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Abstract

An installment option is a European option in which the premium,
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has the right to terminate payments on any payment date, in which case
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1 Introduction

In a conventional option contract the buyer pays the premium up front and
acquires the right, but not the obligation, to exercise the option at a fixed time
T in the future (for European-style exercise) or at any time at or before T (for
American-style exercise). In this paper we consider an alternative form of contract
in which the buyer pays a smaller up-front premium and then a sequence of
“installments”, i.e. further premium payments at — generally — equally spaced
time intervals before the maturity time 7. A typical case would be a T = 1-
year option in which four installments are paid at 0, 3, 6 and 9 months. If all
installments are paid the buyer can exercise the option, European-style, at time
T. Crucially, though, the buyer has the right to ‘walk away’: if any installment
is not paid then the contract terminates with no further payments on either side.
We argue that this structure is attractive from several points of view. From the
buyer’s side he can enter the option at low initial cost and has a great deal of
‘optionality’ in the form of the right to cancel at each installment date. From the
writers perspective, hedging is simple. We will show that there is a very effective
static hedge that largely immunizes the writer against volatility and model risk
(for typical market situations).

The case of two installments is the compound option (an option on an option),
previously considered by Geske [8] and Selby and Hodges [17]. Let C(¢,T, S, K)
denote the Black-Scholes value at time ¢ of a European call option with strike
K maturing at time 7" when the current underlying price is S (all other model
parameters are constant). Installments py, p; are paid at times to, ¢; and fi-
nal exercise is at time T° > ¢;. At time ¢; the holder can either pay the pre-
mium p; and continue to hold the option, or walk away, so the value at ¢; is
max (C(ty,T,S(t1), K) — p1,0). The holder will pay the premium p; if this is less
than the value of the call option. The value of this contract at ¢y is thus the value
of a call on C' with ‘strike’ p;.

Another way of looking at it, that will be useful later, is this: the holder buys
the underlying call at time t, for a premium p = py + e~ "1=%)p, (the NPV of
the two premium payments where r denotes the riskless interest rate) but has
the right to sell the option at time ¢; for price p;. The compound call is thus
equivalent to the underlying call option plus a put on the call with exercise at
time ¢; and strike price p;. The value p is thus greater than the Black-Scholes
value C(ty, T, S(to), K), the difference being the value of the put on the call.

A similar analysis applies to installment options with premium payments’
Do, P1,---,Pr at times %y, ..., tx < T. The NPV of the premium payments is
p= Zf:o pe ") and the installment option is equivalent to paying p at time
tp and acquiring the underlying option plus the right to sell it at time ¢;,1 < j <k
at a price ¢; = Zf:j pie "i~%) (all subsequent premiums are ‘refunded’ when
the right to sell is exercised). The installment option is thus equivalent to the
underlying option plus a Bermuda put on the underlying option with time-varying
strike g;.

There is very little literature on installment options, the only paper we know

Invariably p; = p2 = ... = pg but it may be the case that py # p1, i.e. the up-front payment
is not the same as subsequent installments.



of being an article by Karsenty and Sikorav [15] for a popular publication. Pric-
ing models for installment options are included in some option pricing software
packages, for example Monis.

Installment options are currently the most actively traded warrant offered
at the Australian Stock Exchange. The most popular type is a two-payment
installment option, which allows the buyer to pay 1/2 of the stock price now and
subsequently pay the remainder to own the share. In this guise, this product is
simply a compound call on a European call. Recently, Deutsche Bank offered
a 10-year warrant with 9 annual payments. This product has been extremely
successful and is closer to the installment options examined here.

While the concept of compound options can be generalised to allow the un-
derlying option to be non-standard (for example, American or an exotic option),
we will restrict our analysis here to standard European options as the underlying.
This is done as most of these products assume an underlying European option
and most extensions of compound option methodology to other areas of finance
make similar assumptions. In addition, we will concentrate on installment call
options. While some discussion will examine compound (and installment) put
options, the most common of these products used by investors is the compound
(or installment) call options and pricing relationships follow directly from parity
relationships.

This paper is laid out as follows. In the next section we discuss pricing in
the Black-Scholes framework. As for American options we cannot provide an
analytic formula for the price and a finite-difference algorithm must be used. In
section 3, simply-stated ‘no-arbitrage’ bounds on the price are derived valid for
very general price process models. As will be seen, these depend on comparison
with other options and suggest possible classes of hedging strategies. In section
4 we introduce and analyse static hedges for installment options. The concluding
section 5 gives further remarks and applications.

2 Pricing in the Black-Scholes framework

Consider an asset whose price process S; is the conventional log-normal diffusion
dSt = 7”5',5 dt‘i‘USt dwt, (1)

where 7 is the riskless rate and w; a standard Brownian motion; thus (1) is the
price process in the risk-neutral measure. The volatility o > 0 will presently be
assumed to be constant while in the subsequent sections we shall also allow for
stochastic volatility. We consider a European call option on S; with exercise time
T and payoff

[S7 — K|T = max(Sy — K, 0). (2)
The Black-Scholes value of this option at time 0 is of course
PBs = Ee_rT[ST — K]+ (3)

pBs is the unique arbitrage-free price for the option, to be paid at time 0. As
an illustrative example we will take 7" =1 year, r = 0, K = 100, S, = 100 and
o = 25.132%, giving pgs = 10.00.



In an installment option we choose times 0 =ty < t; < --- < t, = T (generally
t; = iT/n to a close approximation). We pay an upfront premium py at to and
pay an ‘installment’ of p; at each of the n—1 times ¢, ...,t,_1. We also have the
right to walk away from the deal at each time ¢;: if the installment due at ¢; is not
paid then the deal is terminated with no further payments on either side. The
pricing problem is to determine what is the no arbitrage value of the premium p;
for a given value of py. The present value of premium payments — assuming they

are all paid — is
n—1

Po + p1 Z e ", (4)
i=1

so in view of the extra optionality we certainly expect that

R (prs — po) - (5)
Computing the exact value is straightforward in principle. Let V;(S) denote
the net value of the deal to the holder at time ¢; when the asset price is Sy, = S.

In particular
Va(S) =[S - K]*. (6)

At time t; we can either walk away, or pay p; to continue, the continuation value
being
Eti,s(ti)[e_r(ti-‘rl_ti)vi-l—l(stiﬁ)]' (7)

Thus
Vi(S) = max(0, By, s[e™" U 0V (Sy, )] — 1) (8)

In particular, V,, 1 is just the maximum of 0 and BS — p;, where BS denotes the
Black-Scholes value of the option at time ¢, ;. The unique arbitrage free value
of the initial premium is then

Do = %+(50ap1) = Eto,So [e_r(tl_t())‘/l(stl)} .

