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Abstract We consider the maximization of the long-term growth rate in the
Black-Scholes model under proportional transaction costs as in Taksar, Klass
and Assaf [Math. Oper. Res. 13, 1988]. Similarly as in Kallsen and Muhle-
Karbe [Ann. Appl. Probab., 20, 2010] for optimal consumption over an infinite
horizon, we tackle this problem by determining a shadow price, which is the
solution of the dual problem. It can be calculated explicitly up to determining
the root of a deterministic function. This in turn allows to explicitly com-
pute fractional Taylor expansions, both for the no-trade region of the optimal
strategy and for the optimal growth rate.

Keywords Transaction costs · growth-optimal portfolio · shadow price

Mathematics Subject Classification (2000) 91B28 · 91B16 · 60H10

JEL Classification: G11

1 Introduction

Portfolio optimization is a classical example of an infinite-dimensional concave
optimization problem. The first ingredient is a probabilistic model of a financial
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market, e.g., the Black-Scholes model consisting of a bond modelled as

S0
t = exp(rt) (1.1)

and a stock modelled as

St = S0 exp
(
σWt +

(
µ− σ2

2

)
t

)
. (1.2)

Here W is a standard Brownian motion and r, µ as well as σ, S0 > 0 denote
constants. In the sequel, we focus on the Black-Scholes model and assume
(without loss of generality for the present purposes) that S0 = 1, r = 0 and
µ > 0.

In order to model the preferences of an economic agent, the second ingre-
dient is a utility function U : R+ → R ∪ {−∞}. In the present paper we will
deal with the most tractable specification, namely logarithmic utility

U(x) = log(x).

The third ingredient is an initial endowment of x units of bonds, as well
as a time horizon T ∈ (0,∞].

There are essentially two versions of the portfolio optimization problem.
The first version consists of maximizing the expected utility from consump-

tion, which is typically formulated for an infinite horizon:

E
[∫ ∞

0

e−ρtU(ct)dt
]
→ max! (1.3)

Here, ρ > 0 is a discount factor pertaining to the impatience of the investor
and (ct)t≥0 runs through all positive consumption plans which can be financed
by the initial endowment x > 0 and subsequent trading in the stock S. In
Merton’s seminal paper [21], it is shown that – in the Black-Scholes model
and for the case of logarithmic or power utility – there are two constants π, c,
depending on the model parameters, such that the optimal strategy consists
of investing a fraction π of the current wealth into the stock and consuming
with an intensity which is a fraction c of the current wealth.

The second version of the portfolio optimization problem is to choose a
time horizon T and to maximize expected utility from terminal wealth:

E

[
U
(
x+

∫ T

0

ϕtdSt

)]
→ max! (1.4)

Here we maximize over all predictable processes ϕ = (ϕt)t≥0 describing the
number of stocks which the agent holds at time t. We only consider those
strategies ϕ which are admissible, i.e. lead to a nonnegative wealth process (x+∫ t

0
ϕudSu)0≤t≤T . Again, it turns out that – for the Black-Scholes model (1.2)



Growth-optimal portfolio under transaction costs 3

and logarithmic or power utility – the optimal strategy is to keep the pro-
portion πt between wealth invested in the stock and total wealth constant. In
particular, for logarithmic utility, this Merton rule reads as

πt =
ϕtSt

ϕ0
t + ϕtSt

=
µ

σ2
. (1.5)

Here, (ϕ0
t )0≤t≤T and (ϕt)0≤t≤T denote the the holdings in bond and stock,

respectively, which are related via the self-financing condition that no funds
are added or withdrawn. In fact, (1.5) holds true much more generally; e.g., for
Itô processes with – say – bounded coefficients one just has to replace µ and σ
with the drift coefficient µt resp. the diffusion coefficient σt (cf. e.g. [17, Exam-
ple 6.4]). This particular tractability of the log-utility maximization problem
is a fact which we are going to exploit later on.

We now pass to the theme of the present paper, which is portfolio optimiza-
tion under (small) transaction costs. To this end, we now assume that (1.2)
defines the ask price of the stock, while the corresponding bid price is sup-
posed to be given by (1 − λ)S for some constant λ ∈ (0, 1). This means that
one has to pay the higher price St when purchasing the stock at time t, but
only receives the lower price (1 − λ)St when selling it.1 Since transactions of
infinite variation lead to immediate bankruptcy, we confine ourselves to the
following set of trading strategies.

Definition 1.1 A trading strategy is an R2-valued predictable finite variation
process (ϕ0, ϕ) = (ϕ0

t , ϕt)t≥0, where (ϕ0
0−, ϕ0−) = (x, 0) represents the initial

endowment in bonds2 and ϕ0
t , ϕt denote the number of shares held in the bank

account and in stock at time t, respectively.

To capture the notion of a self-financing strategy, we use the intuition that
no funds are added or withdrawn. To this end, we write the second compo-
nent ϕ of a strategy (ϕ0, ϕ) as the difference ϕ = ϕ↑ − ϕ↓ of two increasing
processes ϕ↑ and ϕ↓ which do not grow at the same time. The proceeds of
selling stock must be added to the bank account while the expenses from the
purchase of stock have to be deducted from the bank account in any infinites-
imal period (t− dt, t], i.e., we require

dϕ0
t = (1− λ)Stdϕ

↓
t − Stdϕ

↑
t .

Written in integral terms this amounts to the following notion.

1 This notation, also used in [25], turns out to be convenient in the sequel. It is equivalent
to the usual setup with the same constant proportional transaction costs for purchases and
sales (compare e.g. [7, 14, 24]). Indeed, set Š = 2−λ

2
S and λ̌ = λ

2−λ . Then ((1 − λ)S, S)

coincides with ((1− λ̌)Š, (1+ λ̌)Š). Conversely, any bid-ask process ((1− λ̌)Š, (1+ λ̌)Š) with

λ̌ ∈ (0, 1) equals ((1− λ)S, S) for S = (1 + λ̌)Š and λ = 2λ̌
1+λ̌

.
2 This assumption is made mainly for notational convenience. An extension to general

initial endowments is straightforward.
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Definition 1.2 A trading strategy (ϕ0, ϕ)t≥0 is called self-financing, if

ϕ0 = ϕ0
0− +

∫ ·
0

(1− λ)Stdϕ
↓
t −

∫ ·
0

Stdϕ
↑
t , (1.6)

where ϕ = ϕ↑ − ϕ↓ for increasing predictable processes ϕ↑, ϕ↓ which do not
grow at the same time.

Note that since S is continuous and ϕ is of finite variation, integration by
parts yields that this definition coincides with the usual notion of self-financing
strategies in the absence of transaction costs if we let λ = 0.

The subsequent definition requires the investor to be solvent at all times.
For frictionless markets, i.e. if λ = 0, this coincides with the usual notion of
admissibility.

Definition 1.3 A self-financing trading strategy (ϕ0, ϕ)t≥0 is called admissi-
ble, if its liquidation wealth process

Vt(ϕ0, ϕ) := ϕ0
t + ϕ+

t (1− λ)St − ϕ−t St, t ≥ 0,

is a.s. nonnegative.

Utility maximization problems under transaction costs have been studied
extensively. In the influential paper [7], Davis and Norman identify the solu-
tion to the infinite-horizon consumption problem (1.3) (compare also [14, 24]).
Transaction costs make it unfeasible to keep a fixed proportion of wealth in-
vested into stocks, as this would involve an infinite variation of the trading
strategy. Instead, it turns out to be optimal to keep the fraction πt of wealth
in stocks in terms of the ask price St inside some interval. Put differently, the
investor refrains from trading until the proportion of wealth in stocks leaves a
no-trading region. The boundaries of this no-trade region are not known explic-
itly, but can be determined numerically by solving a free boundary problem.

Liu and Loewenstein [20] approximate the finite horizon problem by prob-
lems with a random horizon, which turn out to be more tractable. Dai and
Yi [6] solve the finite-horizon problem by characterizing the time-dependent
boundaries of the no-trade region as the solution to a double-obstacle problem,
where the ODE of [7] is replaced by a suitable PDE. Taksar et al. [25] con-
sider the long-run limit of the finite horizon problem, i.e. the maximization of
the portfolio’s asymptotic logarithmic growth rate. As in the infinite-horizon
consumption problem, this leads to a no transaction region with constant
boundaries. However, these boundaries are determined more explicitly as the
roots of a deterministic function. Arguing on an informal level, Dumas and Lu-
ciano [9] extend this approach to the maximization of the asymptotic power
growth rate. To the best of our knowledge, a rigorous proof of this result still
seems to be missing in the literature, though.

From now on, we only consider logarithmic utility U(x) = log(x) and
formulate the problem, for given initial endowment x > 0 in bonds, time
horizon T ∈ (0,∞) and transaction costs λ ∈ (0, 1), in direct analogy to the
frictionless case in (1.4) above.
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Definition 1.4 (log-optimality for horizon T , first version) An admissi-
ble strategy (ϕ0, ϕ)0≤t≤T is called log-optimal on [0, T ] for the bid-ask process
((1− λ)S, S), if

E
[
log(VT (ψ0, ψ))

]
≤ E

[
log(VT (ϕ0, ϕ))

]
, (1.7)

for all competing admissible strategies (ψ0
t , ψt)0≤t≤T .

