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1. | Introduction

L. Dubins, J. Feldman, M. Smorodinsky and B. Tsirelson have shown in
bdDFST 96ce that a small perturbation of its probability law can transform Brownian
motion into a process whose natural �ltration is not generated by any Brownian mo-
tion whatsoever. More precisely, they construct on Wiener space

�
W;F1; �; (Ft )t>0

�
a probability � equivalent to the Wiener measure �, with density d�=d� arbitrarily
close to 1 in L1-norm, but such that no process with �-independent increments
generates the canonical �ltration (F

t
)t>0. In fact, the � constructed in bdDFST 96ce

has the stronger property of being non-cosy bdBE 99ce. The notion of cosiness was
invented by Tsirelson bdT 97ce as a necessary condition for a �ltration to be Brownian;
non-cosiness turns out to be a most convenient tool to construct new examples of
\paradoxical" �ltrations.

Marc Yor raised the following question: Is there something similar to the DFST-
phenomenon, with a change of time instead of a change of probability law? More
precisely, does there exist on Wiener space an absolutely continuous, strictly
increasing time-change such that the time-changed �ltration is no longer Brownian?

This question is reasonable only for those time-changes that are absolutely
continuous (with respect to dt) and strictly increasing. Indeed, if a time-change
is not absolutely continuous, it transforms some non dt�dP-null subset of R+�W
into a null one A, and the canonical Brownian motion into a martingale M such
that

R
1lA dbdM;Mce 6= 0; but such a martingale cannot exist in a Brownian �ltration.

Similarly, if the time-change is not strictly increasing, it transforms a dt�dP-null
set into a non null one A, and all martingales M for the new �ltration verifyR
1lA dbdM;Mce = 0, so no Brownian motion can be a martingale in this �ltration.

The present paper shows that the answer to Yor's question is positive; moreover,
as was the case with the perturbation of measure considered in bdDFST 96ce, the
perturbation of time can be made arbitrarily small. Our main result, Theorem 4.1
below, is the existence of a family (Tt)t>0 of stopping times on Wiener space�
W;F1; �; (Ft )t>0

�
, with the following two properties:

(i) almost surely, the function t 7! Tt(!) is null at zero and di�erentiable, with
derivative verifying 1� " < dTt=dt < 1+ ";

(ii) the �ltration (Gt)t>0 de�ned by Gt = FTt is not generated by any Brownian
motion (more precisely, it is not cosy).



We end this introduction with an outline of the organisation of the paper: in
section 2 we present the basic example 2.1 underlying the whole paper. We make an
e�ort to present it as intuitively and non-technically as possible: we only consider
sequences of �nitely valued random variables which we interpret as \lotteries"
and \pointers". Also, we avoid technical concepts such as \cosy �ltrations" and
\immersions" (although these ideas are behind the construction). We end this
section by isolating in Proposition 2.3 a seemingly innocent property of Example 2.1,
which will turn out to be crucial.

In section 3 we develop the notion of \cosy �ltrations" as introduced in bdT 97ce
(see also bdBE 99ce). We then show that the property of Example 2.1 isolated
in Proposition 2.3 is a suÆcient criterion for the non-cosiness of the generated
�ltration. Next, we show that non-cosiness of Example 2.1 implies in particular non-
substandardness in the terminology of (bdDFST 96ce), i.e., the �ltration generated
by Example 2.1 cannot be immersed into a �ltration generated by a sequence of
independent random variables.

Finally in section 4 we use Example 2.1 to construct a time change of Brownian
motion that destroys Brownianness of the �ltration, as announced in the title.
This section is completely elementary and only contains the task of translating
Example 2.1 into a time-change.

2. | The discrete example

2.1. Example. | We denote by �N the set f: : : ;�2;�1; 0 g and we �x a sequence
(pn)n2�N of natural numbers, pn > 2, such that

P
n2�N

p�1n < 1; for example
pn = 2�n+1 is a good choice.

Now �x a probability space (
;A;P) on which the following objects are de�ned: a
family

�
(Rn;q)

pn
q=1

�
n6�1

of independent random variables such that Rn;q is uniformly
distributed on f1; : : : ; pn+1g, and a sequence (Qn)n60 of random variables such that
Qn is uniformly distributed on f1; : : : ; png, independent of Rm;q, for m > n, and
such that

(2:1) Qn+1 = Rn;Qn
; a.s., for n 6 �1:

It is easy to see that such random variables
�
(Rn;q)

pn
q=1

�
n6�1

and (Qn)n60 can

indeed be de�ned on a suitable stochastic basis (
;A;P) (�rst consider only n > n0,
then take a projective limit) and that the above properties properties already
characterize the joint law of the random variables

��
(Rn;q)

pn
q=1

�
n6�1

; (Qn)n60
�
.

