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Abstract

An installment option is a European option in which the premium,
instead of being paid up-front, is paid in a series of installments. If all
installments are paid the holder receives the exercise value, but the holder
has the right to terminate payments on any payment date, in which case
the option lapses with no further payments on either side. We discuss
pricing and risk management for these options, in particular the use of
static hedges to obtain both no-arbitrage pricing bounds and very effective
hedging strategies with almost no vega risk.

1 Introduction

In a conventional option contract the buyer pays the premium up front and
acquires the right, but not the obligation, to exercise the option at a fixed time
T in the future (for European-style exercise) or at any time at or before T
(for American-style exercise). In this paper we consider an alternative form
of contract in which the buyer pays a smaller up-front premium and then a
sequence of “installments”, i.e. further premium payments at equally spaced
time intervals before the maturity time T . If all installments are paid the buyer
can exercise the option, European-style, at time T . Crucially, though, the buyer
has the right to ‘walk away’: if any installment is not paid then the contract
terminates with no further payments on either side. This provides useful extra
optionality to the buyer while, as we shall see, the seller can hedge the option
using simple static hedges that largely eliminate model risk.

The case of two installments is equivalent to a compound option, previously
considered by Geske [7] and Selby and Hodges [8]. Let C(t, T, S,K) denote the
Black-Scholes value at time t of a European call option with strike K maturing
at time T when the current underlying price is S (all other model parameters are
constant). Installments p0, p1 are paid at times t0, t1 and final exercise is at time
T > t1. At time t1 the holder can either pay the premium p1 and continue to hold
the option, or walk away, so the value at t1 is max (C(t1, T, S(t1),K)− p1, 0).
The holder will pay the premium p1 if this is less than the value of the call
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option. The value of this contract at t0 is thus the value of a call on C with
‘strike’ p1.

Another way of looking at it, that will be useful later, is this: the holder
buys the underlying call at time t0 for a premium p = p0 + e−r(t1−t0)p1 (the
NPV of the two premium payments where r denotes the riskless interest rate)
but has the right to sell the option at time t1 for price p1. The compound call is
thus equivalent to the underlying call option plus a put on the call with exercise
at time t1 and strike price p1. The value p is thus greater than the Black-Scholes
value C(t0, T, S(t0),K), the difference being the value of the put on the call.

A similar analysis applies to installment options with premium payments
p0, p1, . . . , pk at times t0, . . . , tk < T . The NPV of the premium payments is
p =

∑k
i=0 pie

−r(ti−t0) and the installment option is equivalent to paying p at
time t0 and acquiring the underlying option plus the right to sell it at time
tj , 1 ≤ j ≤ k at a price qj =

∑k
i=j pie

−r(ti−tj) (all subsequent premiums are
‘refunded’ when the right to sell is exercised). The installment option is thus
equivalent to the underlying option plus a Bermuda put on the underlying option
with time-varying strike qi.

In the next section we discuss pricing in the Black-Scholes framework. As
for American options a finite-difference algorithm must be used. In section
3, simply-stated ‘no-arbitrage’ bounds on the price are derived valid for very
general price process models. As will be seen, these depend on comparison with
other options and suggest possible classes of hedging strategies. In section 4
we introduce and analyse static hedges for installment options, concentrating
on a specific example to illustrate our point. Concluding remarks are given in
Section 5.

This paper is largely a summary of our companion paper [5], which also
contains a discussion of ‘continuous-installment options’, not considered here.

2 Pricing in the Black-Scholes framework

Consider an asset whose price process St is the conventional log-normal diffusion

dSt = rSt dt+ σSt dwt, (1)

where r is the riskless rate and wt a standard Brownian motion; thus (1) is the
price process in the risk-neutral measure. We consider a European call option
on St with exercise time T and payoff

[ST −K]+ = max(ST −K, 0). (2)

The Black-Scholes value of this option at time 0 is of course

pBS = Ee−rT [ST −K]+. (3)

pBS is the unique arbitrage-free price for the option, to be paid at time 0. As
an illustrative example we will take T = 1 year, r = 0, K = 100, S0 = 100 and
σ = 25.132%, giving pBS = 10.00.

