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Abstract

We give an example of a subspace K of L∞(Ω,F ,P) such that K∩L∞+ = {0},
where K denotes the closure with respect to convergence in probablity. On the
other hand, the cone C := K−L∞+ is dense in L∞ with respect to the weak-star
topology σ(L∞, L1). This example answers a question raised by I. Evstigneev.
The topic is motivated by the relation of the notion of no arbitrage and the
existence of martingale measures in Mathematical Finance.
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1 Introduction

Denote by (Ω,F ,P) a probability space and recall the following result which plays a
basic role in Mathematical Finance.

Theorem 1.1 (Kreps-Yan) Let 1 ≤ p ≤ ∞ and C a convex cone in Lp(Ω,F ,P)
containing the negative orthant Lp

−(Ω,F ,P) and s.t. C ∩ Lp
+(Ω,F ,P) = {0}.

If C is closed (w.r. to the norm-topology in the case 1 ≤ p < ∞ and w.r. to the
weak-star topology in the case p = ∞) there is an element g ∈ Lq(Ω,F ,P), where
1
p

+ 1
q

= 1, such that g > 0 a.s. and g|C ≤ 0.

The theorem essentially goes back independently to D. Kreps [K 81] and J.A. Yan
[Y 80]. The former author was motivated by Mathematical Finance while the latter
was elaborating on the work of Dellacherie and Mokobodzki on the characterisation
of semi-martingales. In 1990 C. Stricker ([St 90, Theorem 1 and 2]), extended Yan’s
result and applied it to Mathematical Finance. For a proof of Theorem 1.1 we refer
to [St 90] or [S 94].

The setting in Mathematical Finance to which this theorem applies is roughly as
follows: one considers a set K ⊆ Lp(Ω,F ,P) of “contingent claims marketed at price
zero”. Typically K is defined via

K =

{∫ T

0

HtdSt

∣∣∣∣ H ∈ H
}

(1)
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where S = (St)0≤t≤T is a semi-martingale modelling the (discounted) price process of
one (or several) risky assets and H ranges through a suitably chosen class of “trading
strategies”, i.e., predictable S-integrable processes. The set K typically is a vector
subspace of Lp(Ω,F ,P) or — at least — a convex cone.

The “principle of no arbitrage” is the following assumption on K:

(NA) K ∩ Lp
+(Ω,F ,P) = {0}.

The interpretation is that it should not be possible to find a contingent claim
marketed at price zero, i.e., an element f ∈ K, such that f ≥ 0 a.s. and P[f > 0] > 0,
as this would yield an arbitrage opportunity.

The Fundamental Theorem of Asset Pricing states that the condition (NA) is
essentially equivalent to the existence of a linear functional g ∈ Lq(Ω,F ,P), g > 0
a.s. such that g|K ≤ 0 which, in the case when K is a vector space, is equivalent to
g|K = 0.

In the case of finite Ω and defining K as in (1), where the class H consists of all pre-
dictable processes, this is indeed a mathematical theorem (i.e., the word “essentially”
above may simply be dropped), which is due to Harrison and Pliska [HP81]. The
(properly normalized) linear functional g may then be interpreted as the density dQ

dP
of

a probability measure Q equivalent to P under which the process S is a martingale.
Turning to more general situations than finite probability spaces Ω, it was noticed

by D. Kreps [K 81] that a strengthening of the (NA) condition is needed in order to give
the word “essentially” above a precise meaning. The idea is to replace the condition
K ∩ Lp

+ = {0} by K̃ ∩ Lp
+ = {0}, where K̃ is an enlargement of K in an appropriate

sense. At this stage D. Kreps observed a remarkable phenomenon: to obtain K̃ it is
the wrong idea to try to pass directly to a topological closure of K. The good idea is
first to pass to the cone

C = K − Lp
+(Ω,F ,P) (2)

= {f ∈ Lp(Ω,F ,P) | there is h ∈ K with f ≤ h}. (3)

Note that the no arbitrage condition K∩Lp
+ = {0} is obviously equivalent to C∩Lp

+ =
{0}. The economic interpretation of the passage from K to C is that “agents are
allowed to throw away money”, or the hypothesis of “free disposal”.

Somewhat surprisingly, this — apparently silly — passage from K to C changes
the situation dramatically when we now pass to taking topological closures.

Denoting by C the closure of C in an appropriate topology (in the present setting
the norm topology of Lp for 1 ≤ p < ∞ and the weak-star topology for p = ∞),
D. Kreps [K 81] introduces the condition of “no free lunch”

(NFL) C ∩ Lp
+(Ω,F ,P) = {0}. (4)

and gives an economic interpretation as a strengthening of the no arbitrage condition
(NA). Now he is in a position to apply Theorem 1.1 to obtain a linear functional g > 0
such that g|C ≤ 0, which enables him to state and prove a mathematically precise
version of the Fundamental Theorem of Asset Pricing. Many authors have elaborated
further on this seminal work by D. Kreps (see, e.g., [DS 94], [DS 98] and the references
given there).