It turns out that this problem is rather untractable. To see this, consider the
special and particularly simple case µ = σ2. In the frictionless case, Merton’s
rule (1.5) tells us what the optimal strategy is: At time 0, convert the entire
initial holdings into stock, i.e., pass from (ϕ0

0−, ϕ0−) = (x, 0) to (ϕ0
0, ϕ0) =

(0, x/S0) = (0, x). Then keep all the money in the stock, i.e., (ϕ0
t , ϕt) = (0, x),

for the entire period [0, T ]. At the terminal date T , this provides a logarithmic
utility of log(xST ), after converting the x stocks into xST bonds (without
paying transaction costs).

Let us now pass to the setting with transaction costs λ > 0. If λ � T , it
is, from an economic point of view, rather obvious what constitutes a “good”
strategy for the optimization problem (1.7): Again convert the initial holdings
of x bonds at time 0 into stocks and simply hold these stocks until time T
without doing any dynamic trading. Converting the stocks back into bonds at
time T , this leads to a logarithmic utility of log((1 − λ)xST ) = log(xST ) +
log(1−λ). Put differently, the difference to the frictionless case is only the fact
that at terminal date T you once have to pay the transaction costs λ > 0.

Now consider the case 0 < T � λ. In this situation, the above strategy
does not appear to be a “good” approach to problem (1.7) any more. The
possible gains of the stock during the (short) interval [0, T ] are outweighed
by the (larger) transaction costs λ. Instead, it now seems to be much more
appealing to simply keep your position of x bonds during the interval [0, T ]
and not to invest into the stock at all.

These considerations are of course silly from an economic point of view,
where only the case 0 ≤ λ� T is of interest. The economically relevant issue
is how the dynamic trading during the interval (0, T ) is affected when we pass
from the frictionless case λ = 0 to the case λ > 0. Paying the transaction costs
only once at time t = T (resp. twice if we also model the transaction costs for
the purchase at time t = 0) can be discarded from an economic point of view,
as opposed to the “many” trades necessary to manage the portfolio during
(0, T ) if µ 6= σ2. This economic intuition will be made mathematically precise
in Corollary 6.2 and Proposition 6.3 below, where the leading terms of the
relevant Taylor expansions in λ are of the order λ1/3 and λ2/3, respectively. The
effect of paying transaction costs once, however, is only of order λ (compare
Corollary 1.9 below).

Mathematically speaking, a consequence of the above formulation (1.7)
is the loss of time consistency, which we illustrated above for the special case
µ = σ2. For U(x) = log(x), it follows from Merton’s rule (1.5) that the optimal
strategy in the problem (1.4) without transaction costs does not depend on
the time horizon T , i.e., is optimal for all T > 0. In the presence of transaction
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costs, this desirable concatenation property does not hold true any more for
Problem (1.7) as we have just seen. There is a straightforward way to remedy
this nuisance, namely passing to the limit T → ∞. This has been done by
Taksar, Klass and Assaf [25] and in much of the subsequent literature.

Definition 1.5 An admissible strategy (ϕ0, ϕ) is called growth-optimal, if

lim sup
T→∞

1
T

E
[
log(VT (ψ0, ψ))

]
≤ lim
T→∞

1
T

E
[
log(VT (ϕ0, ϕ))

]
,

for all competing admissible strategies (ψ0
t , ψt)t≥0.

Note that the optimal growth rate does not depend on the initial endow-
ment x. Moreover, the above notion does not yield a unique optimizer. As
the notion of growth optimality only pertains to a limiting value, suboptimal
behaviour on any compact subinterval of [0,∞) does not matter as long as one
eventually behaves optimally. While the notion of growth optimality allows to
get rid of the nuisance of terminal liquidation costs, the non-uniqueness of an
optimizer has serious drawbacks. For example, much of the beauty of duality
theory, which works nicely when the primal and dual optimizers are unique,
is lost.

In order to motivate our final remedy to the “nuisance problem” (cf. Defi-
nition 1.7 below), we introduce, as in [15], the concept of a shadow price which
will lead us to the notion of a dual optimizer .

Definition 1.6 A shadow price for the bid-ask process ((1 − λ)S, S) is a
continuous semimartingale S̃ = (S̃t)t≥0 with S̃0 = S0 and taking values in
[(1 − λ)S, S], such that the log-optimal portfolio (ϕ0

t , ϕt)t≥0 for the friction-
less market with price process S̃ exists, is of finite variation and the number
of stocks ϕ only increases (resp. decreases) on the set {S̃t = St} ⊂ Ω × R+

(resp. {S̃t = (1 − λ)St}). Put differently, ϕ is the difference of the increasing
predictable processes ϕ↑ =

∫ ·
0
1{S̃t=St}dϕt and ϕ↓ = −

∫ ·
0
1{S̃t=(1−λ)St}dϕt.

We now pass to the decisive trick to modify the finite-horizon problem.
Given a shadow price S̃, formulate the optimization problem such that we
only allow for trading under transaction costs λ > 0 during the interval [0, T ),
but at time T we make an exception. At the terminal time T , we allow to
liquidate our position in stocks at the shadow price S̃T rather than at the
(potentially lower) bid price (1−λ)ST . Here is the mathematical formulation:

Definition 1.7 (log-optimality for horizon T , modified version) Given
a shadow price S̃ = (S̃t)t≥0 and a finite time horizon T , we call an admissible
(in the sense of Definition 1.3) trading strategy (ϕ0, ϕ) = (ϕ0

t , ϕt)0≤t≤T log-
optimal for the modified problem if

E
[
log(ṼT (ψ0, ψ))

]
≤ E

[
log(ṼT (ϕ0, ϕ))

]
for every competing admissible strategy (ψ0, ψ) = (ψ0

t , ψt)0≤t≤T , where

Ṽt(ϕ0, ϕ) := ϕ0
t + ϕtS̃t, t ≥ 0,

denotes the wealth process for liquidation in terms of S̃.
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Of course, the above definition is “cheating” by using the shadow price
process S̃ – which is part of the solution – in order to define the optimiza-
tion problem. But this trick pays handsome dividends: Suppose that the log-
optimizer (ϕ0, ϕ) = (ϕ0

t , ϕt)t≥0 for the frictionless market S̃ is admissible for
the bid-ask process ((1− λ)S, S), i.e., is of finite variation and has a positive
liquidation value even in terms of the lower bid price (this will be the case in
the present context). Then this process (ϕ0

t , ϕt)0≤t≤T is the optimizer for the
modified optimization problem from Definition 1.7:

Proposition 1.8 Let S̃ be a shadow price for the bid-ask process ((1−λ)S, S)
with associated log-optimal portfolio (ϕ0, ϕ). If V (ϕ0, ϕ) ≥ 0, this portfolio is
also log-optimal for the modified problem under transaction costs from Defini-
tion 1.7.

Proof Since ϕ only increases (resp. decreases) on the set {S̃t = St} (resp.
{S̃t = (1 − λ)St}), it follows from the definition that the portfolio (ϕ0, ϕ) is
self-financing for the bid-ask process ((1 − λ)S, S). Hence it is admissible in
the sense of Definition 1.3 if V (ϕ0, ϕ) ≥ 0. Now let (ψ0, ψ) be any admissible
policy for ((1−λ)S, S) and set ψ̃0

t := ψ0
0−
∫ t

0
S̃sdψs. Then ψ̃0 ≥ ψ0 and (ψ̃0, ψ)

is an admissible portfolio for S̃, since (1 − λ)S ≤ S̃ ≤ S. Together with the
log-optimality of (ϕ0, ϕ) for S̃, this implies

E
[
log(ṼT (ψ0, ψ))

]
≤ E

[
log(ṼT (ψ̃0, ψ))

]
≤ E

[
log(ṼT (ϕ̃0, ϕ))

]
,

which proves the assertion. ut

As a corollary, we obtain that the difference between the optimal values for
the modified and the original problem is bounded by log(1−λ) and therefore of
order O(λ) as the transaction costs λ tend to zero. In particular, this difference
vanishes if one considers the infinite-horizon problem studied by [25].

Corollary 1.9 Let S̃ be a shadow price for the bid-ask process ((1 − λ)S, S)
with log-optimal portfolio (ϕ0, ϕ) satisfying ϕ0, ϕ ≥ 0. Then

E
[
log(VT (ϕ0, ϕ))

]
≥ sup

(ψ0,ψ)

E
[
log(VT (ψ0, ψ))

]
+ log(1− λ),

where the supremum is taken over all (ψ0, ψ), which are admissible for the bid-
ask process ((1−λ)S, S). Moreover, (ϕ0, ϕ) is growth-optimal for ((1−λ)S, S).

Proof Since (1− λ)S ≤ S̃ ≤ S, we have

V (ψ0, ψ) ≤ Ṽ (ψ0, ψ) (1.8)

for any admissible (ψ0, ψ) and it follows from ϕ0, ϕ ≥ 0 that

V (ϕ0, ϕ) ≥ (1− λ)Ṽ (ϕ0, ϕ). (1.9)
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Combining (1.9), Proposition 1.8 and (1.8) then yields

E
[
log(VT (ϕ0, ϕ))

]
≥ E

[
log(ṼT (ϕ0, ϕ)

]
+ log(1− λ)

≥ E
[
log(ṼT (ψ0, ψ)

]
+ log(1− λ)

≥ E
[
log(VT (ψ0, ψ)

]
+ log(1− λ),

for all (ψ0, ψ) admissible for ((1 − λ)S, S), which proves the first part of the
assertion. It also implies

lim sup
T→∞

1
T

E
[
log(VT (ϕ0, ϕ))

]
≥ lim sup

T→∞

1
T

(
E
[
log(VT (ψ0, ψ))

]
+ log(1− λ)

)
= lim sup

T→∞

1
T

E
[
log(VT (ψ0, ψ))

]
,

for any admissible (ψ0, ψ), which completes the proof. ut

We formulated the corollary only for positive holdings ϕ0, ϕ ≥ 0 in bonds
and stocks. In the present context, this will only be satisfied if 0 ≤ µ ≤ σ2. To
cover also the case µ > σ2, we show in Lemma 5.3 below that the assertion of
Corollary 1.9 remains true more generally in the present setup, provided that
the transaction costs λ are sufficiently small.

