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We consider the convergence of the solution of a discrete-time utility max-
imization problem for a sequence of binomial models to the Black-Scholes-
Merton model for general utility functions.

In previous work by D. Kreps and the second named author a counter-
example for positively skewed non-symmetric binomial models has been con-
structed, while the symmetric case was left as an open problem.

In the present article we show that convergence holds for the symmetric
case and for negatively skewed binomial models. The proof depends on some
rather fine estimates of the tail behaviors of Gaussian random variables.

We also review some general results on the convergence of discrete models
to Black-Scholes-Merton as developed in a recent monograph by D. Kreps.

1 Introduction

Mark Davis has dedicated a large portion of his impressive scientific work to Mathe-
matical Finance. He shaped this field by applying masterfully the tools from stochastic
analysis which he dominated so well.

The present authors remember very well several discussions during Mark’s seven
months stay in Vienna in 2000. Mark repeatedly expressed his amazement about the
perfect match of Itô’s stochastic calculus with the line of Mathematical Finance initiated
by Black, Scholes, and Merton [BS73, Mer73]. In particular, Mark was astonished how
well the martingale representation theorem fits to this theory and loved this connection.
He also appreciated the approximation of the Black-Scholes-Merton model by binomial
processes as initiated by Cox, Ross, and Rubinstein [CRR79]. The subtle notions of
Itô integrals and the martingale representation theorem in continuous time boil down in
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the discrete setting to simple linear algebra as we all know from teaching Mathematical
Finance to undergraduates.

Let us have a look back to the early days of Mathematical Finance. After the pi-
oneering papers [BS73, Mer73, CRR79] the next step was taken by Harrison, Kreps,
and Pliska in three articles [HK79, Kre81, HP81], who paved the way from previous ad
hoc arguments to a systematic study of the notions of arbitrage, martingale measures,
martingale representation, complete markets, and the interconnections between these
notions. This opened the arena where Mark made so many important contributions.

In the present note we want to go back to the roots and reconsider the approximation of
the Black-Scholes-Merton model by discrete models such as the binomial model. Already
Bachelier has viewed Brownian motion as an infinitesimal version of a symmetric random
walk. This random walk view opens a very direct path from simple linear algebra to the
martingale representation theorem. The guiding intuition is that a Brownian motion
during each infinitesimal time interval has only two choices, namely going up or going
down by a properly scaled infinitesimal.

But what happens if we take some other approximation of Brownian motion by discrete
processes? The archetypical example is the “trinomial” model. In addition to the up- and
down-tick in the binomial model, there is a third intermediate possibility. In the limit you
find the same (geometric) Brownian motion as for the binomial model. But if you try to
apply the discrete time reasoning from the binomial case as in [CRR79] to the trinomial
model, you immediately run into serious trouble. There is no replication argument
available any more and the financial market becomes highly incomplete. The blunt
reason is that you are looking for the solution of two linear equations with three unknowns
so that there is no hope for a unique solution. As is well known, the unique arbitrage-free
option prices of the binomial models are replaced by an interval of arbitrage-free prices
in the trinomial model, whose lower and upper bounds are given by the sub- and super-
replication prices. Typically these intervals become very wide and are of no practical
relevance.

But is this really the last word? From an economic point of view this sharp distinction
between two similar approximations of the same object seems to be artificial. Can one
find a more satisfactory answer? This question recently triggered the attention of David
Kreps and led him to take up the theme of option pricing again, where he had made
fundamental contributions some 40 years ago. This renewed interest resulted in the
monograph [Kre19] which appeared in 2019. Kreps’ starting point was a simulation of
the results of delta-hedging in the framework of a trinomial model. He applied this
rather naive strategy to a standard European option and plotted the outcomes of 500
simulations (see Figure 1.1 of [Kre19]).The result was amazing: With bare eyes one can
hardly see the difference between the precise terminal option value and the result of
the delta hedge. The visual impression of the outcome of the simulations is that of a
complete market.

To analyze this phenomenon in proper generality let us fix some notation as in Kreps’
monograph [Kre19]. We work in the space Ω = C0[0, 1], the space of all continuous
functions ω from [0, 1] to R whose value at 0 is 0. We let ω denote a typical element of
Ω, with ω(t) the value of ω at date t. Let P be Wiener measure on Ω.
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We consider a Black-Scholes-Merton model of the form S(t, ω) = eω(t) for the stock,
taking the bond as numeraire. We know that there is a unique probability measure on
Ω, denoted P∗, that is equivalent to P and, under which, S(t) is a martingale (Harrison
and Kreps [HK79]).