But what goes wrong if one tries to replace the condition (NFL) by

K ∩ Lp
+(Ω,F ,P) = {0}, (5)

which — intuitively speaking — may seem to yield the same condition as (NFL) (the
bars pertaining to the same topology)? In Example 3.1 of [S 94] a subspace K of
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L∞(Ω,F ,P) was constructed along the lines of (1) such that, letting C = K − L∞+
and denoting by K and C the respective closures in the weak-star topology of L∞,
equality (5) holds true while C equals the entire space L∞ (so that, in particular, (4)

fails to hold true). In fact the example is such that K
‖ . ‖1 ∩ L1

+(Ω,F ,P) = {0} holds

true, where K
‖ . ‖1

denotes the closure of K in the norm topology of L1(Ω,F ,P). This
is a stronger assertion than K ∩ L∞+ (Ω,F ,P) = {0}.

The purpose of this note is to investigate the above described phenomenon a little
further and to push it to the maximal limits in the following sense.

Theorem 1.2 There is a vector space K in L∞(Ω,F ,P) where Ω = [0, 1], F =
Borel[0, 1], and P equals Lebesgue measure λ on F , such that, letting C = K − L∞+ ,
the following statements hold true:

(i) K ∩ L0
+(Ω,F ,P) = {0}, where K denotes the closure of K with respect to the

topology of convergence in probability.

(ii) C ∩ L∞+ (Ω,F ,P) 6= {0}, where C denotes the closure of C with respect to the
norm topology of L∞.

More precisely, for ε > 0, there is f ∈ C, taking its values a.s. in {0, 1} and s.t.
P[f = 1] > 1− ε. In particular, C is weak-star dense in L∞.

For the definition of K we have considered the coarsest conceivable topology, while
for C the finest conceivable one in the present context. We still can observe the above
described phenomenon that (4) fails while (5) holds true.

One might ask whether one may push in (ii) still a little further to obtain an
example where C is dense in L∞ with respect to the norm ‖ . ‖∞. However, a moment’s
reflexion reveals that this is asking for too much: if the constant function 1 is in the
closure of C with respect to ‖ . ‖∞, we cannot have K ∩ L∞+ = {0}. Hence it seems
that the above theorem precisely shows how far the above described phenomenon can
be pushed.

I. Evstigneev has informed me [E 02] that he has constructed a convex cone K in
L1 displaying similar phenomena as the space K described in Theorem 1.2 above. He
asked whether the convex cone can be replaced by a vector space.

It turns out that, using wellknown properties of α-stable random variables the
construction of such a space is relatively simple. A similar idea was already used in
the thesis of W. Brannath [B 97] in the context of “immediate free lunches”; there,
however, a sequence of “taylor-made” random variables was used instead of the α-
stable ones we shall presently use.

In the subsequent section we give the proof of Theorem 1.2.

2 The Example

Using the notation of ([ST 94, Definition 1.1.6.]), fix 0 < α < 1, σ > 0 and let X be
an α-stable random variable with scale parameter σ, skewness parameter β = 1 and
shift parameter µ = 0, i.e. X ∼ Sα(σ, 1, 0). Let (Xn)∞n=1 be a sequence of i.i.d. copies
of X. The random variables (Xn)∞n=1 are defined on a stochastic base (Ω,F ,P) which
we may assume w.l.g. to equal ([0, 1], Borel[0, 1], λ).

We need the following properties of X (see sections 1.1 and 1.2 of [ST 94]):

(i) The support of X equals R+.
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(ii) For N ∈ N and ξ = (ξ1, . . . , ξN) ∈ RN
+ , the r.v.

∑N
n=1 ξnXn has the same distri-

bution as ‖ξ‖α X, where ‖ξ‖α =
(∑N

n=1 |ξn|α
) 1

α
.

Denoting by (`α, ‖ . ‖α) the quasi-normed complete metric vector space of all

sequences ξ = (ξn)∞n=1 such that ‖ξ‖α = (
∑∞

n=1 |ξn|α)
1
α < ∞, property (ii)

implies the following well-known result.

Lemma 2.1 The mapping

i : `α → L0(Ω,F ,P) (6)

(ξn)∞n=1 7→
∞∑

n=1

ξnXn (7)

is a well-defined isomorphic embedding of the quasi-normed topological vector space
(`α, ‖ . ‖α) into the topological vector space L0(Ω,F ,P), equipped with the topology of
convergence in probability.