For fixed py, V;"(So,p1) is easily evaluated using a binomial or trinomial tree
and this determines the up-front payment py,. If we want to go the other way
round, pre-specifying py, then we need a simple one-dimensional search to solve
the equation py = V5" (Sy,p1) for p;. A similar search solves the equation p =
V5" (So, p) giving the installment value p when all installments, including the initial
one, are the same.

Figure 1 shows the price p at time 0 for our standard example with 4 equal in-
stallments. For comparison, one quarter of the Black-Scholes value is also shown.
At Sy = 100, p = 3.284, which is 31% greater than one quarter of the Black-
Scholes value. At higher values of Sy there is less of an increase, not surprisingly
since when the option is well into the money there is high probability of paying
all the installments and collecting the exercise value. The value of the walkaway
optionality in this case is small. For example when Sy = 120 the Black-Scholes
price is 23.75 and p = 6.90 which is 16% greater then 23.75/4. Figure 2 shows
V1(S), the value of the option at time ¢; as defined by (8), with p; = 3.284. Tt
has positive value when S(t;) > 98.28.
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Figure 2: Value of installment option at time t1 as function of price S(t1)

3 No-arbitrage bounds derived from static
hedges

The pricing model of the previous section makes the standard Black-Scholes as-
sumptions: log-normal price process, constant volatility. By considering static
super-replicating portfolios, however, we can determine easily computable bounds
on the price valid for essentially arbitrary price models. We need only assume
that for any s € [to, T there is a liquid market for European calls with maturities
t € [s,T], the price being given by?

C(s,t,K) =Eq [e7)(S, — K)*| F] (9)

where (Q is a martingale measure for the process S and F; denotes the information
available at time s. By put-call parity this also determines the value of put options
P(s,t, K). We know today’s prices C(ty,t, K) and that is all we know about the

2We use the compressed notation C(s,t,K) here, denoting the option price as an F,-
measurable random variable. It may depend not only on the current price S(s) but also on
some additional information contained in the sigma-algebra F;.
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process S and the measure (). We ignore interest rate volatility, assuming for
notational convenience that the riskless rate is a constant, r, in continuously
compounding terms. We also assume that no dividends are paid.

Let us first consider a 2-installment, i.e. compound, option, with premiums
Do, p1 paid at ty, t; for an underlying option with strike K maturing at 7" = 5.

The subsequent result provides no-arbitrage bounds on the prices py, p; which
are independent of the special choice of the model S and the equivalent martingale
measure ().

Proposition 1 For the compound option described above, there is an arbitrage
opportunity if py, p1 do not satisfy the inequalities

C (to, T, K + €T(T_t1)p1) > py > Clty, T, K) — e " 70)p, + P(tg, t1,p1).  (10)

Proof Denote K' = K + ¢"™~p, and suppose we sell the compound option
with agreed premium payments pg, p; such that py > C(to,T, K'). We then
buy the call with strike K’ and place x = py — C(ty, T, K') > 0 in the riskless
account. If the second installment is not paid, the value of our position at time
ty is we"—t) 4 C(t,, T, K') > 0, whereas if the second installment is paid we add
it to the cash account, and the value at time 7 is then ze"T—t) 4 perT—t) 4
C(T, T,K') — C(T,T,K) > 0. This is an arbitrage opportunity, giving the left-
hand inequality in (10).
Now suppose the compound option is available at pg, p; satisfying

po+e " 0p < Clty, T, K) + Plto, 1, p1). (11)

We buy it, i.e. pay po, and sell the two options on the right (call them C’ P)
so our cash position is C+P— po > e "i—t)p, At time ¢, the cash position
is therefore x > p;, and we have the right to pay p1 and receive the call option.
We exercise this right if C (t1,T, K) > p;. Then our cash position is  — p; > 0,
C is covered and P will not be exercised because p; < C(t1,T, K) < S(t1) (the
call option value is never greater than the value of the underlying asset). On the
other hand, max(p; — C(t;,7T, K),0) > max(p; — S(t1),0), so if p; > C(t1,T, K)
we do not pay the second installment and still have enough cash to cover C and
P. Thus there is an arbitrage opportunity when the right-hand inequality in (10)
is violated. m

How tight are the no-arbitrage bounds given by the proposition in practice?
To examine this we consider the illustrative example of section 2, but with just
two installments. Figure 3 shows the Black-Scholes value of py as a function of the
second installment p;, and the upper and lower bounds given by (10). Looking
at the 3 lines in the middle of the figure they all start at the value py = 10 on the
left end of the graph; this is just the Black-Scholes price of the option when there
is no second installment. Now vary the payment p; of the second installment
along the horizontal axis and look at the resulting initial payment py: the line
in the middle indicates the Black-Scholes price as derived in section 2 while the
upper and the lower lines indicate the upper and the lower bounds provided by
proposition 1. For example, if p; = 3, the Black-Scholes value for the up-front
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Figure 3: “Standard example” with 2 installments: No-arbitrage bounds for the
wmitial premium py as a function of the second installment p,.

payment equals py = 7.556; the upper bound (py = 8.720) is 15.4% higher, while
the lower bound (py = 7.000) is 7.3% lower than the Black-Scholes price.

When moving to higher values of p; the tightness of the bounds decreases: for
example, for p; = 5 the upper (resp. lower) bound is 25.8% (resp. 20.8%) higher
(resp. lower) than the Black-Scholes price py = 6.311.

While the three lines in the middle indicate the situation for at-the-money
options (recall that we had Sy = K = 100 in our standard example) the three
lines on the top resp. bottom of the figure indicate the situation of in-the-money
(Sp = 110, K = 100) resp. out-of-the-money (S; = 90, K = 100) options. We
observe that in the former case the Black-Scholes price is closer to the lower
bound while in the latter case it is closer to the upper bound. This reflects the
fact that for in-the-money options the installment p, is paid with high probability
while this probability decreases when we shift to the out-of-the-money situation.

How can these no-arbitrage bounds be used in practice? To expect that one
can use them to effectively make arbitrage profits is probably too bold a hope,
at least in liquid markets. Rather one should read them as a recipe to get a limit
on the maximal losses by adopting a static hedge.

Taking the point of view of the writer of a compound option she can obtain
a static hedge limiting the loss to the difference of the terms in the left hand
inequality of (10), namely C (to, T K+ e"(T_tl)pl) — po- As argued in the first
part of the above proof the writer of the option can buy a European call with strike
K' = K +¢e"T—1)p, by adding to the received up-front premium py the difference
C(to, T, K') — po from her own cash account. The remaining portfolio can only
generate gains thus limiting the overall loss to this difference. If the difference is
non-positive she was lucky enough to encounter an arbitrage opportunity; if the
difference is positive but not too big, she still might be interested in this trading
opportunity.