Instead of giving a formal proof of these assertions we give an intuitive explanation
of the situation: for �xed n, we interpret the random variables (Rn;q)

pn
q=1 as pn

successive \lotteries" yielding random results uniformly distributed in f1; : : : ; pn+1g.
The random variable Qn, taking its value in a uniformly distributed way in
f1; : : : ; png, will be interpreted as the \pointer" which tells us, which of these
lotteries (which are drawn independently of Qn) is relevant for us: if Qn(!) = qn for
some 1 6 qn 6 pn, we look at the lottery Rn;qn (and ignore all the other lotteries
(Rn;q)q 6=qn); the outcome Rn;qn(!) = Rn;Qn(!)(!) of this lottery de�nes by (2.1) the
value of the next pointer Qn+1, which tells us which lottery among (Rn+1;q)

pn+1
q=1 is

relevant for us at time n+1 and in turn determines the pointer Qn+2 via (2.1), and
so on.



The basic feature of the example is as follows: if we know the value of the pointer
Qn0 , for some n0 2 �N which we should think of as lying in the remote past, then
we can determine the values of Qn0+1; Qn0+2; : : : ; Q0 by only observing the results
of lotteries (Rn0;q)

pn0
q=1; (Rn0+1;q)

pn0+1
q=1 ; : : : ; (R�1;q)

p�1
q=1. On the other hand, if we only

know the results for all the lotteries
�
(Rn;q)

pn
q=1

�
n6�1

(without additional knowledge

of some Qn0), then we do not know enough to determine Q0. This should be rather
obvious on an intuitive level (provided (pn)n6�1 tends fast enough to in�nity) and
will be proved below. Hence the random variables (Qn)n60 contain some additional

information which is not provided by the random variables
�
(Rn;q)

pn
q=1

�
n6�1

.

But although, for any n0 2 �N , the information provided by Qn0 in conjunction
with

�
(Rn;q)

pn
q=1

�
n6�1

determines the value of Q0, we shall see that the intersection

of the sigma-algebras Gn0 = �(Qn : n 6 n0) is trivial, i.e.,
T
n02�N

Gn0 consists only
of sets of measure zero or one, and therefore contains no information.

So far, we have only reencountered a well-known pathology of decreasing
�ltrations (see Exercise 4.12 of bdW 91ce for a particularly easy example, pointed out
by M. Barlow and E. Perkins, also displaying the above described phenomenon; see
bdvW 83ce for a detailed study). The present example has|in contrast to the Barlow-
Perkins example|the additional feature that it gives rise to a �ltration that is not
standard, thus displaying the same (additional) phenomenon as an example due to
A. Vershik bdV 73ce.

We now proceed to prove the above assertions.
We consider the two-dimensional process (Xi)i2I := ((Rn;q; Qn)

pn
q=1)n6�1, where

the index set I = f(n; q) : 1 6 q 6 pn; n 6 �1g is ordered lexicographically. We
denote by (Fi)i2I = ((Fn;q)pnq=1)n6�1 the �ltration generated by the process X;
we shall give below an intuitive explanation of the following fact: for 1 6 q 6 pn,
n 6 �1 and arbitrary n0 6 n

(2:2)
Fn;q = �(Rm;r; Q` : (m; r) 6 (n; q) and ` 6 n) =

= �(Rm;r; Q` : (m; r) 6 (n; q) and ` 6 n0):

Formula (2.2) implies in particular that, for 1 6 q 6 pn and n 6 �1,
Fn;q = �(Rn;q) _ �(Fm;r : (m; r) < (n; q));

i.e., the information gained, by passing to (n; q) from its predecessor (which is
(n; q � 1) for q > 1 and (n� 1; pn�1) for q = 1), is given by Rn;q.

Here is the intuitive explanation of the above formulae (2.2): at time (n; q)
the sigma-algebra Fn;q contains, by de�nition, all the information of the previous
lotteries (Rm;r)(m;r)6(n;q) as well as the information of all the previous pointers
(Q`)`6n. If instead we only know the positions of the pointers (Q`)`6n0 for some
n0 6 n, then we don't lose any information as the knowledge of Qn0 in conjunction
with the knowledge of (Rm;r)(m;r)6(n;q) allows us to reconstruct via (2.1) the
positions of the pointers Qn0+1 ; : : : ; Qn.

