q= lim Q

k—o0

exists and is equivalent to P. From (i) and (iii) it follows that each S is a
sigma-martingale under ¥, for each [ > k. It follows that each S®*) is a Q sigma-
martingale and hence S, being a local sigma-martingale is then a sigma-martingale.
This proves the first part of proposition 4.5.

As regards the final assertion of proposition 4.5 note that, for any predictable
stopping time U, the random times

U ifT,_1<U<LT,
Ukz{ if Tpq <Ty

oo otherwise

are predictable stopping times, for k¥ = 1,2,.... Indeed, as easily seen, the set
{Ty < U < Tj41} is in Fy_, showing that Uy, is predictable.
By our construction and property (ii) above we infer that, for k =1,2,...,
dQlFUk _ dQ‘}_(Uk)_
dQllFUk d@l‘}_(Uk -

which implies that
dQ,, _ Qs

d@1| Fu d@l| Fu_
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The proof of proposition 4.5 is complete now. [

Proposition 4.5 contains the major part of the proof of the main theorem. The
missing ingredient is still the argument for the predictable jumps of S. The argument
for the predictable jumps given below will be similar to (but technically slightly
easier than) the proof of proposition 4.5.

4.6 Proof of the Main Theorem. Let S be an R?-valued semi-martingale satisfying
the assumption (NFLVR). By theorem 4.1 we may find a probability measure @y ~
P such that,

Eo, [f]<0 for f e C.

We also may find a sequence (T})%2, of predictable stopping times exhausting the
accessible jumps of S, i.e., such that for each predictable stopping time T with
P[T =T, <o0] = 0, for each k € N, we have that Sy_ = Sr almost surely.
We may and do assume that the stopping times (T%)3>, are disjoint, i.e., that
P[TkZT]<OO]=0fOI“k7£J

Denote by D the predictable set

D=JI]caxRy

k>1
and split S into § = §® + S?, where

Sa:].D'S Sz:].(QXR_'_)\D'S
where the letters “a” and “i” refer to “accessible” and “inaccessible”. S and S‘
are well-defined semimartingales and in view of the above construction S? is quasi-
left-continuous.

Denote by C® and C? the cones in L= (Q, F, P) associated by (4.1) to S and S, and
observe that C® and C? are subsets of C' (obtained by considering only integrands
supported by D or ((2 x R;) \ D respectively) hence

Eq, [f] <0, for f € C® and for f € C*.

Hence S satisfies the assumptions of proposition 4.5 with respect to the proba-
bility measure (Q; and we therefore may find a probability measure, now denoted
by Q,Q ~ P, which turns S into a sigma-martingale and such that, for each pre-
dictable stopping time 7', we have

dQlFT — dQlFT— (4 3)
dQuy,  dQup, .
By assumption we have, for each k = 1,2,..., and for each admissible integrand H

supported by [T}], that

EQI [(H : S)OO] = ]EQl [HTk (STk - S(Tk)_)] <0.

Noting that the inequality remains true if we replace H by H14, for any Fp)_-
measurable set A, and using (4.3) we obtain
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Ey [(H - S)oo] = By [Hr,, (S0, — S70,-)] <0 (4.4)

for each admissible integrand supported by [T%].
We now shall prgceed Ain(iuctivelx on k: suppose we have chosen, for k¥ > 0, proba-
bility measures Qy = Q,Qy, ..., Qr such that

By, [St;|Fr,-] = St;- i=1...k

and such that, for

27 4] iy
Jp— Jj+1 J . > j
€J 6/2 /\mf{ ]F’[A] AE]'-,P[A]_Q }’
we have . )
1Q — Qjall <ey j=0,...,k—1.

In addition we assume that @j and @j,l agree “before T;— and after T;”; this
means that Qj and @j_l coincide on the o-algebra Fr;_ and that the Radon-
Nikodym derivative d@j / d@j,l is Fr;-measurable.
Now consider the stopping time Ty41: denote on the set {Tjy1 < oo} by F,
the jump measure of the jump S%, . — S7, _ conditional on Fr, ,—. By (4.4)
this (Q, Fr,,,,P)-measurable family of probability measures on R? satisfies the
assumptions of lemma 3.5 and we therefore may find an Fr,_, _-measurable family
of probability measures G, a.s. defined on {T}4+1 < oo}, such that

(i) Fu ~ Gy and [|F, — Gul| < &

(ii) Eg, [[[yllrs] < oo and bary(G.) = Eg, [y] = 0.