The appealing feature of this estimate is its robustness: it does not depend
on the choice of the model and/or the martingale measure.



Let us give an interpretation of the difference C(ty, T, K') — po of the left hand
side inequality as the premium of a contingent claim which may be interpreted
as the advantage of “being clairvoyant” at time t;: What is the difference of
the discounted pay-off function of the European option which can be purchased
at price C(ty,T, K') and the pay-off function of the compound option which
can be purchased at price p,? When comparing these two random variables we
assume that the holder of the compound option behaves rationally, i.e. paying
the second installment p, iff C(¢1,7, K) > p;. The discounted pay-off function of
the difference of these two contingent claims is given by

e T(t1—to) ((p1 —(Sp — K)efr(Tftl))_i_ A pl) if C(t1,T,K) > p

o—r(ti—to) (((ST  K)erT-n) _ pl)+) if C(t,, T, K) < pi.
(12)

Indeed the random variable C'l is the pay-off of a “clair-voyant” agent dispos-
ing at time ¢; of the information ST as opposed to an agent disposing only of
the information F;, and thus paying the installment p; iff C(¢1,7, K) > p;. In
this case the latter agent will at time T regret her decision of having paid p; if
it finally turns out that (Sp — K)e™"T~%) is less than p; while in the opposite
case when C(t1,T, K) < p; she will regret not having paid p; at time ¢; when
(Sr — K)e "(T4) ig bigger than p;.

Quantifying the degree of regret quickly yields formula (12). Hence by no-
arbitrage the difference between C(ty, T, K) and pq is just the price for the con-
tingent claim CI, in other words

Cl=

C(to,T,K,)—p():]EQ[C”.’FtO]. (13)

Lwt us now pass to the right hand side of inequality (10): it pertains to the
situation of the buyer of a compound option who looks for a static hedge to limit
the maximal loss as is explained in the second half of the above proof.

Of course, for practical purpose P(tg,t1,p1) will be a negligible quantity (and
there will be no liquid market as typically p; < Sp) but for obtaining theoretically
sharp bounds one must not forget this term.

In fact, the above inequalities are sharp: it is not hard to construct examples of
arbitrage-free markets such that the differences in the left (resp. right) inequality
in (10) become arbitrarily small.

Finally let us interpret the right hand side of inequality (10) by using the
interpretation of the compound option given in the introductory section: the net
present value py+ e "(1~%)p, of the payment for the compound must equal — by
no-arbitrage — the price C(to, T, K) of the corresponding European option plus
a put option to sell this call option at time t; at price p;. Denoting the latter
security by Put(Call) we obtain the no-arbitrage equality.

po = Clto, T, K) — e "1=%)p, 4 Put(Call). (14)

In the proof of proposition 1 we have (trivially) estimated this Put on the
Call from below by the corresponding Put P(tg, t1,p1) on the underlying S. We
now see that the difference in the right hand inequality of (10) is precisely equal
to the difference Put(Call) — P(to,1,p1) in this estimation.
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Similar arguments as for the compound options apply for n installments. As
we just argued for the 2-installments case, holding the installment option is equiv-
alent to holding the underlying option plus the right to sell this option at any
installment date at a price equal to the NPV of all future installments. The value
of the Bermuda option on the option is greater than the equivalent option on the
stock. This gives us the following result.

Proposition 2 For the n-installment call option with premium payment py at
time ty and p, at times t1,...,t,_1 there is an arbitrage opportunity if py, p1 do
not satisfy

C(to, T, K +p1) > po > [Clto, T, K) — e’ )p; + PBer(tO):|+ : (15)

Here

n—1
pr=p1 Y et (16)
i=1

and Pger(ty) denotes the price at time ty of a Bermuda put option on the under-
lying S(t) with exercise times t1,...,tn_1 and strike price K; at time t;, where

n—1
Ki=pm Z =", (17)
j=i

4 Dynamic and Static Hedging

A current theme in the literature has been the implementation of static as opposed
to dynamic hedging strategies for exotic options. Recent papers, which propose
static hedging (using standard European options) for exotic option, include Der-
man, Ergener and Kani [7, 6], Carr, Ellis and Gupta [3], Chou and Georgiev [5]
and Carr and Pichon [4]. For most of these papers, the emphasis has been on the
hedging of barrier and lookback options. Thomsen [19] has compared the relative
benefits of such static strategies to traditional dynamic approaches for barrier
options and Tompkins [20] compared static and dynamic hedging strategies for
a wider range of exotic options. In the Tompkins [20] paper, compound options
were specifically considered.

Thomas [18] first proposed the static hedge of compound options (which can
be thought of as a two-payment installment options). Thomas suggests that a
standard European option will provide an upper bound on the value of a com-
pound call on a call (put) and Tompkins [20] confirmed this. Tompkins [20]
extends this to consider compound puts. This research extends this static hedg-
ing approach to installment options and considers the implications for this hedge
providing an approximation for the pricing of these products.

In section 2 the pricing formula for installment options was derived under
the perfect market assumptions made by Black and Scholes. The unique so-
lution to pricing is intimately associated with the construction of a riskless
dynamic hedging portfolio. In Section 3 a static hedging strategy was sug-
gested using standard European options. The purpose of this section is to



examine and compare these hedging strategies in detail. By way of introduc-
tion, let us consider the standard example of section 2 with two equal install-
ments. The fair value is pg = p; = 5.855. Our proposed static hedge is
as follows: at time 0 we receive py and buy a 1l-year call option with strike
K' = K + p; = 105.855. This will cost 7.627, so we have to borrow p' = 1.772.
Figure 4 shows the P&L of the hedged position at time ¢; = 0.5 as a function of
the price S(¢;). The P&L is equal to min{—p' + C', —p' + C' + p; — C'}, where
C'=C(t,T,5(t),K"),C = C(t1,T,S(t1), K). The maximum loss is p/, which
is 17.72% of the Black-Scholes premium for the underlying option, and the max-
imum gain is 20.3% of this premium. Figure 5 shows the distribution of P&L
under the risk-neutral measure; this turns out to be close to the uniform dis-
tribution. This quick analysis shows that the static hedge has some attractive
features.

In the rest of this section we will examine hedging of multi-installment options
under more realistic scenarios than those of section 2. This will be done by
simulation of the dynamic hedge of section 2 and the static hedge of 3. In these
simulations many of the assumptions of perfect market conditions are relaxed.
The simulations will consider discrete (daily) hedge rebalancing, transaction costs
when dealing in the underlying asset or the option, and stochastic volatility.
The objective is to assess the sensitivity of the pricing solutions and bounds on
valuation under more realistic market conditions.