Finally, let us point out that – due to Definition 1.7 – much of the well-
established duality theory for frictionless markets (cf. e.g. [13, 16, 22]) carries
over to the modified problem. Let QT denote the unique equivalent martin-
gale measure for the process (S̃t)0≤t≤T . Then the pair ((S̃t)0≤t≤T ,QT ), which
corresponds to a consistent price system in the notation of [12], is the dual
optimizer for the modified problem from Definition 1.7 (compare [5]). Recall-
ing that the conjugate function to U(x) = log(x) is Uc(y) = − log(y) − 1, we
obtain the equality of the primal and dual values

E
[
log(ṼT (ϕ0, ϕ))

]
= E

[
Uc(y dQT

dP )
]

+ 1 = E
[
− log

(
y dQT
dP
)]
,

where the relation between the Lagrange multiplier y > 0 and the initial
endowment x > 0 is given by y = log′(x) = 1/x. We then also have the
first-order condition

ṼT (ϕ0, ϕ) = −U ′c(y dQT
dP ) = x dP

dQT

as well as several other identities of the duality theory, see e.g. [13, 16, 22, 19].
In other words, the little trick of “allowing liquidation in terms of a shadow
price S̃T at terminal time T” allows us to use the full strength of the duality
theory developed in the frictionless case.

The main contribution of the present article is that we are able to explic-
itly determine a shadow price process S̃ for the bid-ask process ((1 − λ)S, S)
in Theorem 5.1. Roughly speaking, the process S̃ oscillates between the ask
price S and the bid price (1 − λ)S, leading to buying (resp. selling) of the
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stock when S̃t = St (resp. S̃t = (1−λ)St). The predictable sets {S̃t = St} and
{S̃t = (1−λ)St} when one buys (resp. sells) the stock are of “local time type”.
Remarkably, our shadow price process nevertheless is an Itô process, whence
it “does not move” on the sets {S̃t = St} and {S̃t = (1− λ)St}. The reason is
that there is a kind of “smooth pasting” when the process S̃ touches S resp.
(1 − λ)S. When this happens, the processes S̃ and S (resp. S̃ and (1 − λ)S)
are aligned of first order, see Section 2 for more details. This parallels the
results of [15]. These authors determine a shadow price for the infinite-horizon
consumption problem. Their characterization, however, involves an SDE with
instantaneous reflection, whose coefficients have to be determined from the
solution to a free boundary problem.

Here, on the other hand, the relation between the shadow price S̃ and the
ask price S (as well as its running minimum and maximum) is established
via a deterministic function g, which is the solution of an ODE and known in
closed form up to determining the root of a deterministic function. This ODE
is derived heuristically from an economic argument in Section 3, namely by
applying Merton’s rule to the process S̃. Subsequently, we show in Section 4
that these heuristic considerations indeed lead to well-defined solutions. With
our candidate shadow price process S̃ at hand, Merton’s rule quickly leads to
the corresponding log-optimal portfolio in Section 5. This in turn allows us
to verify that S̃ is indeed a shadow price. Finally, in Section 6, we expound
on the explicit nature of our previous considerations. More specifically, we
derive fractional Taylor expansions in powers of λ1/3 for the relevant quantities,
namely the width of the no-trade region and the asymptotic growth rate. The
coefficients of these power series, which are rational functions of (µ/σ2)1/3 and
(1 − µ/σ2)1/3, can all be algorithmically computed. For the related infinite-
horizon consumption problem, the leading terms were determined and the
second-order terms were conjectured in [14] (compare also [1, 23, 24, 26] for
related asymptotic results).

Of course, the very special setting of the paper can be generalized in several
directions. One may ask whether similar results can be obtained for more
general diffusion processes or, even more generally, for stochastic processes
which allow for ε-consistent price sytems such as geometric fractional Brownian
motion. Another natural extension of the present results is the consideration of
power utility and/or consumption. This is a theme for future research (compare
[10]).

2 Reflection without local time via smooth pasting

In this section, we show how to construct a process S̃ that remains within the
upper and lower boundaries of the bid-ask spread [(1 − λ)S, S], yet does not
incorporate local time, i.e., is an Itô process (see (2.5) below).

To this end, suppose that there is a real number s̄ > 1 and a C2-function

g : [1, s̄]→ [1, (1− λ)s̄] (2.1)
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such that g′(s) > 0, for 1 ≤ s ≤ s̄, and g satisfies the smooth pasting condition
with the line y = x at the point (1, 1), i.e.,

g(1) = g′(1) = 1, (2.2)

and with the line y = (1− λ)x at the point (s̄, (1− λ)s̄), i.e.,

g(s̄) = (1− λ)s̄ and g′(s̄) = 1− λ. (2.3)

These conditions are illustrated in Figure 2.1 and motivated in Remark 2.3
below.

1 s�

1

Fig. 2.1 Smooth pasting conditions for the function g.

Now define sequences of stopping times (%n)∞n=0, (σn)∞n=1 and processes
(mt)t≥0 and (Mt)t≥0 as follows: let %0 = 0 and m the running minimum
process of S, i.e.,

mt = inf
%0≤u≤t

Su, 0 ≤ t ≤ σ1,

where the stopping time σ1 is defined as

σ1 = inf{t ≥ %0 : St
mt
≥ s̄}.

Next define M as the running maximum process of S after time σ1, i.e.,

Mt = sup
σ1≤u≤t

Su, σ1 ≤ t ≤ %1,

where the stopping time %1 is defined as

%1 = inf{t ≥ σ1 : St
Mt
≤ 1

s̄}.
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For t ≥ %1, we again define

mt = inf
%1≤u≤t

Su, %1 ≤ t ≤ σ2,

where
σ2 = inf{t ≥ %1 : St

mt
≥ s̄},

and, for t ≥ σ2, we define

Mt = sup
σ2≤u≤t

Su, σ2 ≤ t ≤ %2,

where
%2 = inf{t ≥ σ2 : St

Mt
≤ 1

s̄}.
Continuing in an obvious way we obtain series (%n)∞n=0 and (σn)∞n=1 of

a.s. finite stopping times %n and σn, increasing a.s. to infinity, such that m
(resp. M) are the relative running minima (resp. maxima) of S defined on the
stochastic intervals (J%n−1, σnK)∞n=1 (resp. (Jσn, %nK)∞n=1 ). Note that

s̄m%n = M%n = s̄S%n , for n ∈ N,

and
s̄mσn = Mσn = Sσn , for n ∈ N.

We may therefore continuously extend the processes m and M to R+ by
letting

Mt := s̄mt, for t ∈
∞⋃
n=0

J%n, σn+1K,

mt := Mt

s̄ , for t ∈
∞⋃
n=1

Jσn, %nK.

For t ≥ 0, we then have s̄mt = Mt as well as mt ≤ St ≤Mt, and hence

mt ≤ St ≤ s̄mt, for t ≥ 0.

By construction, the processes m and M are of finite variation and only de-
crease (resp. increase) on the predictable set {mt = St} (resp. {Mt = St} =
{mt = St/s̄}).

We can now state and prove the main result of this section.

Proposition 2.1 Under the above assumptions define the continuous process

S̃t = mtg( Stmt ), t ≥ 0. (2.4)

Then S̃ is an Itô process starting at S̃0 = S0 = 1 and satisfying the stochas-
tic differential equation

dS̃t = g′
(
St
mt

)
dSt + 1

2mt
g′′
(
St
mt

)
d〈S, S〉t. (2.5)

Moreover, S̃ takes values in the bid-ask spread [(1− λ)S, S].
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Remark 2.2 We have formulated the proposition only for the Black-Scholes
model (1.2). But – unlike the considerations in the following sections – it has
little to do with this particular process and can also be formulated for general
Itô processes satisfying some regularity conditions.

Remark 2.3 Formula (2.5) is obtained by applying Itô’s formula to (2.4), pre-
tending that the process (mt)t≥0 were constant. The idea behind this approach
is that on the complement of the “singular” set {St = mt} ∪ {St = Mt} ⊆
Ω × R+ the process (mt)t≥0 indeed “does not move” (the statement making
sense, at least, on an intuitive level). On the set {St = mt} ∪ {St = Mt},
where the process (mt)t≥0 “does move”, the smooth pasting conditions (2.2)
and (2.3) will make sure that the SDE (2.5) is not violated either, i.e., the
process S̃ “does not move” on this singular set. This intuitive reasoning will
be made precise in the subsequent proof of Proposition 2.1.

Proof (of Proposition 2.1) We first show that the process S̃ defined in (2.4)
satisfies the SDE (2.5) on the stochastic interval J0, σ1 ∧ T K, where T > 0 is
arbitrary.

Fix 0 < ε < ε0, where ε0 = s̄−1, and define inductively the stopping times
(τk)∞k=0 and (ηk)∞k=1 by letting τ0 = 0 and, for k ≥ 1,

ηk = inf{t : τk−1 < t ≤ σ1,
St
mt
≥ 1 + ε} ∧ T,

τk = inf{t : ηk < t ≤ σ1,
St
mt
≤ 1 + ε

2} ∧ T.