Letting, similarly as in the proof of proposition 4.5 above,

dF,
Y(w,z) = ﬁ(w)

be a Fr,,,— ® B(R?)-measurable version of the Radon-Nikodym derivatives gg‘:
and defining

Qi1

ﬁ(w) = I{Tk+1<OO}Y(w7 A’S’Tk-}.1 (LU)) + l{Tk+1=oo}
we obtain a measure Qui1 ~ P, [|Quy1 — Qull < er, Qug, = Q,

F(Tk+1)— F(Tk+1)—

and 4Q&+1 hein Fr...-measurable. For each M €
dQy g k+1

[T 4210 {Tk41 <00 and Ea, [lyl]<M} * S = 1[T1s1]n{Tis1<oo and Ea, [lyll<m} = S*
is a martingale under @k+1 and therefore
gk+1) . [Ty 1] { Ty 1 <00} .S

is a sigma-martingale under @k+1-
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Letting Q = limp_,00 Q& , each of the semi-martingales S(*) = 1i7,1-S is a Q-sigma-
martingale. It follows that

oo
gr=>"s"
k=1
is a -sigma-martingale and therefore
S =845

is a sigma-martingale too.
The proof of the main theorem is complete now. O

For later use, let us resume in the subsequent proposition what we have shown in
the above proof.

4.7 Proposition. Denote by M¢ the set of probability measures Q equivalent to P
such that for admissible integrands, the process H - S becomes a supermartingale.
More precisely

M ={Q| Q~P and for each f € C : Eg [f] < 0}.
If S satisfies NFLV R, then
M: ={Q| S is a Q sigma-martingale} ,

is dense in M¢.
Theorem 4.8. The set M¢ is a convez set.

Proof. Let Q;,Qy € M¢ and let ¢1,¢2 be strictly positive real valued S integrable
predictable processes, such that for i = 1,2, ¢; - S is an H'(Q;)-martingale. Take
now ¢ = min(¢1,¢»). Since 0 < ¢ < ¢1, ¢ - S is still an H'(Q1) martingale.
Similarly ¢ - S is still an H'(Qy) martingale. From this it follows that ¢ - S is an
H' (Q + Q) /2) martingale. O

5. DuALITY RESULTS AND MAXIMAL ELEMENTS

In this section we suppose without further notice that S is an R?-valued semi-
martingale that satisfies the NF LV R property, so that the set

M, ={Q|Q~P and S is a Q sigma- martingale}

is nonempty. We remark that when the price process S is locally bounded then the
set M¢ coincides with the set as introduced in [DS94], i.e. the set of all equivalent
local martingale measures for the process S.

In the case of locally bounded processes we showed the following duality equality,
(see [De92], theorem 6.1 for the case of continuous processes, [DS94], theorem 5.7
for the case of bounded functions and [DS95], theorem 9 for the case of positive
functions). The duality argument was used by El Karoui-Quenez [EKQ91]. For a
nonnegative random variable g we have:

sup Eg [g] =inf {a | there is H admissible and g < a+ (H -S)w}-
QeMe
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Using this equality we were able to derive a characterisation of maximal elements,
see [DS95] corollary 14.

In the general case, i.e. when the process S is not necessarily locally bounded,
the set of admissible integrands might be restricted to the zero integrand, compare
proposition 3.6 above. Below we will show that also in this case the above equal-
ity remains valid, at least for positive random variables g. This result does not
immediately follow from the results in [DS95].

Another approach to the problem is to enlarge the concept of admissible integrand
in a similar way as was done in [S94] and [DS96]. Here the idea is to allow for
integrands H that are such that the process H - S is controlled from below by an
appropriate function w, the so-called w-admissible integrands. We will generalise
the above duality equality to the setting of such integrands and we will see that
even in the locally bounded case this generalisation yields some new results.