2.5
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1.5 +
1.0 4
0.5
0.0
-0.5
-1.0 1
15 L™ T———

_2-0 T T T T T
60 80 100 120 140 160 180

Price S(tq)

Figure 4: The Profit/Loss Profile of a Compound Option Static Hedge as a func-
tion of the underlying Asset Price S(t;)

4.1 Dynamic Hedging of Compound Options

A practical study on the effectiveness of dynamic hedging for compound options
was done in Tompkins [20]. As with that study, this paper will consider the
cost of hedging compound and installment options from the standpoint of the
option writer. In this paper, we will relax the assumptions of continuous and
frictionless financial markets and will assess how the cost of hedging deviates
from the theoretical values derived under perfect (continuous) financial markets.
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To evaluate the hedging performance of compound and installment options,
hedging was done by simulation. Underlying stock price series were simulated for
1000 paths of 180 days. These simulations used the anti-thetic approach suggested
by Boyle [2] and the control variate method suggested by Hull & White [11] to
increase efficiency. In a similar spirit to Hull [12], we assumed that the stock did
not pay dividends and compared the cost to the writer of hedging the option to
the theoretical value. The price process for the asset was assumed to conform to
equation (1).

Apart from the discrete increments also assumed by Hull [12], we included
for the same set of simulated underlying prices, transactions costs when dealing
in the underlying asset (or options in the static hedge). For this simulation, we
assumed that the spread between the bid and offer price (of both the underlying
and options) was fixed at 1/16". In addition, a proportional cost reflecting a
commission of 0.01% was charged (of both the underlying values of the stock
purchase or of the option) whenever a transaction took place?.

The hedging in discrete time with transactions costs was further distinguished
by examination of two cases. The first case assumed that the volatility [(o) >
0] is a fixed constant (the Black-Scholes model) and the second case allowed
the volatility to be stochastic. The stochastic process modeling the volatility
(01)o<t<T assumed was a mean reverting process described by equation (18) [10]
[Hull & White (1987) model]. When this case was considered 1000 paths of
stochastic volatility were simulated [using the Euler discrete approximation in
equation (19)] and 1000 new price paths were determined with & replacing the

3Thus, when price paths were simulated, the determination of the delta was based upon the
simulated price. However, when the quantity of stock was purchased (sold), the dealing price
was fixed at 1/32"¢ more (less) than the simulated price levels (the units in which the price was
quoted). As an example, if the simulated price were 100, the buying price was assumed to be
100 — 1/32"? and the selling price was 99 — 31/327¢. This was assumed for the entire amount
of the asset purchased or sold. The percentage commission of 0.01% was charged on the total
amount purchased or sold of the stock and in this simulation we assumed the number of shares
in the contracts was 100,000 shares. The same spread and commission rate applied whenever
options were purchased or sold.

11



constant volatility o in equation (1). For both cases, the same random draws from
the Wiener Process (w;) were used to determine the price paths. The stochastic
volatility model chosen can be expressed as:

do = ko(f — o)dt + Eodwy (18)

and the path of volatilities was determined using an Euler approximation of the
form:
575 = &t,1 + Ao (].9)

In equation (18), x represents the rate of mean reversion, which was set to 16
for this simulation. The term & reflects the volatility of volatility input and this
was set to 1.0. The term 0 is the long-term level of the instaneous volatility and
this was set to 20% per annum. These parameters were similar to ones reported
by Hull & White [11] for stocks. The term o is the instaneous volatility realised
by the stochastic process and given that we are examining this model in discrete
time, is replaced by o. In equation (18), the volatility inputs in the right-hand
side of the equation are replaced by o;_;. The term w; reflects draws from a
Wiener Process independent of the draws (w;) used to determine the price paths.

The pricing model determined the compound or the installment theoretical
price and the respective delta (relative to the underling stock price) using a bi-
nomial approximation to the Geske [9] model. The prices of the instruments and
their derivatives required for dynamic hedging were estimated from the Monis
software system (associated with the London Business School). A 90-day com-
pound call option (with the right to purchase a 3 month 100 European call) was
considered. The starting value of the underlying stock was set to 98, with a fixed
interest rate of 5% , no dividends and a starting volatility of 20%. Using these
inputs, the initial theoretical value of the compound option (p) was equal to 3.293
with the striking price of the compound set equal to this amount (p; = 3.293).
As a comparison, the underlying (180-day) European call C(s,t, K) was equal to
5.695 at the inception of the compound call.

Following the customary dynamic hedging approach (with daily rebalancing
of the portfolio), an arbitrary notional amount of 100000 shares was assumed and
the delta amount of the stock was purchased. This was partially paid for by the
receipt of the premium and the remaining funds required to purchase the delta
amount of the stock was borrowed. Each subsequent day, the new estimated delta
was determined and the hedge portfolio was revised. As with Hull [12], the costs
of rebalancing were accumulated until either the compound expired (unexercised
and dynamic hedging ceased) or the compound was exercised and the hedger
dynamically hedged the underlying European call option to expiration.

In the absence of transactions costs, the expected cost of hedging the option
will exactly be zero. In the stochastic volatility case, Merton [16] and Hull &
White [10] demonstrate that the theoretical value of the option will be the Black
Scholes [1] value evaluated using the average realised volatility of the holding
period. The stochastic volatility process in equation (17) will yield an expected
realised volatility of § (which in this instance is 20%) and the expectation of a
zero hedging cost is retained. Across the 1000 simulations, we determined the
average cost of hedging and divided this by the theoretical value of the underlying
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call option at the inception. This can be expressed as:
AD = HC/C(s,t,K) (20)

Where AD is the average percentage difference, HC' is the average hedging cost
and C(t, S, K), is the theoretical value of the European call option underlying the
compound call. Given that the expectation of the hedging cost in the absence
of transactions costs is zero, to reduce the errors introduced by the selection of
the 1000 random price paths, the average hedging cost was standardised to zero.
This control variate approach (suggested by Hull & White [11]) assured that for
the first simulation scenario (solely discrete time rebalancing with no transactions
costs and constant volatility) the average hedging cost would be exactly equal to
the theoretical value*. This can be found in Table 1 (under the column labelled
Discrete Dynamic Hedging, No Transaction Costs) with an average hedging cost
equal to 0.00%. In addition, we were also interested in assessing the variability of
this hedge result. We measure this variability (or hedge performance) by dividing
the standard deviation of the cost of hedging the option by the theoretical value
of the underlying call option. This can be expressed as:

OHC
HE= C(s,t,K) (21)
This is the same measure of hedging performance proposed by Hull [12]. In
this table, the reader can see that this standard deviation was equal to 7.11%
of the theoretical value of the option in the case of constant volatility and no
transactions costs®.