Contingent claims are Borel-measurable functions x : Ω → R. We let X denote the
space of bounded and contingent claims which are continuous with respect to the norm
topology on Ω = C0[0, 1]. The well-known “complete markets” result for the Black-
Scholes model says that, for every x ∈ X , x can uniquely be written

x = EP∗ [x] +

∫ 1

0
αdS,

for a predictable and S-integrable integrand α.
Now suppose that for n = 1, 2, . . ., we have different probability measures Pn defined

on Ω, with the following structure: For each n, the support of Pn consists of piecewise
linear functions that, in particular, are linear on all intervals of the form [k/n, (k+1)/n],
for k = 0, . . . , n− 1. The interpretation is that Pn represents a probability distribution
on paths of the log of the stock price in an n-th discrete-time economy, in which trading
between the stock and bond is possible only at times t = k/n for k = 0, . . . , n − 1. At
time 1, the bond and stock liquidate in state ω at prices 1 and eω(1).

Consumers in the n-th discrete-time economy can implement (state-dependent) self-
financing trading strategies

(
V (0),

{
αn(k/n), k = 0, . . . , n−1

})
, where the interpretation

is that V (0) is the value of the consumer’s initial portfolio, αn(k/n, ω) is the number of
shares of stock held by the consumer after she has traded at time k/n, and, after time
0, bond holdings are adjusted that any adjustments in stock holdings at times k/n are
financed with bond purchases/sales. In the n-th economy, the consumer only knows at
time k/n the evolution of the stock price up to and including that date. In the usual
fashion, if V (k/n, ω) is the value of the portfolio formed by this trading strategy at time
k/n in state ω, then for all k = 1, . . . , n,

V (k/n, ω) = V (0) +
k−1∑
j=1

αn(j/n, ω)

[
S
(
(j + 1)/n, ω

)
− S

(
j/n, ω

)]
.

We maintain throughout the assumption that, for each n, Pn specifies an arbitrage-free
model of a financial market in the usual sense: It is impossible to find in the n-th discrete-
time model a trading strategy

(
V (0), αn

)
with V (0) = 0, V (1) ≥ 0 Pn-a.s., and V (1) > 0

with Pn-positive probability. This is true if and only if there exists a probability measure
P∗n that is equivalent to Pn, under which {(eω(k/n), Fk/n); k = 0, . . . , n} is a martingale
(Dalang, Morton, Willinger [DMW90]). Such a P∗n is called an equivalent martingale
measure (emm) for the n-th discrete-time model. Of course, in general there will be
more than one emm P∗n. However, with respect to any emm P∗n,

(
V (k/n), Fk/n

)
is a

martingale with respect to P∗n. In particular, the expectation of V (1) under every emm
P∗n is V (0).

Let X n :=
{
x ∈ X : x(ω) = V (1, ω) for some trading strategy

(
V (0), αn

)
for the nth

discrete-time economy
}
. We refer to X n as the space of synthesizable claims in the n-th

discrete-time economy.
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A basic question treated in detail in Kreps’ mongraph [Kre19] is the following: in which
precise sense and under which precise assumptions can elements of X be approximated
by elements of X n? During a visit of the second named author to Stanford University
in the spring term 2019 we jointly took up this scheme in the paper [KS21] and found
the following definition to be suitable.

Definition 1. The claim x can be asymptotically synthesized with x-controlled risk if,
for every ε > 0, there exists Nε such that, for all n > Nε, there is xn ∈ X n with

Pn
({
ω : |xn(ω)− x(ω)| > ε

})
< ε,

and, in addition, Pn
({
ω : x ≤ xn(ω) ≤ x}

)
= 1 for all n, where x = infω x(ω) and

x = supω x(ω).

The main result result of [KS20] states that, under mild conditions which are natural
in the present context, x-controlled risk can be attained:

Theorem 1. [KS21,Theorem 1] Suppose that the probability measures Pn on Ω =
C0[0, 1] weakly tend to Wiener measure P, and that, for some sequence

{
δn;n = 1, . . . ,

}
of positive numbers tending to zero,

Pn
({
ω : sup

0≤k<n
|ω(k/n)− ω((k + 1)/n)| ≤ δn

})
= 1. (1)

Then every (continuous and bounded) x ∈ X can be asymptotically synthesized with
x-controlled risk. Moreover, fixing the claim x, the sequence of claims {xn} that asymp-
totically synthesize x can be chosen where, for

(
V n(0), αn

)
the trading strategy that gives

xn, V n(0) ≡ EP∗ [x], the Black-Scholes-Merton price of the claim x.