Lemma 2.2. | The intersection

F�1 :=
\

(n;q)2I

Fn;q

is trivial, i.e., consists only of sets of measure zero or one.



Proof.|We start with an observation, which is notable in its own right: (Qn)n60
is an independent sequence of random variables. It is instructive to convince oneself
on an intuitive level of this property: although, for n 6 �1 �xed, Qn determines
which of the lotteries (Rn;q)

pn
q=1 is chosen to de�ne the value of Qn+1 via (2.1), we

nonetheless have that the result Qn+1 of the lottery is independent of Qn as all
the random variables (Rn;q)

pn
q=1 are independent of Qn and have the same law. The

independence of the whole sequence (Qn)n60 now follows easily.
Next we observe the \skip-independence" of the process (Xi)i2I : for n0 6 �1 the

family ((Rn;q; Qn)
pn
q=1)n>n0

is independent of ((Rn;q; Qn)
pn
q=1)n6n0�2

, which again is
rather obvious.

Hence, any event measurable with respect to the sigma-algebra generated by
((Rn;q; Qn)

pn
q=1)n>n0 for some n0 2 �N is independent of F�1, which implies the

triviality of F�1.

Proposition 2.3. | Let (
;A; ((Fn;q)
pn
q=1)n6�1;P) be a �ltered probability space

and suppose that two processes ((R0
n;q; Q

0
n)
pn
q=1)n6�1 and ((R00

n;q; Q
00
n)
pn
q=1)n6�1 are

de�ned on 
, such that

(i) ((R0
n;q; Q

0
n)
pn
q=1)n6�1 and ((R00

n;q; Q
00
n)
pn
q=1)n6�1

are adapted to the �ltration ((Fn;q)
pn
q=1)n6�1 and

(ii) the processes ((R0
n;q; Q

0
n)
pn
q=1)n6�1 and ((R00

n;q; Q
00
n)
pn
q=1)n6�1

both have the law of the process de�ned in Example 2.1 and, for each (n; q), the
random variables (R0

m;r)(m;r)>(n;q) and (R00
m;r)(m;r)>(n;q) are independent of the

sigma-algebra Fn;q.
Then, for n < 0, we have

(2:3) PbdQ0
n+1 6= Q00

n+1jFn;1ce = 1� p�1n+1 on the event fQ0
n 6= Q00

ng :
Proof. | It suÆces to show (2.3) on the event fQ0

n = q0n; Q
00
n = q00ng, where

q0n and q00n are such that 1 6 q0n 6 pn, 1 6 q00n 6 pn and q0n 6= q00n. So �x such
q0n and q00n and assume w.l.g. that q0n < q00n. We shall show, more precisely, that

(2:4) PbdQ0
n+1 6= Q00

n+1jFn;q00n�1ce = 1� p�1n+1 on the event fQ0
n = q0n; Q

00
n = q00ng :

Indeed, for each �xed 1 6 q0n+1 6 pn+1, use assumption (i) to conclude that the
event fQ0

n+1 = q0n+1g = fR0
n;Q0

n
= q0n+1g is in Fn;q0n and therefore in Fn;q00n�1. By

assumption (ii) the random variable R00
n;q00n

is independent of Fn;q00n�1 and uniformly

distributed on f1; : : : ; pn+1g. Hence the Fn;q00n�1-conditional probability for R00
n;q00n

to be di�erent from q0n+1 identically equals 1�p�1n+1. This proves the validity of (2.4)
on the event fQ0

n = q0n; Q
00
n = q00n; Q

0
n+1 = q0n+1g and therefore (2.4) and (2.3).

As the next section will show, Proposition 2.3 implies that the �ltration (Fi)i2I
is not generated by any independent sequence of random variables. This will be
proved by Proposition 3.2, which relies on two hypotheses. In the case of the above
example, the �rst hypothesis is just Property (2.3) together with the convergence of
the series

P
p�1n ; the second hypothesis is the fact that the sequence Q = (Qn)n60

has a di�use law. And indeed, by independence of (Qn)n60 (seen in the proof of
Lemma 2.2), for any deterministic sequence q = (qn)n60 one has

PbdQ = qce =
Y
n2�N

PbdQn = qnce =
Y
n2�N

1

pn
6

Y
n2�N

1

2
= 0 :



3. | Cosiness

This section is borrowed, almost verbatim, from bdBE 99ce, to which we refer for
details, comments, and complements.