In an installment option we choose times 0 = t0 < t1 < · · · < tn = T
(generally ti = iT/n to a close approximation). We pay an upfront premium p0

at t0 and pay an ‘installment’ of p1 at each of the n− 1 times t1, . . . , tn−1. We
also have the right to walk away from the deal at each time ti: if the installment

2



due at ti is not paid then the deal is terminated with no further payments on
either side. The pricing problem is to determine what is the no arbitrage value of
the premium p1 for a given value of p0. The present value of premium payments
– assuming they are all paid – is

p0 + p1

n−1∑
i=1

e−rti , (4)

and this must exceed the Black-Scholes value in view of the extra optionality.
Computing the exact value is straightforward in principle. Let Vi(S) denote

the net value of the deal to the holder at time ti when the asset price is Sti = S.
In particular

Vn(S) = [S −K]+. (5)

At time ti we can either walk away, or pay p1 to continue, the continuation
value being

Eti,S(ti)[e
−r(ti+1−ti)Vi+1(Sti+1

)]. (6)

Thus
Vi(S) = max(0, Eti,S [e−r(ti+1−ti)Vi+1(Sti+1)]− p1). (7)

In particular, Vn−1 is just the maximum of 0 and BS − p1, where BS denotes
the Black-Scholes value of the option at time tn−1. The unique arbitrage free
value of the initial premium is then

p0 = V +
0 (S0, p1) := Et0,S0

[
e−r(t1−t0)V1(St1)

]
.

For fixed p1, V +
0 (S0, p1) is easily evaluated using a binomial or trinomial

tree and this determines the up-front payment p0. If we want to go the other
way round, pre-specifying p0, then we need a simple one-dimensional search to
solve the equation p0 = V +

0 (S0, p1) for p1. A similar search solves the equation
p̂ = V +

0 (S0, p̂) giving the installment value p̂ when all installments, including
the initial one, are the same.

Figure 1 shows the price p̂ at time 0 for our standard example with 4 equal
installments. For comparison, one quarter of the Black-Scholes value is also
shown. At S0 = 100, p̂ = 3.284, which is 31% greater than one quarter of the
Black-Scholes value. Figure 2 shows the value at time t1; when S(t1) ≤ 98.28 it
is optimal not to continue and the option has value zero.

3 No-arbitrage bounds derived from static hedges

The pricing model of the previous section makes the standard Black-Scholes as-
sumptions: log-normal price process, constant volatility. By considering static
super-replicating portfolios, however, we can determine easily computable bounds
on the price valid for essentially arbitrary price models. We need only assume
that for any s ∈ [t0, T ] there is a liquid market for European calls with maturities
t ∈ [s, T ], the price being given by

C(s, t,K) = EQ
[
e−r(t−s)(St −K)+

∣∣∣Fs] (9)
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Figure 1: Fair installment value and Black-Scholes value

0

5

10

15

20

25

30

35

60 70 80 90 100 110 120 130 140

Price S(t1)

O
p

ti
o

n
 v

a
lu

e

Figure 2: Value of installment option at time t1 as function of price S(t1)

where Q is a martingale measure for the process S and Fs denotes the infor-
mation available at time s. By put-call parity this also determines the value of
put options P (s, t,K). We know today’s prices C(t0, t,K) and that is all we
know about the process S and the measure Q. We ignore interest rate volatility,
assuming for notational convenience that the riskless rate is a constant, r, in
continuously compounding terms. We also assume that no dividends are paid.

Let us first consider a 2-installment, i.e. compound, option, with premiums
p0, p1 paid at t0, t1 for an underlying option with strike K maturing at T = t2.

The subsequent result provides no-arbitrage bounds on the prices p0, p1

which are independent of the special choice of the model S and the equivalent
martingale measure Q.

Proposition 3.1 For the compound option described above, there is an arbi-
trage opportunity if p0, p1 do not satisfy the inequalities

C
(
t0, T,K + er(T−t1)p1

)
> p0 > C(t0, T,K)−e−r(t1−t0)p1+P (t0, t1, p1). (10)
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Proof. Denote K ′ = K + er(T−t1)p1 and suppose we sell the compound option
with agreed premium payments p0, p1 such that p0 ≥ C(t0, T,K

′). We then
buy the call with strike K ′ and place x = p0 − C(t0, T,K

′) ≥ 0 in the riskless
account. If the second installment is not paid, the value of our position at time
t1 is xer(t1−t0) + C(t1, T,K

′) ≥ 0, whereas if the second installment is paid
we add it to the cash account, and the value at time T is then xer(T−t0) +
p1e

r(T−t1) + C(T, T,K ′) − C(T, T,K) ≥ 0. This is an arbitrage opportunity,
giving the left-hand inequality in (10).