As a particular example, the theorem applies, e.g., to the trinomial model and, more
generally, to a wide range of incomplete approximations of the Black-Scholes model.
The message is: replacing the notions of sub- and super-replications by Definition 1 we
obtain economically meaningful notions of synthesis also in incomplete markets. This is
in contrast to the no-arbitrage bounds which typically only yield huge intervals.

Theorem 1 settles the issue of replication of contingent claims. However, this result
immediately triggers the next question: what about utility maximization when passing
from a discrete approximation to the limiting Black-Scholes-Merton model? This ques-
tion too is amply discussed in Kreps’ monograph [Kre19] and was further persued in
another paper [KS20] by Kreps and the second named author.

Let us recapitulate the setting which is slightly more structured than the assumption
of Theorem 1 above.

Fix a random variable ζ with mean zero, variance one, and bounded support. For an
i.i.d. sequence {ζj ; j = 1, 2, . . .}, where each ζk has the distribution of ζ, the law for the
price of the stock at time k/n is
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S(k/n) := eξ(k/n) where ξ(k/n) :=
k∑
j=1

ζj√
n
. (2)

Again we embed this model into the standard state space Ω = C0[0, 1]. For each n, let
Pn be the probability measure on Ω such that the joint distribution of (ω(0), ω(1/n), . . . , ω(1))
matches the distribution of (ξ(0), ξ(1/n), . . . , ξ(1)), and such that ω(t) for k/n < t <
(k + 1)/n is the linear interpolate of ω(k/n) and ω((k + 1)/n). And let S : Ω→ R+ be
defined by S(ω, t) = eω(t). Donsker’s Theorem tells us that Pn weakly tends to P, where
P is Wiener measure on C0[0, 1].

We imagine an expected-utility-maximizing agent who is endowed with initial wealth
x, trading as above either in the discrete market or in the continuous limit.

The question adressed in [Kre19] is: If we place this consumer in the nth discrete-time
economy (where the stock and bond trade (only) at times 0, 1/n, 2/n, . . . , (n − 1)/n),
does the optimal expected utility she can attain approach, as n → ∞, what she can
optimally attain in the continuous-time Black-Scholes-Merton economy?

Let un(x) be the supremal expected utility she can attain in the nth discrete-time
economy if her initial wealth is x, and let u(x) be her supremal expected utility in
the Black-Scholes-Merton economy. Kreps [Kre19] obtained partial one-sided results,
showing that lim infn un(x) ≥ u(x). And he proved limn un(x) = u(x) in the very
special cases of U having either constant absolute or relative risk aversion. But he
only conjectures that the second “half”, or lim supn un(x) ≤ u(x) is true for general
(sufficiently regular) U .

To tackle this issue in proper generality we first need precise definitions

Definition 2. A utility function U is a strictly increasing, strictly concave, and con-
tinuously differentiable function U : R+ → R, which satisfies the Inada conditions that
limx→0 U

′(x) =∞ and limx→∞ U
′(x) = 0.

As usual, we define the corresponding value functions un(x) and u(x) as the maximal
expected utility an agent can achieve from initial wealth x by admissibly trading in the
markets defined by the measures Pn and P .

For the utility function U , its asymptotic elasticity [KS99], written AE(U), is defined
by

AE(U) := lim sup
x→∞

xU ′(x)

U(x)

If, for instance, U(x) = xα/α for α ∈ (0, 1), then AE(U) = α.
The concavity of U implies that AE(U) ≤ 1 in all cases; if U is bounded above and

if U(∞) > 0, then AE(U) = 0. But if U(∞) = ∞, AE(U) can equal 1; an example is
where U(x) = x/ ln(x) for sufficiently large x.

The following theorem gives an affirmative answer to Kreps’ conjecture under the
asymptotic elasticity condition.

5



Theorem 2. [KS 20 Theorem 1] Suppose that the utility function U satisfies AE(U) < 1.
Then, for all x > 0, the value function x 7→ u(x) is finite-valued and

lim
n→∞

un(x) = u(x). (3)

To resume, admitting the condition AE(U) < 1, this theorem settles the issue of
convergence of the optimal expected utility in the discrete approximations of the Black-
Scholes-Merton model in an economically satisfactory way. Note that we did not suppose
the completeness of the discrete markets modeled by the measures Pn. In other words:
the convergence of expected utility behaves well, independently of whether we are in the
binomial or in the trinomial approximation. Also note that the assertion of finiteness
of both terms in (3) – as a consequence of the asymptotic elasticity assumption – is a
non-trivial result.