Using the same paths of 180 days (1000 trials), transactions costs were in-
cluded in the dynamic hedging strategy. The delta used to construct the hedge
portfolio was determined using the simulated price but when purchases of stock
were required, the hedger was required to pay 1/32™¢ (units) more and when sell-
ing would receive 1/32" less. In all instances, a 0.01% commission was charged
relative to the value of the transaction. In the table, under the column Discrete
Dynamic Hedging Transaction Costs, one can see that the average cost of hedging
the call option for 1000 simulations has risen to 3.07% of the theoretical premium
value. The standard deviation (hedge performance) is essentially unchanged at
7.35% (from 7.11% for discrete hedging without transactions costs). This is to
be expected as the inclusion of transactions costs to the same price paths only
serves to increase the average cost of hedging and will not affect the deviation of
the performance.

Of further interest was the impact of stochastic volatility on the dispersion of
hedge costs. In Table 1, the reader will find the results of this hedging simulation

4Without the control variate method, a slight difference in the average hedging cost was
found but this was not significantly different from 0.0.

5Using this standard deviation it is possible to use a T-test to assess if the average cost of
hedging is significantly different from zero. In this case, the use of the control variate approach
assures that the average hedging cost is zero. When a T-test is applied to the other cases, the
inclusion of transactions costs significantly increases the costs of hedging and for the case with
stochastic volatility with no transactions costs, the difference is by design equal to zero. Even
without the use of the control variate adjustment this difference was not significantly different
from zero.
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Constant Volatility Stochastic Volatility
Discrete Discrete Discrete Discrete
Dynamic Dynamic Dynamic Dynamic
Hedging, No | Hedging, | Hedging, No | Hedging,
Transaction | Transaction | Transaction | Transaction
Costs Costs Costs Costs
Average Difference (%)
Hedging Cost / 0.00 % -3.07 % 0.00 % -3.14 %
Theoretical Value
Standard Deviation (%)
of Hedging Cost / 7.11 % 7.35 % 13.10 % 13.18 %
Theoretical Value
Average Loss (%)
Hedging Cost / -4.77 % -5.95 % -11.711 % -11.93 %
Theoretical Value
Standard Deviation (%) | 69 ¢ 5.46 % 9.70 % 10.34 %
of Hedging Loss /
Average Gain (%)
Hedging Cost / 4.77 % 2.88 % 11.71 % 8.79 %
Theoretical Value
Standard Deviation (%) | 5 45 o 5.03 % 6.70 % 6.00 %
of Hedging Gain

Table 1: Results of 1000 Simulation Runs for Delta Hedging a Compound Call

under the column Stochastic Volatility. As was stated previously, the averaged
expected hedging cost will be zero (Merton [16] and Hull & White [10, 11]).
This allows the use of the control variate method to increase the efficiency of the
simulation. As would be expected, the standard deviation of the hedging costs
has risen to 13.10%. Clearly, the variability of the hedging costs indicates that
when volatility changes the price path that could occur for the underlying asset,
the dispersion of hedging results increases two-fold.

Finally, to assess both the impacts of transactions costs and stochastic volatil-
ity on the hedge costs the compound option; the 1000 simulation runs included
both conditions. The results of this simulation can be seen under the column
Stochastic Volatility Discrete Dynamic Hedging Transaction Costs. As one would
expect, both the hedging costs and the variability of the difference between the
costs and the theoretical value rise. The average hedging cost was 3.14% higher
than the theoretical value of the option (similar to the constant volatility discrete
hedging with transactions costs) and the standard deviation of hedging costs was
13.18% (similar to the stochastic volatility discrete hedging without transactions
costs).

An interesting issue is whether the hedging errors will be distributed in a
symmetrical manner. To examine this, the hedging results were split into losses
and gains. Hence, we divided the 1000 sample paths into two types: those where
the final hedging result (without and with transactions costs) were negative and
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positive. The average for both the losses and gains along with their standard
deviations appear in the lower rows of Table 1. From this hedging simulation,
it appears that the standard deviation of losses and gains when dynamically
hedging are similar when constant volatility is assumed. However, this is not the
case when stochastic volatility is considered.

The standard deviation of losses is 30-40% higher compared to gains when
stochastic volatility is considered. From an economic point of view, it seems
reasonable to assume that option writers would be more concerned about the
variability of losses (as opposed to gains). These results suggest that the inclusion
of stochastic volatility in the state space complicates expected hedge variability,
as the variability of losses is higher than gains.

4.2 Static Hedging of Compound Options

In the previous section of this paper, where bounds on compound and install-
ment options are considered, an alternative static hedging strategy is suggested.
Thomas [18] has previously proposed that writers of compound call options could
hedge the option with a static hedge consisting of the purchase of a European call
option with a term to expiration of T' — t,. and a strike price of K + ¢"T—t)p, .
The proof of this upper bound on the compound price is given in Proposition 1.

For the simulation of this hedge, exactly the same price paths examined for
the dynamic hedge were used. In addition, the same assumptions regarding the
transactions costs and stochastic volatility process were made. From the previ-
ous section on the upper boundary of the compound price, a 180 day European
call with a striking price of 103.293 was purchased upon the sale of the 90 day
compound call (p; = 3.293 and the underlying European call K = 100). To fund
the purchase of the static hedging call, borrowing at a constant rate of 5% was
required in addition to the receipt of the compound premium.

If at the expiration of the compound option, the value of the underlying
call (strike price K = 100) was less than the compound payment (of 3.293),
the purchased static call was sold at the current market price. The value of
the European call was determined using the simulated underlying price (and
volatility) at that point and used the Black Scholes [1] formula. Otherwise, the
compound payment was made to the seller who invests it into her cash account
and the terminal payoffs of the two European options were examined. Table 2
displays the hedging results for the four alternative scenarios of the 1000 simulated
price paths.

In this table, the cost of the hedge was slightly (but not substantially) higher
than the theoretical value of the underlying 100 call. The almost negligible impact
of the transactions is due to the fact that these costs only apply when the call is
purchased and at expiration when it is sold. Regarding the average performance
due to changes in volatility levels, the reader may recall that the expected level
of volatility was 20%. Therefore, even though a stochastic volatility process was
introduced, that would not change the expected (or average result).