Proof. Write ξ = ξ+ − ξ−, where ξ+ = (ξ+
n )∞n=1 and ξ− = (ξ−n )∞n=1 and note that

‖ξ‖α ≥ max(‖ξ+‖α, ‖ξ−‖α) ≥ 2−1/α‖ξ‖α.
We infer from property (ii) above that i(ξ+) (resp. i(ξ−)) have the same distribu-

tion as ‖ξ+‖αX (resp. ‖ξ−‖αX). As these two random variables are independent the
assertion of the lemma follows. �

We shall apply Lemma 2.1 in a slightly modified form: Let (cn)∞n=1 be a sequence
of real numbers and define

Yn = Xn − cn (8)

Lemma 2.2 If the sequence (cn)∞n=1 is bounded, the mapping

j : `α → L0(Ω,F ,P) (9)

(ξn)∞n=1 7→
∞∑

n=1

ξnYn (10)

shares all the properties of the map i indicated in Lemma 2.1

Proof of Lemma 2.2. To show the continuity of j note that

ϕ : `α → R (11)

(ξn)∞n=1 7→
∞∑

n=1

cnξn (12)

is a continuous linear functional on (lα, ‖ . ‖α) if (cn)∞n=1 is a bounded sequence of real
numbers. As j = i+ ψϕ, where ψ : R → L0(Ω,F ,P) is the linear embedding defined
by ψ(1) = −1, we obtain the continuity of j from the continuity of i.

To show the openess of the mapping j from `α onto its image in L0(Ω,F ,P) we
have to show that for ε > 0 we may find δ > 0 such that ‖ξ‖α > ε implies that
P[j(ξ) > δ] > δ. Writing again ξ = ξ+ − ξ−, we have

j(ξ) ∼ ‖ξ+‖αX1 − ‖ξ−‖αX2 −
∞∑

n=1

cnξn, (13)

where ∼ denotes equality in distribution, and we may conclude the assertion similarly
as in Lemma 2.1 above. �
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From now on we shall specify the choice of cn by cn = n−1. Denoting by K0 the
image j(lα) in L0(Ω,F ,P), we shall see that this vector space has already essentially
the properties listed in Theorem 1.2 (with the exception that it lives in L0 instead of
L∞).

Indeed, K0 is a closed subspace of L0(Ω,F ,P) by Lemma 2.2. Next we show that

K0 ∩ L0
+(Ω,F ,P) = {0}. (14)

Fix ξ = (ξn)∞n=1 ∈ lα, ξ 6= 0, and write again ξ = ξ+ − ξ−.
If ξ+ 6= 0 then by property (i) above the support of the random variable j(ξ+)

equals [−
∑∞

n=1
ξ+
n

n
,∞[.

Similarly, if ξ− 6= 0, the support of j(−ξ−) contains a non-empty subset of ]−∞, 0[
(in fact it contains ] − ∞, 0], but for later use we note that it is sufficient for the
subsequent argument that it contains a non-empty subset of ]−∞, 0[). As j(ξ) is the
sum of the two independent r.v. j(ξ+) and j(−ξ−) we conclude that ξ 6= 0 implies
that the intersection of the support of j(ξ) with ] −∞, 0[ is not empty, thus proving
(14).

As regards assertion (ii) of Theorem 1.2 we have the following result.

Lemma 2.3 Denote by C0 the cone (K0 −L0
+(Ω,F ,P))∩L∞(Ω,F ,P) and by C0 its

closure w.r. to ‖ . ‖∞. For ε > 0 there is f ∈ C0 taking its values in {0, 1} such that
P[f = 1] > 1− ε.

Proof of Lemma 2.3. We first show that, for δ > 0, there is g ∈ C0 taking its values
in [−δ, 1] such that P[g = 1] > 1 − δ. Fix δ > 0, let M > 0 be big enough such that
E[X ∧M ] > 1 and Nδ ∈ N such that N−1

δ < δ. For N > Nδ let

fN,δ =
1

N −Nδ

N∑
n=Nδ+1

(Yn ∧M). (15)

Then fN,δ is in C0, takes its values in [−δ,M ] and, by the strong law of large
numbers, tends for N →∞ almost surely to E[X ∧M ]. Hence, taking N sufficiently
large and letting g = fN,δ ∧ 1 we have found a function g ∈ C0 as indicated above.

To show the assertion of the Lemma fix ε > 0 and find a sequence (gn)∞n=1 ∈ C0 as
above with δ = ε

2n . Letting An = {gn = 1} and A =
⋂∞

n=1An we find P[A] > 1 − ε.

We have that f = 1A is in C0 as gn ∧ 1A ∈ C0 and ‖f − (gn ∧ 1A)‖∞ ≤ ε
2n . �

The only step we are still missing in order to show the assertions of Theorem 1.2 is
to replace the subspace K0 of L0(Ω,F ,P) by an analogous subspace K of L∞(Ω,F ,P).
This will be done by a straightforward truncation argument.