We shall consider �ltrations (F
t
)t2T , where T is totally ordered; this includes the

discrete �ltrations considered in the previous section, as well as the continuous case
T = R+ . We denote by F1 the �-�eld

W
t2T

F
t
generated by the �eld

S
t2T

F
t
(note that

F1 = F0 when T = �N).
Definition. | An embedding of a probability space (
;A;P) into another one
(
;A;P) is a mapping 	 from L0(
;A;P) to L0(
;A;P) that commutes with Borel
operations on �nitely many r.v.'s:

	
�
f(X1; : : : ; Xn)

�
= f

�
	(X1); : : : ;	(Xn)

�
for every Borel f

and preserves the probability laws:

P
�
	(X) 2 E

�
= PbdX 2 Ece for every Borel E.

An embedding is always injective and transfers not only random variables, but
also sub-�-�elds, �ltrations, processes, etc. It is called an isomorphism if it is
surjective; it then has an inverse. An embedding 	 of (
;A;P) into (
;A;P; ) is
always an isomorphism between (
;A;P) and �
;	(A);P�.
Definitions. | Let F and G be two �ltrations on a probability space (
;A;P).

The �ltration F is immersed in G if every F-martingale is a G-martingale.
(Note that this implies in particular F

t
� Gt for each t 2 T .)

The �ltrations F and G are separate if PbdF =Gce = 0 for all random variables
F 2 L0(F1) and G 2 L0(G1) with di�use laws.

Definition. | A �ltered probability space (
;A;P;F) is cosy, if there exist a
�ltered probability space (
;A;P;F) and a sequence (	n)n2N[f1g of embeddings of
(
;F1;P) into (
;A;P) such that

(i) for each n 61, the �ltration 	n(F) is immersed in F;

(ii) for each �nite n, the �ltrations 	n(F) and 	1(F) are separate;

(iii) for each U 2 L0(
;F1;P), the r.v.'s 	n(U) 2 L0(
;A;P) converge in probability
to 	1(U).

Instead of saying that (
;A;P;F), is cosy, we shall often simply say that the
�ltration F is cosy. But it should be remembered that cosiness does depend on the
probability P.

As mentioned in the introduction, the notion of cosiness is due to Tsirelson bdT 97ce.
We have slightly modi�ed his de�nition: our separabililty condition is not equivalent
to his. (His de�nition was intended only for �ltrations where all martingales are
continuous; the suÆcient condition for non-cosiness given by Proposition 3.2 works
simultaneously for the discrete example of section 2 and for the Brownian time-
changes in section 4.)



Proposition 3.1. | Let
�

;A;P; (F

t
)t2T

�
be a �ltered probability space and

U 2 L0(F1) a random variable assuming only �nitely many values. Fix  > 0.
Suppose that for any �ltered probability space (
;A;P;F) and for any two

�ltrations F 0 and F 00 isomorphic to F , immersed in F and separate, one has
PbdU 0 6=U 00ce >  (where U 0 and U 00 are the copies of U in the �-�elds F 0

1 and F 00
1).

Then F is not cosy.

Proof. | Let (
;A;P;F), U and  satisfy the hypothesis of this proposition.
Suppose we have some �ltered probability space (
;A;P;F) and some sequence
(	n)n2N[f1g of embeddings of (
;F1;P) into (
;A;P), ful�lling the �rst two
conditions (i) and (ii) in the de�nition of cosiness. For every �nite n, our hypothesis
can be applied to the �ltrations F 0 = 	n(F) and F 00 = 	1(F); this gives
Pbd	n(U) 6=	1(U)ce > . As U takes �nitely many values, the third condition in
the de�nition of cosiness is not satis�ed. Consequently, F cannot be cosy.

Proposition 3.2. | Let
�

;A;P; (F

t
)t2T

�
be a �ltered probability space. Suppose

given a strictly increasing sequence (tn)n60 in T (that is, tn�1 < tn), a sequence
("n)n<0 in T such that

P
n "n < 1, and an R

�N -valued random vector (Un)n60,
with di�use law, such that Un is Ftn-measurable for each n and U0 takes only
�nitely many values.