But, of course, at this stage the next question pops up. What happens for the —
admittedly somewhat pathological — case of utility functions with AE(U) = 1? For
this case Kreps and the second named author found to their surprise that the answer to
Kreps’ conjecture turns out to be negative. More surprisingly: this pathology already
happens in the framework of the binomial model!

To adress this issue let us fix the notation for the special case of the binomial model
in (2).

For arbitrary p ∈ (0, 1) we consider and i.i.d. sequence (αn)∞n=1 of Bernoulli variables
with

P [αn = 0] = 1− p, P [αn = 1] = p, (4)

where p ∈ (0, 1). Denote by ζn the corresponding standardized variables

ζn =
αn − p√
p(1− p)

, (5)

so that E[ζn] = 0 and Var[ζn] = 1. Again we denote by ξn,k the scaled partial sums

ξn,k =
1√
n

k∑
j=1

ζj (6)

and set

zn,k =
k − np√
np(1− p)

, fn,k =

(
n

k

)
pk(1− p)n−k, k = 0, . . . , n. (7)

Then fn,k = P [ξn,n = zn,k].
If we again set S(n)(k/n) = eξn,k and extend S(n) by interpolation to continuous-time

processes as above, then (S(n)(t))0≤t≤1 approximates the Black-Scholes-Merton model
(S(t))0≤t≤1 with S(t) = exp (ω(t)) for 0 ≤ t ≤ 1.

The distribution of the random variable ω(1) under Pn equals the binomial distribution
of ξn,n = ζ1+...+ζn

n
1
2

.
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Again we define the value functions u(x) and un(x) as

u(x) = sup {EP [U(X)] : EP∗ [X] ≤ x} (8)

and
un(x) = sup

{
EPn [U(Xn)] : EP∗

n
[Xn] ≤ x

}
, (9)

where P∗ and P∗n now are the unique equivalent martingale measures pertaining to the
Black-Scholes-Merton model and its n-th approximation, respectively.

When p ∈ (0, 1/2) we have E[ζ3n] > 0. This is the case where things go astray, as
demonstrated by the counterexample in Section 9 of [KS20]. If p ∈ (0, 1/2), there is a
utility function U satisfying the conditions of Definition 2 (but with AE(U) = 1) such
that u(x) is a perfectly well-behaved finite function while limn→∞ un(x) = ∞, for all
x > 0. This phenomenon happens if E[ζ3n] > 0 which means that the up-tick of the
log-price is larger than the down-tick.

It was left as an open question in [KS20] what happens in the case E[ζ3n] ≤ 0 with
special emphasis on the symmetric case E[ζ3n] = 0 when the up-tick of the log-price is
equal to the down-tick.

The good news is that in this case everything works out as it should as stated in the
subsequent theorem which is the main novel contribution of the present paper.

Theorem 3. If U and ζ are as above with p ∈ [1/2, 1), we have

u(x) = lim
n→∞

un(x), x > 0. (10)

The theorem will follow from the subsequent more technical version of (10). As above,
let

u(x) := sup
{
EP [U(X)] : EP∗ [X] ≤ x

}
,

and
un(x) := sup

{
EPn [U(X)] : EP∗

n
[X] ≤ x

}
,

where P ∗n and P ∗ denote the unique equivalent martingale measures of the binomial and
the Black-Scholes-Merton model, respectively.

As usual we denote by V : R+ → R the conjugate function of U , i.e., V (y) =
supx>0 {U(x)− xy}, and the corresponding dual value functions by

v(y) := EP
[
V

(
y
dP∗

dP

)]
,

and

vn(y) := EPn

[
V

(
y
dP∗n
dPn

)]
.

Proposition 1. Under the assumptions of Theorem 3 we have

lim sup
n→∞

vn(y) ≤ v(y), y > 0. (11)
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Proof of Theorem 3 admitting Proposition 1. We deduce from [KS20, Proposition 2] and
standard results on conjugate functions that the reverse inequality to (11) does hold true,
i.e.,

lim inf
n→∞

vn(y) ≥ v(y), y > 0. (12)

Admitting Proposition 1, formulas (11) and (12) imply the equality

lim
n→∞

vn(y) = v(y), y > 0. (13)

Using again standard results on conjugate functions (compare [KS20]) we obtain (10)
from (13).