As opposed to the previous dynamic hedging simulations, the standard devi-
ation of the hedging costs has increased but is not substantively impacted when
volatility levels are allowed to vary. This is to be expected as the purchase of the
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Constant Volatility Stochastic Volatility
Discrete Discrete Discrete Discrete
Dynamic Dynamic Dynamic Dynamic
Hedging, No | Hedging, | Hedging, No | Hedging,
Transaction | Transaction | Transaction | Transaction
Costs Costs Costs Costs
Average Difference (%)
Hedging Cost / -0.07 % -0.63 % -0.25 % -1.09 %
Theoretical Value
Standard Deviation (%)
of Hedging Cost / 21.34 % 21.34 % 21.13 % 21.18 %
Theoretical Value
Average Loss (%)
Hedging Cost / -14.02 % -14.43 % -14.05 % -14.60 %
Theoretical Value
Standard Deviation (%) | 7q ¢ 4.99 % 4.83 % 5.06 %
of Hedging Loss /
Average Gain (%)
Hedging Cost / 13.95 % 13.80 % 13.79 % 13.51 %
Theoretical Value
Standard Deviation (%) | 5 o7 o 15.64 % 16.08 % 15.95 %
of Hedging Gain

Table 2: Results of 1000 Simulation Runs for Static Hedging a Compound Call

European call allows hedging against stochastic volatility. As with the previous
simulation of the dynamic hedging of compound options (see Table 1), an asym-
metry exists in the hedging performance for losses and gains. In this instance, the
standard deviation of hedging losses is 1/3" of the standard deviation of hedging
gains, for all four hedging scenarios. In the instance of the stochastic volatil-
ity scenarios, the standard deviations in hedging losses is one half the standard
deviation of hedging losses compared to the dynamic hedging of these products
(see Table 1). When volatility is assumed to be constant the levels of the stan-
dard deviation of hedging losses are similar for the dynamic and static hedging
strategies.

Essentially, the static hedge losses are bounded and are equal to the initial
borrowing required to establish the hedge. The maximum loss is related to the
no-arbitrage bounds considered in the previous section. The potential gains are
unbounded as profits exist when the compound fails to be exercised and the
static hedger sells the static European call in the market. Even in the instance
of possible losses, for the static hedge the average hedging loss was 14.60% (with
stochastic volatility and transactions costs) and for dynamic hedging the average
hedging loss was 11.93%. One could argue that the dynamic hedging strategy
might still be preferred as the average expected loss is less. However, the as-
sumptions of transactions costs levels made in this simulation are somewhat low.
It is conceivable for higher levels of transactions costs; the static hedge would
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be preferred. In addition (and maybe most importantly), the maximum loss for
the static hedge was only 18.97% of the underlying European call value, while
the maximum loss for the dynamic hedging strategy was 64.35%. A moment’s
reflection on the logic for the establishment of the static hedge will make this
result obvious. The static hedge is defined to bound potential losses and this is
not sample dependent, but the maximum loss amount is known a priori and is
known from Proposition 1 (and the subsequent remarks).® Such asymmetrical
potential realisations may induce option writers to prefer static hedging strate-
gies to dynamic strategies when stochastic volatility and transactions costs are
included in the state space.

4.3 Dynamic Hedging of Installment Options

As was the case for compound options, installment options can be hedged either
dynamically or statically. In a Black Scholes world, the dynamic hedging can be
seen as simply hedge as you go. When the initial installment is paid, the seller
dynamically hedges the option in the standard way and at the time of the next
installment the premium should be exhausted (the costs of hedging will exactly
equal the premium receipt). If the option is not worth the next installment, the
option is cancelled and no further hedging is required. On the other hand, if
the next installment is paid, the seller continues dynamically hedging with the
replenished funds introduced by the installment payment. This continues until
the option expires or the holder fails to pay the next installment.

There are some differences in the dynamic hedging ratios of installment op-
tions compared to standard European calls. The delta of an installment option
at launch and throughout its life is generally lower than the delta for a standard
European call. However, once the last payment is made, the installment option
actually becomes a classical Black-Scholes vanilla option, and the deltas of both
types of options are at that point equal.

Using the same approach as was used for the dynamic hedging of the com-
pound option, two 180-day installment options with 6 payments was considered.
As with the previous example, the underlying European call option had a strike
price of 100, the starting price of the stock was 98, interest rates were constant
at 5% and the starting volatility was assumed to be 20%.

The first installment option considered had a relatively higher initial payment
of 2.532 with five further payments at one-month intervals of 0.80. If all six
installments were paid, in month 5, the holder will be in possession of a standard
European call (K = 100) expiring in one month’s time. The second installment
option considered had all six payments set to the same level. Such an installment
option (given the initial market conditions) would have equal payments of 1.219.

As with the compound hedge, the delta of the installment was also estimated

6In this example, the initial amount to be borrowed was 99,217 without transactions costs
and 102,342 with transactions costs. Given the accumulation of interest during the period of
180 days at 5% (continuously compounded), this results in a terminal cost of 101, 694 for the no
transactions costs case and 104, 897 for the transactions costs case. These represent 17.86% and
18.42% of the Black Scholes price respectively. The fact that the maximum loss was found to
be 18.97% reflects the additional transactions cost associated with unwinding the static hedge.
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and the delta amount of the underlying stock was purchased (with a notional
amount of 100000 shares). The purchase of the shares was partially met by the
receipt of the installment premium with the remainder borrowed.

For both examples of installment options, if at the installment payment dates,
the value of the installment option was greater than the fixed payments, the
installment premium was paid to the seller and dynamic hedging continued until
the next installment date. If the installment was not paid, the hedging account
was closed but the costs where financed to the terminal date to allow comparisons
with the underlying European call. Table 3 displays the results of the hedging
simulations for the four scenarios for the first variant of the installment option
(with a higher upfront payment).

Constant Volatility Stochastic Volatility

Discrete Discrete Discrete Discrete

Dynamic Dynamic Dynamic Dynamic

Hedging, No | Hedging, | Hedging, No | Hedging,

Transaction | Transaction | Transaction | Transaction
Costs Costs Costs Costs
Average Difference (%)

Hedging Cost / 0.00 % -2.36 % 0.00 % -2.40 %

Theoretical Value
Standard Deviation (%)

of Hedging Cost / 8.09 % 8.36 % 13.57 % 13.90 %
Theoretical Value
Average Loss (%)

Hedging Cost / -4.23 % -5.34 % -10.42 % -11.11 %
Theoretical Value

Standard Dev1at10n (%) 5.10 % 5.67 % 9.73 % 10.24 %
of Hedging Loss /
Average Gain (%)

Hedging Cost / 4.23 % 2.98 % 10.42 % 8.71 %
Theoretical Value

Standard Deviation (%) | ¢ 55 o 6.33 % 8.23 % 7.85 %
of Hedging Gain

Table 3: Results of 1000 Sitmulation Runs for Delta Hedging the first Variant of
an Installment Call

In the case of a 180-day installment option with unequal payments, results
are roughly similar to those found for the compound option. The inclusion of
transactions costs when hedging significantly increases the cost of hedging rela-
tive to the theoretical value of the underlying call option. However, this impact is
substantially reduced relative to the compound. The standard deviation of hedg-
ing costs is slightly higher for the constant volatility scenarios but essentially the
same for the stochastic volatility scenarios.