If we want to control a process H - S from below by a function w then, of course,
the problem is that w cannot be too big, as this would allow doubling strategies
and therefore arbitrage. Also w cannot be too small because this could imply that
the only such integrand H is the zero integrand. This idea is made precise in the
following definitions of w-admissible integrands and of feasible weight functions.

5.1 Definition. If w > 1 is a random wvariable, if there is Qo € M{ such that
Eg, [w] < oo, if a is a nonegative number, then we say that the integrand H is
(a,w)-admissible if for each element Q € M and each t > 0, we have (H - S); >
—aFg [w | Ft]. We simply say that H is w-admissible if H is (a,w)-admissible for
some nonegative q.

Remark. If we put w = 1 we again find the usual concept of 1-admissible integrands.
We required that essinf w > 0 so that the admissible integrands become automati-
cally w-admissible. The idea in fact is to allow unbounded functions w and therefore
there seems to be no gain to introduce functions w that are too small. Requiring
that w > 1 is by no means a restriction compared to the condition essinf w > 0.

Remark. The present notion of admissible integrand is more suitable for our pur-
poses than the one introcuded in [DS96).

The next lemma, based on a well known stability property of the set M¢, shows that
in the inequality (H - S); > —Eg [w | F¢], it does not harm to restrict to elements
Q € M¢ such that Eg [w] < oc.

5.2 Lemma. Let w > 0 be such that Eg, [w] < oo for some Qo € ME. Suppose
that for some Q € ME and some real constant k the set A = {Eg [w | F] < k} has
positive probability, then there is Q1 € ME such that on A we have Eg, [w | F] =

Eg [w | F] and Eg, [w] < oo.

Proof. Let Z; be a cadlag version of the density process Z; = Eq, [% | fs]. Now
we put

Zi=1 fors<t
Z!=1 fors>tandw¢ A
Z
Zi==" fors>tandwe€ A
Zy
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Clearly the probability measure Q; defined by dQy = Z. dQp is in the set M¢
and satisfies the required properties. Indeed on the set A we have Eqg, [w | F] =
Eg [w | 7] and Eg, [w] < Eg, [w] +k < co. O

In section 2, we recalled Emery’s example showing that a stochastic integral with
respect to a martingale is not always a local martingale. In [AS94] Ansel and
Stricker gave necessary and sufficient conditions under which a stochastic integral
with respect to a local martingale remains a local martingale. We rephrase part of
their result in our context of sigma-martingales.

Theorem 5.3. Let H be S integrable and w-admissible, then H - S is a local
martingale (and hence also a super-martingale) for each Q € ME such that Eglw] <
00.

Proof. Simply write H-S as (Hp~!)-(¢-S), where the strictly positive predictable
real valued process ¢ is such that ¢ - S is a H!(Q) martingale. Then apply the
Ansel-Stricker result. O

Remark. The statement of the preceding theorem becomes false if we replace the
condition Q € M¢ by Q € M¢. To see this, take the process S defined as Sy = 0 for
t <1 and S; = S1, a one dimensional normal variable, for ¢ > 1. The filtration is
simply the filtration generated by S. As there are no admissible integrands, every
equivalent probability measure is in Q € M¢. But it is clearly false that S becomes
a Q-supermartingale (i.e. Eg[S1] < 0) as soon as Eg[|S1]] < oo.

5.4 Definition. A random variable w: ) — Ry such that w > 1 is called a feasible
weight function for the process S, if

(1) there is a strictly positve bounded predictable process ¢ such that the maximal
function of the R?-valued stochastic integral ¢ - S satisfies (¢ - S)* < w.
(2) there is an element Q € ME such that Eg [w] < 0.

Remark. For feasible weight functions w, it might happen that for some elements
Q € M¢ we have that Eg [w] = oo, see the example 5.14 below.