We therefore are left to show Proposition 1 which will be a technically demanding
task. A key ingredient for the proof of Proposition 1 are estimates for the tails of the
standardized binomial distributions in terms of the standard Gaussian tails.

Let ξ be a standard normal random variable and denote its density by φ(x) = 1√
2π
e−

x2

2 .

Set
Fn(x) = P [ξn,n ≤ x], Φ(x) = P [ξ≤x] (14)

and
F̄n(x) = 1− Fn(x) = P [ξn,n > x], Φ̄(x) = 1− Φ(x) = P [ξ > x]. (15)

Proposition 2. Suppose p ∈ [1/2, 1), then there is C > 0 such that, for n ≥ 1, we have

fn,k ≤ C ·
1√

np(1− p)
φ(zn,k−1), 0 ≤ k ≤ dnpe , (16)

fn,k ≤ C ·
1√

np(1− p)
φ(zn,k+1), bnpc ≤ k ≤ n. (17)

Furthermore
Fn(x) ≤ CΦ(x), x ≤ 0 (18)

and
F̄n(x) ≤ CΦ̄(x), x ≥ 0. (19)

Remark 1. The terms 1√
np(1−p)

φ(zn,k±1) in (16) and (17) are a lower bound for the

area under the density ϕ(x) between zn,k−1 and zn,k on the left and zn,k and zn,k+1 on
the right tail, respectively.

We prove Proposition 1 and Proposition 2 first for the symmetric case p = 1/2 in
Section 2, as this case allows for several simplifications and the main arguments are more
transparent. We then provide the slightly more technical details for the asymmetric case
p ∈ (1/2, 1) in Section 3.

Remark 2. Of course the history of the Central Limit Theorem goes back to prehistoric
times. William Feller said in 1945 in his article [Fel45]:
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Although the problem of an efficient estimation of the error in the normal
approximation to the binomial distribution is classical, the many papers which
are still being written on the subject show that not all pertinent questions have
found a satisfactory solution.

We believe his statement remains valid to the present day, below some recent publications
on that topic are given below and in the references. Further on Feller says:

What is really needed in many applications is an estimate of the relative
error, but this seems difficult to obtain.

Here the control of the relativ error is crucial for our application to utility maximization.
For small values of k, namely

n

2
< k ≤ n

2
+ c
√
n (20)

Proposition 2 follows from an old and well-known limit theorem from the proof of the
De Moivre-Laplace Central Limit Theorem, see, for example, [Fel68, Theorem VII.3.1,
p.184] and set p = q = 1

2 and Kn = c
√
n. Serov and Zubkov in 2013 remark in their

article [ZS13]:

But relative errors of the Moivre-Laplace approximations for the tails of bi-
nomial distribution function are large.

Based on a corollary of a theorem given by Chernoff, [Oka58, Theorem 1.i, p.33] yields
for p = 1/2, in our notation, the inequality F̄n(x) <

√
2πφ(x). Since Φ̄(x) ∼ x−1φ(x)

as x → ∞ our estimate improves asymptotically by a factor of 1/x as x → ∞. This is
important for the utility application.

In [DMM08, Chapter 4] we find an impressive discussion of a large list of inequalities
for the binomial distribution.

2 The symmetric case

Proof of Proposition 1 (symmetric case) admitting Proposition 2. As in [KS20, Section 3]
we write

v(y) = EP [V (yZ)], y > 0, (21)

and
vn(y) = EPn [V (yZn)], y > 0, (22)

where V (y) = sup{U(x)− xy : x > 0} is the conjugate function of U .
The random variables Z and Zn are the densities of the (unique) equivalent martingale

measures P∗ and P∗n with respect to P and Pn, respectively, i.e., Z = dP∗

dP and Zn = dP∗
n

dPn
.

They are of the form

Z = exp

(
−ω(1)

2
− 1

8

)
(23)
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and
Zn = exp (−anω(1)− bn) . (24)

In the symmetric case the calculations from [KS20, Section 6] simplify, and we have that

an =
1

2
, bn = n log cosh

(
1

2
√
n

)
. (25)

It follows that bn increases to 1/8 as n→∞.
Fix y > 0 such that v(y) <∞, otherwise (11) is certainly true. Denote by Hy : R→ R

the function

Hy(x) = V

(
y exp

(
−x

2
− 1

8

))
, x ∈ R, (26)

and by Hn
y : R→ R the function

Hn
y (x) = V

(
y exp

(
−x

2
− bn

))
, x ∈ R. (27)

Clearly, these functions are increasing on R. Note, however, that they are not necessarily
concave. We know that

v(y) = EP [Hy(ω(1))] =

∫
R
Hy(x)φ(x)dx <∞ (28)

while

vn(y) = EPn [Hn
y (ω(1))] =

n∑
k=0

Hn
y (zn,k)fn,k, (29)

where φ(x) is the standard normal density and fn,k are the binomial probabilities as in
Section 1.