Assume that for any �ltered probability space (
;A;P;F) and for any two
�ltrations F 0 and F 00 isomorphic to F and immersed in F, one has for each n < 0

PbdU 0
n+1=U 00

n+1jFtnce 6 "n on the event fU 0
n 6=U 00

ng
(where U 0

n and U 00
n denote the copies of Un in the �-�elds F 0

1 and F 00
1).

Then F is not cosy.

Proof. | If F 0 and F 00 are isomorphic to F and immersed in F , we know that

1lfU 0

n 6=U 00

n g
PbdU 0

n+1 6=U 00
n+1jFtnce > 1lfU 0

n 6=U 00

n g
(1�"n) :

by induction on n, this implies

1lfU 0

n 6=U 00

n g
PbdU 0

n+1 6=U 00
n+1; : : : ; U

0
0 6=U 00

0 jFtnce > 1lfU 0

n 6=U 00

n g
(1�"�1) : : : (1�"n)

and a fortiori

(3:1) PbdU 0
0 6=U 00

0 jFtnce >  on the event fU 0
n 6=U 00

ng ;
where  > 0 denotes the value of the convergent in�nite product

Q
n<0

(1�"n).
To establish non-cosiness, we shall apply Proposition 3.1 with U = U0. So

suppose F 0 and F 00 are two �ltrations isomorphic to F , separate and immersed
in some F . As the law of (Un)n60 is di�use, the separation assumption gives
PbdU 0

n 6=U 00
n for some n6 0ce = 1, and there exists an m 6 0 such that

PbdU 0
n 6=U 00

n for some n2fm;m+1; : : : ; 0gce > 1
2 :

Call N the smallest n in fm;m+1; : : : ; 0g such that U 0
n 6=U 00

n (if there is one). The
random variable T equal to tN if N exists and to +1 else, is an F-stopping time,
that veri�es PbdT<1ce > 1

2 and U 0
n 6=U 00

n on fT = tng. The minoration (3:1) gives

PbdU 0
0 6=U 00

0 jFT ce >  on fT<1g ;
whence PbdU 0

0 6=U 00
0 ce > PbdU 0

0 6=U 00
0 ; T<1ce > 1

2
; and Proposition 3.1 applies.



As shown by Tsirelson bdT 97ce, a Brownian �ltration is always cosy. His proof
works just as well with our de�nition, and shows more generally that the �ltration
generated by a Gaussian process is always cosy (see bdBE 99ce). It is easy to verify
that a �ltration immersed into a cosy �ltration is itself cosy.

Definitions. | A �ltration (F
t
)
t2�N is standard if it is generated by an indepen-

dent sequence (Vt)t2�N of random variables with di�use laws.

A �ltration is substandard if it is isomorphic to a �ltration immersed in a
standard �ltration.

For instance, a �ltration generated by an independent sequence (V 0
t )t2�N of

random variables is always substandard; indeed, up to isomorphism, it is possible
to consider V 0

t as given by V 0
t = ft(Vt), where Vt are independent and di�use; and

in this case, the natural �ltration of V 0 is immersed in that of V .

Clearly, all standard �ltrations are isomorphic to each other. A standard �ltration
is generated by an independent sequence of Gaussian random variables, so it is
always cosy; consequently, all substandard �ltrations are cosy too.

Proposition 2.3 shows that the �ltration generated by Example 2.1 satis�es the
criterion for non-cosiness formulated in Proposition 3.2. So it is not cosy, and a
fortiori not substandard.

4. | A continuous time-change for Brownian motion

Theorem 4.1.| On some (
;A;P), let B be a Brownian motion and F its natural
�ltration. Given any " > 0, there exists a family (Tt)t>0 of stopping times such that

(i) T0 = 0;

(ii) almost all functions t 7! Tt are smooth, increasing, with derivative
dTt
dt

verifying���dTt
dt

� 1
��� 6 " ;

(iii) the time-changed �ltration G de�ned by Gt = FTt is not cosy.

We start proving the theorem. From now on, ", 
, A, P, B and F are �xed. The
construction of the time-change Tt will use a small lemma, notationally complicated
but actually quite elementary.

Lemma 4.2. | The data are an integer p > 2 and an interval I = bda; bce (with
a < b). There exist p increasing bijections �1; : : : ; �p from I onto itself, p numbers
s1 < : : : < sp in I, and an interval J � I with non-empty interior, such that

(i) each �q is smooth, is identity in a neighbourhood of a and b, and its derivative
satis�es ���d�q

dt
� 1

��� 6 " ;

(ii) for 1 6 r 6 q 6 p, sup J 6 �r(sq); for 1 6 q < r 6 p, inf J > �r(sq).