If no confusion can arise to which process the feasibility condition refers, then we
will simply say that the weight function is feasible. The first item in the definition
requires that w is big enough in order to allow non-trivial integrands H such that
both H and —H are w-admissible. The second item requires w to be not too big and
as we will see this will avoid arbitrage opportunities. It follows from proposition
2.6, that because M¢ is nonempty, the existence of feasible weight functions is
guaranteed. For locally bounded processes S, a function w > 1 is feasible as soon
as there is Q € M¢ with Eg[w] < 0.

We can now state the generalisations of the duality theorem mentioned above.

5.5 Theorem. If w is a feasible weight function and g is a random variable such
that g > —w then:

sup Eg [g] = inf {« | there is H w — admissible and g < a+ (H - S)o} -
QEM Eq [w]<oo

If the quantities are finite then the infimum is a minimum.

Remark. The reader can see that even in the case of locally bounded processes S
the result yields more precise information. Indeed we restrict the supremum to
those measures Q € M¢ such that Eg [w] < oo.
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For a feasible weight function w, we denote by K, the set
Kw ={(H -S)s | H is w-admissible} .

5.6 Definition. An element g € Ky, is called maximal if h € ICyy, and h > g imply
that h = g.

The maximal elements in this set are then characterised as follows:

5.7 Theorem. If w > 1 is a feasible weight function, if H is w-admissible and if
h=(H - S)w, then the following are equivalent:
(1) h is mazimal
(2) there is Q € ME such that Eg [w] < co and Eg [h] =0
(3) there is Q € ME such that Eg [w] < co and H - S is Q-uniformly integrable
martingale.

In the proof of these results we will make frequent use of Theorem D and corollary
4.12 of [DS96]. These two results were proved for the slightly more restrictive
notion of admissibility, but the reader can go through the proofs and check that
the results remain valid for the present notion of w-admissible integrands. Indeed
the lower bound H - S > —w is only used to control the negative parts of the
possible jumps in the stochastic integral. This can also be achieved by the inequality
H -S> —FEqg [w]| F;] where Eg [w] < co. Compare the formulation of Theorems B
and C in [DS96]. For the convenience of the reader let us rephrase the results of
[DS96] in the present setting.

Theorem D. Let Q be a probability measure, equivalent to P. Let M be an R?-
valued Q-local martingale and w > 1 a Q-integrable function.
Given o sequence (H™),>1 of M -integrable R?-valued predictable processes such that

(H™ - M), > —Eg [w | F], for all n,t,
then there are convex combinations
K™ € cono{H™, H" "' . .},
and there is a super-martingale (V;)icr_, Vo <0, such that

lim  lim (K" M), =V, fort e Ry, a.s., (1)

s?t,sEQ.'. n—00

and an M -integrable predictable process H® such that
((H° - M)¢ — Vi)ter,  is increasing. (ii)

In addition, H® - M is a local martingale and a super-martingale.

Corollary 4.12. Let S be an R%- valued semi-martingale such that M¢(S) # (
and w > 1 a weight function such that there is some Q € MS(S) with Eg [w] < oo.
Then the convex cone

{g | there is a (1,w) admissible integrand H such that g < (H - S)0}
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is closed in L°(Q) with respect to the topology of convergence in measure.
Let w > 1 be such that there is Q € M¢, with Eg [w] < co. The set
Ky ={(H-S)x | H is w-admissible}

is a cone in the space of measurable functions L°. As in [DS94] we need the cone
of all elements that are dominated by outcomes of w-admissible integrands:

C0 ={g|g < (H-S)s where, H is w-admissible} .

If H is w-admissible and Eg [w] < oo for some Q € M¢, then it follows from the
results in [AS92] that the process H - S is a Q-supermartingale. Therefore the limit
(H - S)oo exists and Eg [(H - S)oo] < 0. It also follows that for elements g € C2,
we have that —oo < Eg [g] < 0. We will use this result frequently. We also remark
that if H is w-admissible and if (H -S)s > —w then H is already (1, w) admissible.
Indeed because of the supermartingale property of H - .S we have that (at least for
those Q € M¢ such that Eg [w] < c0):

(H-S) > Eq [(H - S)oo | Ft] 2 Eg [-w | Ft].
By lemma 5.2 this means that H is (1, w)-admissible.