Clearly, the sequences (τk)∞k=0 and (ηk)∞k=1 increase a.s. to σ1 ∧ T .
We partition the stochastic interval K0, σ1 ∧ T K into Lε ∪ Rε (the letters

reminding of “local time” and “regular set”), where

Lε =
∞⋃
k=1

Kτk−1, ηkK, Rε =
∞⋃
k=1

Kηk, τkK.

AsRε is a predictable set we may form the stochastic integral
∫ ·

0
1Rε(u)dmu.

Arguing on each of the intervals Kηk, τkK, we obtain∫ t

0

1Rε(u)dmu =
∞∑
k=1

∫ t

0

1Kηk,τkK(u) dmu = 0, for 0 ≤ t ≤ σ1 ∧ T. (2.6)

This is a mathematically precise formula corresponding to the intuition
that m “does not move” on Rε. Arguing once more on the intervals Kηk, τkK,
Itô’s formula and (2.6) imply that∫ t

0

1Rε(u)dS̃u =
∫ t

0

1Rε(u)
[
g′
(
Su
mu

)
dSu + 1

2mu
g′′
(
Su
mu

)
d〈S, S〉u

]
. (2.7)

In other words, the SDE (2.5) holds true, when localized to the set Rε.
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We now show that the process
∫ ·

0
1Lε(u)dS̃u tends to zero, as ε→ 0. More

precisely, we shall show that

lim
ε→0

sup
0≤t≤σ1

∣∣∣∣∫ t

0

1Lε(u)(dS̃u − dSu)
∣∣∣∣ = 0, (2.8)

where the limit is taken with respect to convergence in probability. This will
finish the proof of (2.5) on J0, σ1∧T K, as (2.8) implies that, for 0 ≤ t ≤ σ1∧T ,

S̃t = 1 + lim
ε→0

∫ t

0

1Rε(u)dS̃u

= 1 + lim
ε→0

∫ t

0

1Rε(u)
[
g′
(
Su
mu

)
dSu + 1

2mu
g′′
(
Su
mu

)
d〈S, S〉u

]
= 1 +

∫ t

0

[
g′
(
Su
mu

)
dSu + 1

2mu
g′′
(
Su
mu

)
d〈S, S〉u

]
.

Here the first equality follows from (2.8) and the fact that limε→0 Leb ⊗
P(Lε) = 0, with Leb denoting Lebesgue measure on [0, T ], which gives

lim
ε→0

sup
0≤t≤σ1∧T

∣∣∣∣∫ t

0

1Lε(u)dSu

∣∣∣∣ = lim
ε→0

sup
0≤t≤σ1∧T

∣∣∣∣∫ t

0

1Lε(u)dS̃u

∣∣∣∣ = 0

in probability. The second equality is just (2.7), and the third one again fol-
lows from limε→0 Leb ⊗ P(Lε) = 0 and the fact that the drift and diffusion
coefficients appearing in the above integral are locally bounded.

To show (2.8), fix ω ∈ Ω and k ≥ 1 such that ηk+1(ω) < σ1(ω)∧T. By the
definition of S̃ and τk as well as a second order Taylor expansion of g around 1
utilizing g(1) = g′(1) = 1, we obtain

|Sτk(ω)− S̃τk(ω)| =
∣∣∣Sτk(ω)−mτk(ω)g

(
Sτk (ω)

mτk (ω)

)∣∣∣
=
∣∣∣∣Sτk(ω)

(
1− 1

1+
ε
2
g(1 + ε

2 )
)∣∣∣∣

≤ C(ω)ε2,

where C(ω) := max0≤t≤T St(ω)×max1≤s≤s̄ |g′′(s)| does not depend on ε and k.
Likewise, |Sηk(ω)− S̃ηk(ω)| ≤ C(ω)ε2, and, in fact

|St(ω)− S̃t(ω)| ≤ C(ω)ε2, for τk(ω) ≤ t ≤ ηk(ω),

for fixed k. Denote by Nε the random variable

Nε = sup{k ∈ N : τk < σ1 ∧ T}.

Then

sup
0≤t≤σ1

∣∣∣∣∫ t

0

1Lε(u)(dS̃u − dSu)
∣∣∣∣ ≤ (Nε + 1)Cε2. (2.9)
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By Itô’s formula, we have

d

(
St
mt

)
= µ

St
mt

dt+
St
mt

d log(mt) + σ
St
mt

dWt.

Since |S/m| is bounded by s̄, the third term on the right-hand side is a square-
integrable martingale, and the first one is of integrable variation. Moreover,
the variation of the second term is bounded by 2s̄ times the variation of
sup0≤t≤T log(ST ), which is integrable as well. As Sτk/mτk −Sηk/mηk = − ε2 , if
ηk < σ1∧T, one can therefore apply a version of Doob’s upcrossing inequality
for semimartingales (cf. [2]) to conclude that limε→0 ε

3/2Nε = 0 in L1 and
hence in probability. Thus (2.9) implies (2.8) which in turn shows (2.5), for
0 ≤ t ≤ σ1 ∧ T .

Repeating the above argument by considering the function g in an ε-
neighborhood of s̄ rather than 1 and using that g(s̄) = (1 − λ)s̄ and g′(s̄) =
1− λ, we obtain

lim
ε→0

sup
σ1∧T≤t≤%1∧T

∣∣∣∣∫ t

0

1Lε(u)(dS̃u − dSu)
∣∣∣∣ = 0,

which implies the validity of (2.5) for σ1 ∧ T ≤ t ≤ %1 ∧ T.
Continuing in an obvious way we obtain (2.5) on

⋃∞
k=1(K%k−1, σkK∪Kσk, %kK)∩

[0, T ] = [0, T ]. Since T was arbitrary, this completes the proof. ut

Remark 2.4 We have made the assumption s̄ > 1 in (2.1) above. There also
is a symmetric version of the above proposition, where 0 < s̄ < 1 and the
function

g : [s̄, 1]→ [(1− λ)s̄, 1]

satisfies
g(1) = g′(1) = 1 and g(s̄)/s̄ = g′(s̄) = 1− λ.

See Figure 2.2 for an illustration.
Define now

mt = sup
0≤u≤t

Su, 0 ≤ t ≤ σ1,

as the running maximum process of S, where

σ1 = inf{t ≥ %0 = 0 : St
mt
≤ s̄}.

Likewise, define
Mt = inf

σ1≤u≤t
Su, σ1 ≤ t ≤ %1,

as the running minimum process of S, where

%1 = inf{t ≥ σ1 : St
Mt
≥ 1

s̄}
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1s�

1

Fig. 2.2 Smooth pasting conditions for the function g, for θ > 1.

etc. Continuing in an obvious way, we can again extend m continuously to R+

by setting

mt = Mt/s̄, for t ∈
∞⋃
n=0

Jσn, %nK.

For
S̃t = mtg

(
St
mt

)
, 0 ≤ t ≤ T,

we then again obtain the conclusion of the above proposition, i.e.,

dS̃t = g′
(
St
mt

)
dSt + 1

2mt
g′′
(
St
mt

)
d〈S, S〉t.

3 Heuristic derivation of the function g

We now explain on an intuitive level how to come up with a candidate func-
tion g that satisfies the smooth pasting conditions from Section 2 and leads to
a process S̃t = mtg(St/mt), whose log-optimal portfolio keeps the positions
in stock and bond constant as long as St/mt lies in the interior of [1, s̄] (resp.
[s̄, 1] in the setting of Remark 2.4).

To this end, suppose we start at St0 = 1 = mt0 with a portfolio (ϕ0
t0 , ϕt0)

such that the proportion π of total wealth invested into stocks in terms of the
ask price S

πt0 =
ϕt0St0

ϕ0
t0 + ϕt0St0

=
1

1 + ϕ0
t0/ϕt0

(3.1)

lies on the buying side of the no-trade region.
First suppose that the Merton proportion θ = µ/σ2 lies in the interval

(0, 1). This implies that, in the model without transaction costs, the optimal
holdings ϕ0 in bonds and ϕ in stocks are always strictly positive. We suppose
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(and shall later prove) that the same holds true under transaction costs. Then
if S starts a positive excursion from level St0 at time t0, the processes (mt)t≥t0 ,
(ϕ0
t )t≥t0 and (ϕt)t≥t0 remain constant. The fraction of stocks π starts this

positive excursion from πt0 , too, until S reaches some level s̄ > 1, where π is
positioned at the selling boundary of the no-trade region. At this time t1, the
fraction of wealth held in stocks has evolved to

ϕt0 s̄

ϕ0
t0 + ϕt0 s̄

=
1

1 + ϕ0
t0/(ϕt0 s̄)

. (3.2)

Now suppose that, during this time interval [t0, t1], the process S̃ is given by

S̃t = g(St),

for some C2-function g that we now want to determine. Itô’s formula and (1.2)
yield

dg(St)
g(St)

=
(µg′(St)St + σ2

2 g
′′(St)S2

t

g(St)

)
dt+

(σg′(St)St
g(St)

)
dWt =: µ̃tdt+ σ̃tdWt.

The mean-variance ratio of the process S̃ = g(St) is therefore given by

µ̃t
σ̃2
t

=
g(St)[µg′(St)St + σ2

2 g
′′(St)S2

t ]
σ2g′(St)2S2

t

. (3.3)

Let us now consider the fraction π̃ of wealth invested in the stock divided by
the total wealth at time t, if we evaluate the stock at price S̃. We obtain

π̃t =
ϕtS̃t

ϕ0
t + ϕtS̃t

=
g(St)

c+ g(St)
, (3.4)

where c is defined by

c := ϕ0
t/ϕt = ϕ0

t0/ϕt0 , for t ∈ [t0, t1].