The reason the impacts of transactions costs on dynamic hedging of this in-
stallment option is reduced is due to the large number of installments (6 in this

18



instance). In many instances, the second installment payment is never made.
Thus, dynamic hedging was only required for the first 30 days. This reduction in
the time period of dynamic hedging would clearly reduce the accumulated trans-
actions costs. In Table 4, the number of payments made for the 1000 price paths
are reported.

# Payments 1 2 3 4 5 6 Total
Constant o 437 | 123 81 51 33 275 1000
Stochastic o 459 | 118 86 47 38 252 1000

Table 4: Number of Installments paid for 1000 sample price paths of Constant
and Stochastic Volatility for the First Variant of the Installment Call

In approximately one half (45%) of the sample price paths, the second pay-
ment in the installment option was not paid and the dynamic hedging ceased.
For the remaining half (55%) of the simulations, dynamic hedging continued.
However, less than 28% of the installment options remained active to the final
expiration. Thus, the impacts of transactions costs relative to the compound op-
tion must be less, as the compound must be dynamically hedged for a minimum
of 90 days, while installment option rarely required hedging beyond 30 days. As
with the compound option dynamic hedging simulation, the standard deviation
of hedging errors is higher for losses compared to gains. This difference is not as
extreme as for the compound option, as the average period of dynamic hedging
is less for the installment option. Table 5 displays the results of the hedging
simulations for the four scenarios for the second variant of the installment option
(with six equal payments).

In the case of a 180-day installment option with six equal payments, results are
roughly similar to those previously found for the compound option and the first
installment option examined. The inclusion of transactions costs when hedging
significantly increases the cost of hedging relative to the theoretical value of the
underlying call option. However, this impact is substantially reduced relative to
that of the compound dynamic hedges. When equal payment installment options
are considered, it is even more likely that the second installment payment will
never be made. In this instance, for approximately 75% of the 1000 price paths,
dynamic hedging was only required for the first 30 days. This further reduction
in the average life of these products reduces the accumulated transactions costs
associated with dynamic hedging. In Table 6, the number of payments made for
the 1000 price paths are reported.

In approximately 80% of the sample price paths, the second payment in the
installment option was not paid and the dynamic hedging ceased. For the re-
maining 20% of the simulations, dynamic hedging continued. However, less than
10% of the installment options remained active to the final expiration. Thus,
the impacts of transactions costs relative to the compound option must be less,
as the compound must be dynamically hedged for a minimum of 90 days, while
installment option rarely required hedging beyond 30 days.

As with the compound option dynamic hedging simulation, the standard de-
viation of hedging errors is higher for losses compared to gains. This difference
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Constant Volatility Stochastic Volatility
Discrete Discrete Discrete Discrete
Dynamic Dynamic Dynamic Dynamic
Hedging, No | Hedging, | Hedging, No | Hedging,
Transaction | Transaction | Transaction | Transaction
Costs Costs Costs Costs
Average Difference (%)
Hedging Cost / 0.00 % -1.53 % 0.00 % -1.52 %
Theoretical Value
Standard Deviation (%)
of Hedging Cost / 7.94 % 7.89 % 11.90 % 11.99 %
Theoretical Value
Average Loss (%)
Hedging Cost / -2.95 % -3.61 % -7.90 % -8.41 %
Theoretical Value
Standard Dev1at10n (%) 3.99 % 3.82 % 737 % 7.94 %
of Hedging Loss /
Average Gain (%)
Hedging Cost / 2.95 % 2.09 % 7.90 % 6.89 %
Theoretical Value
Standard Deviation (%) |, 5 o 7.30 % 8.73 % 8.38 %
of Hedging Gain

Table 5: Results of 1000 Simulation Runs for Delta Hedging the second Variant
of an Installment Call

# Payments 1 2 3 4 5 6 Total
Constant o 769 65 29 21 18 98 1000
Stochastic o 784 71 31 16 17 81 1000

Table 6: Number of Installments paid for 1000 sample price paths of Constant
and Stochastic Volatility for the Second Variant of the Installment Call

is not as extreme as for the compound option, as the average period of dynamic
hedging is less for the installment option. As with the compound option, the
inclusion of stochastic volatility and transactions costs in the state space compli-
cates the expected hedge variability when dynamic hedging and agents willingness
to employ such hedging strategies for installment options.

4.4 Static Hedging of Installment Options

The static hedging of an installment option can be seen as an extension of the
static hedging approach for simple compound calls. Consider extending the logic
for the static hedge of the two-payment installment option appearing in Table
2. From Proposition 2 and accompanying equation (15), the appropriate (pur-
chased) European option to hedge the installment option is simply the strike of
the underling option (K) plus the summation of the future value of the pos-

20



sible installment payments (p; = p; St e"T=1)7. Consider the two 180-day
installment calls with six payments, we are examining. After the initial payment,
subsequent payments occur would be due in each of the next five months. Af-
ter five months, if the final installment is paid, the option is a simple European
option thereafter.

As with the compound static hedge, if the purchase of the European option is
funded solely by the initial installment payment an arbitrage exists. Therefore,
in the absence arbitrage, the European option purchase must be funded partially
through the initial installment premium and borrowing.

For the simulation of the static hedge for the unequal payments installment
option, exactly the same price paths examined for the dynamic hedge were used.
In addition, the same assumptions regarding the transactions costs and stochastic
volatility process were made. ;From the previous section on the upper boundary
of the installment price, a 180-day European call with a striking price of 104.05
was purchased upon the sale of the installment call (with an initial price of 2.532
and five subsequent payments of 0.80). This option was priced using the Black-
Scholes [1] formula. To fund the purchase of the static hedging call, borrowing
was required in addition to the receipt of the initial installment premium.

If at each installment payment date, the value of the installment option at
that point was less than required payment (of 0.80), the purchased static call was
sold at the current market price. The price of the option was determined by using
the simulated underlying price and volatility (at that point) that were entered in
the Black-Scholes [1] model. Otherwise, the payment was made to the seller and
evaluation continued at all subsequent payment dates. If all installments were
made, the terminal payoffs of the two European options were examined. Table
7 displays the hedging results for the four scenarios associated with the 1000
simulated price paths.

The results of this hedging approach are similar to those found for the com-
pound option in Table 3. The cost of the hedge tends to be slightly higher than
the theoretical value of the underlying 100 call. As with the previous comparison
of the dynamic and static hedging strategies for compound options, the standard
deviation of the hedging costs has increased but is not substantially impacted
when volatility levels are allowed to vary.