As Hn
y (x) ≤ Hy(x) for all x ∈ R, in order to show (11), it will suffice to show

lim sup
n→∞

EPn [Hy(ω(1))] ≤ EP [Hy(ω(1))]. (30)

In order to show (30) the crucial estimate is the uniform integrability of the random
variables Hy(ω(1)) under Pn. More precisely, we need the following estimates (31)
and (32). For ε > 0 there is M > 0 such that

EPn

[
Hy(ω(1))1{Hy(ω(1))>M}

]
=

n∑
k=0

Hy(zn,k)1{Hy(zn,k)>M}fn,k < ε, (31)

and

EPn

[
|Hy(ω(1))|1{Hy(ω(1))<−M}

]
=

n∑
k=0

|Hy(zn,k)|1{Hy(zn,k)<−M}fn,k < ε, (32)

uniformly in n ∈ N. Formulas (31) and (32) correspond to the formulas [KS20, (8.12)
and (8.14)].
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First we consider M > Hy(1)+. If Hy(zn,k) > M , then n/2 < k ≤ n and we are in
a position to invoke formula (17) of Theorem 2, which gives an estimate on the right
tail of the binomial distribution as compared to the normal one. More precisely, there
is a universal constant C > 0 such that, for every n ∈ N and n/2 < k ≤ n and all
x ∈ (zn,k, zn,k+1)

fn,k ≤ C ·
2√
n
φ(x), 0 ≤ Hy(zn,k) ≤ Hy(x). (33)

Thus
n∑
k=0

Hy(zn,k)I{Hy(zn,k)>M}fn,k ≤ C
∫ +∞

−∞
Hy(x)I{Hy(x)>M}φ(x)dx. (34)

It follows from (28) that the right-hand side of (34) can be made smaller than ε for
sufficiently large M .

A similar estimate applies for the left tail. We consider now M > Hy(−1)−. If
Hy(zn,k) < −M then 0 ≤ k < n/2 and we invoke formula (16) of Theorem 2. We get
now for every n ∈ N and 0 ≤ k < n/2 and all x ∈ (zn,k−1, zn,k)

fn,k ≤ C ·
2√
n
φ(x), Hy(x) ≤ Hy(zn,k) ≤ 0. (35)

Thus

n∑
k=0

|Hy(zn,k)|I{Hy(zn,k)<−M}fn,k ≤ C
∫ +∞

−∞
|Hy(x)|I{Hy(x)<−M}φ(x)dx. (36)

Again, it follows from (28) that the right-hand side of (36) can be made smaller than ε
for sufficiently large M .

Using the well-known weak convergence of Pn to P and the uniform integrability
conditions we can deduce (29), see [vdV98, Thm 2.20, p.17].

Finally we consider the case y = y0, where y0 = inf{y > 0 : v(y) < ∞}, for the case
y0 > 0. Either v(y0) = ∞ in which case (11) holds trivially. Or v(y0) < ∞, in which
case v is right continuous at y0, see [KS99]; we therefore may repeat the above argument
with y = y0.

This finishes the proof of Proposition 1.

Proof of Proposition 2 (symmetric case). Let us start with (17). It is enough to prove
that there is n0 > 0 such that (17) holds for n ≥ n0, since φ is strictly positive and
there are only finitely many remaining cases that can be incorporated in the value of the
constant C.

Let us consider first the extreme case k = n. In this case (17) follows since pn,n = 2−n,
which decays faster than n−1/2φ(zn,n+1) ≈ e−

n
2 for n → ∞, as log 2 > 1/2. Here we

used the convention zn,n+1 =
√
n+ 2/

√
n, although zn,n+1 is not a possible value for Yn.