Note that c remains constant as long as S̃t lies in the interior of the bid-ask
spread [(1− λ)St, St], i.e., for t ∈ [t0, t1]. Indeed, the idea is to construct S̃ in
such a way that the frictionless optimizer (ϕ0, ϕ) associated to S̃ only moves
on the set {S̃t = (1− λ)St} ∪ {S̃t = St}.

Here comes the decisive argument. Merton’s rule (1.5) tells us that the
log-optimal portfolio for the (frictionless) process S̃ must have the following
property: The ratio (3.4) of wealth invested in the stock ϕtS̃t divided by the
total wealth ϕ0

t +ϕtS̃t must be equal to the mean-variance ratio (3.3). A short
calculation shows that this equality is tantamount to the following ODE for g:

g′′(s) =
2g′(s)2

c+ g(s)
− 2µg′(s)

σ2s
, 1 ≤ s ≤ s̄. (3.5)

We still need the corresponding boundary conditions. Since the proportion of
wealth held in stocks started at the buying boundary at time t0, the shadow
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price must equal the higher ask price there, i.e. 1 = St0 = S̃t0 = g(St0) = g(1).
Likewise, since the proportion of wealth held in stocks has moved to the selling
boundary when the ask price St reaches level s̄, we must have g(s̄) = (1− λ)s̄
such that S̃t coincides with the lower ask price (1−λ)St. Since the boundary s̄
is not known a priori, we need some additional boundary conditions, which
we can heuristically derive as follows. Since we want S̃t to remain in the bid-
ask spread [(1 − λ)St, St], the ratio S̃t/St = g(St)/St must remain within
[1− λ, 1] as St moves through [1, s̄]. Therefore, its diffusion coefficient should
tend to zero as St approaches either 1 or s̄. Itô’s formula yields that the
diffusion coefficient of g(St)/St is given by S−2

t (g′(St)St − g(St)). Together
with g(1) = 1 and g(s̄) = (1− λ)s̄, this implies that we should have g′(1) = 1
and g′(s̄) = (1 − λ). These are precisely the smooth pasting conditions from
Section 2.

Imposing the two boundary conditions g(1) = g′(1) = 1, the general closed-
form solution of the ODE (3.5) is given by

g(s) =
−cs+ (2θ − 1 + 2cθ)s2θ

s− (2− 2θ + c(2θ − 1))s2θ
, (3.6)

unless θ = 1
2 , which is a special case that can be treated analogously (cf.

Lemma 4.3 below). For given λ > 0, it remains to determine s̄ and c such
that g(s̄) = (1 − λ)s̄ and g′(s̄) = (1 − λ). This is equivalent to requiring
g(s̄) = (1 − λ)s̄ and g(s̄) = s̄g′(s̄). Plugging (3.6) into the latter condition
yields

s̄ = s̄(c) =
(

c

(2θ − 1 + 2cθ)(2− 2θ − c(2θ − 1))

)1/(2θ−1)

. (3.7)

To determine c from the Merton proportion θ = µ/σ2 and the transaction
costs λ, insert (3.6) and (3.7) into the remaining condition g(s̄) = (1 − λ)s̄.
We find that c must solve(

c

(2θ − 1 + 2cθ)(2− 2θ − c(2θ − 1)

) 1−θ
θ−1/2

− 1
1− λ

(2θ − 1 + 2cθ)2 = 0. (3.8)

Once we have determined c, this yields s̄ and, via (3.1) and (3.2), the lower
resp. upper limits 1/(1 + c) and 1/(1 + c/s̄) for the fraction π of total wealth
held in stocks in terms of the ask price S. It does not seem to be possible to
determine c in closed form from (3.8) as a function of λ. However, the above
representation easily leads to fractional Taylor expansions in terms of λ > 0
for c, s̄ and the lower resp. upper limits 1/(1 + c) and 1/(1 + c/s̄) for πt.
This completes the heuristics for the case θ ∈ (0, 1)\{ 1

2}. As mentioned above,
the case θ = 1

2 can be dealt with in an analogous way except for a different
solution of the ODE for g (see Lemma 4.3 below).

Now consider a Merton proportion θ = µ/σ2 ∈ (1,∞). In this case, the
log-investor in the price process S without transaction costs goes short in the
bond, i.e., chooses ϕ0 < 0 and ϕ > 0. We again suppose (and subsequently
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verify in Section 5) that this remains true in the presence of transaction costs.
Then if S starts a negative excursion from level St0 at time t0, the processes
(mt)t≥t0 , (ϕ0

t )t≥t0 and (ϕt)t≥t0 remain constant. The fraction π of stocks in
turn starts a positive excursion from πt0 , until S reaches some level s̄ < 1,
where π is positioned at the higher selling boundary of the no-trade region
(see Figure 2.2). The remaining arguments from above can now be carried
through accordingly, by replacing [1, s̄] with [s̄, 1]. Consequently, one ends up
precisely in the setup of Remark 2.4.

Finally, consider the degenerate case θ = µ/σ2 = 1. Then the ODE (3.5)
for g complemented with the boundary conditions g(1) = g′(1) = 1 already
implies g(s) = s and c = 0. Since the other boundary condition g(s̄) = (1−λ)s̄
and g′(s̄) = 1−λ cannot hold in this case (except for λ = 0), we formally have
s̄ = ∞. This means that the shadow price S̃ coincides with the ask price S
and the corresponding optimal fraction of wealth held in stock evaluated at
price S̃ = S is constantly equal to one, since the lower and upper boundaries
1/(1 + c) and 1/(1 + c/s̄) both become 1 for c = 0 and s̄ = ∞. This is also
evident from an economic point of view, since Merton’s rule (1.5) implies that
the optimal strategy for S̃ = S without transaction costs consists of refraining
from any trading after converting the entire initial endowment into stocks at
time zero.

4 Existence of the candidates

To show that the heuristics from the previous section indeed lead to well-
defined objects, we begin with the following elementary observations. Their
straightforward but tedious proofs are deferred to Appendix A.

Lemma 4.1 Fix 0 < θ 6= 1, and let

f(c) =
(

c
(2θ−1+2cθ)(2−2θ−c(2θ−1)

) 1−θ
θ−1/2 − 1

1−λ (2θ − 1 + 2cθ)2, if θ ∈ (0,∞)\{ 1
2 , 1},

exp
(
c2−1
c

)
− 1

1−λc
2, if θ = 1

2 .

Then there exists a unique solution to f(c) = 0 on ( 1−θ
θ ,∞) if θ ∈ (0, 1

2 ], on
( 1−θ
θ , 1−θ

θ−1/2 ) if θ ∈ ( 1
2 , 1), resp. on ( 1−θ

θ , 0) if θ > 1.

For fixed 0 < θ 6= 1 and c as in Lemma 4.1, we can now define the real
number s̄ as motivated in the heuristics for θ 6= 1

2 .

Lemma 4.2 Fix 0 < θ 6= 1. Then for c as in Lemma 4.1,

s̄ =


(

c

(2θ − 1 + 2cθ)(2− 2θ − c(2θ − 1)

)1/(2θ−1)

if θ ∈ (0,∞)\{ 1
2 , 1},

exp
(
c2 − 1
c

)
, if θ = 1

2

(4.1)
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is well-defined and lies in (1,∞) if θ ∈ (0, 1), resp. in (0, 1) if θ ∈ (1,∞).
Moreover, we have c/s̄ ∈ (0,∞) if θ ∈ (0, 1) resp. c/s̄ ∈ (−1, 0) if θ > 1.

Now we can verify by insertion that the candidate function g has the prop-
erties derived in the heuristics above.

Lemma 4.3 For 0 < θ 6= 1 as well as c and s̄ as in Lemmas 4.1 resp. 4.2,
define

g(s) :=


−cs+ (2θ − 1 + 2cθ)s2θ

s− (2− 2θ − c(2θ − 1))s2θ
if θ ∈ (0,∞)\{ 1

2 , 1},

(c+ 1) + c log(s)
c+ 1− log(s)

if θ = 1
2 ,

(4.2)

on [1, s̄] if θ ∈ (0, 1), resp. on [s̄, 1] if θ ∈ (1,∞). Then g′ > 0. Moreover, g
takes values in [1, (1− λ)s̄] (for θ ∈ (0, 1)) resp. [(1− λ)s̄, 1] (for θ ∈ (1,∞)),
solves the ODE

g′′(s) =
2g′(s)2

c+ g(s)
− 2θg′(s)

s
, (4.3)

and satisfies the boundary conditions

g(1) = g′(1) = 1, g(s̄) = (1− λ)s̄, g′(s̄) = 1− λ.

5 The shadow price process and its log-optimal portfolio

With Proposition 2.1 and the function g from Lemma 4.3 at hand, we can now
construct a shadow price S̃ and determine its log-optimal portfolio. To this
end, let g be the function from Lemma 4.3. Then, for the process m as defined
in Section 2, Proposition 2.1 yields that

S̃t := mtg
(
St
mt

)
is an Itô process satisfying the stochastic differential equation

dS̃t/S̃t = µ̃
(
St
mt

)
dt+ σ̃

(
St
mt

)
dWt, S̃0 = 1, (5.1)

with drift and diffusion coefficients

µ̃(s) =
σ2g′(s)2s2

g(s)(c+ g(s))
, σ̃(s) =

σg′(s)s
g(s)

.