As with comparison of the dynamic and static hedging strategies for the com-
pound call, the standard deviations of hedging losses and gains is asymmetric.
While not as dramatic as in the case of the compound option, the standard devi-
ation of the losses is approximately 40% less than the standard deviation of the
hedging gains. Comparisons of Tables 3 and 7 indicate that the average loss (for
the stochastic volatility and transactions costs scenario) is 16.78% for the static
hedge and 11.11% for the dynamic hedge. However, the standard deviation of
hedging losses is essentially the same for the static hedge (10.20%) compared to
the dynamic hedge (10.24%). From these simulations, the maximum realised loss
for the static hedge was 27.01% of the underlying European call value and for the
dynamic hedge the maximum loss was 70.34%.

Finally, the same static hedging strategy was applied to the second type of

"Plus for an installment call and minus this amount for an installment put.
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Constant Volatility Stochastic Volatility

Discrete Discrete Discrete Discrete

Dynamic Dynamic Dynamic Dynamic

Hedging, No | Hedging, | Hedging, No | Hedging,

Transaction | Transaction | Transaction | Transaction
Costs Costs Costs Costs
Average Difference (%)

Hedging Cost / 0.21 % -0.41 % 0.08 % -0.98 %

Theoretical Value
Standard Deviation (%)

of Hedging Cost / 20.19 % 20.11 % 20.82 % 20.82 %
Theoretical Value
Average Loss (%)

Hedging Cost / -15.98 % -16.30 % -17.25 % -17.76 %
Theoretical Value

Standard Deviation (%) | 4 49 ¢ 10.19 % 10.10 % 10.20 %
of Hedging Loss /
Average Gain (%)

Hedging Cost / 16.19 % 15.89 % 17.33 % 16.78 %
Theoretical Value

Standard Deviation (%) | ) 9 o 12.84 % 12.84 % 12.81 %
of Hedging Gain

Table 7: Results of 1000 Simulation Runs for Static Hedging for the First Variant
of the Installment Call

installment call option, with equal payments. For this hedge, a 180-day European
call with a striking price of 106.53 was purchased upon the sale of the installment
call (with an initial price of 1.291 and five subsequent payments of 1.291). To
fund the purchase of the static hedging call, borrowing was required in addition
to the receipt of the initial installment premium. Table 8 displays the hedging
results for the four hedging scenarios.

The results of this hedging approach are similar to those found for the previ-
ous static hedges in Tables 3 and 7. When compared to the previous examples,
the average hedging errors indicate a small but insubstantial loss. As with the
previous comparisons of the dynamic and static hedging strategies, the standard
deviation of the hedging costs has increased but is invariant to stochastic volatil-
ity.

As with comparison of the dynamic and static hedging strategies for the com-
pound call, the standard deviations of hedging losses and gains is asymmetric.
While not as dramatic as in the case of the compound option, the standard devi-
ation of the losses is approximately 40% less than the standard deviation of the
hedging gains. Comparisons of Tables 5 and 8 indicate that the average loss (for
the stochastic volatility and transactions costs scenario) is twice as high (18.09%)
for the static hedge compared to the dynamic hedge (9.25%). However (and as
was the case for the previous comparisons), the standard deviation of hedging
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Constant Volatility Stochastic Volatility

Discrete Discrete Discrete Discrete

Dynamic Dynamic Dynamic Dynamic

Hedging, No | Hedging, | Hedging, No | Hedging,

Transaction | Transaction | Transaction | Transaction
Costs Costs Costs Costs
Average Difference (%)

Hedging Cost / -0.42 % -1.05 % 0.311 % -0.756 %

Theoretical Value
Standard Deviation (%)

of Hedging Cost / 23.84 % 23.74 % 23.37 % 23.34 %
Theoretical Value
Average Loss (%)

Hedging Cost / -17.00 % -17.49 % -17.54 % -18.09 %
Theoretical Value

Standard Deviation (%) | 1 16 ¢, 10.19 % 10.26 % 10.43 %
of Hedging Loss /
Average Gain (%)

Hedging Cost / 16.58 % 16.44 % 17.85 % 17.33 %
Theoretical Value

Standard Deviation (%0) | 6 3 o 16.21 % 16.60 % 16.53 %
of Hedging Gain

Table 8: Results of 1000 Simulation Runs for Static Hedging for the Second
Variant of the Installment Call

losses is only 10.43% for the static hedge and is 14.01% for the dynamic hedge.
Even though the average loss for the static hedge is twice as high, comparable
losses could exist if the level of transactions costs were higher. As is the nature
of the static hedging strategy, the losses are also bounded, while the maximum
loss for the dynamic hedge was three times as great. These simulations confirm
that the bounds for the maximal loss suggested in section 3 indeed hold true.

5 Concluding Remarks

We believe that the analysis given in this paper justifies the claims made in the
Introduction about the attractiveness of the installment option as a product.
From the buyer’s point of view the attractions are obvious: the rights implied by
the option contract can be acquired at very low initial cost. For the seller, the
simple static hedging strategy suggested by the arbitrage arguments of Section 3
is remarkably effective, as the evidence presented in Section 4 shows. The main
point is that the downside risk is bounded, and bounded by a model-independent
number that is generally no more than a modest fraction of the Black-Scholes
premium for the underlying option. Another possibility, which we have not in-
vestigated in detail, would be to apply the static hedge and then to dynamically
hedge the residual risk. This would certainly be much more efficient than dy-
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namically hedging all the risk.
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Figure 6: Dependence of the present value of the total premium on number of
installments

A further question of some independent interest is to investigate what hap-
pens in the limit as the number of installments increases. Because of increasing
optionality, the total premium (i.e. the present value of all installments) increases
with the number of installments. Figure 6 shows this for the standard example of
Section 2. The horizontal scale is logarithmic, the data points being for 2,4,8, ...
installments. As can be seen, the total premium — or, equivalently, the premium
per unit time — appears to converge to an upper bound p. In fact, p is the fair
premium for a continuously-paid installment option in which the premium is paid
at rate p per unit time, with the right to terminate payments at any time. This
is equivalent to holding the underlying European option, purchased at price ¢(0),
plus the right to sell this option at strike price ¢(¢) at any time ¢ < T. Here
q(t) = p(1 — e7"@=1)/r is the NPV at time ¢ of the future premium payment
stream. The value of this American option can be characterized as the solu-
tion of a variational equality, but a rigorous theory is complicated: because it is a
compound option with time-varying strike, standard theory for American options
cannot be applied in any straightforward way. We plan to return to this topic in
a later paper.
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