Proof of Lemma 4.2. | Let � be a C1 function equal to 1 on the interval
bd3a+b4 ; a+3b4 ce and with compact support included in the open interval (a; b). Setting
� = "=(p sup j�0j), the functions �q(t) = t� �q �(t) clearly satisfy (i).

Put sq = a+b
2 + q�. Using sup j�0j > 4=(b�a) and " < 1, one easily sees that

a+b
2 < s1 < : : : < sp <

a+3b
4 , implying �(sq) = 1 and �r(sq) =

a+b
2 + (q�r)�. So (ii)

holds with J = bd a+b
2
��; a+b

2
ce.



The next lemma describes the elementary bricks to be used in the construction.
If J is an interval bds; tce with 0 6 s < t, BJ will denote the normalized Brownian
increment (Bt�Bs)=

p
t�s, which is N(0; 1)-distributed.

Lemma 4.3. | Given an interval I = bda; bce with 0 < a < b, an integer p > 2, and
a bounded, Borel function f de�ned on R, let �1; : : : ; �p, s1; : : : ; sp and J be as in
Lemma 4.2; let Q be an Fa-measurable r.v. with values in f1; : : : ; pg; set Tt = �Q(t)
and R = f(BJ).

(i) For each t 2 I, the random variable Tt is an F-stopping time; the function
t 7! Tt from I to I is smooth, with derivative "-close to 1.

(ii) For each q 2 f1; : : : ; pg, there exists an FTsq -measurable r.v. Rq, equal to R on
the event fQ6 qg.
(iii) For each q 2 f1; : : : ; pg and every bounded, Borel �, on the event fQ>qg one
has Ebd�ÆRjFTsq ce = Ebd�ÆRce.

The meaning of (ii) and (iii) is that, at time Tsq , R is already known if Q 6 q,
but still completely unknown if Q > q.

Proof of Lemma 4.3.| (i) Since Q is Fa-measurable, so is Tt too; as Tt > a, it is
a stopping time. For �xed !, the function t 7! Tt(!) is one of the �q's constructed
in Lemma 4.2, so its derivative is close to 1.

(ii) On the event fQ 6 qg, Lemma 4.2 (ii) gives sup J 6 �Q(sq) = Tsq , so Rq can
be de�ned by

Rq =

�
f(BJ) if sup J 6 Tsq ;

0 if sup J > Tsq .

(iii) On the event fQ > qg, Lemma 4.2 (ii) gives inf J > �Q(sq) = Tsq , so on this
event J is equal to the random interval

K =

�
J if Tsq 6 inf J

bdTsq ; Tsq+1ce if Tsq > inf J

and R to the random variable S = f(BK). But the Markov property at time Tsq
implies that BK is independent of FTsq , with law N(0; 1); so, on the FTsq -eventfQ > qg, one can write Ebd�ÆR jFTsq ce = Ebd�ÆS jFTsq ce = Ebd�ÆRce.
Proof of the theorem. | Put In = bd2n; 2n+1ce; when n ranges over Z, the
intervals In form a subdivision of (0;1). Choose a sequence (pn)n2Z of integers
such that pn > 2 and

P
n60 1=pn <1. For each n 2 Z, Lemma 4.2 applied to In

and pn gives pn bijections �q
n from In to itself, pn numbers snq 2 In and a sub-

interval Jn � In. Choose some functions fn : R ! f1; : : : ; pn+1g such that the image
of N(0; 1) by fn is the uniform law on f1; : : : ; pn+1g, and de�ne Qn = fn(B

Jn); this
random variable is F2n+1 -measurable and uniformly distributed on f1; : : : ; pn+1g.

Set T0 = 0 and for t 2 In let

Tt = �nQn�1
(t) :

At this point, it is worth interrupting the proof for a minute, to compare this
formula with the discrete formula (2.1). The pointer Qn�1 depends only on the
behaviour of B in the interval Jn�1 ; it tells us which of the �q will be used to
time-change the interval In. According to Lemma 4.2, the image �q

�1(Jn) of Jn by
the chosen time-change will be included in one of the intervals bdsr; sr+1ce, and this



interval is also completely determined by the pointer Qn�1. The rôle of the lotteries
Rn;q is played by the behaviour of B on those intervals bdsr; sr+1ce; as they are disjoint
intervals, the lotteries are independent. And the de�nition Qn = fn(B

Jn) says that
the choice of the next pointer depends only on the result of the current lottery.