Note that we have replaced g′′ in Proposition 2.1 with the expression provided
by the ODE (4.3) from Lemma 4.3. Also notice that µ̃ and σ̃ are continuous
and hence bounded on [1, s̄], and σ̃ is also bounded away from zero.

For Itô processes with bounded drift and diffusion coefficients, the solution
to the log-optimal portfolio problem is well-known (cf. e.g. [17, Example 6.4]).
This leads to the following result.
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Theorem 5.1 Fix 0 < θ 6= 1 and let the stopping times (%n)0≤n≤∞, (σn)1≤n≤∞
and the process m be defined as in Section 2. For the function g from Lemma 4.3,
set S̃t = mtg( Stmt ).

Then the log-optimal portfolio (ϕ0, ϕ) in the frictionless market with price
process S̃ exists and is given by (ϕ0

0−, ϕ0−) = (x, 0), (ϕ0
0, ϕ0) = ( c

c+1x,
1
c+1x)

and

ϕ0
t =


ϕ0
%k−1

(
mt

m%k−1

) 1
c+1

on
⋃∞
k=1J%k−1, σkK,

ϕ0
σk

(
mt
mσk

) (1−λ)s̄
c+(1−λ)s̄

on
⋃∞
k=1Jσk, %kK,

as well as

ϕt =


ϕ%k−1

(
mt

m%k−1

)− c
c+1

on
⋃∞
k=1J%k−1, σkK,

ϕσk

(
mt
mσk

)− c
c+(1−λ)s̄

on
⋃∞
k=1Jσk, %kK.

The corresponding optimal fraction of wealth invested into stocks is given by

π̃t =
ϕtS̃t

ϕ0
t + ϕtS̃t

=
1

1 + c/g( Stmt )
. (5.2)

Proof By (5.1), S̃ is an Itô process with bounded coefficients. Since, moreover,
µ̃/σ̃2 is also bounded, Merton’s rule as in [17, Example 6.4] implies that the
optimal proportion of wealth invested into stocks is given by

µ̃( Stmt )

σ̃2( Stmt )
=

1
1 + c/g( Stmt )

.

On the other hand, the adapted process (ϕ0
t , ϕt)t≥0 is continuous and hence

predictable. By definition,

ϕ0
t = cmtϕt, t ≥ 0. (5.3)

For any k ∈ N, Itô’s formula and (5.3) now yield

dϕ0
t + S̃tdϕt =

[(
mt

m%k−1

)−c/(c+1) 1
c+ 1

(
ϕ0
%k−1

m%k−1

− cϕ%k−1

)]
dmt = 0,

on Jρk−1, σkK and likewise on Jσk, ρkK. Therefore (ϕ0, ϕ) is self-financing. Again
by (5.3), the fraction

ϕtS̃t

ϕ0
t + ϕtS̃t

=
1

1 + c/g( Stmt )

of wealth invested into stocks when following (ϕ0, ϕ) coincides with the Merton
proportion computed above. Hence (ϕ0, ϕ) is log-optimal and we are done. ut
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In view of (5.2) and Lemma 4.3, it is optimal in the frictionless market
with price process S̃ to keep the fraction π̃ of wealth in terms of S̃ invested
into stocks in the interval [(1 + c)−1, (1 + c/((1− λ)s̄))−1]. By definition of ϕ0

and ϕ, no transactions take place while π̃ moves in the interior of this no-trade
region in terms of S̃.

As was kindly pointed out to us by Paolo Guasoni, the no-trade region
in terms of S̃ is symmetric relative to the Merton proportion θ. Indeed, after
inserting (1− λ)s̄ = g(s̄), (4.2), and (4.1), rearranging yields that (1 + c)−1 +
(1 + c/((1− λ)s̄))−1 = 2θ. Hence

θ − 1
1 + c

=
1

1 + c/((1− λ)s̄)
− θ. (5.4)

From Theorem 5.1 we can now obtain that S̃ is a shadow price.

Corollary 5.2 For 0 < θ 6= 1, the process S̃ from Theorem 5.1 is a shadow
price in the sense of Definition 1.6 for the bid-ask process ((1 − λ)S, S). For
θ = 1, the same holds true by simply setting S̃ = S.

Proof First consider the case 0 < θ 6= 1. In view of Proposition 2.1, S̃ =
mg(S/m) takes values in the bid-ask spread [(1 − λ)S, S]. By Theorem 5.1,
the log-optimal portfolio (ϕ0, ϕ) for S̃ exists. Moreover, since m only increases
(resp. decreases) on {St = s̄mt} (resp. {St = mt}), the number of stocks
ϕ only increases (resp. decreases) on {St = mt} = {S̃t = St} (resp. {St =
s̄mt} = {S̃t = (1 − λ)St}) by definition of ϕ. This shows that S̃ is a shadow
price.

For θ = 1, it follows from [17, Example 6.4] that the optimal strategy for
the frictionless market S̃ = S transfers all wealth into stocks at time t = 0
and never trades afterwards, i.e. ϕ0

t = 0 and ϕt = x for all t ≥ 0. Hence it is
of finite variation, the number of stocks never decreases and only increases at
time t = 0 where S̃0 = S0. This completes the proof. ut

If θ ∈ (0, 1), Corollary 1.9 combined with Corollary 5.2 shows that (ϕ0, ϕ)
is also growth-optimal for the bid-ask process ((1−λ)S, S). The corresponding
fraction of wealth invested into stocks in terms of the ask price S is given by

π =
ϕS

ϕ0 + ϕS
=

1
1 + ϕ0/(ϕS)

=
1

1 + m
S c
,

where we have used ϕ0 = cmϕ for the last equality. Hence, the fraction π is
always kept in the no-trade-region [(1 + c)−1, (1 + c/s̄)−1] in term of S. Note
that this interval always lies in (0, 1), since c > 0 and s̄ > 1 by Lemmas 4.1
and 4.2.

For θ = 1, the investor always keeps his entire wealth invested into stocks.
If θ ∈ (1,∞), one cannot apply Corollary 1.9 directly. However, in the

present setting a corresponding statement still holds, provided that the trans-
action costs λ are sufficiently small.
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Lemma 5.3 Fix θ ∈ (1,∞) and let (ϕ0, ϕ) be the log-optimal portfolio for the
frictionless market with price process S̃ from Theorem 5.1. Then there exists
λ0 > 0 such that, for all 0 < λ < λ0, the portfolio (ϕ0, ϕ) is also growth-
optimal for the bid-ask process ((1− λ)S, S).

Proof First note that c ∈ (−1, 0) by Lemma 4.2. Moreover, the function g is
increasing and maps [s̄, 1] to [(1−λ)s̄, 1] by Lemma 4.3. By (5.2), the fraction
π̃ of wealth in terms of S̃ invested into stocks therefore takes values in the
interval [(1 + c)−1, (1 + c/((1− λ)s̄))−1]. Together with ϕ ≥ 0, this yields the
estimate

VT (ϕ0, ϕ) ≥ ṼT (ϕ0, ϕ)− λπ̃T ṼT (ϕ0, ϕ)

≥
(

1− λ

1 + c/((1− λ)s̄)

)
ṼT (ϕ0, ϕ).

(5.5)

By Proposition 6.1 below, there exists λ0 > 0 such that(
1− λ

1 + c/((1− λ)s̄)

)
> 0 for all 0 < λ < λ0.

Since Ṽ (ϕ0, ϕ) is nonnegative, this shows that (ϕ0, ϕ) is admissible for the bid-
ask process ((1 − λ)S, S), if 0 < λ < λ0. The remainder of the assertion now
follows as in the proof of Corollary 1.9 by combining the above estimate (5.5)
with the obvious upper bound VT (ϕ0, ϕ) ≤ ṼT (ϕ0, ϕ). ut

If Lemma 5.3 is in force, the growth-optimal portfolio under transaction
costs for θ > 1 also keeps the fraction π of stocks in terms of the ask price S in
the interval [1/(1 + c), 1/(1 + c/s̄)]. In particular, since c ∈ (−1, 0) and c/s̄ ∈
(−1, 0), this now entails always going short in the bond, i.e. both boundaries
of the no-trade region lie in the interval (1,∞).

5.1 The optimal growth rate

We now want to compute the optimal growth rate

δ = lim sup
T→∞

1
T

E
[
log(ṼT (ϕ0, ϕ))

]
= lim sup

T→∞

1
T

E

[∫ T

0

µ̃2( Stmt )

2σ̃2( Stmt )
dt

]
, (5.6)

where (ϕ0, ϕ) denotes the log-optimal portfolio for the shadow price S̃ from
Theorem 5.1 and the second equality follows from [17, Example 6.4]. In view
of Corollary 1.9 resp. Lemma 5.3, the above constant δ coincides with the
optimal growth rate for the bid-ask process ((1− λ)S, S).

It follows from the construction in Section 2 above that the process S/m is
a doubly reflected geometric Brownian motion with drift on the interval [1, s̄]
(resp. on [s̄, 1] for the case θ > 1). Therefore, an ergodic theorem for positively
recurrent one-dimensional diffusions (cf., e.g., [3, Sections II.36 and II.37]) and
elementary integration yield the following result.
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Proposition 5.4 Suppose the conditions of Theorem 5.1 hold. Then the pro-
cess S/m has stationary distribution

ν(ds) =



2θ − 1
s̄2θ−1 − 1

s2θ−2
1[1,s̄](s)ds, for θ ∈ (0, 1)\{ 1

2},

1
log(s̄)

s−1
1[1,s̄](s)ds, for θ = 1

2 ,

2θ − 1
1− s̄2θ−1

s2θ−2
1[s̄,1](s)ds, for θ ∈ (1,∞).