Passing to the other extreme case, we deduce from the central limit theorem, that for

k = bn/2c we have
√
nfn,k

2φ(zn,k+1)
→ 1 as n→∞.
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For the remaining cases, i.e., bn/2c < k ≤ n− 1, we take logarithms and show that

log

( √
nfn,k

2φ(zn,k+1)

)
(37)

is bounded from above. To estimate the numerator in (37) we use a fine version of
Stirling’s Formula as given in [AS92, 6.1.38, p.257], namely

x! =
√

2πxx+
1
2 exp

(
−x+

θ(x)

12x

)
, x > 0, (38)

with 0 < θ(x) < 1 for all x > 0. We also note that limx→∞ θ(x) = 0. We obtain the
estimates

log(n!) ≤ log
√

2π +

(
n+

1

2

)
log n− n+

1

12n
(39)

log(k!) ≥ log
√

2π +

(
k +

1

2

)
log k − k (40)

log((n− k)!) ≥ log
√

2π +

(
n− k +

1

2

)
log(n− k)− (n− k). (41)

This yields an upper bound for the numerator of (37), as

log fn,k = log(n!)− log(k!)− log((n− k)!)− n log 2. (42)

As regards the denominator of (37), we have

log φ(zn,k+1) = 2 + 2k − 2

n
− 4

k

n
− 2

k2

n
− n

2
− log

√
2π. (43)

Writing log k = log n + log(k/n) and log(n − k) = log n + log(1 − k/n) and combin-
ing (42), (39), (40), (41), and (43) yields

log

( √
nfn,k

2φ(zn,k+1)

)
≤ gn

(
k

n

)
, (44)

with gn(w) = α(w)n+ βn(w), where w ∈ [12 , 1], and

α(w) = −w logw − (1− w) log(1− w)− 2w(1− w) +
1

2
− log 2 (45)

and

βn(w) = −1

2
logw − 1

2
log(1− w) + 4w − 2 +

25

12n
. (46)

It remains to show that gn(w) is bounded from above uniformly in n ∈ N and w ∈
[1/2, 1− 1/n].

We have α(12) = α′(12) = α′′(12) = α′′′(12) = 0 and for the forth derivative we have
αiv(w) = −2/(1−w)3 − 2/w3 < 0 for w ∈ (12 , 1), and thus each of the functions α′′′(w),
α′′(w), α′(w), and α(w) is strictly negative and decreasing for w ∈ (12 , 1).
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We have βn(1/2) = 25/(12n) and β′n(w) = 4−1/(2w)+1/(2(1−w)) > 0 for w ∈ (12 , 1),
thus βn(w) is strictly positive and strictly increasing for w ∈ (12 , 1).

For w ∈ [1/2, 3/4] we have gn(w) ≤ bn(3/4). As limn→∞ βn(3/4) = 1+log(2/
√

3) <∞
it follows that gn(w) is bounded from above for the interval under consideration.

For w ∈ [3/4, 1− 1/n] we have gn(w) ≤ α(3/4)n+ βn(1− 1/n). Now α(3/4) < 0 and
βn(1 − 1/n) ∼ 1

2 log n as n → ∞. Here the second term on the right hand side of (46)
is the leading term. Finally we use the fact that α(3/4)n grows quicker than 1

2 log n to
conclude that gn(w) is negative for w ∈ [3/4, 1− 1/n] and sufficiently large n.

The proof of (16) is completely symmetric with gn(w) for w ∈ [1/2, 1− 1/n] replaced
by gn(1− w) for w ∈ [1/n, 1/2].

Having proved (16) and (17) we mentioned already in Remark 1 how these two in-
equalties imply (18) and (19).

For the above proof of Proposition 1 the estimates (16) and (17) involving an unspec-
ified constant C > 0 is sufficiently strong. But we we can do better than that. We may
adapt the above argument to yield a constant C = 1 + ε for n sufficiently large. Indeed,
analyzing the above proof of Proposition 2, we see that the above argument also works
when we split the interval (12 , 1) not at w = 3/4, but at a point θ ∈ (1/2, 1), which is
close to 1/2 to obtain a better constant C, for large enough n. The detailed argument
is given in the proof of the following proposition, which sharpens Proposition 2.

Proposition 3. For any C > 1 there is n0(C) > 0 such that equations (16)–(17)
and (18)–(19) hold for n ≥ n0(C).

Proof. We consider ϑ ∈ (12 , 1) and proceed as in the proof of the Proposition 2 above. We
distinguish two cases, w ∈ [12 , ϑ] and w ∈ [ϑ, 1−1/n]. In the first case, when w ∈ [1/2, ϑ],
we have gn(w) ≤ βn(ϑ) and

lim
n→∞

βn(ϑ) = −1

2
log ϑ− 1

2
log(1− ϑ) + 4ϑ− 2− log 2. (47)

The right hand side is increasing in ϑ and equals zero when ϑ = 1/2. In the second
case, for w ∈ [ϑ, 1 − 1/n] we have gn(w) ≤ α(ϑ)n + βn(1 − 1/n). Again α(ϑ) < 0 and
βn(1 − 1/n) ∼ 1

2 log n as n → ∞, so that gn(w) is negative for w ∈ [ϑ, 1 − 1/n] and
sufficiently large n.