5.8 Theorem. If w > 1 and if there is some Q € MS is such that Eg [w] < oo,
then
Cx={h|heL>® and hw € C)}

is weak* closed in L>(Q).
Proof. This is just a reformulation of corollary 4.12 cited above. O

We now prove the duality result stated in theorem 5.5. The proof is broken up into
several lemmata. As we will work with functions w > 1 that are not necessarily
feasible weight functions we will make use of a larger class of equivalent measures
namely:

Mg, = {Q ~ P | Eqg [w] < oo and for each h € Cy, : Eg [h] < 0}.

The reader can check that My , is the set of equivalent probability measures so
that w is integrable and with the property that for a w-admissible integrand H,
the process H - S is a supermartingale. When we work with admissible integrands,
i.e. with w identically equal to 1, then we simply drop, as in proposition 4.7, the

subscript w.

5.9 Lemma. If w > 1 has a finite expectation for at least one element Q € M,

if g is a random variable such that g > —w then:

sup Eg 9] <inf{a| there is H w — admissible and g < a+ (H - S)oo} -
oo

¢ w i Bolw]<

QeM

Proof. The proof follows the same lines as the proof of theorem 9 in [DS95]. If w > 1
and Q € Mg , then as observed above, the process H - S is a Q-super martingale
for each that H is w-admissible. Therefore the inequality g < a+ (H - S) implies
that By [g] < . O

Remark. If, under the hypothesis of the theorem, supgene ;g [uwj<oo B [9] = o0,
then also inf {a | there is H w — admissible and g < a + (H - S)o} = oco. This
simply means that no matter how big the constant a is taken, there is no w-
admissible integrand H such that g < a+ (H - S)eo-
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5.10 Lemma. If w > 1, if for some Q € Mg we have Eq, [w] < oo, if L is
bounded, if

B < inf{a| there is H w — admissible and g < a+ (H - S)so},

then there is a probability measure Q € My, such that Eq [g9] > 8.
Proof. The hypothesis on # means that:

(% + LS:’) neee = {o}.

Because the set C3° is weak™ closed, we can apply Yan’s separation theorem [Y80]
and we obtain a strictly positive measure p, equivalent to P such that

(1) B, [52] >0
(2) for all h € C3° we have E, [h] <O0.

If we normalize p so that the measure Q defined as dQ = %du becomes a probability
measure, then we find that

(1) Q ~ P and Eg [w] < oo,

(2) Eq [g] > B,
(3) for all h € C° we have that Eg [hw] < 0.

The latter inequality together with the Beppo-Levi theorem then implies that for
each w-admissible integrand H we have that Eg [(H - S)] < 0. O

5.11 Lemma. Ifw > 1, if some Qy € M¢ we have Eg, [w] < oo, if g > —w then

sup Eglg] > inf{a | there is H w — admissible and g < a+ (H -S)so}-
M

s,w

Moreover if the quantity on the right hand side is finite then the infimum is a
minimum.

Proof. For each n > 1, we have that Q/\T" is bounded and hence we can apply the
previous lemma. This tells us that, for each n € N,

o = sup {Eg [g An] | Q € Mg, }
> inf{a | thereis H w — admissible and gAn < a+ (H-S)x}.

Because there is nothing to prove when lim,, a,, = cc we may suppose that sup,, a, =
lim, a,, = a < 00. So, for each n, we take a w-admissible integrand H™ such that
gAn < ap+ L4+ (H"- S)w. Let us now fix Qo € M such that Eq, [w] <
00. From Theorem D in [DS96], cited above, we deduce the existence of K™ €
conv{H™, H™1 ...} as well as H°, such that

(1) Vi = lim,y_ys sey limp oo (K™ - S); exists a.s., for all £ > 0,
>
(2) (H°-S); —V, is increasing,
3) Vo <0.
From this it follows that (H°-S); > —Vo+V; > V;. Since H" is w-admissible (and
hence (1,w)-admissible) we have that K™ is (1, w)-admissible and hence we find

that V; > —Eg [w | ] for all Q € M¢ such that Eg [w] < co. It is now clear that
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HPY is w-admissible. Since the sequence a,, is increasing we also obtain that for all
t and all Q € M¢ with Egp [w] < oo:

1 1
(K" 8)i+an+ + > Eq[(K" - S)oe | il +an+ = > Eolg An| 7.
This yields that for all ¢ and all n
1 1
(H®-S)i+an+—>Vitan+ - >EglgAn|F].