Moreover, the optimal growth rate for the frictionless market with price process
S̃ and for the market with bid-ask process ((1− λ)S, S) is given by

δ =
∫ s̄

1

µ̃2(s)
2σ̃2(s)

ν(ds)

=


(2θ − 1)σ2s̄

2(1 + c)(s̄+ (−2− c+ 2θ(1 + c))s̄2θ)
for θ ∈ (0,∞)\{ 1

2 , 1},

σ2

2(1 + c)(1 + c− log s̄)
for θ = 1

2 ,

(5.7)

where c and s̄ denote the constants from Lemmas 4.1 resp. 4.2.

Remark 5.5 In the degenerate case θ = 1, the optimal portfolio (ϕ0, ϕ) = (0, x)
leads to Ṽ (ϕ0, ϕ) = xS. Hence E[log(ṼT (ϕ0, ϕ))] = log(x) + σ2

2 T and the
optimal growth rate is given by δ = σ2/2 as in the frictionless case.

6 Asymptotic expansions

Similarly to Janeček and Shreve [14] for the infinite-horizon optimal consump-
tion problem, we now determine asymptotic expansions of the boundaries of
the no-trade region and the long-run optimal growth rate.

6.1 The no-trade region

We begin with the following preparatory result.

Proposition 6.1 For fixed 0 < θ 6= 1 and sufficiently small λ > 0, the func-
tions c(λ) and s̄(λ) have fractional Taylor expansions of the form

s̄ = 1 +
∞∑
k=1

pk(θ)
(

6
θ(1− θ)

)k/3
λk/3, (6.1)

c = c̄+
∞∑
k=1

qk(θ)
(

6
θ(1− θ)

)k/3
λk/3, (6.2)
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where c̄ = 1−θ
θ , and pk and qk are rational functions that can be algorithmically

computed. (For θ > 1, the quantity 1/(1− θ)k/3 has to be read as (−1)k/(θ −
1)k/3.) The first terms of these expansions are

s̄ = 1 +
(

6
θ(1− θ)

)1/3

λ1/3 +
1
2

(
6

θ(1− θ)

)2/3

λ2/3 (6.3)

+
1
60

(4− θ)(θ + 3)
6

θ(1− θ)
λ+O(λ4/3),

c = c̄+
1− θ

2θ

(
6

θ(1− θ)

)1/3

λ1/3 +
(1− θ)2

4θ

(
6

θ(1− θ)

)2/3

λ2/3 (6.4)

− 1
40θ

(θ − 2)(θ − 1)(3θ − 2)
6

θ(1− θ)
λ+O(λ4/3).

Proof By (4.1), the quantity s̄ = s̄(λ) can be written as F (c(λ)), where F (z)
is analytic at z = c̄. (We will again suppress the dependence of s̄ and c on λ in
the notation.) We focus on θ 6= 1

2 , since the case θ = 1
2 is an easy modification.

Expanding the rational function c/(. . . ) in (4.1) around c = c̄, and ap-
pealing to the binomial theorem (for real exponent), we find that the Taylor
coefficients of

s̄ =
(

1 +
2θ(2θ − 1)
θ − 1

(c− c̄) + . . .

)1/(2θ−1)

= 1 +
2θ

1− θ
(c− c̄) + . . . (6.5)

are rational functions of θ. An efficient algorithm for the latter step, i.e., for
calculating the coefficients of a power series raised to some power, can be found
in Gould [11]. Now we insert the series (6.5) into the equation g(s̄) = (1−λ)s̄,
i.e., into

λs̄ = s̄− g(s̄). (6.6)

Performing the calculations (binomial series again), we find that the expansion
of the right-hand side of (6.6) around c̄ starts with the third power of c− c̄:

s̄− g(s̄) = 4θ4

3(1−θ)2 (c− c̄)3(1 +O(c− c̄)).

Dividing (6.6) by the series 4θ4

3(1−θ)2 (1 +O(c− c̄)) (whose coefficients are again
computable) therefore yields an equation of the form

λ(a0 + a1(c− c̄) + . . . ) = (c− c̄)3. (6.7)

The series on the left-hand side is an analytic function a0 +a1z+ . . . evaluated
at z = c − c̄, with real Taylor coefficients a0, a1, . . . Its coefficients ak are
computable rational functions of θ. Moreover, the first coefficient a0 = 3

4 (1−
θ)2/θ4 is non-zero. Hence we can raise (6.7) to the power 1

3 to obtain

λ1/3a
1/3
0 (1 + a1

3a0
(c− c̄) + . . . ) = c− c̄,
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where the power series represents again an analytic function. By the Lagrange
inversion theorem (see [8] or [18, § 4.7]), c is an analytic function of λ1/3:

c− c̄ = a
1/3
0 λ1/3 + 1

3a
−1/3
0 a1λ

2/3 + . . . (6.8)

This is the expansion (6.2). To see that the coefficients are of the announced
form, note that Lagrange’s inversion formula implies that the coefficients
in (6.8) are given by

[λk/3](c− c̄) = 1
k [zk−1]ak/30 (1 + a1

3a0
z + . . . )k, k ≥ 1,

where the operator [zk] extracts the k-th coefficient of a power series. Since
the ak are rational functions of θ, and

a
k/3
0 = (1−θ)k

8k/3θk

(
6

θ(1−θ)

)k/3
,

the expansion of c is indeed of the form stated in the proposition.
As for s̄, inserting (6.8) into (6.5) yields (6.1):

s̄ = 1 + 2θ
1−θ

(
3
4

(1−θ)2

θ4

)1/3

λ1/3 + . . .

See Knuth [18, § 4.7] for an efficient algorithm to perform this composition of
power series. ut

Once the existence of expansions of s̄ and c in powers of λ1/3 is established,
one can also compute the coefficients by inserting an ansatz

s̄ = 1 +
∞∑
k=1

Akλ
k/3, c = c̄+

∞∑
k=1

Bkλ
k/3 (6.9)

into the equations

g(s̄) = (1− λ)s̄, (6.10)
g′(s̄) = 1− λ, (6.11)

and then comparing coefficients (preferably with a computer algebra system).
Implementing this seems somewhat easier (but less efficient) than implement-
ing the preceding proof. To give some details, let us look at the expression in
the first line of (4.2). Note that, by the binomial theorem (for real exponent),
the coefficients Ãk of

s̄2θ =

(
1 +

∞∑
k=1

Akλ
k/3

)2θ

= 1 +
∞∑
k=1

Ãkλ
k/3

can be expressed explicitly in terms of the unknown coefficients Ak. Performing
the convolution with the ansatz for c, and continuing in a straightforward way
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(multiplying by constant factors, and appealing once more to the binomial
series, this time with exponent −1), we find that

g(s̄) = 1 +A1λ
1/3 +A2λ

2/3 + ( 1
3θA

3
1 +A3 − 1

3θ
2A2

1(A1 + 3B1))λ+ . . . (6.12)

Now insert the ansatz (6.9) into the right-hand side (1− λ)s̄ of the first equa-
tion (6.10):

(1− λ)s̄ = 1 +A1λ
1/3 +A2λ

2/3 + (A3 − 1)λ+ . . . (6.13)

Comparing coefficients in (6.12) and (6.13) yields an infinite set of polynomial
equations for the Ak and Bk. Proceeding analogously for the equation (6.11)
yields a second set of equations. It turns out that the whole collection can
be solved recursively for the coefficients Ak and Bk. Along these lines the
coefficients in (6.3) and (6.4) were calculated.

With the expansions of s̄ and c at hand, we can now determine the asymp-
totic size of the no-trade region.

Corollary 6.2 For fixed 0 < θ 6= 1, the lower and upper boundaries of the
no-trade region in terms of the ask price S have the expansions

1
1 + c

= θ −
(

3
4
θ2(1− θ)2

)1/3

λ1/3 +
3
20

(2θ2 − 2θ + 1)λ+O(λ4/3)

and

1
1 + c/s̄

= θ +
(

3
4
θ2(1− θ)2

)1/3

λ1/3 − 1
20

(26θ2 − 26θ + 3)λ+O(λ4/3),

respectively. The size of the no-trade region in terms of S satisfies

1
1 + c/s̄

− 1
1 + c

= (6θ2(1− θ)2)1/3λ1/3 − 1
10

(4θ − 3)(4θ − 1)λ+O(λ4/3).

Note that there is no λ2/3-term in these expansions. We also stress again
that more terms can be obtained, if desired, by using the machinery of symbolic
computation.

Proof Insert the expansions of s̄ and c found in Proposition (6.1) into 1/(1+c)
and 1/(1 + c/s̄). A straightforward calculation, using the binomial series and
amenable to computer algebra, then yields the desired expansions. ut

6.2 The optimal growth rate

Proposition 6.3 Suppose that 0 < θ 6= 1. As λ→ 0, the optimal growth rate
has the asymptotics

δ =
µ2

2σ2
−
(

3σ3

√
128

θ2(1− θ)2

)2/3

λ2/3 +O(λ4/3). (6.14)
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Note that the λ1/3- as well as the λ-term vanish in the above expansion.
Moreover, the preceding result can again be extended to a full expansion of δ
in powers of λ1/3.