Let (Mn)∞n=1 be a sequence of strictly positive numbers tending sufficiently fast to
infinity so that

∞∑
n=1

P[X > Mn] <∞. (16)

Let Zn = Yn ∧ Mn and define K as the linear span of the sequence (Zn)∞n=1 in
L∞(Ω,F ,P). We claim that K satisfies all the requirements of Theorem 1.2.

Lemma 2.4 Denoting by K the closure of K in L0(Ω,F ,P) with respect to the topol-
ogy of convergence in measure and letting

k : `α → L0(Ω,F ,P) (17)

(ξn)∞n=1 7→
∞∑

n=1

ξnZn, (18)
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we have that k is a well-defined isomorphic embedding. In particular, we have k(lα) =
K.

Proof. To show the continuity of k denote by kN the map kN : lα → L0 given by
kN(ξ) =

∑N
n=1 ξnZn. We infer from Lemma 2.2, (16) and the Borel-Cantelli Lemma

that, for each ξ ∈ lα, the sequence (kN(ξ))∞N=1 converges in probability. This shows
that k is well-defined and we infer from the uniform boundedness principle (applied
to sequences of operators from the complete metric topological vector space (lα‖ . ‖α)
to the topological vector space L0(Ω,F ,P)), that k is continuous.

To show that k is an isomorphic embedding let (ξi)∞i=1 = ((ξi
n)∞i=1)

∞
n=1 be a sequence

in lα such that ‖ξi‖α = 1. Assuming that k(ξi) tends to zero in L0(Ω,F ,P) we have
to arrive at a contradiction.

We distinguish two cases. Either there is some n0 such that (ξi
n0

)∞i=1 does not
tend to zero. In this case we may suppose, by passing to a subsequence, that (ξi

n0
)∞i=1

converges to some ξn0 6= 0. The random variable k(ξi) then is the sum of the two inde-
pendent random variables ξi

n0
Zn0 and

∑
n6=n0

ξi
nZn. As the former sequence (ξi

n0
Zn0)

∞
i=1

converges to the non-degenerate random variable ξn0Zn0 we readily see that (k(ξi))∞i=1

cannot tend to zero in probability.
The second case is when (ξi

n)∞i=1 tends to zero, for each fixed n ∈ N. In this case
we infer from (16) and the Borel-Cantelli Lemma that (k(ξi)− j(ξi))∞i=1 converges to
zero a.s. and therefore in probability. Hence we may conclude as in (13) above that
(k(ξi))∞i=1 cannot converge to zero in probability. �

Lemma 2.5 The subspace K of L∞(Ω,F ,P) defined after (16) satisfies the assertions
of Theorem 1.2.

Proof. As regards assertion (i) of Theorem 1.2 we have seen in Lemma 2.4 that
k(`α) = K. To verify that K ∩ L0

+(Ω,F ,P) = {0} it therefore suffices to repeat the
argument after (14).

As regards the existence of f ∈ C with the properties indicated in Theorem 1.2,
one may repeat verbatim the proof of Lemma 2.3 (by making sure that Nδ ∈ N is large
enough so that Mn ≥M for n ≥ Nδ).

The weak-star closure of C therefore contains the constant function 1, is a cone
and contains L∞− (Ω,F ,P), hence it must be equal to the entire space L∞(Ω,F ,P).

Summing up, we have proved all the assertions of Theorem 1.2 �

Finally, let us interpret the above constructed vector space K as a space of stochas-
tic integrals. This is an easy task by simply translating the above construction into a
one period financial market with countably many assets. More formally, let S = (St)

1
t=0

be the RN-valued process defined by S0 = 0 and S1 = (Zn)∞n=0.
This process is based on (Ω,F ,P) = ([0, 1], Borel[0, 1], λ) and the filtration (Ft)

1
t=0

is given by F0 = {∅,Ω} and F1 = F .
Putting RN in duality with the space R(N) of finite sequences, we obtain as the

space of stochastic integrals (1) precisely the linear combinations of (Zn)∞n=1, i.e., the
space K defined after (16) above. The financial market S therefore does not permit
an equivalent martingale measure as it allows for free lunches; more precisely, and
using the terminology from [DS 94], it allows for a free lunch with vanishing risk by
Theorem 1.2 (ii). On the other hand, it is not possible to approximate a non-negative
claim f ∈ L∞+ (Ω,F ,P) \ {0} by elements in K, not even in probability (Theorem
1.2 (i)). We thus encounter a problem of “embarras de richesse“, if agents are not
allowed to “throw away money“.

We still remark that it is not as obvious how to transform the above construction
into an example of an R-valued (or Rd-valued, for some 1 ≤ d < ∞) process S such
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that the space of stochastic integrals displays similar phenomena as the space K above.
We leave this question for further research.
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