Now suppose the compound option is available at p0, p1 satisfying

p0 + e−r(t1−t0)p1 ≤ C(t0, T,K) + P (t0, t1, p1). (11)

We buy it, i.e. pay p0, and sell the two options on the right (call them Ĉ, P̂ ),

so our cash position is Ĉ + P̂ − p0 ≥ e−r(t1−t0)p1. At time t1 the cash position
is therefore x ≥ p1, and we have the right to pay p1 and receive the call option.
We exercise this right if C(t1, T,K) ≥ p1. Then our cash position is x− p1 ≥ 0,

Ĉ is covered and P̂ will not be exercised because p1 < C(t1, T,K) ≤ S(t1) (the
call option value is never greater than the value of the underlying asset). On the
other hand, max(p1−C(t1, T,K), 0) ≥ max(p1−S(t1), 0), so if p1 > C(t1, T,K)

we do not pay the second installment and still have enough cash to cover Ĉ and
P̂ . Thus there is an arbitrage opportunity when the right-hand inequality in
(10) is violated. �

Of course, for practical purpose P (t0, t1, p1) will be a negligible quantity
(and there will be no liquid market as typically p1 � S0) but for obtaining
theoretically sharp bounds one must not forget this term.

In fact, the above inequalities are sharp: it is not hard to construct exam-
ples of arbitrage-free markets such that the differences in the left (resp. right)
inequality in (10) become arbitrarily small.

Finally let us interpret the right hand side of inequality (10) by using the
interpretation of the compound option given in the introductory section: the net
present value p0 + e−r(t1−t0)p1 of the payment for the compound must equal —
by no-arbitrage — the price C(t0, T,K) of the corresponding European option
plus a put option to sell this call option at time t1 at price p1. Denoting the
latter security by Put(Call) we obtain the no-arbitrage equality.

p0 = C(t0, T,K)− e−r(t1−t0)p1 + Put(Call). (12)

In the proof of proposition 3.1 we have (trivially) estimated this Put on the
Call from below by the corresponding Put P (t0, t1, p1) on the underlying S. We
now see that the difference in the right hand inequality of (10) is precisely equal
to the difference Put(Call) − P (t0, t1, p1) in this estimation.

Similar arguments apply for n installments, where holding the installment
option is equivalent to holding the underlying option plus the right to sell this
option at any installment date at a price equal to the NPV of all future in-
stallments. The value of the Bermuda option on the option is greater than the
equivalent option on the stock. This gives us the following result.

Proposition 3.2 For the n-installment call option with premium payment p0

at time t0 and p1 at times t1, . . . , tn−1 there is an arbitrage opportunity if p0,
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p1 do not satisfy

C(t0, T,K + p̂1) > p0 >
[
C(t0, T,K)− er(T−t0)p̂1 + PBerm(t0)

]
+
. (13)

Here

p̂1 = p1

n−1∑
i=1

er(T−ti) (14)

and PBerm(t0) denotes the price at time t0 of a Bermuda put option on the
underlying S(t) with exercise times t1, . . . , tn−1 and strike price Ki at time ti,
where

Ki = p1

n−1∑
j=i

e−r(tj−ti). (15)

4 Static Hedging

Static hedging is a technique that has come increasingly into favour in re-
cent years because of its robustness to market friction and model error. See
[1],[2],[3],[6] and [9], for example.

In Section 2 the pricing formula for installment options was derived under the
perfect market assumptions made by Black and Scholes. The price is intimately
associated with the construction of a riskless dynamic hedging portfolio. In
Section 3 we saw that – without making any assumptions about the price process
model – arbitrage opportunities exist if the installment option price fails to
satisfy certain bounds, derived by comparison with the values of static portfolios
of plain vanilla options. In this section our objective is to show that if the price
does lie within these bounds then a static hedging strategy based on these
portfolios nevertheless provides an excellent hedge. Typically, we find that with
these hedges the installment option writer faces a maximum loss that is bounded,
with probability 1, by a number that is a modest fraction – say 20% – of the
original option premium.