3 The asymmetric case

Proof of Proposition 1 (asymmetric case) admitting Proposition 1. We fix p ∈ (12 , 1) and
follow the steps from the symmetric case, but now we get instead of (25) the following
coefficients in (24):

an =

√
n

z1,1 − z1,0
log

(
p

1− p
ez1,1/

√
n − 1

1− ez1,0/
√
n

)
, (48)
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and
bn = n log

(
(1− p)e−z1,0an/

√
n + pe−z1,1an/

√
n
)
. (49)

with z1,0 = −
√
p/(1− p) and z1,1 =

√
(1− p)/p. Straightforward asymptotic expan-

sions for n→∞ yield

an =
1

2
− 2p− 1

24
√
p(1− p)

n−
1
2 +O(n−1), (50)

which slightly extends the result that is given in [KS20, Sec.6], and

bn =
1

8
− 1− p+ p2

576p(1− p)
n−1 +O(n−2). (51)

Now we fix an arbitrary δ > 0. For p ∈ (1/2, 1) it follows from the asymptotics that

0 < an ≤
1

2
,

1

8
− δ ≤ bn ≤

1

8
(52)

for all n sufficiently large. In fact, these inequalities are also true for p = 1/2 as can be
seen from (25).

Instead of (27) we now consider

Hn
y (x) = V (y exp (−anx− bn)) , x ∈ R. (53)

If we are in the right tail and zn,k ≥ 0 then (52) yields Hn
y (zn,k) ≤ Hy(zn,k) and the

uniform inegrability follows just as in the symmetric case.
If we are in the left tail and zn,k ≤ 0 then (52) yields Hn

y (zn,k) ≥ H̃y(zn,k), where

H̃y(x) = V (ỹe−x/2−1/8) with ỹ = yeδ. Due to the convexity of V we have v(ỹ) > −∞
and the uniform inegrability follows just as in the symmetric case.

Proof of Proposition 2 (asymmetric case). Following the steps from the symmetric case
we now get

log fn,k = log(n!)− log(k!)− log((n− k)!) + k log p+ (n− k) log(1− p). (54)

and

log φ(zn,k+1) =
1

2
(− log(2)− log(π))− (k − np+ 1)2

2n(1− p)p
. (55)

the key inequality (44) becomes

log

(√
np(1− p)fn,k
φ(zn,k+1)

)
≤ gn

(
k

n

)
, (56)

with gn(w) = α(w)n+ βn(w), where w ∈ [p, 1], and

α(w) = −w logw − (1− w) log(1− w)

+
w2

2p(1− p)
+

(
log

p

1− p
− 1

1− p

)
w +

p

2(1− p)
+ log(1− p) (57)
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and

βn(w) = −1

2
log (w(1− w)) +

w

p(1− p)
− log 2− 1

1− p
+

(
1

12
+

1

2p(1− p)

)
1

n
. (58)

Again we have α(p) = α′(p) = α′′(p) = 0. As regards the third derivative we find
α′′′(w) = 1−2p

(p−1)2p2 < 0 for w ∈ (p, 1), and thus α′′′(w), α′′(w), α′(w), and α(w) again are

strictly negative and decreasing for w ∈ (p, 1).

We have βn(p) = 1
12

(
6

np−np2 + 1
n − 6 log(−4(p− 1)p)

)
and β′n(w) = 1

p−p2 + 1
2−2w −

1
2w > 0 for w ∈ (p, 1), thus βn(w) is strictly positive and strictly increasing for w ∈ (p, 1).

Similarly as in the proof of Proposition 3, fix ϑ ∈ (p, 1). For w ∈ [p, ϑ] we have
gn(w) ≤ βn(ϑ). As limn→∞ βn(ϑ) = −1/2 log(ϑ(1−ϑ))+ h

p(1−p)−
1

1−p−log 2 it follows that

gn(w) is bounded from above for the interval under consideration. For w ∈ [ϑ, 1− 1/n]
we have gn(w) ≤ α(ϑ)n + βn(1 − 1/n). Now α(ϑ) < 0 and βn(1 − 1/n) ∼ 1/2 log n as
n→∞ and thus gn(w) is negative for w ∈ [ϑ, 1− 1/n] and sufficiently large n.
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