Proof This easily follows from the explicit formula (5.7), by proceeding as in
the proof of Corollary 6.2. ut

6.3 Comparison to Janeček and Shreve (2004)

In order to compare our expansions to the asymptotic results of Janeček and
Shreve [14], we rewrite them in terms of a bid-ask spread ((1− λ̌)Š, (1+ λ̌)Š)).
As explained in the first footnote in the introduction, we set

Š = 2−λ
2 S, λ̌ = λ

2−λ .

Therefore Š also follows a Black-Scholes model with drift rate µ and volatility
σ and the fraction of wealth invested into stocks in terms of Š is given by

π̌ =
ϕŠ

ϕ0 + ϕŠ
=

1
1 + m

S
2c

2−λ̌
,

where we have again used ϕ0 = cmϕ for the last equality. This yields the
expansions

1
1 + 2c/(2− λ̌)

= θ−
(

3
2
θ2(1− θ)2

)1/3

λ̌1/3 +
1
10

(3− 11θ+ 11θ2)λ̌+O(λ̌4/3)

for the lower boundary and

1
1 + 2c/((2− λ̌)s̄)

= θ+
(

3
2
θ2(1− θ)2

)1/3

λ̌1/3− 3
10

(1−7θ+7θ2)λ̌+O(λ̌4/3),

for the upper boundary of the no-trade-region in terms of Š, respectively. The
size of the no-trade region satisfies

1
1 + 2c/((2− λ̌)s̄)

− 1
1 + 2c/(2− λ̌)

= (12θ2(1− θ)2)1/3λ̌1/3 − 1
5 (4θ − 1)(4θ − 3)λ̌+O(λ̌4/3).

Comparing these expansions to the results of [14] for the infinite-horizon con-
sumption problem (specialized to logarithmic utility), we find that the lead-
ing λ̌1/3-terms coincide. Hence, the relative difference between the size of the
no-trade region with and without intermediate consumption goes to zero as
λ̌→ 0.

The higher order terms for the consumption problem are unknown. How-
ever, [14] argue heuristically that – in second order approximation – the selling
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intervention point is closer to the Merton proportion θ than the buying inter-
vention point. They also point out that, on an intuitive level, this is due to the
fact that consumption reduces the position in the bank account. In line with
this, the present setup without consumption leads to symmetric second order
λ̌2/3-terms, which in fact vanish. However, note that the no-trade regions in
terms of the mid-price Š resp. the ask price S are only symmetric up to order
O(λ2/3), unlike the perfectly symmetric no-trade region in terms of the shadow
price S̃ (cf. Equation (5.4) above).

An extension of the present approach to the infinite-horizon consumption
problem as well as to power utility is left to future research.

A Proof of Lemmas 4.1 and 4.2

Proof (of Lemma 4.1) First consider the case θ ∈ ( 1
2
, 1). By insertion, we find f( 1−θ

θ
) =

− λ
1−λ < 0. Moreover, f(c) ↑ ∞ for c ↑ 1−θ

θ−1/2
, such that a solution to f(c) = 0 exists on

( 1−θ
θ
, 1−θ
θ−1/2

) by the intermediate value theorem. We now show that it is unique.

Differentiation yields f ′( 1−θ
θ

) = − 4θλ
1−λ < 0 and f ′′( 1−θ

θ
) = − 8θ2λ

1−λ < 0. On the other

hand, we find f ′′(c) > 0 on ( 1−θ
θ−1/2

− ε, 1−θ
θ−1/2

) for some ε > 0.

Now notice that f ′′(c) is increasing on ( 1−θ
θ
, 1−θ
θ−1/2

). Indeed, we have

f ′′′(c) =
(2− 2θ)s̄(c)2−2θ

c3(2θ − 1 + 2cθ)3(2− 2θ − c(2θ − 1))3
k(c), (A.1)

for s as in Equation (4.1) and

k(c) =16c6θ4 − 48c4θ3(1− 5θ + 4θ2)− 24c3θ(1− 13θ + 52θ2 − 72θ3 + 32θ4)

− 6c2(−2 + 50θ − 296θ2 + 640θ3 − 584θ4 + 192θ5)

− 24c(1− θ)2(−3 + 28θ − 56θ2 + 32θ3) + 16(1− θ)3(6− 17θ + 12θ2).

By tedious calculations or using Cylindrical Algebraic Decomposition [4] (henceforth CAD),

it follows that k(c) > 0 and in turn f ′′′(c) > 0 on ( 1−θ
θ
, 1−θ
θ−1/2

).

Consequently, f ′′(c) ≤ 0 on [ 1−θ
θ
, c0] and f ′′(c) > 0 on (c0,

1−θ
θ−1/2

) for some c0 ∈
( 1−θ
θ
, 1−θ
θ−1/2

). Combining this with f ′( 1−θ
θ

) < 0 and f(c) ↑ ∞ for c ↑ 1−θ
θ−1/2

, we find that

there exists c1 ∈ (c0,
1−θ
θ−1/2

) such that f ′(c) ≤ 0 on [ 1−θ
θ
, c1] and f ′(c) > 0 on (c1,

1−θ
θ−1/2

).

Since f( 1−θ
θ

) < 0, this implies that any solution to f(c) = 0 must lie on (c1,
1−θ
θ−1/2

) and

hence is unique, because f is strictly increasing there.
Now let θ ∈ (0, 1

2
). Then f is continuous on ( 1−θ

θ
,∞) and f( 1−θ

θ
) = − λ

1−λ < 0 as

above. Moreover, the first term of f(c) grows like c(1−θ)/(1/2−θ) for c → ∞, whereas the

second one grows like c2. Since 1−θ
1/2−θ > 2 for θ > 0, this implies that f(c) ↑ ∞ for c ↑ ∞.

Hence a solution c to f(c) = 0 exists on ( 1−θ
θ
,∞) by the intermediate value theorem, and

it remains to show that it is unique.
To see this, first notice that again, either by tedious calculations or using CAD, the

function k(c) from above turns out to be strictly positive, this time on ( 1−θ
θ
,∞). The

remainder of the assertion now follows as above.
Next, let θ = 1

2
. In this case, f(1) = − λ

1−λ < 0 and f(c) ↑ ∞ for c ↑ ∞. Hence a

solution to f(c) = 0 exists on (1,∞) by the intermediate value theorem. We now show its
uniqueness. Indeed,

f ′′′(c) =
1− 6c+ 9c2 − 6c3 + 3c4 + c6

c6
exp

„
c2 − 1

c

«
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is strictly positive on (1,∞). Since f ′′(1) = − 2λ
1−λ < 0 and f ′′(c) → 1 for c → ∞, this

implies that there exists c0 ∈ (1,∞) such that f ′′(c) ≤ 0 on [1, c0] and f ′′(c) > 0 on (c0,∞).
Combined with f ′(1) = − 2λ

1−λ < 0 and f ′(c)→∞ for c→∞, this shows that there exists

c1 ∈ (c0,∞) such that f ′(c) ≤ 0 on [1, c1] and f ′(c) > 0 on (c1,∞). Since f(1) < 0, any
solution to f(c) = 0 must therefore lie in (c1,∞) and is unique, since f is strictly increasing
there.

Finally, consider the case θ > 1. Then the third derivative f ′′′(c) increases on ( 1−θ
θ
, 0).

This time k(c) is negative (by CAD), but so is the fraction in front of it in (A.1). We can
now reason as above, so that the proof is complete.

Proof (of Lemma 4.2) For θ = 1
2

, this follows immediately from Lemma 4.1, which yields
c ≥ 1 and

s̄ = exp

„
c2 − 1

c

«
=

1

1− λ
c2 > 1.

For θ ∈ (0, 1)\{ 1
2
}, one easily shows by CAD that

c

(2θ − 1 + 2cθ)(2− 2θ − c(2θ − 1))
∈
(

(0, 1) if θ ∈ (0, 1
2

) ∪ (1,∞),

(1,∞) if θ ∈ ( 1
2
, 1),

hence s̄ is well-defined. Moreover, c/s̄ is positive for θ ∈ (0, 1), since c > 0 and s̄ > 0.
Finally, let θ > 1. Then clearly c/s̄ < 0, and it remains to show that c/s̄ > −1. For

c ∈ ( 1−θ
θ
, 0), we have

0 < −(2− 2θ − c(2θ − 1)) < 2θ − 1 + 2cθ.

Hence, by (4.1),

c/s̄ = −(−c)1− 1
2θ−1 (−(2θ − 1 + 2cθ)(2− 2θ − c(2θ − 1)))

1
2θ−1

> −(−c)1− 1
2θ−1 (2θ − 1 + 2cθ)

2
2θ−1 =: −h(c).

We have to show that h(c) < 1 for c ∈ ( 1−θ
θ
, 0). By a discussion similar to the proof of

Lemma 4.1, the function h has a unique maximum at

c0 = − (2θ−1)(θ−1)

2θ2
∈ ( 1−θ

θ
, 0),

and the value of h at c0 satisfies

h(c0)θ−1/2 =
“

1− 3
2θ

+ 1
2θ2

”θ−1 `
2− 1

θ

´
= exp((θ − 1) log(1− 3

2θ
+ 1

2θ2
))
`
2− 1

θ

´
< exp((θ − 1)

`
− 3

2θ

´
)
`
2− 1

θ

´
.

The last quantity has a negative derivative w.r.t. θ, and equals 1 for θ = 1. Hence it is
smaller than 1 for θ > 1, so that h(c0) < 1, which completes the proof.

Acknowledgements We sincerely thank Paolo Guasoni, Jan Kallsen, and Miklós Rásonyi
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