We resume proving the theorem. Since Qn�1 is F2n-measurable, Lemma 4.3 (i)
tells us that Tt is a stopping time, depends smoothly upon t, and that its derivative
dTt=dt is "-close to 1. It remains to prove that the time-changed �ltration Gt = FTt
is not cosy; this will be done by applying Proposition 3.2 to G, with tn = 2n and
Un = Qn�1.

As G2n = F2n , Qn�1 is G2n -measurable. As the Jn's are disjoint, the Qn's are
independent, and, for a deterministic sequence (qn)n60, the estimation

P
�
(Qn)n60=(qn)n60

�
=
Y
n60

1

pn+1
6
Y
n60

1

2
= 0

shows that the law of (Qn)n60 is di�use.
To obtain non-cosiness, we shall show that, for any �ltered probability space

(
;A;P;H) and any two �ltrations G0 and G00 isomorphic to G and immersed in H,
one has for every n 2 Z

(�) PbdQ0
n=Q00

n jH2nce = 1

pn+1
on the event fQ0

n�1 6=Q00
n�1g;

since
P
n60

1=pn converges, Proposition 3.2 will then apply, with "n = 1=pn.

So n is now �xed, and, to simplify the notations, we shall write I, J , p, f , sq
instead of In, Jn, pn, fn, s

n
q . We shall also set a = 2n and substitute Q for Qn�1 and

R for Qn; so Tt = �nQn�1
(t) becomes Tt = �Q(t), Qn = fn(B

Jn) becomes R = f(BJ),
and we may freely use Lemma 4.3.

Supposing G0 and G00 are two �ltrations isomorphic to G and immersed in someH,
Assertion (�) can now be written

PbdR0=R00 jHace = 1

pn+1
on the event fQ0 6=Q00g.

As G0 and G00 play the same role, it suÆces by symmetry to establish this equality
on the event fQ0<Q00g. So we may �x q in f1; : : : ; pg and work on the event
A = fQ0 = q ; Q00 > qg. The event fQ0 = qg is in G0a, hence also in Ha; similarly
fQ00 > qg is in Ha, and their intersection A is in Ha too. By isomorphic transfer,
the following two facts are obtained from Lemma 4.3 (ii) and (iii):

a) There exists a G0sq -measurable r.v. R0
q equal to R

0 on fQ0 6 qg; a fortiori, R0
q is

Hsq -measurable and equal to R0 on A.
b) For 16r6pn+1, PbdR00= r jG00sqce = PbdR00= rce on the event fQ00 > qg; since R00

is G001-measurable, G00 immersed in H, and R uniformly distributed, this implies
PbdR00= r jHsqce = 1=pn+1 on fQ00 > qg, and a fortiori on A.

For r 2 f1; : : : ; pn+1g, we may write

1lA PbdR0=R00= r jHsqce = 1lA PbdA ; R0=R00= r jHsqce
= 1lA PbdA ; R0

q=R00= r jHsqce = 1lA 1lfR0

q = rg PbdR00= r jHsqce
= 1lA 1lfR0 = rg

1

pn+1
:

Summing over all r's from 1 to pn+1 gives 1lA PbdR0=R00 jHsqce = 1lA
1

pn+1
; and, as

A2Ha, applying E bd jHace to both sides establishes the claim.



Remark.|Theorem 4.1 can be restated in terms of laws of martingales. Recall that
every continuous martingale M with M0 = 0 and bdM;Mce1 =1 can be written as
a time-changed Brownian motion:M = BbdM;Mce, where B is some Brownian motion
and bdM;Mce the quadratic variation of M . The sigma-�eld �(M) generated by M
always contains �(B); when �(M) = �(B), each bdM;Mcet is a stopping time for the
�ltration of B, and one says thatM is pure ; whetherM is pure or not depends only
on its law. (For more on pure martingales, see for instance Section V.4 of bdRY 91ce.)

Call M very pure if it is pure and if the time-change t 7! bdM;Mcet that makes it
Brownian is absolutely continuous and strictly increasing. If B, (Tt)t>0 and G are
as in Theorem 4.1, the martingale Mt = BTt is a very pure martingale, whith a
non-cosy (and a fortiori non-Brownian) �ltration G.
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