If ¢ tends to infinity this gives (H° - S)oo + oy + % > g An for all n. By taking the
limit over n we finally find that

(H°-8)oo +a > g.
This shows the desired inequality and at the same time also shows that the infimum
is a minimum. 0O

We are now ready to prove the duality results. We start with the case of admissible
integrands thus extending theorem 9 of [DS95] to the case of non locally bounded
processes S. Recall that we assume throughout this section that S is an R? valued
semi-martingale satisfying (NFLVR).

5.12 Theorem. For a nonnegative random variable g we have:

sup Eg [g] =inf{a | there is H admissible and g < a+ (H - S)w} -
QeMe

Proof. From the previous lemmata it follows that we only have to show that

sup Eg [g] = sup Eg [g].

QeMze QeMg
This follows from proposition 4.7 and the fact that g is bounded from below. O

We now complete the proof for the case of feasible weight functions w and w-
admissible integrands:

Proof of Theorem 5.5. In this case we show that Mg = Mg . We already observed
that Mg C Mg . Take now Q € Mg .

Since w is now supposed to be a feasible weight function, we have the existence of
a strictly positive predictable function ¢ such that (p - S)* < w. It follows that
outcomes of the form 14 (¢- S} —¢-S¢) or —14(¢-Sf—¢-Si), where s < t,
A € F, and (S%);—;. 4 are the coordinates of S, are outcomes of w-admissible
integrands. Therefore ¢ - S is a Q martingale and Q e M¢. 0O

5.13 Corollary. Ifw > 1 is a feasible weight function then the set

{QQ e Mg, Eg[w] < oo}

is dense in MS for the variation norm.

Proof. If the set would not be dense then by the Hahn Banach theorem, there exists
Qo € M¢ and a bounded function g such that

Eqo [g] > sup {Eglg] | Q € M7, Eg[w] < oo} = a.
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This, together with Theorem 5.5, would then imply

oo =1inf {a | there is H admissible and g < a+ (H - S)s}
= sup [q [g]

QeMe
> sup  Tglg]
QeEME;Ey [w]<oo
=inf {a| there is H w-admissible and g < o+ (H - S)oo} -

But a w-admissible integrand H such that (H - S)e.a > g is already admissible,
proving that the strict inequality cannoy hold. Indeed the process H - S is a Q
supermartingale for each element Q € M¢ such that Eg[w] < oco. Therefore the
process H - S is bounded below by —a —||g||c and this means that H is admissible.

Remark. An interesting question is whether by taking the supremum in theorem
5.5, we have, for general unvbounded functions g, to restrict to those elements
Q € Mg such that for the feasible weight function w we have Eg [w] < oo. More
precisely is there a contingent claim g > —w such that

sup Eg [g] > sup Eg [g].

QeM:e QeMe;Eqg [w]<oo

An inspection of the proof of the above theorem shows that we used the Q-
intgerability of the feasible weight function w in order to conclude that the w-
admissible integrand H defined a Q-supermartingale H - S.

The next example, however, shows that it might happen that, for some sigma-
martingale measure, H - S is a supermartingale, while for other sigma-martingale
measures, it fails to be so.

5.14 Example. There is a continuous process S, So = 0, satisfying NFLV R and
such that
(1) Pe M,
(2) S is a P uniformly integrable martingale
(3) S is bounded above and hence for all Q € ME the process S is a submartin-
gale
(4) for some Q € MS, the process S is not a Q supermartingale

This example will then, as we will see, also solve negatively the question whether
the two suprema are the same.