In this paper we shall just analyse one example, in order to convey the
ideas and convince the reader that static hedges are potentially very effective.
The companion paper [5] gives much more evidence, based on extensive simula-
tion under alternative assumptions about the price process, including stochastic
volatility and market friction in the form of transaction costs.

Our test case will be the standard example of Section 2 with two equal
installments, paid at times t0 = 0, t1 = 0.5. (This is simply a compound option).
Recall that the Black-Scholes value of the underlying plain vanilla option is
pBS = 10.00. The Black-Scholes value of equal installment premiums is p0 =
p1 = 5.855. We noted in Section 3 that there would be an arbitrage opportunity
if the first installment p0 were enough to buy a 1-year call option with strike
K ′ = K + p1 = 105.855. In fact the value of this option is p′ = 7.627, so
there is – of course – no arbitrage. To construct our hedge, we receive p0 as
premium, borrow the difference p′−p0 = 1.772 and buy the K ′-call. The second
installment will not be paid if S(t1) ≤ 97.59, and in this case we close out the
position at t1; otherwise the hedge is held to maturity. The curve labelled ‘Hedge
1’ in Figure 3 shows the P&L of the hedged position at t1 as a function of the
price S(t1). The P&L is equal to min{p0−p′+C ′, p0−p′+C ′+p1−C}, where
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C ′ = C(t1, T, S(t1),K ′), C = C(t1, T, S(t1),K). The maximum loss is p′ − p0,
which is 17.72% of the Black-Scholes premium for the underlying option, and
the maximum gain is 20.3% of this premium, realized when the price is on the
continuation boundary. Figure 4 shows the distribution of P&L under the risk-
neutral measure; this turns out to be close to the uniform distribution. Of course
this distribution would be different under different price modelling assumptions,
but the main point is that under any reasonable model the expected P&L is close
to zero and the maximum loss is confined to the amount borrowed, which is not
very much.

We can do better. Looking at the P&L profile for Hedge 1 in Figure 3 we
note that it is very similar to the value of a calendar spread (the difference
between two call options with the same strike but different maturities). This
suggests that instead of borrowing 1.772 from the bank to finance purchase of
the K ′ call we should raise the money by selling a calendar spread. After some
experimentation we find that a suitable calendar spread has strike 97.59 (equal
to the price at which the P&L of Hedge 1 is maximum) and maturity times
T1 = 0.5, T2 = 1.0. The Black-Scholes value of this calendar spread at time 0 is
2.865, so we need to sell 0.619 = 1.772/2.865 of them to finance purchase of the
K ′ call. We thus create a hedge whose value at time 0 is p0 consisting of the
following plain vanilla call options ((K,T ) denotes strike and maturity): long
(97.59, 0.5) and (105.86, 1.0), short (97.59, 1.0). The P&L profile of this hedge
at t1 is ‘Hedge 2’ in Figure 3. It is a considerable improvement: the maximum
loss has been reduced to 5.1% of the underlying Black-Scholes premium.
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Figure 3: Profit/Loss profiles of compound option static hedges as functions of
the underlying asset price S(t1)

5 Concluding Remarks

The reader will find in the companion paper [5] a much more complete analysis
of static hedges for installment options – including ones with multiple install-
ments – examining examining the performance relative to dynamic hedging
under realistic market scenarios and including the effects of transaction costs

7



0

0.02

0.04

0.06

0.08

0.1

0.12

-1.7 -1.5 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

P&L values

F
r

e
q

u
e

n
c

y

Figure 4: Distribution of Static Hedge P&L under the risk neutral measure

and stochastic volatility. This study confirms what is suggested by the example
presented above, namely that static hedging is a highly effective technique that
decouples the hedger almost entirely from the malign effects of market friction
and vega risk.

The construction of Hedge 2 in Section 4 – which was frankly done by trial
and error – suggests that we should take a more systematic approach. Effec-
tively, plain vanilla option payoffs are being used as basis functions, in terms
of which we seek to approximate the payoff profile of an exotic option. While
expansion of option payoffs in Fourier series has been investigated by Desrolles
and Laurent [4], we are not aware of any studies in which other option payoffs
are used as basis functions, although such an approach would not be hard to
implement and was in fact suggested to the authors years ago by Michael Selby.
We plan to return to this topic.
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