The example is based on [DS97]. There we gave an example of a one dimensional,
continuous, strictly positive price process X, Xo = 1, such that the set M¢ is
nonempty, P € M¢ and X is a P-uniformly integrable martingale, whereas for
some other element Q € M¢ we have that Egp [X] < 1. We now take the following
elements w = |Xo|+ 1 and S = 1 — X. Clearly Fp [w] < oo and since X is
continuous, we can find a predictable, strictly positive process ¢ such that ¢ - S
remains bounded by 1. It follows that w is feasible. Clearly the process S is then
the gains process of the w-admissible integrand H = 1. If we put ¢ = S, we
trivially have that Eg [g] > 0. This shows the following two assertions:

(1) the process S is a not a Q supermartingale, however, it is a P uniformly
integrable martingale and a QQ local martingale.

(2) supgem: Eo [9] > suPgeme m,[w]<oo Eo [9] = 0. O
31



We now turn to the characterisation of maximal and of attainable elements. The
approach is different from the one used in [DS95], which was based on a change
of numéraire technique. In order not to overload the statements we henceforth
suppose that w is a feasible weight function.

5.15 Lemma. Ifg € K,,, then there is a mazimal element h € K, such that h > g.

Proof. Tt is sufficient to show that every increasing sequence in K, has an upper
bound in K. So let h,, h; = g, be an increasing sequence in K,,. For each n take
H™, w-admissible so that h,, = (H" - S)s. As in the previous proof we then find,
as an application of Theorem D in [DS96], that there is H°, w-admissible such that
(H° - S)o > lim,, hy,. This concludes the proof of the lemma. O

Proof of Theorem 5.8. If Eg [w] < co then H - S is a Q supermartingale and hence
(2) and (3) are equivalent. Also it is clear that (2) implies (1). Indeed if g is the
result of a w-admisible integrand then Eg [g] < 0 for each Q € M¢ such that also
Eg [w] < oo. It follows that h is necessarily maximal.

The only remaining part is that (1) implies (2). Since always Eg [h] < 0 for Q € M¢
such that also Eg [w] < o0, we obtain already that for measures Q satisfying these
assumptions, h* is Q-integrable. So fix such a measure Q. Now let w1 = ht + w.
Clearly w; is a feasible weight function. We will work with the set Ky,. The
problem is, however, that we do not (yet) know that h is still maximal in the
bigger cone K,,. From the construction of w; it follows that for elements Q €
Me, Eg [w1] < oo if and only if Eg [w] < co. Now let g > h be the result of a
wi-admissible integrand. Hence g = (K - S)o where K is w;i-admissible. Since
(K -S)s > g > h > —w and since K is wi-admissible we have that K is already
w-admissible. (Remember that Eg [w1] < oo if and only if Eg [w] < c0) From the
maximality of h in K, it then follows that g = h, i.e. h is maximal in Ky,,. This
can then be translated into

h
L 0o _ .
<w1 + +) ncun {O}

Using Yan’s separation theorem in the same way as in the proof of theorem 5.5
above, we find a measure ; such that Eg, [w1] < oo, @ € M§ and Eg, [R] > 0. O

The following theorem generalises a result due to Ansel-Stricker and Jacka, [Jk92]
and [AS94].

5.16 Theorem. Let w be a feasible weight function and let f > —w. Then are
equivalent

(1) there is a measure Q € MS such that Eg [w] < oo and such that

Eg [f] = sup Ereme ;Eq [w]<oo [f] < 00

(2) f can be hedged, i.e. there is a € R, Q € ME such that Eg [w] < oo,
a w-admissible integrand H such that H - S is a Q uniformly integrable
martingale, and such that f =a+ (H - 5) -

Proof. Clearly (2) implies (1) by the previous theorem.

For the reverse implication take now Q as in (1), then the duality result gives a

a € R as well as a w-admissible integrand H such that f < a + (H - S), where
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Q = SUPReMe;ER [w]<oo Lf]- Here we use explicitly that the infimum in the duality
theorem is a minimum. But then it follows from Eg [w] < co and from the equality
Eg[f] = a that f = a+ (H - S)w and that H - S is a Q uniformly integrable
martingale. [
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